EP3017504B1 - Antenne à surface d'impédance artificielle dirigeable électroniquement - Google Patents

Antenne à surface d'impédance artificielle dirigeable électroniquement Download PDF

Info

Publication number
EP3017504B1
EP3017504B1 EP13888596.7A EP13888596A EP3017504B1 EP 3017504 B1 EP3017504 B1 EP 3017504B1 EP 13888596 A EP13888596 A EP 13888596A EP 3017504 B1 EP3017504 B1 EP 3017504B1
Authority
EP
European Patent Office
Prior art keywords
impedance
antenna
dielectric substrate
metallic strips
artificial impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13888596.7A
Other languages
German (de)
English (en)
Other versions
EP3017504A4 (fr
EP3017504A1 (fr
Inventor
Daniel J. Gregoire
Joseph S. Colburn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/934,553 external-priority patent/US9466887B2/en
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of EP3017504A1 publication Critical patent/EP3017504A1/fr
Publication of EP3017504A4 publication Critical patent/EP3017504A4/fr
Application granted granted Critical
Publication of EP3017504B1 publication Critical patent/EP3017504B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/443Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element varying the phase velocity along a leaky transmission line

Definitions

  • a two dimensionally electronically steered AISA has been described in U.S. Patent No. 8,436,785, issued on May 7, 2013, to Lai and Colburn .
  • the antenna described by Lai and Colburn is relatively costly and is electronically complex, because to steer in two dimensions a complex network of voltage control to a two dimensional array of impedance elements is required so that an arbitrary impedance pattern can be created to produce beam steering in any direction.
  • references [1]-[6] describe artificial impedance surface antennas (AISA) formed from modulated artificial impedance surfaces (AIS).
  • AISA artificial impedance surface antennas
  • Patel [1] demonstrated a scalar AISA using an end-fire, flarefed one-dimensional, spatially-modulated AIS consisting of a linear array of metallic strips on a grounded dielectric.
  • Sievenpiper, Colburn and Fong [2]-[4] have demonstrated scalar and tensor AISAs on both flat and curved surfaces using waveguide- or dipole-fed, two-dimensional, spatially-modulated AIS consisting of a grounded dielectric topped with a grid of metallic patches.
  • Gregoire [5]-[6] has examined the dependence of AISA operation on its design properties.
  • Eqn. (2) can be replaced with any periodic function and the AISA will still operate as designed, but the details of the side lobes, bandwidth and beam squint will be affected.
  • the AIS is a grid of metallic patches on a dielectric substrate.
  • the surface-wave impedance is locally controlled at each position on the AIS by applying a variable voltage to voltage-variable varactors connected between each of the patches.
  • an AIS's SW impedance can be tuned with capacitive loads inserted between impedance elements [8],[9].
  • Each patch is electrically connected to neighboring patches on all four sides with voltage-variable varactor capacitor.
  • the voltage is applied to the varactors though electrical vias connected to each impedance element patch.
  • Half of the patches are electrically connected to the groundplane with vias that run from the center of each patch down through the dielectric substrate.
  • the rest of the patches are electrically connected to voltage sources that run through the substrates, and through holes in the ground plane to the voltage sources.
  • AISA electronically steered artificial impedance surface antenna
  • a steerable artificial impedance surface antenna according to the invention is defined in claim 1.
  • FIG. 2A shows an electronically steered artificial impedance surface antenna (AISA) in accordance with the present disclosure that is relatively low cost and capable of steering in both theta ( ⁇ ) and phi ( ⁇ ) directions.
  • FIG. 3 is a diagram of a spherical coordinate system showing the theta ( ⁇ ) and phi ( ⁇ ) angles. In FIG. 3 the phi ( ⁇ ) angle is the angle in the x-y plane, and the theta ( ⁇ ) angle is the angle from the z axis.
  • the electronically steered artificial impedance surface antenna (AISA) of FIG. 2A includes a tunable artificial impedance surface antenna (AISA) 101, a voltage control network 102, and a one-dimensional 1D radio frequency (RF) feed network 103.
  • AISA tunable artificial impedance surface antenna
  • RF radio frequency
  • the steering of the primary gain lobe of the electronically steered artificial impedance surface antenna (AISA) is controlled in the phi ( ⁇ ) direction by changing the relative phase difference between the RF surface wave feeds 108 of the 1D RF feed network 103.
  • the theta steering is controlled by varying or modulating the surface wave impedance of the tunable artificial impedance surface antenna (AISA) 101.
  • the voltage control network 102 applies direct current (DC) voltages to the metallic strips 107 on the AISA structure.
  • Control bus 105 provides control for the voltage control network 102.
  • the control bus 105 may be from a microprocessor, central processing unit, or any computer or processor.
  • a varactor is a type of diode whose capacitance varies as a function of the voltage applied across its terminals, which makes it useful for tuning applications.
  • varactors 109 are used between the metallic strips 107, as shown in FIG. 2A , by controlling the voltage applied to the varactors 109 via the metallic strips 107, the capacitances of the varactors 109 vary, which in turn varies or modulates the capacitive coupling and the impedance between the metallic strips 107 to steer a beam in the theta direction.
  • the spacing of the metallic strips 107 in one dimension of the AISA may be a fraction of the RF surface wave (SW) wavelength of the RF waves that propagate across the AISA from the RF surface wave feeds 108.
  • the spacing of the metallic strips 107 may be at most 1/5 of the RF surface wave (SW) wavelength of the RF waves.
  • the fraction may be only about 1/10 of the RF surface wave (SW) wavelength of the RF waves.
  • the RF SW feeds 108 may be a phased array corporate feed structure, or may be conformal surface wave feeds, which are integrated into the AISA, such as by using micro-strips.
  • Conformal surface wave feeds that may be used include those described in U.S. Patent Application Serial No. 13/242,102 filed September 23, 2011 , or those described in "Directional Coupler for Transverse-Electric Surface Waves", published in IP.com Prior Art Database Disclosure No. IPCOM000183639D, May 29, 2009.
  • the spacing between the RF SW feeds 108 in the second dimension of the AISA or the y dimension of FIG. 3 may be based on rules of thumb for phased array antennas that dictate they be no farther apart than 1/2 of the free-space wavelength for the highest frequency signal to be transmitted or received.
  • the thickness of the dielectric substrate 106 is determined by its permittivity and the frequency of radiation to be transmitted or received. The higher the permittivity, the thinner the substrate can be.
  • the beam is steered in the theta direction by tuning the varactor voltages such that X, M, and p result in the desired theta ⁇ .
  • the dependence of the surface wave (SW) impedance on the varactor capacitance is calculated using transcendental equations resulting from the transverse resonance method or by using full-wave numerical simulations.
  • FIG. 4 shows another electronically steered artificial impedance surface antenna (AISA) in accordance with the present disclosure that is essentially the same as the embodiment described with reference to FIG. 2A , except in the embodiment of FIG. 4 , a voltage is applied to each of the metallic strips 207 by voltage control lines 216. Twice as many control voltages are required compared to the embodiment of FIG. 2A , however, the spatial resolution of the impedance modulation is doubled.
  • the voltage applied to each voltage control line 216 is a function of the desired theta ( ⁇ ) angle, and may be different for each voltage control line 216.
  • DAC digital-to-analog converter
  • CPU central processing unit
  • processor any computer or processor
  • the antenna main lobe is steered in the phi direction by using the feed network 203 to impose a phase shift between each of the RF SW feeds 208 in the same manner as described with reference to FIG. 1 .
  • FIG. 5 illustrates a preferred embodiment where the theta ⁇ angle control DACs 117 and 217 of FIGs. 2A and 4 are replaced by a single control voltage from a variable voltage source 350.
  • the AISA radiation angle varies between a minimum and maximum theta angle that is determined by the details of the AISA design.
  • the voltage is applied though voltage control lines 352 and 354 to the metallic strips 340 on the surface of the AISA.
  • Voltage control line 354 may be a ground with the voltage control line 352 being a variable voltage.
  • the metallic strips 340 are alternately tied to voltage control line 352 or to voltage control line 354.
  • the substrate 401 which may be used for dielectric substrates 106, 206 or 306, is a material whose electrical permittivity is varied with application of an electric field. As described above, no varactors 109, 209 or 309 are used in this embodiment.
  • a voltage is applied to metallic strips 402 on the AISA, an electric field is produced between adjacent strips and also between the strips and the substrate ground plane 403. The electric field changes the permittivity of the substrate material, which results in a change in the capacitance between adjacent metallic strips 402. As in the other embodiments, the capacitance between adjacent metallic strips 402 determines the surface-wave impedance.
  • variable material 404 may be any electrically variable material, such as liquid crystal material or barium strontium titanate (BST). It may be necessary, especially in the case of using liquid crystals, to embed the variable material 404 in pockets within an inert substrate 405, as shown in FIG. 7 .
  • BST barium strontium titanate

Claims (15)

  1. Antenne de surface à impédance artificielle orientable qui peut être orientée à des angles phi et thêta comprenant :
    un substrat diélectrique (106) ayant une longueur et une largeur ;
    une pluralité de bandes métalliques (107) sur une première surface du substrat diélectrique (106), les bandes métalliques (107) étant espacées sur la longueur du substrat diélectrique et chaque bande métallique s'étendant le long de la largeur du substrat diélectrique ;
    une pluralité d'alimentation d'onde de surface (108) espacées le long de la largeur du substrat diélectrique (106) à proximité d'un bord du substrat diélectrique ;
    un réseau d'alimentation (103) pour orienter un lobe principal d'antenne dans la direction phi en imposant un changement de phase entre chacune des alimentations d'onde de surface (108) ; et
    un réseau de régulation de tension (102) pour commander l'orientation thêta en faisant varier une impédance d'ondes de surface de l'antenne de surface a impédance artificielle au moyen de la commande des tensions sur lesdites bandes métalliques (107) ;
    le substrat diélectrique (106) étant sensiblement dans un plan X-Y défini par un axe X et un axe Y ;
    l'angle phi étant un angle dans le plan X-Y par rapport à l'axe X ; et
    l'angle thêta étant un angle par rapport à un axe Z orthogonal au plan X-Y.
  2. Antenne de surface à impédance artificielle orientable selon la revendication 1, comprenant en outre :
    au moins un élément accordable couplé entre chaque paire adjacente de bandes métalliques (107).
  3. Antenne de surface à impédance artificielle orientable selon la revendication 2, dans laquelle :
    l'élément accordable comprend :
    une pluralité de varactors (109) couplés entre chaque paire adjacente de bandes métalliques (107) ; et
    chaque varactor (109) couplé à une bande métallique respective présente une même polarité que tout autre varactor couplé à la bande métallique (107) respective.
  4. Antenne de surface à impédance artificielle orientable selon la revendication 2, dans laquelle :
    l'élément accordable comprend un matériau électriquement variable (404) situé entre des bandes métalliques adjacentes (107) ; et
    le matériau électriquement variable (404) comprend un matériau de cristal liquide ou du titanate de baryum et de strontium (TBS).
  5. Antenne de surface à impédance artificielle orientable selon la revendication 4, dans laquelle :
    le substrat diélectrique (106) est un substrat inerte ; et
    le matériau électriquement variable est incorporé au sein du substrat inerte.
  6. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    les alimentations d'onde de surface (108) sont conçues de telle sorte qu'une différence de phase relative entre chaque alimentation d'onde de surface détermine l'angle phi pour un lobe principal primaire de l'antenne de surface à impédance artificielle orientée électroniquement.
  7. Antenne de surface à impédance artificielle orientable selon la revendication 6, comprenant en outre :
    un réseau d'alimentation de fréquence radio (103) couplé aux alimentations d'onde de surface (108).
  8. Antenne de surface à impédance artificielle orientable selon la revendication 7, dans laquelle le réseau d'alimentation de fréquence radio (103) comprend :
    un module de transmission/réception (110) ;
    une pluralité de changeurs de phase (113), les changeurs de phase respectifs (113) étant couplés au module de transmission/réception et à une alimentation d'onde de surface respective (108) ; et
    un contrôleur de changement de phase (114) couplé aux changeurs de phase (113).
  9. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    des bandes métalliques alternantes (107) de la pluralité de bandes métalliques sont couplés à une masse (120) ; et
    chaque bande métallique non couplée à la masse est couplée à une tension respective à partir d'une source de tension (117) du réseau de régulation de tension (102) ;
    l'impédance d'onde de surface du substrat diélectrique (106) étant modifiée au moyen du changement des tensions respectives.
  10. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    chaque bande métallique (107) est couplée à une source de tension (117) du réseau de régulation de tension (102) ;
    l'impédance d'onde de surface du substrat diélectrique (106) étant modifiée au moyen du changement des tensions respectives appliquées à partir de la source de tension sur chaque bande métallique respective (107).
  11. Antenne de surface à impédance artificielle orientable selon la revendication 1, comprenant en outre :
    un plan de masse (119) sur une seconde surface du substrat diélectrique (106) à l'opposé de la première surface du substrat diélectrique.
  12. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    les bandes métalliques (107) possèdent des centres espacés par une fraction d'une longueur d'onde d'une onde de surface propagée à travers le substrat diélectrique (106) ; et
    la fraction étant inférieure ou égale à 0,2.
  13. Antenne de surface à impédance artificielle orientable selon la revendication 12, dans laquelle :
    les éléments accordables sont des varactors (109) ; et
    un espacement entre des varactors adjacents (109) couplés entre deux bandes métalliques adjacentes (107) est approximativement le même que l'espacement entre des centres de bandes métalliques adjacentes (107).
  14. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    l'antenne de surface à impédance artificielle présente une impédance d'onde de surface Zsw , qui est modulée ou qui varie périodiquement en appliquant des tensions sur les bandes métalliques (107) de sorte qu'à une distance x s'éloignant des alimentations d'ondes de surface (108) l'impédance d'onde de surface varie conformément à : Z sw = X + M cos 2 π x / p
    Figure imgb0023
    où X et M représentent une impédance moyenne et une amplitude de modulation respectivement, et p représente une période de modulation ; et
    l'angle thêta se rapporte à la modulation d'impédance d'onde de surface selon θ = sin 1 n sw λ / p
    Figure imgb0024
    où λ représente une longueur d'onde d'une onde de surface propagée à travers le substrat diélectrique, et n sw = X / 377 2 + 1
    Figure imgb0025
    représente un indice d'onde de surface moyen.
  15. Antenne de surface à impédance artificielle orientable selon la revendication 1, dans laquelle :
    les bandes métalliques (107) varient périodiquement en termes de longueur avec une période de p (346).
EP13888596.7A 2013-07-03 2013-07-13 Antenne à surface d'impédance artificielle dirigeable électroniquement Active EP3017504B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/934,553 US9466887B2 (en) 2010-11-03 2013-07-03 Low cost, 2D, electronically-steerable, artificial-impedance-surface antenna
PCT/US2013/050412 WO2015002658A1 (fr) 2013-07-03 2013-07-13 Antenne de surface à impédance artificielle orientable électroniquement

Publications (3)

Publication Number Publication Date
EP3017504A1 EP3017504A1 (fr) 2016-05-11
EP3017504A4 EP3017504A4 (fr) 2017-04-12
EP3017504B1 true EP3017504B1 (fr) 2018-09-26

Family

ID=52144951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13888596.7A Active EP3017504B1 (fr) 2013-07-03 2013-07-13 Antenne à surface d'impédance artificielle dirigeable électroniquement

Country Status (3)

Country Link
EP (1) EP3017504B1 (fr)
CN (1) CN105379011B (fr)
WO (1) WO2015002658A1 (fr)

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
KR101804683B1 (ko) * 2016-06-20 2017-12-05 울산과학기술원 무선 전력 전송 시스템 및 통신 시스템
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109548217A (zh) * 2018-11-20 2019-03-29 成都赛纳为特科技有限公司 横向场贴片天线阵微波加热炉
CN109548218A (zh) * 2018-11-20 2019-03-29 成都赛纳为特科技有限公司 贴片天线阵微波加热炉
CN109548216A (zh) * 2018-11-20 2019-03-29 成都赛纳为特科技有限公司 同轴天线阵微波加热炉
CN110112568B (zh) * 2019-06-06 2024-01-23 中电国基南方集团有限公司 一种面向大阵列毫米波系统应用的表面波隔离器
CN112804789A (zh) * 2021-02-03 2021-05-14 赛尔富电子有限公司 一种led电源
CN113206385B (zh) * 2021-04-09 2022-04-19 华中科技大学 一种智能超表面结构单元的控制方法及控制装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958750B4 (de) * 1999-12-07 2006-08-24 Robert Bosch Gmbh Leckwellenantenne
EP1505691A3 (fr) * 2003-05-12 2005-04-13 Hrl Laboratories, Llc Antenne orientable à ondes de fuite capable de rayonnement à la fois avant et arrière
US7071888B2 (en) * 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US6839030B2 (en) * 2003-05-15 2005-01-04 Anritsu Company Leaky wave microstrip antenna with a prescribable pattern
US7002517B2 (en) * 2003-06-20 2006-02-21 Anritsu Company Fixed-frequency beam-steerable leaky-wave microstrip antenna
US7173565B2 (en) * 2004-07-30 2007-02-06 Hrl Laboratories, Llc Tunable frequency selective surface
US8212739B2 (en) * 2007-05-15 2012-07-03 Hrl Laboratories, Llc Multiband tunable impedance surface
JP6014041B2 (ja) * 2010-10-15 2016-10-25 シーレイト リミテッド ライアビリティー カンパニーSearete Llc 表面散乱アンテナ
US8436785B1 (en) * 2010-11-03 2013-05-07 Hrl Laboratories, Llc Electrically tunable surface impedance structure with suppressed backward wave

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3017504A4 (fr) 2017-04-12
WO2015002658A1 (fr) 2015-01-08
CN105379011B (zh) 2018-02-09
EP3017504A1 (fr) 2016-05-11
CN105379011A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
EP3017504B1 (fr) Antenne à surface d'impédance artificielle dirigeable électroniquement
US9466887B2 (en) Low cost, 2D, electronically-steerable, artificial-impedance-surface antenna
US9871293B2 (en) Two-dimensionally electronically-steerable artificial impedance surface antenna
US9698479B2 (en) Two-dimensionally electronically-steerable artificial impedance surface antenna
EP3928380B1 (fr) Antenne à plaque commutable
EP3158609B1 (fr) Motifs de modulation pour antennes de diffusion de surface
EP2980922B1 (fr) Guide d'ondes à ondes de surface à parois conductrices et application dans des antennes
CN112425003B (zh) 波束可电子转向低旁瓣复合左右手(crlh)超材料阵列天线
EP3609018A1 (fr) Déphaseur de fréquence radio et son procédé de fonctionnement
EP3928381B1 (fr) Antenne réseau planaire orientable bidimensionnelle à onde de fuite , à plaque plate et à faible lobe latéral
US20230013662A1 (en) Meta-structure antenna array
EP3750212B1 (fr) Réseau entrelacé d'antennes pouvant fonctionner à de multiples fréquences
WO2019075488A1 (fr) Procédé et appareil pour une structure active de rayonnement et d'alimentation
EP2828930B1 (fr) Antenne à surface à impédance diélectrique artificielle
EP3664215A1 (fr) Dispositif de décalage de phase de fréquence radio
Gregoire et al. An electronically-steerable artificial-impedance-surface antenna
EP3079204B1 (fr) Antenne à surface d'impédance artificielle dirigeable électroniquement de manière bidimensionnelle
Pavone et al. Beam scanning metasurface antennas
AU2014202093B2 (en) Two-dimensionally electronically-steerable artificial impedance surface antenna
Pavone et al. Electronically-Tunable Scanning Antennas by using Slotted Rectangular Waveguides loaded by Reconfigurable Surface Susceptances
CN116404430A (zh) 一种低剖面圆极化频率可重构天线

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170313

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/28 20060101ALI20170307BHEP

Ipc: H01Q 3/44 20060101ALI20170307BHEP

Ipc: H01Q 15/00 20060101AFI20170307BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013044329

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0001480000

Ipc: H01Q0015000000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/28 20060101ALI20180312BHEP

Ipc: H01Q 15/00 20060101AFI20180312BHEP

Ipc: H01Q 3/44 20060101ALI20180312BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1047119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013044329

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1047119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013044329

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130713

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230727

Year of fee payment: 11