EP3017238B1 - Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf - Google Patents

Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf Download PDF

Info

Publication number
EP3017238B1
EP3017238B1 EP14736664.5A EP14736664A EP3017238B1 EP 3017238 B1 EP3017238 B1 EP 3017238B1 EP 14736664 A EP14736664 A EP 14736664A EP 3017238 B1 EP3017238 B1 EP 3017238B1
Authority
EP
European Patent Office
Prior art keywords
cooling
liquid
cooling circuit
consumer
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14736664.5A
Other languages
English (en)
French (fr)
Other versions
EP3017238A1 (de
Inventor
Friedhelm Herzog
Thomas Kutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Priority to PL14736664T priority Critical patent/PL3017238T3/pl
Publication of EP3017238A1 publication Critical patent/EP3017238A1/de
Application granted granted Critical
Publication of EP3017238B1 publication Critical patent/EP3017238B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • F17C13/007Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats used for superconducting phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0374Localisation of heat exchange in or on a vessel in the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use

Definitions

  • the invention relates to a device for cooling a consumer, with a cooling circuit assigned to the consumer for circulating a cooling liquid, in which a pump and a subcooler are provided, the subcooler being flow-connected to a storage tank for the cooling liquid via a supply line equipped with a relief valve Receiving a cooling bath, a gas discharge line arranged on the container for discharging evaporated cooling liquid as well as a heat exchanger immersed in the cooling bath and integrated into the cooling circuit when the device is used as intended.
  • Low-boiling liquefied gases such as liquid nitrogen, liquid oxygen or liquefied noble gases
  • subcooling is understood to mean the cooling of a liquid to a temperature below its boiling point at the respective pressure. In the case of liquefied gases with a higher boiling point, e.g.
  • Carbon dioxide or fluorinated hydrocarbons subcooling can be achieved relatively easily.
  • the liquid coolant in the storage tank is subcooled to such an extent by means of an electrical cooling unit that no partial evaporation occurs when it is circulated in a ring line system due to heat radiation and friction losses.
  • the units required for this are very expensive to purchase and operate due to their high power requirements.
  • the device consists of a thermally insulated container in which a cooling bath made of a liquefied cryogenic cooling medium and a gas outlet valve is arranged in the head space.
  • a heat exchanger through which the liquid to be subcooled flows for example a cooling coil, is arranged in the cooling bath.
  • the pressure above the cooling bath is lower than the pressure within the cooling coil. Since the cooling bath is in the boiling state, but its pressure is reduced compared to the pressure of the liquid to be supercooled, its boiling temperature is below the boiling temperature of the liquid to be supercooled, which is thereby supercooled and within which gas bubbles that have already appeared are liquefied again. The lower the pressure above the cooling bath, the lower its boiling temperature and the more effective is the subcooling of the liquid in the cooling coil.
  • Such a subcooler can now be used to cool a consumer, for example by being installed in a cooling circuit assigned to the consumer.
  • the subcooler continuously supplies subcooled coolant to the consumer.
  • Cooling circuits of this type should be equipped with an equalizing vessel to compensate for density or volume fluctuations, especially in the case of an irregular heat input, in which there is a gas for pressure equalization above a level of the coolant.
  • an equalizing vessel for cooling components, such as high-temperature superconducting cables, with a cryogenic liquid as the coolant described, in which an expansion tank assigned to the cooling circuit serves to keep the cooling circuit under an increased operating pressure of, for example, 2 bar to 20 bar and suddenly occurring gas formation to compensate for leakage losses in a closed circuit.
  • the expansion tank is directly connected to the cooling circuit and filled with the same cryogenic liquid that circulates in the cooling circuit.
  • the expansion tank integrated in the cooling circuit limits the possibilities and in particular the temperatures at which the cooling circuit can be operated.
  • pressure equalization by means of evaporated cooling liquid does not succeed or does not succeed easily in cooling circuits that work with supercooled liquids, since an ingress of supercooled liquid into the expansion tank would condense the gaseous cooling medium present there and lower the pressure in the expansion tank below the operating pressure.
  • a way out could be to use a lower-boiling gas, for example helium, as a pressure equalization gas in the gas space of the expansion tank or to provide a separating membrane between the gas phase and the liquid phase within the expansion tank.
  • a lower-boiling gas for example helium
  • a cooling circuit for cooling a consumer in particular a high-temperature superconductor
  • a cryogenic cooling medium runs through the consumer and a subcooler one after the other by means of a pump, the task of which is to compensate for the heat input by the pump and any line losses.
  • the cooling circuit is in flow connection with a storage tank for the cryogenic medium, from which the subcooler is also supplied with cooling medium.
  • this subject can be improved in terms of the required coolant consumption in operation.
  • the invention is therefore based on the object of creating a device for cooling a consumer with a supercooled cooling liquid in a cooling circuit, in which pressure equalization in the cooling circuit can be achieved with simple means and the most economical use of cooling medium possible.
  • the device thus comprises, in a manner known per se, a cooling circuit in which, in addition to the consumer, a pump for conveying the cooling liquid (the terms “cooling liquid” and “liquid cooling medium” are used synonymously below), and a subcooler arranged upstream of the consumer is provided.
  • the subcooler brings the cooling liquid to a temperature below its boiling point at the respective pressure, whereby the subcooling expediently takes place to such an extent that the amount of heat removed from the cooling liquid during the subcooling is at least the heat input by the consumer, the pump and any line losses compensated.
  • the subcooler comprises a heat exchanger integrated in the cooling circuit, through which the liquid cooling medium to be subcooled flows and which is accommodated in a cooling bath.
  • the cooling bath is in turn accommodated in a pressure-tight and gas-tight container and consists of the same substance as the cooling liquid circulating in the cooling circuit, but is at a lower temperature than this.
  • the pressure of the gas phase above the cooling bath is adjusted accordingly via a gas discharge, namely to a value (hereinafter referred to as "target pressure") at which the boiling temperature of the cooling liquid in the cooling bath is below the boiling temperature of the cooling liquid in the Cooling circuit is.
  • target pressure a gas discharge
  • the cooling liquid in the cooling circuit is brought to a temperature below its boiling point (hereinafter referred to as "target temperature").
  • target temperature a temperature below its boiling point
  • the difference between the boiling temperature in the cooling circuit and the target temperature is essentially determined by the heat input by the consumer, the pump and the lines of the cooling circuit, and can in particular also be regulated as a function of the heat input.
  • the pressure vessel receiving the cooling bath is in flow connection with a storage tank for cooling liquid.
  • the liquid feed line connecting the sump of the storage tank with the cooling bath is equipped with an expansion valve, which ensures that the target pressure above the cooling bath is not exceeded.
  • a cryogenic liquefied gas for example liquid nitrogen or a liquefied noble gas, is preferably used as the liquid cooling medium.
  • the storage tank itself is used in order to create a pressure equalization in the cooling circuit that is necessary due to possible density or volume fluctuations.
  • the storage tank is flow-connected to the cooling circuit via a connecting line which branches off from the liquid feed line upstream to the expansion valve and which is always kept open in both directions during the intended use of the device.
  • the connecting line opens into the Storage tank itself or in the liquid feed line connecting the storage tank to the cooling bath in the subcooler, in any case upstream of the expansion valve.
  • the actual pressure equalization takes place via the gas phase present in the storage tank above the cooling liquid.
  • the amount of cooling liquid in the storage tank and its hydrostatic pressure prevent the subcooled cooling liquid flowing into the sump of the storage tank from lowering the temperature of the liquid cooling medium in the storage tank so low that the gas phase in the storage tank collapses.
  • the pressure in the storage container can, however, optionally be kept at a predetermined pressure by means of a pressure build-up evaporator connected to the storage tank, for example an air evaporator.
  • a separate equalization tank is therefore not required in the cooling circuit, which also simplifies the structure of the cooling device according to the invention compared to cooling circuits according to the prior art and avoids the energy loss caused by the heat input into the equalization tank.
  • a second subcooler is arranged in the liquid supply line, upstream of the expansion valve, but downstream of the opening of the connecting line in the liquid supply line.
  • the second subcooler prevents more than an insignificant part of the liquid cooling medium from being in the gaseous state when it reaches the expansion valve, which would impair the functionality of the expansion valve and also affect the functionality of the first subcooler (hereinafter referred to as "main subcooler").
  • An object is used as the second subcooler, for example, in which a line carrying the medium to be subcooled is passed through and thermally connected to a cooling bath, the temperature of which is lower than the medium passed through the line.
  • a phase separator is provided in the supply line, upstream of the expansion valve and downstream of the branching off of the connecting line.
  • a container serves as a phase separator, to which the medium to be separated is fed and in which the medium collects in a liquid phase that collects at the bottom of the container (which is then passed on to the subcooler) and a gas phase above (which is drawn off and, if necessary, a otherwise used) separates.
  • the phase separator is used in particular to separate flash gas from the connection line into the liquid feed line to the cooling bath of the main subcooler from the liquid and not to allow it to enter the main subcooler.
  • the phase separator can also be used to precool the cooling medium supplied to the main subcooler.
  • a further expansion valve is arranged upstream of the phase separator, but downstream of the branching off of the connecting line, and the phase separator is operated at a lower pressure than the pressure in the sump of the storage tank, for example without pressure (1 bar).
  • the additional subcooler or the additional phase separator relieve the main subcooler and reduce the consumption of cooling medium, especially if a particularly low cooling temperature is to be achieved by applying a negative pressure (p ⁇ 1 bar) in the cooling bath of the main subcooler.
  • the connecting line can open into this at any point in the cooling circuit, but preferably it opens into the cooling circuit upstream of the subcooler in order to keep the temperature effects of the subcooler on the storage tank as low as possible.
  • the connecting line particularly preferably opens into the cooling circuit downstream of the consumer, but upstream of the pump.
  • gas discharge line is equipped with a vacuum pump.
  • the target pressure in the pressure vessel receiving the cooling bath can be reduced to a value below the ambient pressure, that is to say below 1 bar, and an even lower temperature can thus be achieved in the cooling bath.
  • the storage tank is advantageously equipped with a pressure build-up evaporator, for example an air evaporator. This maintains a constant pressure in the storage tank.
  • the temperature of the cooling bath can be regulated by means of a measuring and regulating device as a function of the heat input in the cooling circuit.
  • the temperature of the cooling liquid in the cooling circuit is recorded continuously or at specified time intervals and the values determined are fed to a control unit and compared with a setpoint value for the temperature.
  • the pressure in the pressure vessel receiving the cooling bath is then set by readjusting the expansion valve in the liquid inlet and / or the vacuum pump at the gas outlet.
  • the device according to the invention is particularly suitable for cooling a superconducting, in particular high-temperature superconducting, component.
  • the consumer integrated in the cooling circuit is a superconducting component, for example a superconducting cable or a superconducting magnet.
  • a superconducting component for example a superconducting cable or a superconducting magnet.
  • Such superconducting components must be kept at a low operating temperature in order to achieve and maintain the superconducting state, the value of which, depending on the material and the load from current and magnetic flux, is between almost zero and currently (for some high-temperature superconductors) around 140 K.
  • the superconducting component is cooled, for example, by means of liquid nitrogen, liquid helium or another liquefied gas.
  • the superconducting components introduce almost no heat into the cooling medium; they are therefore particularly suitable for cooling by means of a subcooled liquid circulating in a cooling circuit.
  • liquid nitrogen is used as the cooling medium, which circulates in the cooling circuit at a pressure of 8 to 10 bar.
  • a subcooler arranged in the cooling circuit brings the nitrogen to a temperature of -206 ° C. After passing through the consumer and the pump, it has a temperature of -200 ° C at the inlet of the subcooler.
  • the heat corresponding to the temperature difference is withdrawn from the liquid nitrogen by bringing the pressure in the cooling bath of the subcooler to a value of, for example, between 0.15 and 0.2 bar by means of a vacuum pump.
  • the pressure in the cooling circuit corresponds to the pressure at the bottom of the storage tank, so that the storage tank can be used as an equalizing tank according to the invention.
  • the device 1 shown comprises a cooling circuit 2 for cooling a consumer not shown here, for example a superconducting cable or magnet.
  • the cooling circuit 2 comprises a feed line 3 for feeding a liquid cooling medium, in particular a cryogenic cooling medium such as liquid nitrogen, LNG or a liquefied noble gas, to the consumer and a return line 4 for discharging liquid cooling medium from the consumer.
  • the flow line 3 and the return line 4 are flow-connected to one another; a pump 5 effects the conveyance of the liquid cooling medium in the cooling circuit 2.
  • a subcooler 6 is arranged in the feed line downstream of the pump 5.
  • the subcooler 6 comprises a pressure vessel 7 in which a cooling bath 8 is accommodated is.
  • the flow line 3 with a heat exchanger, for example a cooling coil 9, which is passed through the pressure vessel 7, is immersed in the cooling bath 8.
  • a feed line 12 connected to the sump of a storage tank 11, for example a standing tank opens into the pressure vessel 7.
  • the pressure in the storage tank 11 is kept at a predetermined value by means of a tank pressure control, for example with the inclusion of an air evaporator 13.
  • a relief valve 14 is arranged in the supply line 12, by means of which a maximum pressure can be set in the supply line 12 downstream of the relief valve 14.
  • a gas discharge line 15 opens into which - optionally - a vacuum pump 16 is integrated.
  • the cooling circuit 2 and the fittings that are flow-connected to the storage tank 11 are not fluidically independent of one another, but rather are coupled to one another via a connecting line 17 which, between a branch point 18 upstream of the expansion valve and a branch point 19 upstream of the pump 5, provides a flow connection between the supply line 12 and the cooling circuit 2 manufactures.
  • the liquid cooling medium flows through the cooling circuit 2.
  • the pressure in the cooling circuit 2 corresponds essentially to the pressure at the bottom of the storage tank 11, i.e. has a boiling temperature that is higher than the boiling temperature of the prevailing on the liquid surface in the storage tank 11 Cooling medium.
  • the cooling medium is fed to a consumer via the flow line 3 in the subcooled state, and the cooling medium heated by thermal contact with the consumer and / or with line sections leading to and from the consumer flows, still in the liquid and preferably supercooled state, via the return line 4 from Consumers from and is fed back into the flow line 3 by means of the pump 5.
  • the cooling medium in the flow line 3 is brought to a predetermined temperature of 5 K to 10 K, for example, by means of the subcooler 6 cooled below its boiling point.
  • the “predetermined temperature” is selected such that the total heat input in the cooling circuit 2 is insufficient, or at most sufficient, to heat the supercooled cooling medium to its boiling point.
  • the cooling medium in the cooling bath 8 is brought to a lower pressure than the cooling medium in the cooling circuit 2, so that the boiling temperature at the pressure present in the pressure vessel 7 is below the predetermined temperature of the cooling medium in the supply line 3.
  • the required pressure is set at the expansion valve 14; if necessary, the pressure can also be reduced to a pressure of less than 1 bar by using the vacuum pump 16.
  • the gas discharged via the gas discharge line 15 is discharged into the environment or passed on for further use. It is also conceivable within the scope of the invention that the pressure in the pressure vessel 7 is regulated as a function of a measured temperature of the cooling medium in the feed line 3.
  • the storage tank 11 serves as such a compensating volume in the device 1, since cooling medium can flow freely between the cooling circuit 2 and the storage tank 11 via the connecting line 19, which is open in both directions during operation of the device 1.
  • the pressure build-up evaporator 13 provides for a pressure build-up that may be required in the storage tank 11.
  • the device 1 thus manages without a separate equalizing tank assigned to the cooling circuit 2. Since the branch point 18 is arranged in the supply line 12 upstream of the expansion valve 14, and the expansion valve 14 regulates to a predetermined final pressure, pressure fluctuations occurring in the cooling circuit 2 do not have a significant effect on the pressure conditions in the container 7.
  • the device 20 shown differs from the device 1 in that it has an additional subcooler 21 which is arranged in the supply line 12 upstream of the expansion valve 14.
  • the subcooler 21 has a heat exchanger 22 which is accommodated in a cooling bath 23.
  • the cooling bath 23 is also fed from the storage tank 11, but a relief valve 24 ensures that the pressure in the cooling bath 23 is lower than in the line 12, and thus the temperature of the cooling bath 23 is lower than the temperature of the cooling medium flowing through the heat exchanger 22.
  • the subcooling of the cooling medium flowing through the supply line 12 prevents a substantial part of the cooling medium from reaching the expansion valve 14 in the already vaporized state, which would impair the functionality of the expansion valve 14 and affect the performance of the subcooler 6.
  • the device 25 shown is located in the supply line 12, upstream of the expansion valve 14, a phase separator 26 and upstream of this a further expansion valve 27.
  • the phase separator comprises a vessel 28 in which the gaseous cooling medium is formed upstream of the phase separator 26 through evaporation of liquid cooling medium and / or was entered from the cooling circuit 2 via the connecting line 19, collects in a gas phase 29 in the phase separator 26, while the cooling medium remaining in the liquid state forms a liquid phase 30 in the phase separator 26.
  • the liquid phase 30 is flow-connected to the subcooler 6 via the section of the supply line 12 located downstream from the phase separator 26, while gas from which the gas phase 29 can be discharged via a gas discharge line 31 flow-connected to the gas phase 29.
  • the phase separator 26 similar to the second subcooler 21 in device 20, ensures that there is no or only small amounts of gaseous cooling medium in the supply line 12 immediately upstream of the expansion valve 14, thereby avoiding malfunctions in the function of the expansion valve 14 ; At the same time, it can be used for pre-cooling the cooling medium supplied to the subcooler 6, in that the gas phase 29 is kept at a lower pressure than the pressure at the bottom of the storage tank 11 during operation.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Kühlen eines Verbrauchers, mit einem dem Verbraucher zugeordneten Kühlkreislauf zum Zirkulieren einer Kühlflüssigkeit, in dem eine Pumpe sowie ein Unterkühler vorgesehen ist, wobei der Unterkühler über eine mit einem Entspannungsventil ausgerüstete Zuführleitung mit einem Vorratstank für die Kühlflüssigkeit strömungsverbunden Behälter zur Aufnahme eines Kühlbades, eine am Behälter angeordnete Gasabzugsleitung zum Abführen verdampfter Kühlflüssigkeit sowie einen beim bestimmungsgemäßen Einsatz der Vorrichtung in das Kühlbad eintauchenden und in den Kühlkreislauf integrierten Wärmetauscher aufweist.
  • Tiefsiedende verflüssigte Gase, wie beispielsweise flüssiger Stickstoff, flüssiger Sauerstoff oder verflüssigte Edelgase, können nur durch besonders gute Isolation der Speicherbehälter und der Rohrleitungen flüssig gehalten werden. Schon die geringste Wärmeeinstrahlung oder Reibungswärme kann je nach Siedezustand zu einer Teilverdampfung führen. Durch die Teilverdampfung sammeln sich Siedebläschen im Kühlkreislauf, die die vorgesehene Kühlaufgabe beeinträchtigen. Um der Teilverdampfung entgegenzuwirken, empfiehlt es sich daher, die Flüssigkeit vor ihrer Zuführung an einen wärmeabgebenden Verbraucher zu unterkühlen. Als "Unterkühlung" wird im Kontext der vorliegenden Erfindung die Kühlung einer Flüssigkeit auf eine Temperatur unterhalb ihrer Siedetemperatur beim jeweiligen Druck verstanden. Bei höher siedenden verflüssigen Gasen, wie z.B. Kohlendioxid oder fluorierten Kohlenwasserstoffen, lässt sich eine Unterkühlung verhältnismäßig einfach bewerkstelligen Hierzu wird das flüssige Kühlmittel im Lagertank mittels eines elektrischen Kühlaggregates so weit unterkühlt, dass bei der Umwälzung in einem Ringleitungssystem durch Wärmeeinstrahlung und Reibungsverluste keine Teilverdampfung auftritt. Die hierzu notwendigen Aggregate sind jedoch aufgrund ihres hohen Leistungsbedarfs sehr teuer in Anschaffung und Betrieb.
  • In der DE 2929709 A1 wird eine Vorrichtung zum Unterkühlen einer Flüssigkeit beschrieben. Die Vorrichtung besteht aus einem wärmeisolierten Behälter, in dem ein Kühlbad aus einem verflüssigten kryogenen Kühlmedium aufgenommen und in dessen Kopfraum ein Gasauslassventil angeordnet ist. Im Kühlbad ist ein von der zu unterkühlenden Flüssigkeit durchströmter Wärmetauscher, beispielsweise eine Kühlschlange, angeordnet. Zur Unterkühlung der Flüssigkeit wird dafür gesorgt, dass der Druck über dem Kühlbad geringer ist als der Druck innerhalb der Kühlschlange. Da sich das Kühlbad zwar im Siedezustand befindet, sein Druck aber gegenüber dem Druck der zu unterkühlenden Flüssigkeit reduziert ist, liegt seine Siedetemperatur unter der Siedetemperatur der zu unterkühlenden Flüssigkeit, die dadurch unterkühlt wird und innerhalb der bereits aufgetretene Gasblasen wieder verflüssigt werden. Je niedriger der Druck über dem Kühlbad ist, um so niedriger ist auch seine Siedetemperatur und um so wirkungsvoller ist die Unterkühlung der Flüssigkeit in der Kühlschlange.
  • Ein derartiger Unterkühler kann nun zur Kühlung eines Verbrauchers eingesetzt werden, indem er beispielsweise in einen dem Verbraucher zugeordneten Kühlkreislauf eingebaut wird. Durch den Unterkühler wird dem Verbraucher laufend unterkühlte Kühlflüssigkeit zugeführt. Bei entsprechender Auslegung ist es möglich, die bei der Unterkühlung der Kühlflüssigkeit entnommene Wärme dem Wärmeeintrag durch den Verbraucher derart anzupassen, dass die Kühlflüssigkeit auch beim Wärmekontakt mit dem Verbraucher nicht ihre Siedetemperatur erreicht, sodass sie im Kühlkreislauf im stets flüssigen Zustand vorliegt.
  • Kühlkreisläufe dieser Art sollten zum Ausgleich von Dichte- oder Volumenschwankungen, insbesondere auch im Falle eines unregelmäßigen Wärmeeintrags, mit einem Ausgleichsgefäß ausgerüstet sein, in dem sich oberhalb eines Pegels der Kühlflüssigkeit ein Gas zum Druckausgleich befindet. Beispielsweise wird in der EP 1 355 114 A2 ein geschlossener Kühlkreislauf zum Kühlen von Bauteilen, wie beispielsweise hochtemperatursupraleitende Kabel, mit einer kryogenen Flüssigkeit als Kälteträger beschrieben, bei dem ein dem Kühlkreislauf zugeordnetes Ausgleichsgefäß dazu dient, den Kühlkreislauf unter einem erhöhten Betriebsdruck von beispielsweise 2 bar bis 20 bar zu halten und plötzlich auftretende Gasbildungen im geschlossenen Kreislauf sowie Leckageverluste auszugleichen. Das Ausgleichsgefäß ist dabei unmittelbar mit dem Kühlkreislauf verbunden und mit der gleichen kryogenen Flüssigkeit befüllt, die auch im Kühlkreislauf umläuft.
  • Der im Kühlkreislauf integrierte Ausgleichsbehälter schränkt jedoch die Möglichkeiten und insbesondere die Temperaturen ein, mit denen der Kühlkreislauf betrieben werden kann. Insbesondere gelingt der Druckausgleich mittels verdampfter Kühlflüssigkeit nicht oder nicht ohne weiteres bei Kühlkreisläufen, die mit unterkühlten Flüssigkeiten arbeiten, da ein Eindringen unterkühlter Flüssigkeit in den Ausgleichsbehälter das dort anwesende gasförmige Kühlmedium kondensieren und den Druck im Ausgleichsbehälter unter den Betriebsdruck senken würde. Als Ausweg könnte in Betracht gezogen werden, ein tiefer siedendes Gas, beispielsweise Helium, als Druckausgleichsgas im Gasraum des Ausgleichsbehälters zu verwenden oder innerhalb des Ausgleichsbehälters eine Trennmembran zwischen Gasphase und Flüssigphase vorzusehen. Beides ist jedoch mit einem hohen Aufwand an Aufbau und Unterhalt verbunden.
  • Aus der US 7 263 845 B2 ist ein Kühlkreislauf zur Kühlung eines Verbrauchers, insbesondere eines Hochtemperatursupraleiters bekannt, bei dem ein kryogenes Kühlmedium mittels einer Pumpe in einem Kreislauf nacheinander den Verbraucher und einen Unterkühler durchlauft, dessen Aufgabe darin besteht, den Wärmeeintrag durch die Pumpe und etwaige Leitungsverluste zu kompensieren. Um eine Kompensation im Falle plötzlich auftretender Druckschwankungen zu schaffen steht der Kühlkreislauf mit einem Vorratsbehälter für das kryogene Medium in Strömungsverbindung, aus dem zugleich der Unterkühler mit Kühlmedium versorgt wird. Diese Gegenstand ist jedoch hinsichtlich des erforderlichen Kühlmittelverbrauchs im Betrieb verbesserungsfähig.
  • Der Erfindung liegt daher die Aufgabe zu Grunde, eine Vorrichtung zum Kühlen eines Verbrauchers mit einer unterkühlten Kühlflüssigkeit in einem Kühlkreislauf zu schaffen, bei der ein Druckausgleich im Kühlkreislauf mit einfachen Mitteln zu realisieren ist und ein möglichst sparsamer Umgang mit Kühlmedium erfolgt.
  • Diese Aufgabe istdurch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Die erfindungsgemäße Vorrichtung umfasst also in an sich zunächst bekannter Weise einen Kühlkreislauf, in dem neben dem Verbraucher eine Pumpe zum Fördern der Kühlflüssigkeit (die Begriffe "Kühlflüssigkeit" und "flüssiges Kühlmedium" werden im Folgenden synonym verwendet), sowie ein stromauf zum Verbraucher angeordneter Unterkühler vorgesehen ist. Durch den Unterkühler wird die Kühlflüssigkeit auf eine Temperatur unterhalb ihrer Siedetemperatur beim jeweiligen Druck gebracht, wobei zweckmäßigerweise die Unterkühlung so weit erfolgt, dass die der Kühlflüssigkeit bei der Unterkühlung entnommene Wärmemenge zumindest den Wärmeeintrag durch den Verbraucher, die Pumpe und etwaige Leitungsverluste kompensiert. Der Unterkühler umfasst einen im Kühlkreislauf integrierten Wärmetauscher, durch den das zu unterkühlende flüssige Kühlmedium strömt und der in einem Kühlbad aufgenommen ist. Das Kühlbad ist seinerseits in einem druckfesten und gasdichten Behälter aufgenommen und besteht aus der gleichen Substanz wie die im Kühlkreislauf umlaufende Kühlflüssigkeit, liegt jedoch bei einer niedrigeren Temperatur als diese vor. Um die niedrige Temperatur des Kühlbads zu erreichen, wird über eine Gasableitung der Druck der Gasphase über dem Kühlbad entsprechend eingestellt, und zwar auf einen Wert (nachfolgend "Zieldruck" genannt), bei dem die Siedetemperatur der Kühlflüssigkeit im Kühlbad unterhalb der Siedetemperatur der Kühlflüssigkeit im Kühlkreislauf liegt. Die Temperaturdifferenz zwischen Kühlmedium im Kühlkreislauf wird also im Wesentlichen aufgrund einer Druckdifferenz zwischen Kühlbad und Kühlkreislauf bewirkt. Durch den Wärmetausch mit dem Kühlbad wird die Kühlflüssigkeit im Kühlkreislauf auf eine Temperatur unterhalb ihres Siedepunktes gebracht (nachfolgend "Zieltemperatur" genannt). Die Differenz zwischen Siedetemperatur im Kühlkreislauf und der Zieltemperatur wird dabei im Wesentlichen durch den Wärmeeintrag durch den Verbraucher, die Pumpe und die Leitungen des Kühlkreislaufs bestimmt, und kann insbesondere auch in Abhängigkeit vom Wärmeeintrag geregelt werden. Um den aufgrund des Wärmeeintrags am Wärmetauscher eintretenden Verlust an Kühlflüssigkeit im Kühlbad zu kompensieren, steht das das Kühlbad aufnehmende Druckgefäß mit einem Vorratstank für Kühlflüssigkeit in Strömungsverbindung. Die den Sumpf des Vorratstanks mit dem Kühlbad verbindende Flüssigkeitszuleitung ist mit einem Entspannungsventil ausgerüstet, welches gewährleistet, dass der Zieldruck über dem Kühlbad nicht überschritten wird. Als flüssiges Kühlmedium kommt bevorzugt ein tiefkaltes verflüssigtes Gas, beispielsweise flüssiger Stickstoff oder ein verflüssigtes Edelgas, zum Einsatz.
  • Um im Kühlkreislauf einen aufgrund von möglichen Dichte- oder Volumenschwankungen erforderlichen Druckausgleich zu schaffen, wird gemäß der Erfindung der Vorratstank selbst eingesetzt. Dazu ist der Vorratstank mit dem Kühlkreislauf über eine Verbindungsleitung strömungsverbunden, die von der Flüssigkeitszuleitung stromauf zum Entspannungsventil abzweigt und die während des bestimmungsgemäßen Einsatzes der Vorrichtung stets in beiden Richtungen strömungsoffen gehalten wird. Die Verbindungsleitung mündet dabei in den Vorratstank selbst oder in die den Vorratstank mit dem Kühlbad im Unterkühler verbindende Flüssigkeitszuleitung ein, in jedem Falle stromauf zum Entspannungsventil. Bei Auftreten einer Dichte- oder Volumenschwankung kann auf diese Weise Kühlflüssigkeit aus dem Vorratstank in den Kühlkreislauf zu- bzw. aus diesem in den Vorratstank abfließen, ohne dass hierdurch die Druckverhältnisse im Bereich des Kühlbades wesentlich beeinflusst werden. Der eigentliche Druckausleich erfolgt über die im Vorratstank über der Kühlflüssigkeit vorliegenden Gasphase. Insbesondere dann, wenn im Vorratstank ein im Vergleich zum Volumen des Kühlkreislaufs großes Volumen an Kühlflüssigkeit aufrecht erhalten wird, verhindert die Menge der Kühlflüssigkeit im Vorratstank und sein hydrostatischer Druck, dass über die Verbindungsleitung in den Sumpf des Vorratstanks einströmende unterkühlte Kühlflüssigkeit die Temperatur des flüssigen Kühlmediums im Vorratstank so weit herabsetzt, dass die Gasphase im Vorratstank kollabiert. Der Druck im Vorratsbehälter kann jedoch ggf. mittels eines mit dem Vorratstank verbundenen Druckaufbauverdampfers, beispielsweise eines Luftverdampfers, auf einen vorgegebenen Druck gehalten werden. Ein separates Ausgleichsgefäß ist daher im Kühlkreislauf nicht erforderlich, wodurch zudem der Aufbau der erfindungsgemäßen Kühlvorrichtung gegenüber Kühlkreisläufen nach dem Stande der Technik vereinfacht und der durch den Wärmeeintrag in das Ausgleichsgefäß verursachte Energieverlust vermieden wird.
  • In einer ersten Ausgestaltung der Erfindung ist in der Flüssigkeitszuleitung, stromauf zum Entspannungsventil, jedoch stromab zur Ausmündung der Verbindungsleitung in der Flüssigkeitszuleitung, ein zweiter Unterkühler angeordnet. Durch den zweiten Unterkühler wird verhindert, dass mehr als nur ein unwesentlicher Teil des flüssigen Kühlmediums beim Erreichen des Entspannungsventil im gasförmigen Zustand vorliegt, was die Funktionsfähigkeit des Entspannungsventils beeinträchtigen und auch die Funktionsfähigkeit des ersten Unterkühlers (nachfolgend "Hauptunterkühler" genannt) beeinflussen würde. Als zweiter Unterkühler kommt beispielsweise ein Gegenstand zum Einsatz, bei dem eine das zu unterkühlende Medium transportierende Leitung durch ein Kühlbad geführt und mit diesem thermisch verbunden ist, dessen Temperatur niedriger ist als das durch die Leitung geführte Medium.
  • In einer anderen Ausführungsform der Erfindung ist in der Zuführleitung, stromauf zum Entspannungsventil und stromab zur Abzweigung der Verbindungsleitung ein Phasenabscheider vorgesehen. Als Phasenabscheider dient beispielsweise ein Behälter, dem das zu trennende Medium zugeführt wird und in dem sich das Medium in eine sich am Boden des Behälters sammelnde flüssige Phase (die anschließend zum Unterkühler weitergeleitet wird) und eine darüber befindliche Gasphase (die abgezogen und ggf. einer anderweitigen Verwendung zugeführt wird) auftrennt. Der Phasenabscheider dient insbesondere dazu, Flash-Gas aus der Verbindungsleitung in die Flüssigzuleitung zum Kühlbad des Hauptunterkühlers von der Flüssigkeit zu trennen und nicht in den Hauptunterkühler gelangen zu lassen. Der Phasenabscheider kann im Übrigen auch zum Vorkühlen des dem Hauptunterkühler zugeführten Kühlmediums eingesetzt werden. In diesem Fall ist stromauf zum Phasenabscheider, jedoch stromab zur Abzweigung der Verbindungsleitung ein weiteres Entspannungsventil angeordnet, und der Phasenabscheider wird bei einem niedrigeren Druck als der Druck in Sumpf des Vorratstanks, beispielsweise drucklos (1 bar), betrieben. Der zusätzliche Unterkühler bzw. der zusätzliche Phasenabscheider entlasten den Hauptunterkühler und reduzieren den Verbrauch an Kühlmedium insbesondere dann, wenn durch Anlegen eines Unterdrucks (p < 1 bar) im Kühlbad des Hauptunterkühlers eine besonders tiefe Kühltemperatur erreicht werden soll.
  • Grundsätzlich kann die Verbindungsleitung an jedem Punkt des Kühlkreislaufs in diesen einmünden, bevorzugt jedoch mündet sie stromauf zum Unterkühler in den Kühlkreislauf ein, um die Temperatureinflüsse des Unterkühlers auf den Vorratstank so gering wie möglich zu halten. Um etwaige Dichteschwankungen im Bereich des Verbrauchers besonders gut ausgleichen zu können, mündet besonders bevorzugt die Verbindungisleitung stromab zum Verbraucher, jedoch stromauf zur Pumpe in den Kühlkreislauf ein.
  • Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Gasabzugsleitung mit einer Vakuumpumpe ausgerüstet ist. Auf diese Weise kann der Zieldruck in dem das Kühlbad aufnehmenden Druckbehälter auf einen Wert unterhalb des Umgebungsdrucks, also unterhalb von 1 bar, abgesenkt werden und somit eine noch tiefere Temperatur im Kühlbad erreicht werden.
  • Vorteilhafterweise ist der Vorratstank mit einem Druckaufbauverdampfer, beispielsweise einem Luftverdampfer, ausgerüstet. Dadurch wird ein gleichbleibender Druck im Vorratstank aufrecht erhalten.
  • Eine abermals bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass mittels einer Mess- und Regeleinrichtung die Temperatur des Kühlbades in Abhängigkeit vom Wärmeeintrag im Kühlkreislauf regelbar ist. So wird beispielsweise die Temperatur der Kühlflüssigkeit im Kühlkreislauf laufend oder in vorgegeben Zeitabständen erfasst und die ermittelten Werte einer Regeleinheit zugeleitet und mit einem Sollwert der Temperatur verglichen. Anschließend wird der Druck in dem das Kühlbad aufnehmenden Druckbehälter durch Nachjustierung des Entspannungsventils im Flüssigkeitszulauf und/oder der Vakuumpumpe am Gasauslass eingestellt.
  • Besonders eignet sich die erfindungsgemäße Vorrichtung zur Kühlung eines supraleitenden, insbesondere hochtemperatursupraleitenden, Bauteils. In diesem Falle ist der im Kühlkreislauf integrierte Verbraucher also ein supraleitendes Bauteil, beispielsweise ein supraleitendes Kabel oder ein supraleitender Magnet. Derartige supraleitende Bauteile müssen zur Erreichung und Aufrechterhaltung des supraleitenden Zustandes auf einer niedrigen Betriebstemperatur gehalten werden, deren Wert, abhängig vom Material und der Belastung durch Strom und magnetischem Fluss, zwischen nahezu Null und derzeit (bei einigen Hochtemperatursupraleitern) bei ca. 140 K beträgt. Zur Erreichung der Betriebstemperatur wird das supraleitende Bauteil beispielsweise mittels flüssigem Stickstoff, flüssigem Helium oder einem anderen verflüssigten Gas gekühlt. Während des Betriebs tragen die supraleitenden Bauteile jedoch so gut wie keine Wärme in das Kühlmedium ein, sie eignen sich daher besonders gut zur Kühlung mittels einer in einem Kühlkreislauf umlaufenden unterkühlten Flüssigkeit.
  • Beispiel:
  • In einem Kühlkreislauf zum Kühlen eines Verbrauchers, beispielsweise eines supraleitenden Kabels, komme flüssiger Stickstoff als Kühlmedium zum Einsatz, der bei einem Druck von 8 bis 10 bar im Kühlkreislauf zirkuliert. Durch einen im Kühlkreislauf angeordneten Unterkühler wird der Stickstoff auf eine Temperatur von -206°C gebracht. Nach Durchlaufen von Verbraucher und Pumpe weist er am Eingang des Unterkühlers eine Temperatur von -200°C auf. Die der Temperaturdifferenz entsprechende Wärme wird dem flüssigen Stickstoff entzogen, indem der Druck im Kühlbad des Unterkühlers mittels einer Vakuumpumpe auf einen Wert von beispielsweise zwischen 0,15 und 0,2 bar gebracht wird. Der Druck im Kühlkreislauf entspricht dem Druck am Sumpf des Vorratsbehälters, sodass der Vorratsbehälter entsprechend der Erfindung als Ausgleichsgefäß eingesetzt werden kann.
  • Die Zeichnungen veranschaulichen Ausführungsbeispiele der Erfindung. In schematischen Ansichten zeigen:
  • Fig. 1:
    Das Schaltbild einer nicht erfindungsgemäßen Vorrichtung,
    Fig. 2:
    Das Schaltbild einer erfindungsgemäßen Vorrichtung in einer ersten Ausführungsform,
    Fig. 3:
    Das Schaltbild einer erfindungsgemäßen Vorrichtung in einer zweiten Ausführungsform.
  • Im Folgenden weisen gleich wirkende Teile der dargestellten Ausführungsformen jeweils die gleiche Bezugsziffer auf.
  • Die in Fig 1 gezeigte Vorrichtung 1 umfasst einen Kühlkreislauf 2 zum Kühlen eines hier nicht gezeigten Verbrauchers, beispielsweise eines supraleitenden Kabels oder Magneten. Der Kühlkreislauf 2 umfasst eine Vorlaufleitung 3 zum Hinführen eines flüssigen Kühlmediums, insbesondere eines kryogenen Kühlmediums wie beispielsweise flüssiger Stickstoff, LNG oder ein verflüssigtes Edelgas, zum Verbraucher und eine Rücklaufleitung 4 zum Abführen von flüssigem Kühlmedium vom Verbraucher. Vorlaufleitung 3 und Rücklaufleitung 4 sind miteinander strömungsverbunden, eine Pumpe 5 bewirkt die Förderung des flüssigen Kühlmediums im Kühlkreislauf 2.
  • Stromab zur Pumpe 5 ist in der Vorlaufleitung ein Unterkühler 6 angeordnet. Der Unterkühler 6 umfasst einen Druckbehälter 7 in dem ein Kühlbad 8 aufgenommen ist. In das Kühlbad 8 taucht die durch den Druckbehälter 7 hindurch geführte Vorlaufleitung 3 mit einem Wärmetauscher, beispielsweise einer Kühlschlange 9 ein. Zum Zuführen von frischem flüssigem Kühlmedium an das Kühlbad 8 mündet eine mit dem Sumpf eines Vorratstanks 11, beispielsweise einem Standtank, verbundene Zuführleitung 12 in den Druckbehälter 7 ein. Der Druck im Vorratstank 11 wird dabei über eine Tankdruckregelung, beispielsweise unter Einbeziehung eines Luftverdampfers 13 auf einem vorgegebenen Wert gehalten. In der Zuführleitung 12 ist ein Entspannungsventil 14 angeordnet, mittels dessen ein maximaler Druck in der Zuführleitung 12 stromab zum Entspannungsventil 14 einstellbar ist. In einem oberen und beim bestimmungsgemäßen Einsatz der Vorrichtung 1 von gasförmigem Kühlmedium gefüllten Bereich innerhalb des Druckbehälters 7 mündet eine Gasabzugsleitung 15 ein, in der - optional - eine Vakuumpumpe 16 integriert ist. Der Kühlkreislauf 2 und die mit dem Vorratstank 11 strömungsverbundenen Armaturen sind strömungstechnisch nicht unabhängig voneinander, sondern über eine Verbindungsleitung 17 miteinander gekoppelt, die zwischen einem Verzweigungspunkt 18 stromauf zum Entspannungsventil und einem Verzweigungspunkt 19 stromauf zur Pumpe 5 eine Strömungsverbindung zwischen der Zuführleitung 12 und dem Kühlkreislauf 2 herstellt.
  • Im Betrieb der Vorrichtung 1 strömt das flüssige Kühlmedium durch den Kühlkreislauf 2. Der Druck im Kühlkreislauf 2 entspricht im Wesentlichen dem Druck am Boden des Vorratstanks 11, weist also eine Siedetemperatur auf, die höher ist als die an der Flüssigkeitsoberfläche im Vorratstank 11 herrschende Siedetemperatur des Kühlmediums. Das Kühlmedium wird einem Verbraucher über die Vorlaufleitung 3 im unterkühlten Zustand zugeführt, und das durch Wärmekontakt mit dem Verbraucher und/oder mit zum bzw. vom Verbraucher führenden Leitungsabschnitten erwärmte Kühlmedium strömt, immer noch im flüssigen und bevorzugt unterkühlten Zustand, über die Rücklaufleitung 4 vom Verbraucher ab und wird mittels der Pumpe 5 wieder in die Vorlaufleitung 3 eingespeist.
  • Um zu gewährleisten, dass das Kühlmedium im gesamten Kühlkreislauf 2 im flüssigen Zustand vorliegt, wird das Kühlmedium in der Vorlaufleitung 3 mittels des Unterkühlers 6 auf eine vorgegebene Temperatur von beispielsweise 5 K bis 10 K unterhalb seiner Siedetemperatur gekühlt. Die "vorgegebene Temperatur" wird so gewählt, dass der gesamte Wärmeeintrag im Kühlkreislauf 2 nicht oder höchstens ausreicht, um das unterkühlte Kühlmedium auf seine Siedetemperatur zu erwärmen. Dazu wird das Kühlmedium im Kühlbad 8 auf einem niedrigeren Druck als das Kühlmedium im Kühlkreislauf 2 gebracht, sodass die Siedetemperatur bei dem im Druckbehälter 7 vorliegenden Druck unterhalb der vorgegebenen Temperatur des Kühlmediums in der Vorlaufleitung 3 liegt. Der erforderliche Druck wird am Entspannungsventil 14 eingestellt; bedarfsweise kann der Druck durch den Einsatz der Vakuumpumpe 16 auch auf einen Druck von unter 1 bar reduziert werden. Das über die Gasabzugsleitung 15 abgeführte Gas wird in die Umgebung abgelassen oder einer weiteren Verwendung zugeführt. Es ist im Übrigen im Rahmen der Erfindung auch vorstellbar, dass der Druck im Druckbehälter 7 in Abhängigkeit von einer gemessenen Temperatur des Kühlmediums in der Vorlaufleitung 3 geregelt wird.
  • Im Falle des Auftretens von Druckschwankungen beim Betrieb des Kühlkreislaufs 2 ist ein Ausgleichsvolumen erforderlich. Als ein solche Ausgleichsvolumen dient bei der Vorrichtung 1 der Vorratstank 11, da über die während des Betriebs der Vorrichtung 1 in beide Richtungen strömungsoffene Verbindungsleitung 19 Kühlmedium frei zwischen dem Kühlkreislauf 2 und dem Vorratstank 11 fließen kann. Für einen gegebenenfalls im Vorratstank 11 erforderlichen Druckaufbau sorgt der Druckaufbauverdampfer 13. Die Vorrichtung 1 kommt somit ohne ein dem Kühlkreislauf 2 zugeordnetes separates Ausgleichsgefäß aus. Da der Abzweigpunkt 18 in der Zuführleitung 12 stromauf zum Entspannungsventil 14 angeordnet ist, und das Entspannungsventil 14 auf einen vorgegebenen Enddruck regelt, führen auftretende Druckschwankungen im Kühlkreislauf 2 nicht zu einer nennenswerten Beeinflussung der Druckverhältnisse im Behälter 7.
  • Die in Fig. 2 gezeigte Vorrichtung 20 unterscheidet sich von der Vorrichtung 1 durch einen zusätzlichen Unterkühler 21, der in der Zuführleitung 12 stromauf zum Entspannungsventil 14 angeordnet ist. Der Unterkühler 21 weist einen Wärmetauscher 22 auf, der in einem Kühlbad 23 aufgenommen ist. Das Kühlbad 23 wird ebenfalls aus dem Vorratstank 11 gespeist, wobei jedoch ein Entspannungsventil 24 dafür sorgt, dass der Druck im Kühlbad 23 geringer als in der Leitung 12 ist, und damit die Temperatur des Kühlbades 23 niedriger als die Temperatur des durch den Wärmetauscher 22 fließenden Kühlmediums ist. Durch die Unterkühlung des durch die Zuführleitung 12 fließenden Kühlmediums wird verhindert, dass ein wesentlicher Teil des Kühlmediums das Entspannungsventil 14 im bereits verdampften Zustand erreicht, wodurch die Funktionsfähigkeit des Entspannungsventils 14 leiden und die Leistungsfähigkeit des Unterkühlter 6 beeinflusst werden würde.
  • Bei der in Fig. 3 gezeigten Vorrichtung 25 befindet sich in der Zuführleitung 12, stromauf zum Entspannungsventil 14, ein Phasenseparator 26 und stromauf zu diesem ein weiteres Entspannungsventil 27. Der Phasenseparator umfasst ein Gefäß 28 in dem sich gasförmiges Kühlmedium, das stromauf zum Phasenseparator 26 durch Verdampfen von flüssigem Kühlmedium entstanden ist und/oder aus dem Kühlkreislauf 2 über die Verbindungsleitung 19 eingetragen wurde, in einer Gasphase 29 im Phasenseparator 26 sammelt, während das im flüssigen Zustand verbliebene Kühlmedium im Phasenseparator 26 eine flüssigen Phase 30 ausbildet. Die flüssige Phase 30 ist über den stromab vom Phasenseparator 26 gelegenen Abschnitt der Zuführleitung 12 mit dem Unterkühler 6 strömungsverbunden, während über eine mit der Gasphase 29 strömungsverbundene Gasableitung 31 Gas aus der die Gasphase 29 abgeführt werden kann. Durch den Phasenseparator 26 wird, ähnlich wie durch den zweiten Unterkühler 21 in Vorrichtung 20, sichergestellt, dass unmittelbar stromauf zum Entspannungsventil 14 kein oder nur in geringfügigen Mengen gasförmiges Kühlmedium in der Zuleitung 12 vorhanden ist, wodurch Störungen in der Funktion des Entspannungsventils 14 vermieden werden; gleichzeitig kann er zur Vorkühlung des dem Unterkühler 6 zugeführten Kühlmediums eingesetzt werden, indem die Gasphase 29 während des Betriebs auf einem geringeren Druck als der Druck am Boden des Vorratstanks 11 gehalten wird.
  • Bezugszeichenliste
  • 1.
    Vorrichtung
    2.
    Kühlkreislauf
    3.
    Vorlaufleitung
    4.
    Rücklaufleitung
    5.
    Pumpe
    6.
    Unterkühler
    7.
    Druckbehälter
    8.
    Kühlbad
    9.
    Kühlschlange
    10.
    -
    11.
    Vorratstank
    12.
    Zuführleitung
    13.
    Luftverdampfer
    14.
    Entspannungsventil
    15.
    Gasabzugsleitung
    16.
    Vakuumpumpe
    17.
    Verbindungsleitung
    18.
    Abzweigpunkt
    19.
    Abzweigpunkt
    20.
    Vorrichtung
    21.
    Unterkühler
    22.
    Wärmetauscher
    23.
    Kühlbad
    24.
    Entspannungsventil
    25.
    Vorrichtung
    26.
    Phasenseparator
    27.
    Entspannungsventil
    28.
    Behälter
    29.
    Gasphase
    30.
    Flüssige Phase
    31.
    Gasableitung

Claims (6)

  1. Vorrichtung zum Kühlen eines Verbrauchers, mit einem dem Verbraucher zugeordneten Kühlkreislauf (2) zum Zirkulieren einer Kühlflüssigkeit, in dem eine Pumpe (5) sowie ein Unterkühler (6) vorgesehen ist, wobei der Unterkühler (6) einen über eine mit einem Entspannungsventil (14) ausgerüstete Zuführleitung (12) mit einem Vorratstank (11) für die Kühlflüssigkeit strömungsverbunden Behälter (7) zur Aufnahme eines Kühlbades (8), eine am Behälter (7) angeordnete Gasabzugsleitung (15) zum Abführen verdampfter Kühlflüssigkeit sowie einen beim bestimmungsgemäßen Einsatz der Vorrichtung (1, 20, 25) in das Kühlbad (8) eintauchenden und in den Kühlkreislauf (2) integrierten Wärmetauscher (9) aufweist, wobei der Vorratstank (11) eingesetzt wird, um im Kühlkreislauf (2) einen aufgrund von Dichte- oder Volumenschwankungen erforderlichen Druckausgleich zu schaffen, wobei vom Kühlkreislauf (2) eine beim bestimmungsgemäßen Einsatz der Vorrichtung (1, 20, 25) stets in beiden Richtungen strömungsoffene Verbindungsleitung (17) abzweigt, die mit dem Vorratstank (11) und/oder der zum Kühlbad (8) des Unterkühlers (6) führenden Zuführleitung (12), stromauf zum Entspannungsventil (14), strömungsverbunden ist,
    dadurch gekennzeichnet,
    dass in der Zuführleitung (12), zwischen der Ausmündung (18) der Verbindungsleitung (17) und dem Entspannungsventil (14), ein zweiter Unterkühler (21) angeordnet ist und/oder
    in der Zuführleitung (12), stromauf zum Entspannungsventil (14), ein Phasenabscheider (26) vorgesehen ist.
  2. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindungsleitung (17) in Strömungsrichtung gesehen zwischen Verbraucher und Pumpe (5) in den Kühlkreislauf (2) einmündet.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gasabzugsleitung (15) mit einer Vakuumpumpe (16) ausgerüstet ist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Vorratstank (11) mit einem Druckaufbauverdampfer (13) ausgerüstet ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer Mess- und Regeleinrichtung die Temperatur des Kühlbades (8) in Abhängigkeit vom Wärmeeintrag im Kühlkreislauf (2) regelbar ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Verbraucher ein supraleitendes Bauteil vorgesehen ist.
EP14736664.5A 2013-07-04 2014-06-18 Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf Active EP3017238B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14736664T PL3017238T3 (pl) 2013-07-04 2014-06-18 Urządzenie do chłodzenia odbiornika za pomocą przechłodzonej cieczy w obiegu chłodzenia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013011212.5A DE102013011212B4 (de) 2013-07-04 2013-07-04 Vorrichtung zum Kühlen eines Verbrauchers mit einer unterkühlten Flüssigkeit in einem Kühlkreislauf
PCT/EP2014/062881 WO2015000708A1 (de) 2013-07-04 2014-06-18 Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf

Publications (2)

Publication Number Publication Date
EP3017238A1 EP3017238A1 (de) 2016-05-11
EP3017238B1 true EP3017238B1 (de) 2020-11-04

Family

ID=51162711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14736664.5A Active EP3017238B1 (de) 2013-07-04 2014-06-18 Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf

Country Status (13)

Country Link
US (1) US10422554B2 (de)
EP (1) EP3017238B1 (de)
JP (1) JP6349390B2 (de)
KR (1) KR102053387B1 (de)
CN (1) CN105324601B (de)
CA (1) CA2917035C (de)
DE (1) DE102013011212B4 (de)
ES (1) ES2842104T3 (de)
IL (1) IL243118B (de)
PL (1) PL3017238T3 (de)
RU (1) RU2648312C2 (de)
SG (1) SG11201509973RA (de)
WO (1) WO2015000708A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913685B2 (en) 2014-08-19 2024-02-27 Supercritical Fluid Technologies, Inc. Cooling loop with a supercritical fluid system using compressed refrigerant fluid flow with a positive Joule Thomson coefficient
DE102016010752A1 (de) 2016-09-06 2018-03-08 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
CA3040469C (en) 2016-10-14 2021-11-16 Supercritical Fluid Technologies, Inc. Cooling loop with a supercritical fluid system using compressed refrigerant fluid flow with a positive joule-thomson coefficient
EP3525902B1 (de) * 2016-10-14 2023-12-06 Supercritical Fluid Technologies, Inc. Kühlsystem mit offenem kühlkreis
EP3361187A1 (de) 2017-02-08 2018-08-15 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
DE102017002475A1 (de) 2017-03-14 2018-09-20 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen einer Anordnung mit einer Stromführung sowie System mit entsprechender Vorrichtung
DE102017003105A1 (de) 2017-03-30 2018-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
FR3066189B1 (fr) * 2017-05-12 2022-01-21 Gaztransport Et Technigaz Dispositif et procede d'alimentation en combustible d'une installation de production d'energie
FR3067092B1 (fr) * 2017-05-31 2020-08-14 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Station et procede de remplissage de reservoir(s) de gaz sous pression
DE102017008210B4 (de) * 2017-08-31 2020-01-16 Messer France S.A.S. Vorrichtung und Verfahren zum Befüllen eines mobilen Kältemitteltanks mit einem kryogenen Kältemittel
GB201719399D0 (en) * 2017-11-22 2018-01-03 Bennamann Services Ltd Liquid methane storage and fuel delivery system
UA126174U (uk) * 2017-12-26 2018-06-11 Оу Юбісі Холдінг Груп Система охолодження лінії подачі напою
EP3511649B1 (de) 2018-01-12 2022-01-26 Linde GmbH Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3511650B1 (de) 2018-01-12 2022-01-26 Linde GmbH Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
US20210041067A1 (en) * 2018-01-31 2021-02-11 Ihi Corporation Liquefied fluid supply system and liquefied fluid-spraying apparatus
KR102063526B1 (ko) * 2018-06-07 2020-01-08 한국항공우주연구원 과냉각 극저온 유체제조장치 및 이를 이용한 유체제조방법
KR102110522B1 (ko) * 2018-06-25 2020-05-13 한국조선해양 주식회사 가스 처리 시스템 및 이를 포함하는 해양 구조물
DE102018006912A1 (de) 2018-08-30 2020-03-05 Messer Group Gmbh Vorrichtung zum Kühlen eines supraleitenden Elements
CN109579351A (zh) * 2018-11-19 2019-04-05 中国人民解放军战略支援部队航天工程大学 基于超声速引射器的大流量液氧过冷方法
WO2020142753A1 (en) 2019-01-04 2020-07-09 Supercritical Fluid Technologies, Inc. Interchangeable chromatography cartridge adapter system
DE102019001497B3 (de) * 2019-03-02 2020-03-05 Messer Group Gmbh Verfahren und Vorrichtung zum Trennen eines Diboran und Wasserstoff enthaltenden Gasgemisches
DE102020003424A1 (de) 2020-06-06 2021-12-09 Messer Group Gmbh Verfahren und Vorrichtung zum kryogenen Kühlen eines Verbrauchers
FR3112589B1 (fr) * 2020-07-17 2022-07-22 Gaztransport Et Technigaz Système de chargement de gaz naturel liquide.
EP3943833A1 (de) 2020-07-23 2022-01-26 Linde GmbH Verfahren und vorrichtung zur kühlung eines supraleitenden kabels und entsprechendes system
US11476369B2 (en) 2020-10-28 2022-10-18 Semiconductor Components Industries, Llc SiC MOSFET with built-in Schottky diode
DE102020007043A1 (de) 2020-11-18 2022-05-19 Messer Se & Co. Kgaa Vorrichtung zum Übertragen elektrischer Energie mit einem supraleitenden Stromträger
KR20230129392A (ko) 2020-11-18 2023-09-08 베어, 인크. 현수형 또는 지하 전송 선로들을 위한 전도체 시스템들
KR20230129393A (ko) * 2020-11-18 2023-09-08 베어, 인크. 초전도 전력 전송 선로들의 냉각을 위한 시스템들 및 방법들
AU2021381750A1 (en) 2020-11-18 2023-06-08 VEIR, Inc. Suspended superconducting transmission lines
RU2767668C1 (ru) * 2021-06-22 2022-03-18 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Криосистема авиационной интегрированной электроэнергетической установки на основе ВТСП
WO2023141484A1 (en) * 2022-01-21 2023-07-27 Praxair Technology, Inc. Supplemental refrigeration using nitrogen
CN114673936B (zh) * 2022-03-17 2023-05-16 北京航天试验技术研究所 基于三级分段冷却的液氧推进剂全过冷加注系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263845B2 (en) * 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE419633A (de) * 1936-02-18 1900-01-01
US2487863A (en) * 1946-07-01 1949-11-15 Phillips Petroleum Co Tank car unloading system
DE1068282B (de) * 1958-08-06 1959-11-05 Gesellschaft für Linde's Eismaschinen Aktiengesellschaft, Zweigniederlassung Hölllriiegelskreuth, Höllriegelskreuth bei München Kälteisolationsanotdnung bei technischen Großapparaturen für bei tiefen Temperaturen durchzuführende Verfahren
GB980266A (en) * 1961-11-01 1965-01-13 Ici Ltd Improvements in and relating to the apparatus and methods for the filling of cylinders with liquefied gas
US3159008A (en) * 1963-04-08 1964-12-01 Chemical Construction Corp Cooling system
US3303660A (en) 1965-09-27 1967-02-14 Clyde H O Berg Process and apparatus for cryogenic storage
DE2929709A1 (de) 1979-07-21 1981-02-12 Messer Griesheim Gmbh Vorrichtung zum unterkuehlen von unter druck stehenden, tiefsiedenden verfluessigten gasen
GB8418841D0 (en) * 1984-07-24 1984-08-30 Boc Group Plc Refrigeration method and apparatus
US4843829A (en) * 1988-11-03 1989-07-04 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US5828712A (en) * 1992-01-13 1998-10-27 General Electric Company Coolant water flow rate test with rubidium nuclear tracer for reactors
US5324286A (en) * 1993-01-21 1994-06-28 Arthur A. Fowle, Inc. Entrained cryogenic droplet transfer method and cryosurgical instrument
FR2707371B1 (fr) * 1993-07-08 1995-08-11 Air Liquide Installation de fourniture d'un gaz sous haute pression.
JP2815291B2 (ja) * 1993-09-10 1998-10-27 日本エア・リキード株式会社 低温流体用配管設備
US5537828A (en) 1995-07-06 1996-07-23 Praxair Technology, Inc. Cryogenic pump system
MY117068A (en) * 1998-10-23 2004-04-30 Exxon Production Research Co Reliquefaction of pressurized boil-off from pressurized liquid natural gas
RU2159911C1 (ru) * 1999-06-04 2000-11-27 Военный инженерно-космический университет им. А.Ф. Можайского Автономная система азотного охлаждения для термостатирования специальных транспортных средств
RU2161290C1 (ru) * 2000-03-16 2000-12-27 Государственное унитарное предприятие "Федеральный научно-производственный центр ГУП "ФНПЦ" "ПРИБОР" Устройство для охлаждения жидкости
DE10217092A1 (de) 2002-04-17 2003-11-06 Linde Ag Kühlung von Hochtemperatursupraleitern
US6640552B1 (en) * 2002-09-26 2003-11-04 Praxair Technology, Inc. Cryogenic superconductor cooling system
US6732536B1 (en) * 2003-03-26 2004-05-11 Praxair Technology, Inc. Method for providing cooling to superconducting cable
US7810669B2 (en) * 2004-03-05 2010-10-12 Airbus Deutschland Gmbh Replaceable cartridge for liquid hydrogen
DE102004038460A1 (de) 2004-08-07 2006-03-16 Messer France S.A. Verfahren und Vorrichtung zum Befüllen eines Behälters mit Flüssiggas aus einem Vorratstank
JP2008027780A (ja) * 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd 液冷媒循環冷却システム
DE102007011530A1 (de) 2007-03-09 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Befüllen eines für ein kryogenes Speichermedium, insbesondere Wasserstoff, vorgesehenen Druckspeichers
JP5014206B2 (ja) * 2008-03-12 2012-08-29 大陽日酸株式会社 超電導部材の冷却方法
US20090241558A1 (en) * 2008-03-31 2009-10-01 Jie Yuan Component cooling system
CN103262179B (zh) * 2011-02-25 2016-08-31 株式会社前川制作所 超导电电缆冷却系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263845B2 (en) * 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system

Also Published As

Publication number Publication date
WO2015000708A1 (de) 2015-01-08
CA2917035C (en) 2021-04-06
RU2015154453A3 (de) 2018-03-01
PL3017238T3 (pl) 2021-04-19
ES2842104T3 (es) 2021-07-12
DE102013011212A1 (de) 2015-01-08
CN105324601B (zh) 2017-02-08
SG11201509973RA (en) 2016-01-28
DE102013011212B4 (de) 2015-07-30
IL243118B (en) 2020-03-31
RU2648312C2 (ru) 2018-03-23
US10422554B2 (en) 2019-09-24
JP6349390B2 (ja) 2018-06-27
JP2016524117A (ja) 2016-08-12
US20160370036A1 (en) 2016-12-22
CA2917035A1 (en) 2015-01-08
EP3017238A1 (de) 2016-05-11
KR20160030192A (ko) 2016-03-16
KR102053387B1 (ko) 2020-01-08
RU2015154453A (ru) 2017-08-07
CN105324601A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
EP3017238B1 (de) Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf
EP2608223B1 (de) Verfahren zum Kühlen einer Anlage für supraleitfähige Kabel
DE3633313C2 (de)
EP2831492B1 (de) Betriebsverfahren für eine brennstoffzellen-anlage
DE102010028750B4 (de) Verlustarme Kryostatenanordnung
DE102016104298A1 (de) Kühlvorrichtung für einen Supraleiter
WO2022106131A1 (de) Vorrichtung zum übertragen elektrischer energie mit einem supraleitenden stromträger
EP1180637A2 (de) Vorrichtung und Verfahren zur druckgeregelten Versorgung aus einem Flüssiggastank mit einem Wärmetauscher
EP0082409B1 (de) Thermisches Verfahren zum schnellen Überführen einer supraleitenden Wicklung vom supraleitenden in den normalleitenden Zustand und Vorrichtung zur Durchführung des Verfahrens
EP3749903B1 (de) Verfahren und vorrichtung zum kühlen eines supraleitenden stromträgers
DE102015219983A1 (de) Kryogenes Druckbehältersystem
EP0849550B1 (de) Verfahren zur Kühlung eines Verbrauchers auf Tieftemperatur und Flüssiggas-Kühlungssystem zur Durchführung des Verfahrens
DE19850911C2 (de) Flüssiggas-Kühlungssystem zur Kühlung eines Verbrauchers auf Tieftemperatur
DE102018006912A1 (de) Vorrichtung zum Kühlen eines supraleitenden Elements
EP3511650A1 (de) Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
DE102019122227B4 (de) Wasserstoffsystem für eine mobile Einheit sowie Verfahren zum Betreiben eines Wasserstoffsystems, Steuerungsprogramm und computerlesbares Speichermedium
EP2679879B1 (de) Vorrichtung zum Unterkühlen von tiefsiedenden Flüssiggasen
DE102017217347A1 (de) Druckbehältersystem und Verfahren zum Zuführen von Brennstoff aus einem Druckbehältersystem
DE4232703A1 (de) Supraleitender Tranformator
EP3580503B1 (de) Verfahren zum kühlen eines verbrauchers
DE102016011311A1 (de) Gasgekühlte Stromzuführung
DE2352147A1 (de) Vorrichtung zur versorgung eines kryostaten
EP3511649A1 (de) Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
DE102022124518A1 (de) Verfahren und Vorrichtung zur Herstellung von Luftgasen
DE202020101453U1 (de) Armaturenschrank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20160929

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1331291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014968

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2842104

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014968

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014014968

Country of ref document: DE

Owner name: MESSER SE & CO. KGAA, DE

Free format text: FORMER OWNER: MESSER GROUP GMBH, 65843 SULZBACH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230329

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230515

Year of fee payment: 10

Ref country code: IT

Payment date: 20230510

Year of fee payment: 10

Ref country code: FR

Payment date: 20230411

Year of fee payment: 10

Ref country code: DE

Payment date: 20230630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230525

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 10

Ref country code: ES

Payment date: 20230711

Year of fee payment: 10

Ref country code: CH

Payment date: 20230702

Year of fee payment: 10