EP3013690A1 - Structure d'aéronef à capacité de capture d'énergie solaire - Google Patents

Structure d'aéronef à capacité de capture d'énergie solaire

Info

Publication number
EP3013690A1
EP3013690A1 EP14735539.0A EP14735539A EP3013690A1 EP 3013690 A1 EP3013690 A1 EP 3013690A1 EP 14735539 A EP14735539 A EP 14735539A EP 3013690 A1 EP3013690 A1 EP 3013690A1
Authority
EP
European Patent Office
Prior art keywords
aircraft structure
aircraft
photovoltaic film
photovoltaic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14735539.0A
Other languages
German (de)
English (en)
Inventor
Bertrand RIVES
Gilles PERES
Alain Porte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Airbus SAS
Original Assignee
Airbus Operations SAS
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations SAS, Airbus Group SAS filed Critical Airbus Operations SAS
Publication of EP3013690A1 publication Critical patent/EP3013690A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/30Aircraft characterised by electric power plants
    • B64D27/35Arrangements for on-board electric energy production, distribution, recovery or storage
    • B64D27/353Arrangements for on-board electric energy production, distribution, recovery or storage using solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to the power supply of aircraft. More particularly, it relates to an aircraft structure with solar energy capture capability.
  • the invention has a particular advantage for aircraft structures made of composite material.
  • bundles of electrical cables are brought from the power source to each system.
  • the present invention specifically aims to define an aircraft structure with energy capture capability, with a mass penalty at most equivalent to existing solutions and having performance at least equivalent to existing solutions.
  • an aircraft structure with a coating with electrical conductivity property deposited on its outer surface.
  • the outer surface is here defined as the surface facing the external environment of the aircraft, ie the surface likely to be subjected to lightning impacts.
  • an aircraft structure with solar energy capture capability, wherein at least a portion of the outer surface is coated with a photovoltaic film.
  • photovoltaic film is meant a thin layer compared to the other two dimensions (length and width).
  • This photovoltaic film is a flexible layer, that is to say a flexible layer.
  • This film is composed of photovoltaic cells configured as independent photovoltaic modules for outputting a current and / or a DC voltage when subjected to incident solar radiation.
  • the photovoltaic modules are connected together in series or parallel, and arranged next to each other so as to form the photovoltaic film.
  • a photovoltaic cell consists of several layers, one of which is an electrode with electrical conduction capability. This electrode advantageously makes it possible to collect and transfer the electric charges. This electrode is preferably a layer of silver, copper or aluminum.
  • some systems can be advantageously powered via a source of energy from the capture of solar energy via the aircraft structure according to the invention, placed in proximity to said systems.
  • a source of energy from the capture of solar energy via the aircraft structure according to the invention placed in proximity to said systems.
  • Such a power supply of these systems for example those farthest from a power source of the aircraft, reduces the electrical wiring.
  • a photovoltaic film on an aircraft structure provides a solar energy capture capability serving the needs of the aircraft, without giving rise to mass penalty or complex implementation.
  • the photovoltaic film offers the ability to transfer the electrical charges to be dissipated faster and more efficiently than current solutions, during a lightning strike of said aircraft structure.
  • the use of a photovoltaic film on the surface of the aircraft structure makes it possible to obtain an effective protection of said aircraft structure against the effects of lightning without giving rise to a degradation of the surface quality, as it does. this is the case for existing aircraft structures requiring metal mesh.
  • the photovoltaic film has a homogeneous and constant thickness unlike a wire mesh whose thickness is discontinuous.
  • Another advantage of using a photovoltaic film on the surface of the aircraft structure is at the level of production constraints.
  • the aircraft structure is also advantageously devoid of decorative paint layer, especially for non-customized areas, such as for example aircraft wings.
  • photovoltaic film is suitable for any aircraft structure, whether of metal material or composite material.
  • structure of composite material is meant a structure made from mineral or organic fibers, for example glass fibers, aramid fiber or carbon fiber, held in a hard organic matrix, for example epoxy .
  • the invention also fulfills the following characteristics, implemented separately or in each of their technically operating combinations. At least some of its features aim to achieve additional objectives of the invention. In particular, the invention aims to ensure that the upper surface of the aircraft structure, that facing the external environment, is as smooth and shiny as in the absence of the standard decoration layer in the current aircraft .
  • the aircraft structure comprises a flexible polymer layer between the outer surface and the photovoltaic film.
  • the flexible polymer layer is a flexible layer which makes it possible to guarantee the deformation capacity of the assembly under the thermomechanical stress conditions of the aircraft structure.
  • a layer is for example formed from elastomer matrices, polysulfone amide matrices (known by the acronym PSA) or so-called hot / melt elastomers advantageously allowing adhesion to the outer surface and to the photovoltaic film while guaranteeing the characteristics viscoelastic sought.
  • PSA polysulfone amide matrices
  • hot / melt elastomers advantageously allowing adhesion to the outer surface and to the photovoltaic film while guaranteeing the characteristics viscoelastic sought.
  • the flexible polymer layer is advantageous from an aerodynamic point of view.
  • such a layer is applicable at one time to a plurality of assembled aircraft structures, thus making it possible to overcome the geometrical differences in assemblies, such as, for example, the tolerances of the holes and fastenings, and thus avoiding any parasitic eddies at the same time. desired laminar airflow in a logic of minimum fuel consumption.
  • said polymer layer comprises electrically conductive particles.
  • the electrically conductive particles are chosen from a group comprising graphene, carbon fibers, metal nanowires or carbon nanotubes, a mixture of these particles or any other conductive pigment (metal, polymer, .. .).
  • the polymer layer in order to guarantee durability and resistance to the effects of lightning, has a thickness of between 40 and 10 ⁇ m, preferably 80 ⁇ m. Such a thickness also makes it possible not to penalize en masse the aircraft structure.
  • Such a polymer layer also has advantages in terms of: - aerodynamics,
  • the aircraft structure comprises a protective layer covering the photovoltaic film.
  • the protective layer is a layer capable of guaranteeing the durability of the aircraft structure under the conditions of environmental stresses specific to the aircraft.
  • the protective layer covers the photovoltaic film for protection against corrosion, against external damage, etc.
  • Such a protective layer is for example formed from polyurethane resins with a high number of functional groups ensuring a high degree of crosslinking.
  • the protective layer has gloss and orange peel characteristics in accordance with all the customized zones of the aeronautical liveries. According to an advantageous characteristic of the invention, to allow the photovoltaic film to receive the light radiation and to keep its photovoltaic properties.
  • the protective layer is transparent to ultraviolet rays in the useful frequency band.
  • the photovoltaic cells have a substantially identical, preferably square, geometric shape.
  • the photovoltaic cells have a substantially identical geometric shape, preferably triangular.
  • the photovoltaic cells have a substantially identical geometric shape, preferably hexagonal, because this shape improves the acceptance capacity of the photovoltaic film to deformations, in addition to the same capacity of acceptance of the flexible polymer layer.
  • each cell has a dimension substantially of the order of 200 * 200 mm.
  • the photovoltaic film has a thickness between 300 ⁇ ⁇ ⁇ , preferably about 400 ⁇ .
  • This thickness plays a significant role against the protection of the aircraft structure to the impacts of lightning because it allows to increase the transfer of electrical charges during a lightning strike on the aircraft structure.
  • the oversizing in thickness of the photovoltaic film is mainly an oversizing in thickness of electrodes with electrical conduction capacity of the photovoltaic cells.
  • the thickness of said electrodes is chosen so that the surface impedance is less than 2 ⁇ / ⁇ ⁇ 20%, so as to guarantee the evacuation of the electrical charges related to a lightning impact under the best conditions for the structure of the aircraft.
  • the aircraft structure coated on at least a portion of its outer surface with at least one photovoltaic film is a fuselage, a nacelle or a wing of the aircraft.
  • the present invention relates to an aircraft comprising an aircraft structure meeting one or more of the above characteristics.
  • the present invention relates to a method of manufacturing an aircraft structure, wherein at least a portion of an outer surface of said aircraft structure is applied to one or more of the aircraft structures.
  • a photovoltaic film characteristics above, a photovoltaic film. The application of this photovoltaic film requires only a few specific operations, which can be integrated into a more general method of application of conventional coating layers on the outer surface of the body of the aircraft.
  • This manufacturing process is easily adapted to the protection of the outer surface against the effects of lightning.
  • the application of the photovoltaic film can be carried out by conventional techniques in themselves, for example of the type by laminating.
  • a flexible polymer layer is applied to the outer surface of the aircraft structure, and then the photovoltaic film is applied to the flexible polymer layer.
  • a protective layer is applied to the photovoltaic film.
  • the application of the flexible and protective polymer layers may be carried out by conventional techniques in themselves, for example of the spray or ink jet type, etc., and be followed by a drying step, whether it is a drying in ambient air, controlled drying, temperature and hygrometry, or accelerated drying by ultraviolet lamp.
  • the application of the flexible polymer layer, respectively of the protective layer is preceded by a step of preparing the outer surface of the aircraft structure, respectively photovoltaic film.
  • the application of the photovoltaic film is preceded by a step of preparing the surface on which it will rest.
  • Figure 1 illustrates a cross-sectional view of a multilayer assembly applied to the outer surface of the skin of an aircraft fuselage
  • FIG. 2 illustrates a top view of a mosaic of photovoltaic cells having a square geometrical shape
  • FIG. 3 illustrates a top view of a mosaic of photovoltaic cells having a triangular geometrical shape
  • FIG. 4 illustrates a view from above of a mosaic of photovoltaic cells having a hexagonal geometric shape.
  • FIG. Figure 1 shows a locally flat aircraft structure for illustration without this character being limiting of the invention.
  • An aircraft structure 10 according to the invention is made of composite material and mainly comprises a structural part 20 comprising inorganic or organic fibers held in an organic hard resin.
  • such a structural part 20 comprises stacked plies of glass fibers, Kevlar® or carbon, woven or unidirectional, held in a matrix of a polymeric material such as an aramid.
  • the aircraft structure described is for example a fuselage without this choice being limiting of the invention.
  • the fuselage comprises, on a surface 21, said outer surface, the structural portion 20 on one side of said fuselage on which electric charges are likely to accumulate and or a lightning strike is likely to occur, a multilayer assembly 345.
  • This multilayer assembly 345 is applied instead of the decorative exterior paint.
  • This multilayer assembly 345 comprises a plurality of layers 30, 40, 50 for the recovery of solar energy as well as for the protection of the aircraft against the effects of lightning and corrosion.
  • the multilayer assembly 345 comprises in particular, arranged one above the other on the outer surface 21 of the structural portion 20 of the fuselage 10, three successive layers.
  • a first layer, called flexible polymer layer 30, covers all or part of the outer surface 21 of the structural portion 20.
  • This flexible polymer layer has for example a thickness between 40 and 1 10 ⁇ , preferably 80 ⁇ .
  • the flexible polymer layer is a specific sealant for aeronautical aeronautical applications, elastomers, PSA acrylic matrices, or even hot melt elastomers.
  • a second layer covers a surface 31 of the flexible polymer layer, opposite to a surface covering the outer surface 21 of the structural part.
  • the photovoltaic film 40 is flexible and is composed of a plurality of photovoltaic cells 42 connected in series or in parallel.
  • the photovoltaic cells 42 used are preferably of the 2 nd or 3 rd generation type.
  • the photovoltaic cells 42 have a square, triangular or hexagonal geometrical shape, as illustrated in FIGS. 2 to 4.
  • the photovoltaic film 40 has a thickness between 300 and 1000 ⁇ , preferably 400 ⁇ . This thickness is much greater than the thickness of conventional photovoltaic cells in order to increase the transfer of electrical charges during a lightning strike on the aircraft structure.
  • the flexible polymer layer 30 positioned between the fuselage and the photovoltaic film 40 advantageously makes it possible to absorb differential expansions between said fuselage and said photovoltaic film which may appear in the condition of use of the aircraft.
  • the flexible polymer layer 30 comprises electrically conductive particles, graphene type, carbon nanotubes, etc.
  • the protective layer 50 covers a surface 41 of the photovoltaic film 40.
  • the photovoltaic film 40 is thus interposed between the flexible polymer layer 30 and the protective layer 50.
  • the protective layer 50 advantageously makes it possible to withstand the external aggressions that the aircraft can undergo under conditions of use.
  • This protective layer has a thickness between 10 and 80 ⁇ .
  • the protective layer is of the varnish type.
  • the protective layer is composed for example of polyurethane resins with a high number of functional groups ensuring a high degree of crosslinking.
  • said protective layer is transparent and resistant to ultraviolet radiation to allow the photovoltaic film to ensure good absorption of solar radiation.
  • said protective layer 50 is a layer ensuring good absorption of solar radiation.
  • the outer surface 21 of the structural portion 20 is not necessarily entirely covered by the multilayer assembly 345, some areas not or little exposed to the risk of lightning may not be protected or protected by other means, the description being limited to a portion of the outer surface 21 protected according to the principle of the invention.
  • the application of the multilayer stack 345 is performed on the outer surface 21 of the structural portion 20 of the fuselage of the aircraft.
  • the three layers 30, 40, 50 are successively applied one on top of the other.
  • the application of the flexible polymer layer 30, respectively of the protection layer 40 can be performed by any conventional technique in itself, for example by inkjet, the outer surface 21 of the fuselage, respectively the surface 41 of the photovoltaic film, having previously been subjected to preparation operations surface area required for this purpose.
  • the application of the photovoltaic film 40 on the surface 31 of the flexible polymer layer on which it will rest can be carried out by any conventional technique in itself, for example by laminating.
  • the proposed invention advantageously makes it possible to make an aircraft structure protected against the effects of lightning, by penalizing little the mass of the aircraft, and without penalizing the external appearance. It also advantageously makes it possible to capture the ambient solar energy for the internal needs of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne une structure d'aéronef (10), en particulier le fuselage, les nacelles ou les ailes, comportant, sur tout ou partie d'une surface extérieure (21) susceptible d'être soumise à des impacts de foudre, une couche de polymère souple (30), un film photovoltaïque (40) ainsi qu'une couche de protection (50) dudit film photovoltaïque. Cette structure d'aéronef présente principalement une capacité de capture d'énergie solaire permettant de subvenir à des besoins d'un aéronef ainsi qu'une capacité de protection contre les effets de la foudre.

Description

STRUCTURE D'AÉRONEF À CAPACITÉ DE CAPTURE D'ÉNERGIE
SOLAIRE
Domaine de l'invention
La présente invention se rapporte à l'alimentation en énergie des aéronefs. Plus particulièrement, elle concerne une structure d'aéronef à capacité de capture d'énergie solaire. L'invention présente un avantage particulier pour des structures d'aéronef réalisées en matériau composite.
Etat de la technique
Les aéronefs actuels comportent une source d'alimentation électrique embarquée destinée à produire de l'énergie électrique à bord de ceux-ci pour permettre d'alimenter, que ce soit au sol ou en vol, différents systèmes consommant de la puissance électrique.
Ces systèmes, généralement éloignés les uns des autres et de la source d'alimentation électrique, sont répartis dans tout l'aéronef, de la cabine de pilotage à la queue de l'avion, en passant par les ailes. Parmi les systèmes nécessitant une alimentaire électrique et éloigné de la source d'alimentation électrique, on peut citer les feux clignotants situés aux extrémités des ailes, à titre d'exemple illustratif.
Pour atteindre et alimenter individuellement chacun des systèmes, des faisceaux de câbles électriques sont amenés de la source d'alimentation électrique jusqu'à chaque système.
Un tel réseau de faisceaux de câbles électriques est évidemment source de pénalité pour l'aéronef, que ce soit en termes de coûts ou de masse.
En outre, l'agencement d'un tel réseau de faisceaux de câbles électriques présente les inconvénients d'une mise en œuvre complexe, d'une complexification des opérations de montage et d'entretien de ces faisceaux de câbles électriques.
De plus, ces systèmes étant en nombre relativement élevés et fort consommateurs d'énergie, la source d'alimentation électrique doit fournir une puissance électrique non négligeable, ce qui est également source de pénalité en termes de coûts et de masse.
Exposé de l'invention La présente invention a précisément pour objectif de définir une structure d'aéronef à capacité de capture d'énergie, avec une pénalité en masse au plus équivalente aux solutions existantes et ayant des performances au moins équivalentes aux solutions existantes.
A cet effet, il est proposé par la présente invention de revêtir une structure d'aéronef d'un revêtement à propriété de conductivité électrique déposé sur sa surface extérieure. La surface extérieure est ici définie comme la surface en regard de l'environnement extérieur de l'aéronef, soit la surface susceptible d'être soumise à des impacts de foudre.
Plus particulièrement, il est proposé selon la présente invention une structure d'aéronef, à capacité de capture d'énergie solaire, dans laquelle au moins une partie de la surface extérieure est revêtue d'un film photovoltaïque.
Par film photovoltaïque, on entend une couche de faible épaisseur comparé aux deux autres dimensions (longueur et largeur). Ce film photovoltaïque est une couche souple, c'est-à-dire une couche flexible. Ce film est composé de cellules photovoltaïques configurées sous forme de modules photovoltaïques indépendants pour délivrer en sortie un courant et ou une tension électrique continu lorsqu'elles sont soumises à un rayonnement solaire incident.
Les modules photovoltaïques sont reliés entre eux en série ou parallèles, et disposés les uns à coté des autres de manière à former le film photovoltaïque.
Une cellule photovoltaïque est constituée de plusieurs couches dont une qui est une électrode à capacité de conduction électrique. Cette électrode permet avantageusement de collecter et transférer les charges électriques. Cette électrode est préférentiellement une couche en argent, cuivre ou aluminium.
La capture de l'énergie solaire par une structure d'aéronef munie d'un tel film photovoltaïque et sa transformation en électricité offre un apport non négligeable d'un point de vue écologique.
Ainsi, certains systèmes pourront être avantageusement alimentés par l'intermédiaire d'une source d'énergie provenant de la capture de l'énergie solaire via la structure d'aéronef suivant l'invention, placée à proximité desdits systèmes. Une telle alimentation de ces systèmes, par exemple ceux les plus éloignés d'une source d'alimentation électrique de l'aéronef, permet de réduire le câblage électrique.
Par conséquent, un film photovoltaïque sur une structure d'aéronef offre une capacité de capture d'énergie solaire au service des besoins de l'aéronef, sans donner lieu à une pénalisation en masse ni à une mise en œuvre complexe.
Outre une capacité de capture d'énergie solaire, le film photovoltaïque offre la capacité de transférer les charges électriques à dissiper de manière plus rapide et efficace que les solutions actuelles, lors d'un foudroiement de ladite structure d'aéronef. L'utilisation d'un film photovoltaïque en surface de la structure d'aéronef permet d'obtenir une protection efficace de ladite structure d'aéronef contre les effets de la foudre sans donner lieu à une dégradation de la qualité de surface, comme c'est le cas pour les structures d'aéronef existantes nécessitant un grillage métallique. En effet, le film photovoltaïque présente une épaisseur homogène et constante contrairement à un grillage métallique dont l'épaisseur est discontinue.
Un autre avantage de l'utilisation d'un film photovoltaïque en surface de la structure d'aéronef se situe au niveau des contraintes de production.
En effet, les contraintes de production associées à la qualité de surface de la structure, du fait d'une épaisseur constante du film photovoltaïque, sont réduites par rapport à celles d'une surface avec grillage.
Il en résulte, par rapport aux solutions traditionnelles proposées par l'art antérieur pour la protection contre la foudre, un gain de cycle par réduction du nombre et de temps nécessaire aux opérations de fabrication, ainsi qu'une plus grande facilité de maintenance.
L'adjonction sur la structure d'un film photovoltaïque permet de répondre aux exigences de production d'énergie que de production contre la foudre.
Ce résultat tout à fait avantageux est obtenu en l'absence de grillage métallique traditionnel proposé par l'art antérieur.
La structure d'aéronef est également avantageusement dénuée de couche de peinture décorative, en particulier pour des zones non customisées, telles que par exemple des ailes d'aéronef.
L'utilisation d'un tel film photovoltaïque est adaptée à toute structure d'aéronef, qu'elle soit en matériau métallique ou en matériau composite.
Par structure en matériau composite, on entend une structure réalisée à partir de fibres minérales ou organiques, par exemple de fibres de verre, de fibre d'aramide ou de fibre de carbone, maintenues dans une matrice organique dure, de l'époxy par exemple. Selon des modes de réalisation particuliers, l'invention répond en outre aux caractéristiques suivantes, mises en œuvre séparément ou en chacune de leurs combinaisons techniquement opérantes. Certaines au moins de ses caractéristiques visent à atteindre des objectifs supplémentaires de l'invention. En particulier, l'invention vise à ce que la surface supérieure de la structure d'aéronef, celle en regard de l'environnement extérieur, soit aussi lisse et brillante qu'en l'absence de la couche de décoration standards dans les aéronefs actuels.
Dans des modes de réalisation particuliers de l'invention, la structure d'aéronef comporte une couche polymère souple entre la surface extérieure et le film photovoltaïque.
La couche polymère souple est une couche flexible qui permet de garantir la capacité de déformation de l'ensemble dans les conditions de sollicitations thermomécaniques de la structure de l'aéronef. Une telle couche est par exemple formée à partir de matrices élastomères, de matrices polysulfone amides (connues sous l'acronyme PSA) ou des élastomères dits hot/melt permettant avantageusement l'adhésion à la surface extérieure et au film photovoltaïque tout en garantissant les caractéristiques viscoélastique recherchées. La couche polymère souple est avantageuse d'un point de vue aérodynamique. En effet, une telle couche est applicable en une fois sur une pluralité de structures d'aéronef assemblées, permettant ainsi de remédier aux différences géométriques d'assemblages, telles que par exemple les tolérances des trous et fixations, et évitant ainsi tous tourbillons parasites au flux d'air laminaire recherché dans une logique de consommation de carburant minimum.
Dans des modes de réalisation particuliers de l'invention, pour améliorer la conductivité électrique dans la couche polymère souple, ladite couche polymère comporte des particules électriquement conductrices. Dans un exemple de réalisation, les particules électriquement conductrices sont choisies dans un groupe comprenant le graphène, les fibres de carbone, les nanofils métalliques ou les nanotubes de carbone, un mélange de ces particules ou tout autre pigment conducteur (métal, polymère,...).
Selon une caractéristique avantageuse de l'invention, afin de garantir la durabilité et la résistance aux effets de la foudre, la couche polymère présente une épaisseur comprise entre 40 et 1 10μηη, de préférence 80 μιτι. Une telle épaisseur permet également de ne pas pénaliser en masse la structure d'aéronef.
Une telle couche polymère présente également des avantages en terme : - d'aérodynamique,
- de compatibilité avec les exigences environnementales en vigueur, résistance aux attaques chimiques et environnementales propres à une structure externe d'aéronefs,
- d'application et de ré-application sur la surface extérieure en cas de réparation.
Dans des modes de réalisation particuliers de l'invention, la structure d'aéronef comporte une couche de protection recouvrant le film photovoltaïque.
La couche de protection est une couche apte à garantir la pérennité de la structure d'aéronef dans les conditions de sollicitations environnementales propres aux aéronefs.
La couche de protection revêt le film photovoltaïque en vue de sa protection contre la corrosion, contre les dégradations extérieures,...
Une telle couche de protection est par exemple formée à partir de résines polyuréthanes à haut nombre de groupements fonctionnels assurant un haut degré de réticulation.
La couche de protection présente des caractéristiques de brillance et de peau d'orange conformes à l'ensemble des zones customisées des livrées aéronautiques Selon une caractéristique avantageuse de l'invention, pour permettre au film photovoltaïque de recevoir les rayonnements lumineux et conserver ses propriétés photovoltaïques, la couche de protection est transparente aux rayons ultraviolets dans la bande de fréquence utile.
Dans des modes de réalisation particuliers de l'invention, les cellules photovoltaïques présentent une forme géométrique sensiblement identique, préférentiel lement carrée.
Dans des modes de réalisation particuliers de l'invention, les cellules photovoltaïques présentent une forme géométrique sensiblement identique, préférentiellement triangulaire. Dans des modes de réalisation particuliers de l'invention, les cellules photovoltaïques présentent une forme géométrique sensiblement identique, préférentiellement hexagonale, car cette forme améliore la capacité d'acceptation du film photovoltaïque aux déformations, en supplément de la même capacité d'acceptation de la couche polymère souple.
Dans un exemple préféré de réalisation, pour faciliter la réparation du film photovoltaïque, chaque cellule présente une dimension sensiblement de l'ordre de 200*200 mm.
Dans des modes de réalisation particuliers de l'invention, le film photovoltaïque présente une épaisseur comprise entre 300 βΜ ΟΟΟ μηη, de préférence d'environ 400 μηη.
Cette épaisseur, supérieure aux épaisseurs typiques des cellules photovoltaïques (qui sont de l'ordre d'une centaine de μιτι), joue un rôle non négligeable contre la protection de la structure d'aéronef aux impacts de la foudre car elle permet d'augmenter le transfert des charges électriques au cours d'un impact de foudre sur la structure d'aéronef.
Le surdimensionnement en épaisseur du film photovoltaïque est principalement un surdimensionnement en épaisseur des électrodes à capacité de conduction électrique des cellules photovoltaïques. L'épaisseur desdites électrodes est choisie de sorte que l'impédance de surface soit inférieure à 2ηηΩ/ϋ ± 20%, de façon à garantir l'évacuation des charges électriques liée à un impact foudre dans les meilleures conditions pour la structure de l'aéronef.
Dans des modes de réalisation particuliers de l'invention, la structure d'aéronef revêtue sur au moins une partie de sa surface extérieure d'au moins un film photovoltaïque est un fuselage, une nacelle ou une aile de l'aéronef.
Selon un autre aspect, la présente invention concerne un aéronef comportant une structure d'aéronef répondant à l'une ou plusieurs des caractéristiques ci-avant. Selon un autre aspect, la présente invention concerne un procédé de fabrication d'une structure d'aéronef, selon lequel on applique, sur au moins une partie d'une surface extérieure de ladite structure d'aéronef répondant à l'une ou plusieurs des caractéristiques ci-avant, un film photovoltaïque. L'application de ce film photovoltaïque ne nécessite que peu d'opérations spécifiques, qui peuvent être intégrées dans un procédé plus général d'application des couches de revêtement classiques sur la surface extérieure du corps de l'aéronef.
Ce procédé de fabrication est aisément adapté à la protection de la surface extérieure contre les effets de la foudre.
Il en résulte, comparativement aux solutions actuelles pour la protection aux impacts de foudre par exemple, un gain de cycle par réduction du nombre et du temps nécessaire aux opérations de montage et de contrôle, ainsi qu'une plus grande facilité de maintenance. Cette application est préférentiellement réalisée sur au moins la surface extérieure du fuselage, des nacelles ou des ailes de l'aéronef.
Dans des modes de mise en œuvre particuliers de l'invention, l'application du film photovoltaïque peut être réalisée par des techniques classiques en elles-mêmes, par exemple du type par pelliculage. Dans des modes de mise en œuvre particuliers de l'invention, on applique une couche polymère souple sur la surface extérieure de la structure d'aéronef, puis on applique le film photovoltaïque sur la couche polymère souple.
Dans des modes de mise en œuvre particuliers de l'invention, on applique une couche de protection sur le film photovoltaïque.
Dans des modes de mise en œuvre particuliers de l'invention, l'application des couches polymère souple et de protection peut être réalisée par des techniques classiques en elles-mêmes, par exemple du type par spray ou jet d'encre, etc., et être suivie d'une étape de séchage, qu'il s'agisse d'un séchage à l'air ambiant, d'un séchage contrôlé, à température et hygrométrie prédéfinie, ou d'un séchage accéléré par lampe ultraviolet.
Dans des modes de mise en œuvre particuliers de l'invention, l'application de la couche polymère souple, respectivement de la couche de protection, est préalablement précédée d'une étape de préparation de la surface extérieure de la structure d'aéronef, respectivement du film photovoltaïque.
Dans des modes de mise en œuvre particuliers de l'invention, l'application du film photovoltaïque, est préalablement précédée d'une étape de préparation de la surface sur laquelle il va reposer.
Description des figures
L'invention sera maintenant plus précisément décrite dans le cadre de modes de réalisation particuliers, qui n'en sont nullement limitatifs, représentés sur les figures 1 à 4, dans lesquelles : La figure 1 illustre une vue en coupe transversale d'un ensemble multicouches appliqué sur la surface extérieure de la peau d'un fuselage d'aéronef,
La figure 2 illustre une vue de dessus d'une mosaïque de cellules photovoltaïques présentant une forme géométrique carrée, La figure 3 illustre une vue de dessus d'une mosaïque de cellules photovoltaïques présentant une forme géométrique triangulaire,
La figure 4 illustre une vue de dessus d'une mosaïque de cellules photovoltaïques présentant une forme géométrique hexagonale.
Description d'un mode préféré de réalisation Un exemple de structure d'aéronef 10 conforme à l'invention est illustré de manière schématique sur la figure 1 . La figure 1 présente une structure d'aéronef localement plane à titre d'illustration sans que ce caractère soit limitatif de l'invention.
Sur cette figure 1 , les épaisseurs relatives des différentes couches de cette structure d'aéronef ont été choisies à titre d'exemple, et de manière à faire apparaître clairement chacune de ces couches, et ces épaisseurs relatives ne doivent nullement être considérées comme limitatives ou même représentatives d'un ensemble multicouches réel. Une structure d'aéronef 10 suivant l'invention est réalisée en matériau composite et comporte principalement une partie structurale 20 comportant des fibres minérale ou organiques maintenues dans une résine dure organique.
Par exemple, une telle partie structurale 20 comporte des plis empilés de fibres de verre, Kevlar® ou carbone, tissées ou unidirectionnelles, maintenues dans une matrice d'un matériau polymère tel qu'une aramide.
La structure d'aéronef décrite est par exemple un fuselage sans que ce choix soit limitatif de l'invention.
Le fuselage comporte, sur une surface 21 , dite surface extérieure, de la partie structurale 20 d'un coté dudit fuselage sur lequel des charges électriques sont susceptibles de s'accumuler et ou un impact de foudre est susceptible de se produire, un ensemble multicouche 345. Cet ensemble multicouche 345 est appliqué en lieu et place de la peinture décorative extérieure.
Cet ensemble multicouches 345 comporte une pluralité de couches 30, 40, 50 pour la récupération d'énergie solaire ainsi que pour la protection de l'aéronef contre les effets de la foudre et la corrosion. L'ensemble multicouche 345 comprend notamment, disposées les unes au-dessus des autres sur la surface extérieure 21 de la partie structurale 20 du fuselage 10, trois couches successives. Une première couche, dite couche polymère flexible 30, recouvre, sur tout ou partie, la surface extérieure 21 de la partie structurale 20. Cette couche polymère flexible présente par exemple une épaisseur comprise entre 40 et 1 10 μητι, de préférence 80 μιτι. Dans un exemple de réalisation, la couche polymère flexible est un mastic spécifique pour des applications aéronautiques aéronautique, des élastomères, des matrices acryliques PSA, ou encore des élastomères hot-melt.
Une deuxième couche, dite film photovoltaïque 40, recouvre une surface 31 de la couche polymère flexible, opposée à une surface recouvrant la surface extérieure 21 de la partie structurale. Le film photovoltaïque 40 est souple et est composé d'une pluralité de cellules photovoltaïques 42 reliées en série ou en parallèles.
Le principe de réalisation des cellules photovoltaïques est bien connu de l'état de la technique et ne sera pas décrit ici.
Les cellules photovoltaïques 42 utilisées sont préférentiellement du type 2ème ou 3ème génération .
Dans des exemples de réalisation, les cellules photovoltaïques 42 présentent une forme géométrique carrée, triangulaire ou hexagonale, comme illustrées sur les figures 2 à 4.
Le film photovoltaïque 40 présente une épaisseur comprise entre 300 et 1000 μιτι, de préférence 400 μιτι. Cette épaisseur est très supérieure à l'épaisseur des cellules photovoltaïques classiques afin d'augmenter le transfert des charges électriques lors d'un impact de foudre sur la structure d'aéronef.
La couche polymère souple 30 positionnée entre le fuselage et le film photovoltaïque 40 permet avantageusement d'absorber des dilatations différentielles entre ledit fuselage et ledit film photovoltaïque qui peuvent apparaître en condition d'utilisation de l'aéronef.
Dans une variante de réalisation, pour augmenter le transfert des charges électriques lors d'un impact de foudre sur la structure d'aéronef, la couche polymère souple 30 comporte des particules électriquement conductrices, de type graphène, nanotubes de carbone,...
Une couche supérieure, dite couche de protection 50, recouvre une surface 41 du film photovoltaïque 40. Le film photovoltaïque 40 est ainsi intercalé entre la couche polymère flexible 30 et la couche de protection 50. La couche de protection 50 permet avantageusement de résister aux agressions extérieures que peut subir l'aéronef en conditions d'utilisation.
Cette couche de protection présente une épaisseur comprise entre 10 et 80 μιτι. Dans un exemple de réalisation, la couche de protection est du type vernis.
La couche de protection est composée par exemple de résines polyuréthannes à haut nombre de groupements fonctionnels assurant un haut degré de réticulation.
Dans un mode de réalisation préféré de la couche de protection, ladite couche de protection est transparente et résistante aux ultraviolets afin de permettre au film photovoltaïque pour assurer une bonne absorption du rayonnement solaire.
Dans un mode de réalisation préféré de la couche de protection, ladite couche de protection 50 est une couche assurant une bonne absorption du rayonnement solaire.
La surface extérieure 21 de la partie structurale 20 n'est pas obligatoirement recouverte en totalité par l'ensemble multicouches 345, certaines zones pas ou peu exposée au risque de foudre pouvant ne pas être protégées ou protégées par d'autres moyens, la description étant limités à une partie de la surface extérieure 21 protégée suivant le principe de l'invention.
L'application de l'empilement multicouches 345 s'effectue sur la surface extérieure 21 de la partie structurale 20 du fuselage de l'aéronef.
L'application des ces différentes couches sur la surface extérieure 12 du fuselage 1 1 de l'aéronef ne nécessite que peu d'opérations spécifiques comparativement aux solutions actuelles, entre autres pour la protection d'un aéronef aux impacts de foudre.
Les trois couches 30, 40, 50 sont successivement appliquées les unes par-dessus les autres.
L'application de la couche polymère souple 30, respectivement de la couche de protection 40, peut s'effectuer par toute technique classique en elle- même, par exemple par jet d'encre, la surface extérieure 21 du fuselage, respectivement la surface 41 du film photovoltaïque, ayant au préalable été soumis aux opérations de préparation de surface conventionnelles nécessaires à cet effet.
L'application du film photovoltaïque 40 sur la surface 31 de la couche polymère souple sur laquelle il va reposer peut s'effectuer par toute technique classique en elle-même, par exemple par pelliculage.
Au préalable, une opération de préparation de la surface 31 de la couche polymère est réalisée.
L'invention proposée permet avantageusement de réaliser une structure d'aéronef protégée contre les effets de la foudre, en pénalisant peu la masse de l'aéronef, et sans en pénaliser l'aspect esthétique extérieur. Elle permet également avantageusement de capturer l'énergie solaire ambiante pour les besoins internes des aéronefs.

Claims

REVENDICATIONS
1. Structure d'aéronef (10) comportant, sur tout ou partie d'une surface extérieure (21 ), un film photovoltaïque (40), caractérisée en ce que ladite structure d'aéronef (10) comporte une couche polymère souple (30) entre la surface extérieure (21 ) et le film photovoltaïque (40).
2. Structure d'aéronef (10) selon la revendication 1 dans laquelle la couche polymère souple (30) comporte des particules électriquement conductrices.
3. Structure d'aéronef (10) selon l'une des revendications 1 ou 2 selon laquelle la couche polymère souple (30) présente une épaisseur minimale de 80μηη.
4. Structure d'aéronef (10) suivant l'une des revendications précédentes comportant une couche de protection (50) recouvrant le film photovoltaïque.
5. Structure d'aéronef (10) selon l'une des revendications précédentes dans laquelle le film photovoltaïque (40) est constitué d'un ensemble de cellules photovoltaïques (42) de même forme géométrique.
6. Structure d'aéronef (10) selon l'une quelconque des revendications précédentes dans laquelle le film photovoltaïque (40) présente une épaisseur comprise entre 300 et Ι ΟΟΟμηη, de préférence d'environ 400 μιτι.
7. Procédé de fabrication d'une structure d'aéronef (10) conforme à l'une quelconque des revendications 1 à 6, selon lequel on applique sur au moins une partie de la surface extérieure (21 ) de ladite structure d'aéronef un film photovoltaïque (40), caractérisé en ce qu'on applique une couche polymère souple (30) sur la surface extérieure (21 ), préalablement à l'application du film photovoltaïque (40).
8. Procédé de fabrication d'une structure d'aéronef (10) selon la revendication 7 selon lequel l'application du film photovoltaïque (40) est réalisée par pelliculage sur la surface extérieure (21 ).
9. Procédé de fabrication d'une structure d'aéronef (10) selon l'une des revendications 7 ou 8 selon lequel on recouvre le film photovoltaïque (40) d'une couche de protection (50).
EP14735539.0A 2013-06-28 2014-06-27 Structure d'aéronef à capacité de capture d'énergie solaire Withdrawn EP3013690A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356246A FR3007734B1 (fr) 2013-06-28 2013-06-28 Structure d'aeronef a capacite de capture d'energie solaire
PCT/EP2014/063761 WO2014207236A1 (fr) 2013-06-28 2014-06-27 Structure d'aéronef à capacité de capture d'énergie solaire

Publications (1)

Publication Number Publication Date
EP3013690A1 true EP3013690A1 (fr) 2016-05-04

Family

ID=49293665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14735539.0A Withdrawn EP3013690A1 (fr) 2013-06-28 2014-06-27 Structure d'aéronef à capacité de capture d'énergie solaire

Country Status (5)

Country Link
US (1) US20160368613A1 (fr)
EP (1) EP3013690A1 (fr)
CN (1) CN105392701A (fr)
FR (1) FR3007734B1 (fr)
WO (1) WO2014207236A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140326B (zh) * 2015-09-21 2017-07-11 北京昶远科技有限公司 一种具有光伏组件的结构件及其制备方法
CN105226122A (zh) * 2015-09-27 2016-01-06 成都聚合科技有限公司 一种聚光光伏组件底板
CN106449819B (zh) * 2016-09-14 2017-12-15 中国电子科技集团公司第四十八研究所 一种柔性太阳电池组件及其制备方法和应用
US10571225B2 (en) * 2016-11-22 2020-02-25 Walmart Apollo, Llc System and method for camouflaging and recharging autonomous vehicles
EP3326799A1 (fr) * 2016-11-23 2018-05-30 Airbus Operations, S.L. Composant structurel composite et procédé de configuration d'un composant composite structurel
CN108121855B (zh) * 2017-12-06 2021-04-09 北京理工大学 基于仿生柔性机翼的小型无人飞行器飞行动力学优化方法
US10923680B2 (en) * 2018-10-11 2021-02-16 The Boeing Company Multifunctional composite panels and methods for the same
US11459468B2 (en) * 2020-04-30 2022-10-04 Aurora Flight Sciences Corporation Conductive doped-epoxy hybrid surfacing film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005457A1 (en) * 1997-12-19 2002-01-17 Sky Station International, Inc. Stratospheric vehicles with integrated flexible solar cell material and method of production
US20090217962A1 (en) * 2008-02-29 2009-09-03 Lockheed Martin Corporation Thermocouple array for generating electrical power for lighter than air vehicles

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402269B2 (en) * 2005-10-25 2008-07-22 The Boeing Company Environmentally stable hybrid fabric system for exterior protection of an aircraft
CN2909534Y (zh) * 2005-12-31 2007-06-06 无锡尚德太阳能电力有限公司 柔性太阳电池组件
US7923668B2 (en) * 2006-02-24 2011-04-12 Rohr, Inc. Acoustic nacelle inlet lip having composite construction and an integral electric ice protection heater disposed therein
US20140166067A1 (en) * 2006-08-07 2014-06-19 Emcore Solar Power, Inc. Solar power system for aircraft, watercraft, or land vehicles using inverted metamorphic multijunction solar cells
US20080099064A1 (en) * 2006-10-27 2008-05-01 Richard Allen Hayes Solar cells which include the use of high modulus encapsulant sheets
JP5219538B2 (ja) * 2008-02-12 2013-06-26 大成建設株式会社 太陽光発電薄膜を基材に直接形成した太陽電池
CN102449776A (zh) * 2009-05-25 2012-05-09 东丽株式会社 太阳能电池背板用膜、使用该膜的太阳能电池背板以及太阳能电池
DE102009026686A1 (de) * 2009-06-03 2010-12-23 Airbus France Anordnung zum Blitzschutz einer elektronischen Einheit
JP2012025349A (ja) * 2010-07-27 2012-02-09 Ricoh Co Ltd 飛翔体、飛翔システム及び飛行方法
JP2012064821A (ja) * 2010-09-17 2012-03-29 Fuji Electric Co Ltd 太陽電池モジュールおよびその製造方法
DE102011105922A1 (de) * 2011-06-29 2013-01-03 Airbus Operations Gmbh Zusatzstromversorgung für Fahrzeuge, insbesondere Luftfahrzeuge
CN202423344U (zh) * 2012-01-20 2012-09-05 英利能源(中国)有限公司 太阳能电池及应用该太阳能电池的无人机
WO2013123459A2 (fr) * 2012-02-15 2013-08-22 Microlink Devices, Inc. Intégration de feuilles solaires de faible poids et haut rendement sur un véhicule aérien sans équipage pour une plus grande endurance
EP2914489B1 (fr) * 2012-10-31 2018-08-08 Saab Ab Revêtement poreux appliqué sur un objet aérien
JP5671707B2 (ja) * 2012-11-12 2015-02-18 パナソニックIpマネジメント株式会社 太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005457A1 (en) * 1997-12-19 2002-01-17 Sky Station International, Inc. Stratospheric vehicles with integrated flexible solar cell material and method of production
US20090217962A1 (en) * 2008-02-29 2009-09-03 Lockheed Martin Corporation Thermocouple array for generating electrical power for lighter than air vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014207236A1 *

Also Published As

Publication number Publication date
WO2014207236A1 (fr) 2014-12-31
CN105392701A (zh) 2016-03-09
US20160368613A1 (en) 2016-12-22
FR3007734B1 (fr) 2017-08-11
FR3007734A1 (fr) 2015-01-02

Similar Documents

Publication Publication Date Title
WO2014207236A1 (fr) Structure d'aéronef à capacité de capture d'énergie solaire
CA2727749C (fr) Systeme de drainage d'un courant de foudre genere par une decharge orageuse sur un aeronef
EP2321178B1 (fr) Procede de fabrication d'un element de degivrage de nacelle
WO2014057210A1 (fr) Elément constitutif d'une nacelle à protection contre le givre améliorée
WO2009080991A1 (fr) Système parafoudre et aéronef comportant un tel système
WO2009080990A1 (fr) Système parafoudre et aéronef comportant un tel système
FR2924687A1 (fr) Systeme parafoudre et aeronef comportant un tel systeme
EP2377380A1 (fr) Structure en matériau composite protégée des effets de la foudre
FR2914622A1 (fr) Aeronef comprenant une structure assurant les fonctions structurale et electrique
EP2328741B1 (fr) Procédé de métallisation d'une pièce en matériau composite et piece
FR2953093A1 (fr) Element structural composite a transmission electrique de puissance integree
EP2109893A1 (fr) Module photovoltaique et modules de production d'energie ou de lumiere
FR3043840A1 (fr) Module photovoltaique leger comportant une couche avant en verre ou polymere et une couche arriere alveolaire
FR3107469A1 (fr) Procédé d’application d’un revêtement avec une adhérence renforcée sur un support en matériau composite, support en matériau composite ou aéronef comprenant un tel revêtement
EP3172132A1 (fr) Dispositif de protection contre la foudre
EP2382088B1 (fr) Structure en matériau composite protégée des effets de la foudre
EP3380728B1 (fr) Pale pour éolienne comprenant une couche de métallisation ayant un grammage optimisé
FR3082506A1 (fr) Aéronef doté d’un fuselage d’aéronef, d’une voilure et d’un empennage ainsi que d’une structure de surface comportant un dispositif de protection contre la foudre
WO2011099539A1 (fr) Module de cellule solaire et procédé de production pour module de cellule solaire
EP4032131B1 (fr) Module photovoltaïque comportant un élément de liaison conducteur électriquement
WO2011064261A1 (fr) Raidisseur électro-structural en matériau composite
FR3116651A1 (fr) Procédé de fabrication d’un module photovoltaïque léger et flexible intégrant une protection thermique
FR2975942A1 (fr) Piece composite avec interface metallique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS OPERATIONS S.A.S.

Owner name: AIRBUS (SAS)

17Q First examination report despatched

Effective date: 20190327

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200929