EP3012463B1 - Hydraulic assembly - Google Patents

Hydraulic assembly Download PDF

Info

Publication number
EP3012463B1
EP3012463B1 EP15188200.8A EP15188200A EP3012463B1 EP 3012463 B1 EP3012463 B1 EP 3012463B1 EP 15188200 A EP15188200 A EP 15188200A EP 3012463 B1 EP3012463 B1 EP 3012463B1
Authority
EP
European Patent Office
Prior art keywords
pressure
hydraulic circuit
fluid
hydraulic
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15188200.8A
Other languages
German (de)
French (fr)
Other versions
EP3012463A1 (en
Inventor
Johann Auer
Johann Schmollngruber
Hans-Wilhelm Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weber Hydraulik GmbH
Original Assignee
Weber Hydraulik GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weber Hydraulik GmbH Austria filed Critical Weber Hydraulik GmbH Austria
Publication of EP3012463A1 publication Critical patent/EP3012463A1/en
Application granted granted Critical
Publication of EP3012463B1 publication Critical patent/EP3012463B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/022Systems essentially incorporating special features for controlling the speed or actuating force of an output member in which a rapid approach stroke is followed by a slower, high-force working stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0426Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling the number of pumps or parallel valves switched on
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/166Controlling a pilot pressure in response to the load, i.e. supply to at least one user is regulated by adjusting either the system pilot pressure or one or more of the individual pilot command pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20584Combinations of pumps with high and low capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20592Combinations of pumps for supplying high and low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/251High pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/252Low pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2654Control of multiple pressure sources one or more pressure sources having priority
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40523Flow control characterised by the type of flow control means or valve with flow dividers
    • F15B2211/4053Flow control characterised by the type of flow control means or valve with flow dividers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the invention relates to a hydraulic unit with at least two pressure connections according to the preamble of claim 1.
  • Hydraulic units are already known from the prior art, to which one or more hydraulic devices can be connected, which are operated independently of one another and are also stressed with changing load resistances.
  • hydraulic units of this type are often used to drive hydraulic recovery devices, in particular with an internal combustion engine drive, since they allow mobile and independent use of such devices. Since, when two devices are operated simultaneously on one hydraulic circuit, only the device with the lower working resistance is driven, each pressure connection is assigned a separate hydraulic circuit with its own pump in such hydraulic units.
  • the JP H1061608 A discloses a hydraulic system in which two hydraulic circuits are driven by a common drive motor.
  • the first hydraulic circuit comprises a first variable displacement pump and a pressure line branching out from the variable displacement pump. Two consumers are connected to this pressure line via a directional valve each.
  • the second hydraulic circuit comprises a second variable displacement pump and a pressure line outgoing from the variable displacement pump. Two consumers are connected to this pressure line via a directional valve each.
  • connecting lines can be opened, whereby partial flows of the Volume flow branched off in the pressure lines and can be led to the other pressure line.
  • the object of the invention is to avoid the disadvantages of the prior art and to provide a hydraulic unit with reduced operating effort.
  • the object of the invention is achieved by a hydraulic unit with the features of claim 1.
  • the directional control valves have a spring acting in the direction of a starting position and a first control line runs from the first hydraulic circuit or from the second hydraulic circuit to a first actuating element acting on the first directional control valve and a second control line runs from the second hydraulic circuit or from the first hydraulic circuit to one to the second Directional control valve acting second actuating member runs, the needs-based diversion of hydraulic fluid from one hydraulic circuit to a further hydraulic circuit without intervention of an operator is possible and thus the handling of such a hydraulic unit is much easier.
  • the invention provides that the first pump elements comprise at least one high pressure element with a smaller delivery rate and at least one low pressure element with a larger delivery rate and the second pump elements comprise at least one high pressure element with a smaller delivery rate and at least one low pressure element with a larger delivery rate and the directional control valves are arranged in the fluid lines going out from the low-pressure elements. If the pressure level rises in the connected devices, the volume flow supplied to them can be reduced and thus the required power can be adapted to the maximum power of the drive. As is known from the prior art, the switching over of the various pressure levels can take place by means of pressure-controlled directional control valves.
  • first and / or the second control line is designed as a hydraulic control line and acts on the second or first directional control valve either directly or by means of an actuating element in the form of a pilot valve.
  • the Switching processes can be triggered in a reliable way, since the pressure in the individual hydraulic circuits provides clues for the respective operating status of a device.
  • first and / or second control line can be designed as an electrical control line and to be operated by means of an electromagnetic actuator, in particular a magnetic coil, directly or via a pilot control element, e.g. Pilot valve acts on the second or first directional control valve.
  • an electromagnetic actuator in particular a magnetic coil
  • pilot valve acts on the second or first directional control valve.
  • the operating status of the connected devices can e.g. are actively selected or determined by switches or sensors arranged on them and used as a basis for switching processes.
  • the switching signals can also be converted and further processed using a logic circuit.
  • the delivery rate of the low-pressure elements of a hydraulic circuit is at least twice the delivery rate of the high-pressure elements of the same hydraulic circuit.
  • One possible embodiment of the hydraulic unit consists in that, in the starting position of the directional control valves, a flow path from the respective fluid line of one hydraulic circuit to the connecting line to the other hydraulic circuit is opened by these. In this case, a volume flow of hydraulic fluid from one hydraulic circuit is diverted to another hydraulic circuit as standard and this volume flow is only brought back to a certain extent when the pressure rises.
  • the first connection line runs from the first directional control valve to the second directional control valve and the second connection line runs from the second directional control valve to the first directional control valve
  • the second directional control valve having a flow path from the first connection line in a first switching position to a second fluid line leading to the second pressure connection or can establish a flow path from the second connecting line in a first switching position to a first fluid line leading to the first pressure connection in a further switching position to the fluid container and the first directional control valve or can produce in a further switching position to the fluid container.
  • a hydraulic circuit comprises at least two high-pressure elements, at least one of which is connected directly to the pressure connection via a fluid line and at least one via the directional control valve can be connected to another hydraulic circuit.
  • a demand-based and performance-optimized allocation of the volume flows can take place in the low-pressure range as well as in the high-pressure range.
  • One possibility for switching the operating mode could be that the device not supplied with hydraulic fluid generates a signal for resetting the volume flow diversion by means of a switch and an electrical control line, which again results in a simultaneous supply of both devices.
  • a pressure switch valve is arranged in one of the fluid lines of a hydraulic circuit downstream of a pump element, which is controlled via a pressure control line going out from another fluid line of the same hydraulic circuit, whereby when the pressure rises in the Another fluid line from the pressure switching valve a flow path from the pump element to the fluid container is established.
  • the delivery rate which is under high pressure, can thus be reduced in a simple manner as required and the power of the drive can be optimally used.
  • Structurally advantageous pump arrangements that have proven particularly useful for mobile use are obtained when the first pump elements and the second pump elements are arranged in relation to one another as in a radial piston pump.
  • a method for supplying one or more hydraulically driven devices, in particular hydraulic rescue devices, with hydraulic fluid by means of a hydraulic unit with at least two pressure connections can be implemented in such a way that in the hydraulic unit in a first hydraulic circuit with a first pump arrangement by means of first fluid lines, volume flows of at least two first Pump elements are combined and passed to a first pressure connection and in a second hydraulic circuit with a second pump arrangement by means of second fluid lines, the volume flows of at least two second pump elements are combined and directed to a second pressure connection, the first pump elements and the second pump elements being simultaneously from a common drive are driven and wherein for the needs-based allocation of the volume flows to the pressure connections by means of a first directional valve at least one of the first fluid lines ü Is connected via a first connection line to a second fluid line in the second hydraulic circuit and by means of a second directional valve at least one of the second fluid lines is connected via a second connection line to a first fluid line in the first hydraulic circuit, the directional control valves being brought into a starting position by means
  • each of the devices is automatically supplied with approximately half or a corresponding proportion of the total delivery volume; if only one device is activated, it is supplied approximately with the total delivery volume.
  • Fig. 1 shows, in a greatly simplified and schematic manner, a hydraulic unit 1 for supplying two or more hydraulically driven devices as required.
  • the hydraulic unit 1 has at least two pressure connections 2 and 3 and can be connected to the in Fig. 1 left pressure connection 2 a first device 4, for example in the form of a rescue shears, a spreader cylinder or a spreader device can be connected.
  • a second device 5, which can be connected to the right pressure connection 3 is also shown with dashed lines.
  • the devices 4, 5 each have a fluid supply 6 through which the volume flow provided by the pressure connections 2, 3 is supplied and furthermore each have a fluid return 7, with which a volume flow is supplied to the hydraulic unit 1 again.
  • the hydraulic unit 1 comprises two hydraulic circuits 8 and 9 indicated by dash-dotted lines, from which hydraulic fluid 10 is taken from a fluid container 11 and fed to the pressure connections 2, 3.
  • the first hydraulic circuit 8 comprises a first pump arrangement 12, which consists of at least two pump elements 13 and 14.
  • the second hydraulic circuit 9 comprises a second pump arrangement 15, which comprises at least two pump elements 16 and 17.
  • the pump elements 13, 14, 16, 17 are based on the displacement principle and can therefore build up very high pressures, for example up to 1000 bar.
  • the pump elements 13, 14, 16, 17 and possibly further pump elements can be part of a hydraulic pump in the form of a radial piston pump, axial piston pump or similar types of pumps with several displacement elements.
  • the pump elements 13, 14 of the first pump arrangement 12 and the pump elements 16, 17 of the second pump arrangement 15 are driven by a common drive 18, wherein the drive 18 can comprise an electric motor, for example.
  • the use of an internal combustion engine 19 as a drive is also advantageous for mobile use, since there is great spatial independence from power sources.
  • the volume flows generated by the first pump elements 13 and 14 are guided via first fluid lines 20 and 21 to the first pressure connection 2, the at least two first fluid lines 20 and 21 also being able to be combined in a first collecting line 22 upstream of the first pressure connection 2.
  • the volume flows generated by the second pump elements 16 and 17 are guided via second fluid lines 23 and 24 to the second pressure connection 3, whereby the second fluid lines 23 and 24 can also be brought together in front of the second pressure connection 3 to form a second collecting line 25.
  • the fluid lines 20, 21 and 23, 24 are shown in the form of arrows to clarify the volume flows guided through them.
  • FIG. 1 no fluid lines are shown in which the hydraulic fluid 10 within the hydraulic circuits 8 or 9 or from the devices 4 or 5 is returned to the fluid container 11 largely without pressure.
  • the volume flow of the first pump arrangement 12, i.e. the first pump elements 13 and 14, is provided at the first pressure connection 2 for the first device 4 and, analogously, the volume flow of the second pump arrangement 15 is provided at the second pressure connection 3 for the second device 5, so the second pump elements 16 and 17 is provided.
  • no device 4, 5 is connected to one of the pressure connections 2, 3, measures known from the prior art must be used to ensure that the volume flows generated by the pump elements 13, 14, 16, 17 are returned to the fluid container without damaging the hydraulic unit 1 11 are fed.
  • This can, for example, be a pressure relief valve arranged upstream of the pressure connections 2, 3, which is operated manually and the volume flows are only fed to the pressure connections 2, 3 after a device 4 or 5 has been connected.
  • the power converted in a hydraulic circuit 8 or 9 is proportional to the product of the size of the volume flow and the level of the fluid pressure. Since the power of the drive 18, for example an internal combustion engine 19 used in the hydraulic unit 1, is limited, the volume flow that can be made available at the pressure connections 2 or 3 is also limited at the top at a certain pressure. In the case of low counterpressure from the connected device 4 or 5, the volume flow is additionally limited by the highest drive speed of the drive 18, for example by the maximum speed of the internal combustion engine 19. In practice, however, a largely constant drive speed can be assumed, which is why the pump arrangements 12, 15 deliver a largely constant total delivery rate and this must be divided into volume flows with different pressure levels, adapted to the available drive power.
  • the first hydraulic circuit 8 has a first directional control valve 26 with which the first fluid line 21 can be connected via a first connection line 27 to a second fluid line 24 in the second hydraulic circuit 9.
  • a second directional control valve 28 is also arranged in a second fluid line 24 in the second hydraulic circuit 9 and the second fluid line 24 can be connected to the first fluid line 21 via a second connecting line 29.
  • the directional control valves 26, 28 have for this purpose a spring 30, 31 acting in the direction of a starting position and furthermore comprise an actuating member 32, 33 with which the volume flow is either fed to the respective pressure connection 2 or 3 or via the connecting line 27 or 29 respectively to the other hydraulic circuit 9 or 8 is diverted.
  • the first actuating member 32 acting on the first directional valve 26 is controlled via a control line 34 which, in the exemplary embodiment shown, runs from the second hydraulic circuit 9 to the actuating member 32 and the second actuating member acting on the second directional valve 28 33 is activated via a control line 35 which, in this exemplary embodiment, runs from the first hydraulic circuit 8 to the actuating member 33.
  • the switching position of the directional control valve 30 is determined by the pressure prevailing in the second hydraulic circuit 9, since the control lines 34 and 35 are hydraulic control lines in which the pressure in a fluid line of the other hydraulic circuit is applied to the actuator of the directional control valve of the other hydraulic circuit is transmitted.
  • the volume flow provided at a pressure connection 2 or 3 can be increased by that of a pump element 17 or 14 of the other hydraulic circuit 9 or 8, whereby the operating speed of a connected device 4 or 5 can be increased without that manual adjustment of the directional control valves 26, 28 would be required.
  • the control lines 34 and 35 can also be electrical control lines with which status information from the respective other hydraulic circuit 9 or 8, e.g. Pressure levels or switch positions on the devices 4, 5 can be transmitted to the actuating member 32 or 33 of the hydraulic circuit 8, 9 under consideration and the switching operations explained above can be effected.
  • the device 4 connected to the hydraulic unit 1 is a hydraulically driven rescue cylinder
  • the hydraulic fluid 10 can be fed to the switching valve of the rescue cylinder and from there back to the fluid tank 11 at a low pressure level.
  • this retraction and extension movement takes place at a comparatively low pressure level of up to about 30 bar.
  • This retraction or extension movement should be able to be carried out at the highest possible speed in order to save time, and it is therefore advantageous to provide a large volume flow and, due to the relatively low pressure level, the drive 18 can also provide the necessary power.
  • the pressure level typically increases to up to 700 (1000) bar and, due to the limited power of the drive 18, the volume flow under high pressure must be reduced.
  • Fig. 1 Hydraulic unit 1 shown this can be done, for example, in that when there is a pressure increase at pressure connection 2, only the volume flow of first pump element 13 is guided to pressure connection 2, while the volume flow of pump element 14 is guided via a pressure-controlled valve, for example at a switching pressure of 150 to 250 bar is returned to the fluid container 11.
  • the pump element 14 thus only uses a comparatively small proportion of the drive power and a correspondingly higher proportion of the drive power is available for the pump element 13, which has to generate the high working pressure.
  • Fig. 1 is the starting position of the directional control valves 26 and 28, which is effected by the springs 30 and 31, respectively, such that the volume flow of the pump elements 14 and 17 remains in the respective hydraulic circuit 8, 9 and is thus led to the pressure port 2 and 3, respectively.
  • Fig. 1 is the starting position of the directional control valves 26 and 28, which is effected by the springs 30 and 31, respectively, such that the volume flow of the pump elements 14 and 17 remains in the respective hydraulic circuit 8, 9 and is thus led to the pressure port 2 and 3, respectively.
  • embodiments which differ therefrom are also possible.
  • control lines 34 and 35 can also be electrical control lines with which electrical signals from the respective other hydraulic circuit or from a device connected to it are transmitted to the actuator of the hydraulic circuit in question. Electrical control signals can be generated by switching elements on the connected device or by pressure-voltage converters in the hydraulic circuit.
  • the actuators 32, 33 can, for. B. can be implemented as a control piston for hydraulic control lines 34, 35 or as solenoid valves for electrical control lines 34, 35 in corresponding directional control valves.
  • Fig. 2 shows a diagram of a further embodiment of a hydraulic unit 1 according to the invention, wherein the components that have already been shown in FIG Fig. 1 described Embodiment are provided accordingly with the same reference numerals. and repetitions of the component descriptions are largely dispensed with.
  • the device 4 that can be connected to the hydraulic unit 1 is formed in the illustrated embodiment by a hydraulic recovery device 36 and comprises a double-acting hydraulic cylinder in which a piston separates two working spaces within the hydraulic cylinder.
  • the direction of movement of the recovery device 36 depends on which of the working spaces the hydraulic fluid 10 supplied by the fluid supply 6 is directed by means of a switching valve 37.
  • the hydraulic fluid 10 displaced from the respective other working space is returned to the hydraulic unit 1 via the fluid return 7.
  • the fluid circuit leads from pressure connection 2 via fluid supply 6, device 4 and fluid return 7 back to a return connection 38 and return line 39 on hydraulic unit 1 or directly back to fluid container 11.
  • a second device 5, which can also be connected to the hydraulic unit 1, is indicated in dashed lines.
  • the drive 18, the pump arrangements 12 and 15 as well as the fluid lines 20, 21, 23, 24 and collecting lines 22, 25 correspond to that based on FIG Fig. 1 described, but the lines are in Fig. 2 represented by dashes and not, as in Fig. 1 , by block arrows.
  • the embodiment according to Fig. 2 differs from that in Fig. 1 that the directional control valves 26 and 28 are pressed by the springs 30 and 31 into an initial position in which a flow path from the first fluid line 21 of the first hydraulic circuit 8 to the connecting line 27 to the other hydraulic circuit 9 is open.
  • the volume flow supplied by the pump element 14 is thus diverted to the other hydraulic circuit 9 in the starting position of the directional control valve 26.
  • the starting position of the directional valve 28 in the second hydraulic circuit 9 is such that the volume flow supplied by the pump element 17 is diverted to the first hydraulic circuit 8.
  • the actuating member 32 with which the first directional valve 26 is switched from the initial position against the action of the spring 30, is in turn addressed by a first control line 34, which in this embodiment, however, originates from the first hydraulic circuit 8 itself, namely from the first fluid line 20, which leads from the pump element 13 to the first pressure connection 2.
  • the first hydraulic circuit 8 retrieves the volume flow diverted from the pump element 14 to the second hydraulic circuit 9 to a certain extent for its own needs when there is a pressure increase in the fluid line 20.
  • the second hydraulic circuit 9 can retrieve the volume flow of the pump element 17 diverted to the first hydraulic circuit 8 in the initial position of the second directional valve 28 to its own pressure connection 3, if required.
  • such a hydraulic unit 1 can be used to supply a device 4, 5 with different pressure levels of the hydraulic fluid 10, whereby a large volume flow can be provided at low pressure and only a small volume flow at high pressure due to the predetermined power of the drive 18.
  • the pump elements 13 and 14 of the pump arrangement 12 or the pump elements 16 and 17 of the pump arrangement 15 can have delivery capacities of different sizes.
  • a certain drive intensity of the drive 18, for example a reference speed it can be provided that the pumping element 14 has a greater delivery rate than the pumping element 13 and is thus well suited for supplying a large volume flow at a comparatively low pressure level, while the smaller pumping element 13, with its smaller delivery rate, is ideally suited for providing a comparatively small volume flow at a high pressure level.
  • a hydraulic unit 1 according to the invention has, for example, the following delivery rates, which are dependent on the respective operating situation.
  • a speed of 3000 rpm is assumed as the reference intensity of the drive 18, for example.
  • the two pump elements 13 and 16 of the hydraulic circuits 8, 9 each have a delivery rate of 0.7 l / min, for example, and the pump elements 14 and 17 have a delivery rate of 2.0 l / min, for example.
  • the pump elements 13 and 16 can thus be referred to as high pressure elements 40 and 41 and the two larger pump elements 14 and 17 can be referred to as low pressure elements 42 and 43, respectively.
  • the volume flow supplied by the pumping element 14 is diverted to the second hydraulic circuit 9 and in this operating state the devices 4, 5 again have a delivery rate of 2.7 l / min, as in idle operation.
  • the increased The operating speed of the devices 4 or 5 can therefore always be used automatically if only one of the devices 4, 5 is actuated.
  • the volume flow delivered by the pump element 14 is reduced by means of an in Fig. 2 Not shown valve is diverted to the fluid container 11 and the drive power of the drive 18 is predominantly available for the first pump element 13, with which a delivery rate of 0.7 l / min is made available at the pressure port 2 at the reference speed of 3000 rpm can.
  • the pressure level is roughly between the switchover pressure of less than 250 bar, when the volume flow of the pump element 14 is exceeded, and the system pressure of about 750 bar to 1000 bar, which is limited upwards by a pressure limiting valve.
  • the great advantage of the hydraulic unit 1 according to the invention is that these switching processes for the needs-based allocation of the volume flows to the pressure connections 2 and / or 3 do not have to be carried out by an operator, but rather on the basis of the directional control valves 26, 28.
  • the device 4 is supplied from the pressure connection 2 in idle with a delivery rate of 2.7 l / min, which is made up of a partial amount of 0.7 l / min from the high pressure element 40 of the first hydraulic circuit 8 and a partial amount of 2.0 l / min composed of the low pressure element 43 of the second hydraulic circuit.
  • the volume flow of the low-pressure element 42 is also fed to the pressure port 2 with a delivery rate of 2.0 l / min, which means that a total of 4.7 l / min is available when there is no volume flow for a second device 5 is required.
  • Fig. 1 and 2 measures known from the prior art that enable two-stage pressure operation for example pressure relief valves, throttle valves, check valves, etc., are not shown or described in more detail.
  • FIG. 3 a further and possibly independent embodiment of a hydraulic unit 1 is shown schematically, again with the same reference numerals for the same parts or component names as in the previous ones Fig. 1 and 2 be used. To avoid unnecessary repetition, refer to the description in the preceding Fig. 1 and 2 pointed out or referred to.
  • the connecting line 27 outgoing from the first hydraulic circuit 8 at the first directional valve 26 leads to the second directional valve 28 and in this the volume flow delivered via the connecting line 27 is diverted into the fluid container 11 either via a return line 39 or via a, depending on the switching position of the directional valve 28
  • the flow path in the directional control valve 28 is combined with the volume flow supplied by the second pump element 17 in the second fluid line 24 and then made available to the second pressure connection 3 via the second collecting line 25.
  • the connecting line 29 outgoing from the second hydraulic circuit 9 at the second directional valve 28 leads to the first directional valve in the first hydraulic circuit 8 and, depending on the switching position of the valve 26, the volume flow delivered via the connecting line 29 is either fed to the fluid container 11 via a return line 39 or to the from
  • the volume flow supplied by the pump element 14 is summarized and made available in sequence via the collecting line 22 at the first pressure connection 2.
  • non-return valves 44 can be provided in the connecting lines 27, 29, with which an undesired reversal of flow direction or pressure propagation in an undesired direction can be prevented.
  • check valves 44 can be provided in the fluid lines 21 and 24 outgoing therefrom. Furthermore, a check valve 44 can also be provided in the fluid lines between the directional control valves 26, 28 and the pressure connections 2, 3 so that no pressure propagation into the low pressure area can take place when the pressure level at the pressure connections 2, 3 increases.
  • the pumping elements 13, 14, 16, 17 in Fig. 3 are, as already with Fig. 1 and 2 described, provided with a drive, not shown, with which the pump elements are driven simultaneously.
  • a pressure switch valve 45 is provided in the first hydraulic circuit 8, with which the volume flow supplied by the pump element 14, i.e. a low pressure element 42, is no longer directed to the pressure connection 2 but into the fluid container 11 when a switch pressure is exceeded.
  • the switchover of the pressure switchover valve 45 is effected via a control line 46 going out from the first fluid line 20, with which the fluid pressure prevailing at the pressure connection 2 is passed to the pressure switchover valve 45 and this triggers a switchover process by means of an actuating element (not shown) if, due to an increasing pressure in the Control line 46 a spring 47 causing the initial position of the pressure switching valve 45 is overcome.
  • a pressure switching valve 48 is provided analogously, with which the volume flow supplied by the second pump element 17 is no longer passed to the second pressure connection 3, but into the fluid container 11 when a limit pressure is exceeded.
  • a control line 49 causing the switchover picks up the pressure level existing between the second pump element 16, i.e. the high pressure element 41 and the second pressure connection 3, and when a restoring force caused by a spring 50 is exceeded, the volumetric flow of the pump element 17 is diverted to the fluid container 11.
  • the power of the drive is predominantly available for driving the high-pressure elements 40 and 41 and, with the connected devices 4, 5, even high work resistances can be overcome.
  • each hydraulic circuit 8, 9 to be provided with a pressure limiting valve 51 which limits the maximum pressure provided at the pressure connections 2 and 3 and the maximum pressure is set in such a way that components of the hydraulic unit 1 cannot burst is avoided.
  • An upper limit of 750 to 1000 bar, for example, is set as the maximum pressure.
  • the mode of operation of the directional control valves 26, 28 corresponds to Fig. 3 essentially that of the in Fig. 2 illustrated embodiment, since here in their initial position the volume flow supplied by the pump element 14, 15 is passed to the other hydraulic circuit and, when the directional control valve 26 or 28 is switched, the volume flow returns to the respectively considered due to an increasing pressure in the control line 34 or 35 Hydraulic circuit 8 or 9 is brought back and is routed to the respective pressure port 2 or 3.
  • both directional control valves 26 and 28 are shown in their initial position and the volume flow diverted by the other hydraulic circuit 9 or 8 is returned directly from the valve to the fluid container 11 via a return line 39, essentially without pressure. If, for example, a device 4 is actuated at the pressure connection 2 and the fluid pressure rises as a result, a switching operation of the directional control valve 26 is effected via the control line 34 and the volume flows of the pump elements 13, 14 and 17 are fed to the pressure connection 2 in this case. This means an increased operating speed of a device 4 compared to a supply by only one hydraulic circuit 8 alone.
  • FIG. 4 a further and possibly independent embodiment of a hydraulic unit 1 is shown, again with the same reference numerals or component designations as in the preceding for the same parts Figs. 1 to 3 be used. To avoid unnecessary repetition, please refer to the detailed description in the preceding section Figs. 1 to 3 pointed out or referred to.
  • the hydraulic unit 1 according to Fig. 4 differs from the embodiment in Fig. 3 in the integration of the directional control valves 26 and 28, in which, in the initial position caused by the springs 30 and 31, the volume flows supplied by the pump elements 14 and 17 are provided within their own hydraulic circuit 8 and 9 at the respective pressure connection 2 and 3 and only if the pressure rises in the other hydraulic circuit 9 or 8, a volume flow is diverted.
  • the actuators activated by control lines 34 and 35 are shown in FIG Fig. 4 not shown for reasons of space.
  • Fig. 4 further shows that pressure relief valves 52 can optionally be provided in the hydraulic circuits 8 and 9 upstream of the pressure connections 2 or 3, with which a largely pressureless return of hydraulic fluid to the fluid container 11 can be established can be used in the event that no device is connected to the respective pressure port 2 or 3.
  • These pressure relief valves 52 which can also be used in other embodiments of the hydraulic unit 1, can be operated manually or they can also be part of a coupling system in which both the fluid feed 6 and the fluid return 7 of the device (see FIG Fig. 1 ) get connected.
  • the pressure relief valve 52 can in this case be designed as a by-pass valve in the pressure port 2 or 3.
  • Fig. 4 It is also shown that the pump elements 14, 17, which can be designed as low-pressure elements 42 and 43, can each be followed by a pressure limiting valve (DBV) 53, which in the illustrated embodiment is effective when the hydraulic fluid from the directional control valves 26 and 28, respectively is diverted to the other hydraulic circuit 9 or 8 and a very high fluid pressure is present in this due to a high working resistance.
  • DBV pressure limiting valve
  • the volume flow of the pump elements 42 and 43 can be diverted into the fluid container 11 via the pressure limiting valve 53.
  • a pressure is selected as the limit pressure from which a pressure relief valve 53 opens which corresponds to the switching pressure of the pressure switching valves 45 or 48, since from this pressure level the volume flows of the low-pressure elements 42, 43 are no longer directed to the pressure connections 2 or 3.
  • a pressure limiting valve 53 can structurally correspond to the pressure switchover valves 45, 48.
  • FIG. 5 a further and possibly independent embodiment of a hydraulic unit 1 is shown, with the same reference numerals or component designations for the same parts as in the preceding Figs. 1 to 4 be used. In order to avoid unnecessary repetition, the detailed description in the preceding sections is referred to Figs. 1 to 4 pointed out or referred to.
  • the mode of operation of the directional control valves 26 and 28 is as in FIG Fig. 3 described embodiment and is diverted from a hydraulic circuit 8, in which no device is connected to the pressure connection 2 or the connected device is idle, a part of the volume flow to the other hydraulic circuit 9.
  • the first fluid line 21 leading to the directional valve 26 not only carries the volume flow of the pump element 14, but also the volume flow of a further pump element 54 and can be diverted to the other hydraulic circuit 9 via the directional valve 26 become.
  • the pump element 14 is designed as a low-pressure element 42, which has a comparatively high delivery rate
  • the pump element 54 is designed as a high-pressure element 55, which has a comparatively small delivery rate.
  • both volume flows of the pump elements 14 and 54 are thus diverted via the first connecting line 27 to the second hydraulic circuit 9. If no increased volume flow is required in this, since the connected device is idling, this diverted delivery rate is discharged via the return line 39 to the fluid container 11. If the pressure in the second hydraulic circuit 9 increases, this volume flow is directed to the second pressure connection 3, since the second directional valve 28 is switched via the control line 35 of the second hydraulic circuit. The delivery rate of the second hydraulic circuit 9 is then available at the pressure connection 3, increased by the delivery rate of the pump elements 14 and 54.
  • the volume flow of the pump element 14, which is designed as a low pressure element 42 is diverted directly into the fluid container 11 via the pressure switch valve 45 and is only the volume flow of the pump element 54, which is designed as a high-pressure element 55, is diverted to the second hydraulic circuit 9.
  • a delivery quantity increased by the volume flow of the high pressure element 55 is available.
  • an additional pump element 56 is also arranged in the second hydraulic circuit 9, which is designed as a high pressure element 57 and can increase the volume flow provided at the pressure connection 2 of the first hydraulic circuit 8 by the delivery rate of this high pressure element 57 and possibly also by the volume flow of the low pressure element 43 in the second hydraulic circuit 9 can be increased.
  • the power of drive 18 can be optimally used even with high working resistance and the working speed of a device can be maximized even with high working resistance .
  • the pressure switching valves 45 and 48 are activated via control lines 46 and 49 with the fluid pressure acting on the high-pressure elements 55 and 57, respectively.
  • Fig. 6 a further and possibly independent embodiment of a hydraulic unit 1 is shown, with the same reference numerals or component designations for the same parts as in the preceding Figs. 1 to 5 be used. In order to avoid unnecessary repetition, the detailed description in the preceding sections is referred to Figs. 1 to 5 pointed out or referred to.
  • the volume flow provided at a pressure connection can, if necessary, be increased by the delivery rate of all the pump elements of another hydraulic circuit.
  • the volume flow of the pump elements 13 and 14 can be diverted via the path element 26 to the second hydraulic circuit 9, with the control of the volume flow of the pump element 14, which can be designed as a low-pressure element 42, as in the previous embodiments.
  • a shut-off valve 58 arranged in the first fluid line 20 as well as a transition line 59 leading between the pump element 13 and shut-off valve 58 and leading to the further first fluid line 21 are used.
  • the shut-off valve 58 is in its The initial position brought about by a spring 60 is open and the volume flow of the pump element 13 can reach the pressure connection 2 of the first hydraulic circuit 8.
  • the shut-off valve 58 is shut off by means of a control line 61 which leads from the second fluid line 23 in the second hydraulic circuit 9 to the shut-off valve 58.
  • a control line 61 which leads from the second fluid line 23 in the second hydraulic circuit 9 to the shut-off valve 58.
  • the volume flows of other pump elements can also be requested by the other hydraulic circuit in each case, and the delivery rate provided at the respective pressure connection can thereby be automatically increased.
  • both hydraulic circuits 8 and 9 have such a transition function or diversion function in the illustrated embodiment, only the hydraulic circuit that requests the volume flows of the other pump elements before the other hydraulic circuit can provide the increased delivery rate at the pressure connection.
  • the shut-off valves 58, 62 are activated at a pressure below about 25 bar, which means that the required base pressure is available at both pressure connections when devices are not operated, i.e. in idle mode, and the device activated earlier receives the volume flow of all pump elements.
  • throttle elements 65 and 66 are also advantageously arranged, with which a dynamic pressure is built up in the first fluid line 20 and the second fluid line 23, which is necessary for the possibly required control of the directional control valves 26, 28 or the shut-off valves 58 , 62 serves.
  • the hydraulic fluid 10 advantageously reaches the pump elements from the fluid container 11 via suction lines.
  • the exemplary embodiments show possible design variants of the hydraulic unit 1, whereby it should be noted at this point that the invention is not limited to the specially illustrated design variants of the same, but rather various combinations of the individual design variants with one another are possible and this possible variation based on the teaching on technical action The present invention is within the ability of those skilled in this technical field.
  • All information on value ranges in the objective description should be understood to include any and all sub-ranges, e.g.
  • the indication 1 to 10 is to be understood in such a way that all sub-areas, starting from the lower limit 1 and the upper limit 10, are included, i.e. all subranges start with a lower limit of 1 or greater and end at an upper limit of 10 or less, e.g. 1 to 1.7, or 3.2 to 8.1, or 5.5 to 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

Die Erfindung betrifft ein Hydraulikaggregat mit zumindest zwei Druckanschlüssen gemäß Oberbegriff des Anspruches 1.The invention relates to a hydraulic unit with at least two pressure connections according to the preamble of claim 1.

Aus dem Stand der Technik sind bereits Hydraulikaggregate bekannt, an denen sich ein oder mehrere hydraulische Geräte anschließen lassen, die unabhängig voneinander betätigt werden und auch mit wechselnden Arbeitswiderständen beansprucht werden. Beispielsweise werden zum Antrieb von hydraulischen Bergegeräten häufig derartige Hydraulikaggregate eingesetzt, insbesondere mit Verbrennungsmotorantrieb, da diese einen mobilen und unabhängigen Einsatz derartiger Geräte erlauben. Da bei einem gleichzeitigen Betrieb zweier Geräte an einem Hydraulikkreis nur das Gerät mit dem geringeren Arbeitswiderstand angetrieben wird, ist bei derartigen Hydraulikaggregaten jedem Druckanschluss ein eigener Hydraulikkreis mit eigener Pumpe zugeordnet. Um die Antriebsleistung eines Hydraulikaggregats besser auszunützen und zum Zweck einer Erhöhung der Arbeitsgeschwindigkeit eines angetrieben Geräts ist es bekannt, mittels manuellen Ventilen den Volumenstrom eines Hydraulikkreises, an dem kein oder ein inaktives Gerät angeschlossen ist, bedarfsweise zu einem verwendeten Gerät umzuleiten. Diese Umschaltvorgänge werden zumeist von einer eigenen Bedienperson in Abstimmung mit den Bedienern der Geräte ausgeführt. Bei knappen Personalressourcen ist eine eigene Bedienperson für das Hydraulikaggregat evtl. nicht verfügbar und muss daher auf die im Aussetzbetrieb der Geräte vorteilhafte bedarfsgerechte Umleitung der Volumenströme verzichtet werden.Hydraulic units are already known from the prior art, to which one or more hydraulic devices can be connected, which are operated independently of one another and are also stressed with changing load resistances. For example, hydraulic units of this type are often used to drive hydraulic recovery devices, in particular with an internal combustion engine drive, since they allow mobile and independent use of such devices. Since, when two devices are operated simultaneously on one hydraulic circuit, only the device with the lower working resistance is driven, each pressure connection is assigned a separate hydraulic circuit with its own pump in such hydraulic units. In order to better utilize the drive power of a hydraulic unit and for the purpose of increasing the operating speed of a driven device, it is known to divert the volume flow of a hydraulic circuit, to which no or an inactive device is connected, to a device in use by means of manual valves. These switching processes are usually carried out by a dedicated operator in coordination with the operators of the devices. If human resources are scarce, a dedicated operator for the hydraulic unit may not be available and therefore the need-based diversion of the volume flows, which is advantageous when the devices are in intermittent operation, must be dispensed with.

Die JP H1061608 A offenbart ein Hydrauliksystem, bei dem zwei Hydraulikkreise von einem gemeinsamen Antriebsmotor angetrieben werden. Der erste Hydraulikkreis umfasst dabei eine erste Verstellpumpe und eine von der Verstellpumpe abgehende Druckleitung. An diese Druckleitung sind zwei Verbraucher über jeweils ein Wegeventil angeschlossen. Analog dazu umfasst der zweite Hydraulikkreis eine zweite Verstellpumpe und eine von der Verstellpumpe abgehende Druckleitung. An diese Druckleitung sind zwei Verbraucher über jeweils ein Wegeventil angeschlossen. Abhängig von den Druckverhältnissen im ersten und zweiten Hydraulikkreis können Verbindungsleitungen geöffnet werden, wodurch Teilströme des Volumenstroms in den Druckleitungen abgezweigt und zu der jeweils anderen Druckleitung geführt werden können.The JP H1061608 A discloses a hydraulic system in which two hydraulic circuits are driven by a common drive motor. The first hydraulic circuit comprises a first variable displacement pump and a pressure line branching out from the variable displacement pump. Two consumers are connected to this pressure line via a directional valve each. Analogously to this, the second hydraulic circuit comprises a second variable displacement pump and a pressure line outgoing from the variable displacement pump. Two consumers are connected to this pressure line via a directional valve each. Depending on the pressure conditions in the first and second hydraulic circuit, connecting lines can be opened, whereby partial flows of the Volume flow branched off in the pressure lines and can be led to the other pressure line.

Die Aufgabe der Erfindung besteht darin, die Nachteile des Standes der Technik zu vermeiden und ein Hydraulikaggregat mit verringertem Bedienaufwand bereitzustellen Die Aufgabe der Erfindung wird durch ein Hydraulikaggregat mit den Merkmalen des Anspruches 1 gelöst.The object of the invention is to avoid the disadvantages of the prior art and to provide a hydraulic unit with reduced operating effort. The object of the invention is achieved by a hydraulic unit with the features of claim 1.

Dadurch, dass die Wegeventile eine in Richtung einer Ausgangsstellung wirkende Feder aufweisen und vom ersten Hydraulikkreis oder vom zweiten Hydraulikkreis eine erste Steuerleitung zu einem auf das erste Wegeventil wirkenden ersten Betätigungsglied verläuft und vom zweiten Hydraulikkreis oder vom ersten Hydraulikkreis eine zweite Steuerleitung zu einem auf das zweite Wegeventil wirkenden zweiten Betätigungsglied verläuft, ist das bedarfsgerechte Umleiten von Hydraulikfluid von einem Hydraulikkreis zu einem weiteren Hydraulickreis ohne Eingriff einer Bedienperson möglich und dadurch die Handhabung eines derartigen Hydraulikaggregats wesentlich erleichtert.Because the directional control valves have a spring acting in the direction of a starting position and a first control line runs from the first hydraulic circuit or from the second hydraulic circuit to a first actuating element acting on the first directional control valve and a second control line runs from the second hydraulic circuit or from the first hydraulic circuit to one to the second Directional control valve acting second actuating member runs, the needs-based diversion of hydraulic fluid from one hydraulic circuit to a further hydraulic circuit without intervention of an operator is possible and thus the handling of such a hydraulic unit is much easier.

Zur Nutzung des Hydraulikaggregats bei verschiedenen Druckniveaus ist erfindungsgemäß vorgesehen, dass die ersten Pumpelemente zumindest ein Hochdruckelement mit kleinerer Fördermenge und zumindest ein Niederdruckelement mit größerer Fördermenge umfassen und die zweiten Pumpelemente zumindest ein Hochdruckelement mit kleinerer Fördermenge und zumindest ein Niederdruckelement mit größerer Fördermenge umfassen und die Wegeventile in den von den Niederdruckelementen abgehenden Fluidleitungen angeordnet sind. Bei Ansteigen des Druckniveaus in den angeschlossenen Geräten kann der diesen zugeführte Volumenstrom reduziert werden und damit die erforderliche Leistung an die Maximalleistung des Antriebs angepasst werden. Die Umschaltung der verschiedenen Druckstufen kann, wie aus dem Stand der Technik bekannt mittels druckgesteuerter Wegeventile erfolgen.To use the hydraulic unit at different pressure levels, the invention provides that the first pump elements comprise at least one high pressure element with a smaller delivery rate and at least one low pressure element with a larger delivery rate and the second pump elements comprise at least one high pressure element with a smaller delivery rate and at least one low pressure element with a larger delivery rate and the directional control valves are arranged in the fluid lines going out from the low-pressure elements. If the pressure level rises in the connected devices, the volume flow supplied to them can be reduced and thus the required power can be adapted to the maximum power of the drive. As is known from the prior art, the switching over of the various pressure levels can take place by means of pressure-controlled directional control valves.

Vorteilhaft ist eine Ausführungsform, bei der die erste und/oder die zweite Steuerleitung als hydraulische Steuerleitung ausgebildet ist und direkt oder mittels eines Betätigungsgliedes in Form eines Vorsteuerventils auf das zweite bzw. erste Wegeventil wirkt. Die Umschaltvorgänge können dadurch auf zuverlässige Weise ausgelöst werden, da der Druck in den einzelnen Hydraulikkreisen Anhaltspunkte für den jeweiligen Betriebszustand eines Geräts liefert.An embodiment is advantageous in which the first and / or the second control line is designed as a hydraulic control line and acts on the second or first directional control valve either directly or by means of an actuating element in the form of a pilot valve. The Switching processes can be triggered in a reliable way, since the pressure in the individual hydraulic circuits provides clues for the respective operating status of a device.

Zusätzlich oder alternativ ist es möglich, dass die erste und/oder zweite Steuerleitung als elektrische Steuerleitung ausgebildet ist und mittels einer elektromagnetischen Stelleinheit, insbesondere einer Magnetspule, direkt oder über ein Vorsteuerglied, z.B. Vorsteuerventil auf das zweite bzw. erste Wegeventil wirkt. In diesem Fall kann der Betriebszustand der angeschlossenen Geräte z.B. durch an diesen angeordnete Schalter oder Sensoren aktiv gewählt werden bzw. ermittelt werden und als Basis für Umschaltvorgänge herangezogen werden. Die Schaltsignale können dabei auch unter Benutzung einer Logikschaltung umgesetzt und weiterverarbeitet werden.Additionally or alternatively, it is possible for the first and / or second control line to be designed as an electrical control line and to be operated by means of an electromagnetic actuator, in particular a magnetic coil, directly or via a pilot control element, e.g. Pilot valve acts on the second or first directional control valve. In this case, the operating status of the connected devices can e.g. are actively selected or determined by switches or sensors arranged on them and used as a basis for switching processes. The switching signals can also be converted and further processed using a logic circuit.

Um bei niedrigem Arbeitswiderstand an den Geräten eine hohe Arbeitsgeschwindigkeit erzielen zu können, kann vorgesehen sein, dass die Fördermenge der Niederdruckelemente eines Hydraulikkreises zumindest dem Doppelten der Fördermenge der Hochdruckelemente desselben Hydraulikkreises beträgt. Dadurch kann bei niedrigem Druckniveau ein großer Volumenstrom an den Druckanschlüssen zur Verfügung gestellt werden.In order to be able to achieve a high working speed with low working resistance on the devices, it can be provided that the delivery rate of the low-pressure elements of a hydraulic circuit is at least twice the delivery rate of the high-pressure elements of the same hydraulic circuit. As a result, a large volume flow can be made available at the pressure connections at a low pressure level.

Eine mögliche Ausführungsform des Hydraulikaggregats besteht darin, dass in der Ausgangsstellung der Wegeventile von diesen ein Fließweg von der jeweiligen Fluidleitung des einen Hydraulikkreises zur Verbindungsleitung zum anderen Hydraulikkreis geöffnet ist. In diesem Fall wird standardmäßig ein Volumenstrom von Hydraulikfluid eines Hydraulikkreises zu einem anderen Hydraulikkreis umgeleitet und wird dieser Volumenstrom nur bei Druckanstieg gewissermaßen zurückgeholt.One possible embodiment of the hydraulic unit consists in that, in the starting position of the directional control valves, a flow path from the respective fluid line of one hydraulic circuit to the connecting line to the other hydraulic circuit is opened by these. In this case, a volume flow of hydraulic fluid from one hydraulic circuit is diverted to another hydraulic circuit as standard and this volume flow is only brought back to a certain extent when the pressure rises.

Weiters kann vorgesehen sein, dass die erste Verbindungsleitung vom ersten Wegeventil zum zweiten Wegeventil verläuft und die zweite Verbindungsleitung vom zweiten Wegeventil zum ersten Wegeventil verläuft, wobei das zweite Wegeventil einen Fließweg von der ersten Verbindungsleitung in einer ersten Schaltstellung zu einer zum zweiten Druckanschluss führenden zweiten Fluidleitung oder in einer weiteren Schaltstellung zum Fluidbehälter herstellen kann und das erste Wegeventil einen Fließweg von der zweiten Verbindungsleitung in einer ersten Schaltstellung zu einer zum ersten Druckanschluss führenden ersten Fluidleitung oder in einer weiteren Schaltstellung zum Fluidbehälter herstellen kann. Für die Steuerung der Fluidströme stehen dadurch weitere Möglichkeiten zur Verfügung und kann das Hydraulikaggregat noch besser an die Anforderungen der Geräte reagieren.Furthermore, it can be provided that the first connection line runs from the first directional control valve to the second directional control valve and the second connection line runs from the second directional control valve to the first directional control valve, the second directional control valve having a flow path from the first connection line in a first switching position to a second fluid line leading to the second pressure connection or can establish a flow path from the second connecting line in a first switching position to a first fluid line leading to the first pressure connection in a further switching position to the fluid container and the first directional control valve or can produce in a further switching position to the fluid container. This means that further options are available for controlling the fluid flows and the hydraulic unit can respond even better to the requirements of the devices.

Um auch bei hohem Druckniveau im Hydraulikkreis eines Arbeitsgeräts den nicht benötigten Volumenstrom eines weiteren Hydraulikkreises nutzen zu können, kann vorgesehen sein, dass ein Hydraulikkreis zumindest zwei Hochdruckelemente umfasst, wovon zumindest eines über eine Fluidleitung direkt mit dem Druckanschluss verbunden ist und zumindest eines über das Wegeventil mit einem anderen Hydraulikkreis verbindbar ist. In dieser Ausführung kann sowohl im Niederdruckbereich als auch im Hochdruckbereich eine bedarfsgerechte und leistungsoptimierte Zuteilung der Volumenströme erfolgen.In order to be able to use the volume flow of another hydraulic circuit that is not required even at a high pressure level in the hydraulic circuit of a work device, it can be provided that a hydraulic circuit comprises at least two high-pressure elements, at least one of which is connected directly to the pressure connection via a fluid line and at least one via the directional control valve can be connected to another hydraulic circuit. In this version, a demand-based and performance-optimized allocation of the volume flows can take place in the low-pressure range as well as in the high-pressure range.

Weiters ist es möglich, den gesamten Volumenstrom eines Hydraulikkreises an einen anderen Hydraulikkreis umzuleiten, wenn alle ersten Fluidleitungen mittels einem oder mehreren ersten Wegeventilen und mittels einer oder mehreren ersten Verbindungsleitungen oder Übergangsleitungen mit zumindest einer zweiten Fluidleitung des zweiten Hydraulikkreises und/oder alle zweiten Fluidleitungen mittels einem oder mehreren zweiten Wegeventilen und mittels einer oder mehreren zweiten Verbindungsleitungen oder Übergangsleitungen mit zumindest einer ersten Fluidleitung des ersten Hydraulikkreises verbindbar sind. Der Betriebszustand bzw. das Druckniveau eines nicht mehr mit Hydraulikfluid versorgten Geräts kann nicht mehr mit einfachen Mitteln, z.B. einer Steuerleitung vom Hydraulikaggregat erfasst werden, daher müssen für eine Rückstellung der Volumenstromumleitung geeignete andere Maßnahmen getroffen werden, z.B. ein koordinierter wechselweiser Betrieb der Geräte, der jedoch auch ohne eigene Bedienperson für das Hydraulikaggregat erfolgen kann. Eine Möglichkeit für eine Umschaltung der Betriebsart könnte darin bestehen, dass von dem nicht mit Hydraulikfluid versorgten Gerät mittels eines Schalters und einer elektrischen Steuerleitung ein Signal für die Rückstellung der Volumenstromumleitung generiert wird, wodurch wieder eine gleichzeitige Versorgung beider Geräte gegeben ist.Furthermore, it is possible to divert the entire volume flow of one hydraulic circuit to another hydraulic circuit if all first fluid lines by means of one or more first directional control valves and by means of one or more first connecting lines or transition lines with at least one second fluid line of the second hydraulic circuit and / or all second fluid lines by means of one or more second directional control valves and can be connected to at least one first fluid line of the first hydraulic circuit by means of one or more second connecting lines or transition lines. The operating state or the pressure level of a device that is no longer supplied with hydraulic fluid can no longer be determined by simple means, e.g. a control line can be detected by the hydraulic unit, therefore suitable other measures must be taken to reset the volume flow diversion, e.g. a coordinated alternating operation of the devices, which can, however, also take place without a separate operator for the hydraulic unit. One possibility for switching the operating mode could be that the device not supplied with hydraulic fluid generates a signal for resetting the volume flow diversion by means of a switch and an electrical control line, which again results in a simultaneous supply of both devices.

Eine Möglichkeit einen Betrieb mit mehreren Druckstufen zu erreichen besteht darin, dass in einer der Fluidleitungen eines Hydraulikkreises nachfolgend an ein Pumpelement ein Druckumschalt-Ventil angeordnet ist, das über eine von einer anderen Fluidleitung desselben Hydraulikkreises abgehenden Drucksteuerleitung angesteuert ist, wodurch bei Druckanstieg in der anderen Fluidleitung vom Druckumschalt-Ventil ein Fließweg vom Pumpelement zum Fluidbehälter hergestellt wird. Die unter hohem Druck stehende Fördermenge kann dadurch auf einfache Weise bedarfsgerecht reduziert werden und die Leistung des Antriebs optimal ausgenutzt werden.One possibility to achieve operation with several pressure levels is that a pressure switch valve is arranged in one of the fluid lines of a hydraulic circuit downstream of a pump element, which is controlled via a pressure control line going out from another fluid line of the same hydraulic circuit, whereby when the pressure rises in the Another fluid line from the pressure switching valve a flow path from the pump element to the fluid container is established. The delivery rate, which is under high pressure, can thus be reduced in a simple manner as required and the power of the drive can be optimally used.

Baulich vorteilhafte und besonders für den mobilen Einsatz bewährte Pumpenanordnungen ergeben sich, wenn die ersten Pumpelemente und die zweiten Pumpelemente zueinander wie bei einer Radialkolbenpumpe angeordnet sind.Structurally advantageous pump arrangements that have proven particularly useful for mobile use are obtained when the first pump elements and the second pump elements are arranged in relation to one another as in a radial piston pump.

Die Sicherstellung einer ausreichenden Ölversorgung der Pumpenanordnungen ist für die unterschiedlichsten Anwendungen möglich, wenn von den Pumpelementen Saugleitungen in den Fluidbehälter führen. Die Form und Position des Fluidbehälters ist in diesem Fall weitgehend frei wählbar und kann mit kleineren Füllmengen operiert werden.Ensuring a sufficient oil supply to the pump assemblies is possible for the most varied of applications if suction lines lead from the pump elements into the fluid container. In this case, the shape and position of the fluid container is largely freely selectable and can be operated with smaller fill quantities.

Ein Verfahren zum Versorgen von einem oder mehreren hydraulisch antreibbaren Geräten, insbesondere hydraulischen Rettungsgeräten, mit Hydraulikfluid mittels eines Hydraulikaggregats mit zumindest zwei Druckanschlüssen kann derart ausgeführt werden, dass bei dem Hydraulikaggregat in einem ersten Hydraulikkreis mit einer ersten Pumpenanordnung mittels ersten Fluidleitungen Volumenströme von zumindest zwei ersten Pumpelementen zusammengefasst und zu einem ersten Druckanschluss geleitet werden und in einem zweiten Hydraulickreis mit einer zweiten Pumpenanordnung mittels zweiten Fluidleitungen die Volumenströme von zumindest zwei zweiten Pumpelementen zusammengefasst und zu einem zweiten Druckanschluss geleitet werden, wobei die ersten Pumpelemente und die zweiten Pumpelemente gleichzeitig von einem gemeinsamen Antrieb angetrieben werden und wobei zur bedarfsweisen Zuteilung der Volumenströme zu den Druckanschlüssen mittels eines ersten Wegeventils zumindest eine der ersten Fluidleitungen über eine erste Verbindungsleitung mit einer zweiten Fluidleitung im zweiten Hydraulikkreis verbunden wird und mittels eines zweiten Wegeventils zumindest eine der zweiten Fluidleitungen über eine zweite Verbindungsleitung mit einer ersten Fluidleitung im ersten Hydraulikkreis verbunden wird, wobei die Wegeventile mittels einer Feder in eine Ausgangsstellung verbracht werden und ein Schaltvorgang des ersten Wegeventils durch ein erstes Betätigungsglied, das von einer vom ersten Hydraulikkreis oder vom zweiten Hydraulikkreis ausgehenden und zum ersten Betätigungsglied verlaufenden ersten Steuerleitung angesteuert wird, bewirkt wird, und ein Schaltvorgang des zweiten Wegeventils durch ein zweites Betätigungsglied, das von einer vom zweiten Hydraulikkreis oder vom ersten Hydraulikkreis ausgehenden und zum zweiten Betätigungsglied verlaufenden zweiten Steuerleitung angesteuert wird, bewirkt wird.A method for supplying one or more hydraulically driven devices, in particular hydraulic rescue devices, with hydraulic fluid by means of a hydraulic unit with at least two pressure connections can be implemented in such a way that in the hydraulic unit in a first hydraulic circuit with a first pump arrangement by means of first fluid lines, volume flows of at least two first Pump elements are combined and passed to a first pressure connection and in a second hydraulic circuit with a second pump arrangement by means of second fluid lines, the volume flows of at least two second pump elements are combined and directed to a second pressure connection, the first pump elements and the second pump elements being simultaneously from a common drive are driven and wherein for the needs-based allocation of the volume flows to the pressure connections by means of a first directional valve at least one of the first fluid lines ü Is connected via a first connection line to a second fluid line in the second hydraulic circuit and by means of a second directional valve at least one of the second fluid lines is connected via a second connection line to a first fluid line in the first hydraulic circuit, the directional control valves being brought into a starting position by means of a spring and a Switching operation of the first directional control valve is effected by a first actuating element which is controlled by a first control line emanating from the first hydraulic circuit or the second hydraulic circuit and extending to the first actuating element, and a switching operation of the second Directional control valve by a second actuating member which is controlled by a second control line proceeding from the second hydraulic circuit or from the first hydraulic circuit and extending to the second actuating member.

Wenn bei einem erfindungsgemäßen Hydraulikaggregat beide bzw. mehrere Geräte aktiviert werden, wird automatisch jedes der Geräte etwa mit der Hälfte bzw. einem entsprechenden Anteil des Gesamtfördervolumens versorgt, bei nur einem aktivierten Gerät wird diesem annähernd das Gesamtfördervolumen zugeführt.If both or more devices are activated in a hydraulic unit according to the invention, each of the devices is automatically supplied with approximately half or a corresponding proportion of the total delivery volume; if only one device is activated, it is supplied approximately with the total delivery volume.

Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.For a better understanding of the invention, it is explained in more detail with reference to the following figures.

Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:

Fig. 1
ein Hydraulikschema eines erfindungsgemäßen Hydraulikaggregats;
Fig. 2
ein Hydraulikschema einer weiteren Ausführungsform eines Hydraulikaggregats;
Fig. 3
ein Hydraulikschema einer weiteren Ausführungsform eines Hydraulikaggregats;
Fig. 4
ein Hydraulikschema einer weiteren Ausführungsform eines Hydraulikaggregats;
Fig. 5
ein Hydraulikschema einer weiteren Ausführungsform eines Hydraulikaggregats und
Fig. 6
ein Hydraulikschema einer weiteren Ausführungsform eines Hydraulikaggregats.
They each show in a greatly simplified, schematic representation:
Fig. 1
a hydraulic scheme of a hydraulic unit according to the invention;
Fig. 2
a hydraulic scheme of a further embodiment of a hydraulic unit;
Fig. 3
a hydraulic scheme of a further embodiment of a hydraulic unit;
Fig. 4
a hydraulic scheme of a further embodiment of a hydraulic unit;
Fig. 5
a hydraulic diagram of a further embodiment of a hydraulic unit and
Fig. 6
a hydraulic diagram of a further embodiment of a hydraulic unit.

Fig. 1 zeigt stark vereinfacht und schematisiert ein Hydraulikaggregat 1 zur bedarfsgerechten Versorgung von zwei oder mehreren hydraulisch antreibbaren Geräten. Das Hydraulikaggregat 1 besitzt dazu zumindest zwei Druckanschlüsse 2 und 3 und kann am in Fig. 1 linken Druckanschluss 2 ein erstes Gerät 4, zum Beispiel in Form einer Bergeschere, eines Spreizzylinders oder eines Spreizgeräts, angeschlossen werden. In Fig. 1 ist mit strichlierten Linien auch ein zweites Gerät 5 dargestellt, das am rechten Druckanschluss 3 angeschlossen werden kann. Die Geräte 4, 5 weisen jeweils eine Fluidzuführung 6 auf, durch die der von den Druckanschlüssen 2, 3 bereitgestellte Volumenstrom zugeführt wird und weisen weiters jeweils eine Fluidrückführung 7 auf, mit denen ein Volumenstrom wieder dem Hydraulikaggregat 1 zugeführt wird. Details der Fluidrückführung 7 an den Geräten 4, 5 sowie am Hydraulikaggregat 1 sind an dieser Stelle nicht näher dargestellt bzw. erläutert, es sind dazu lediglich einfache Rückführungsleitungen erforderlich. Zur Steuerung des Volumenstroms an den Geräten 4, 5 sind diese z.B. mit 4/3-Wegeventilen ausgestattet, mit denen in der Grundstellung des Ventils im Leerlauf ein Umlauf des Hydraulikfluids bei niedrigem Druckniveau möglich ist und in den weiteren Ventilstellungen zwei verschiedene Bewegungsrichtungen der Geräte 4, 5 gewählt werden können. Fig. 1 shows, in a greatly simplified and schematic manner, a hydraulic unit 1 for supplying two or more hydraulically driven devices as required. The hydraulic unit 1 has at least two pressure connections 2 and 3 and can be connected to the in Fig. 1 left pressure connection 2 a first device 4, for example in the form of a rescue shears, a spreader cylinder or a spreader device can be connected. In Fig. 1 a second device 5, which can be connected to the right pressure connection 3, is also shown with dashed lines. The devices 4, 5 each have a fluid supply 6 through which the volume flow provided by the pressure connections 2, 3 is supplied and furthermore each have a fluid return 7, with which a volume flow is supplied to the hydraulic unit 1 again. Details of the fluid return 7 on the devices 4, 5 and on the hydraulic unit 1 are not shown or explained in more detail at this point, only simple return lines are required for this. To control the volume flow at the devices 4, 5, these are equipped, for example, with 4/3-way valves with which the hydraulic fluid can circulate at a low pressure level when the valve is in the idle position and in the other valve positions two different directions of movement of the devices 4, 5 can be selected.

Zur Versorgung der Druckanschlüsse 2, 3 umfasst das Hydraulikaggregat 1 zwei mit strichpunktierten Linien angedeutete Hydraulikkreise 8 und 9, von denen Hydraulikfluid 10 aus einem Fluidbehälter 11 entnommen und den Druckanschlüssen 2, 3 zugeführt wird. Der erste Hydraulikkreis 8 umfasst eine erste Pumpenanordnung 12, die aus zumindest zwei Pumpelementen 13 und 14 besteht. Analog dazu umfasst der zweite Hydraulikkreis 9 eine zweite Pumpenanordnung 15, die zumindest zwei Pumpelemente 16 und 17 umfasst. Die Pumpelemente 13, 14, 16, 17 basieren auf dem Verdrängungsprinzip und können dadurch sehr hohe Drücke, zum Beispiel bis 1000 bar, aufbauen. Weiters können die Pumpelemente 13, 14, 16, 17 sowie eventuell weitere Pumpelemente Teil einer Hydraulikpumpe in Form einer Radialkolbenpumpe, Axialkolbenpumpe oder ähnlicher Pumpenarten mit mehreren Verdrängerelementen ausgebildet sein.To supply the pressure connections 2, 3, the hydraulic unit 1 comprises two hydraulic circuits 8 and 9 indicated by dash-dotted lines, from which hydraulic fluid 10 is taken from a fluid container 11 and fed to the pressure connections 2, 3. The first hydraulic circuit 8 comprises a first pump arrangement 12, which consists of at least two pump elements 13 and 14. Analogously to this, the second hydraulic circuit 9 comprises a second pump arrangement 15, which comprises at least two pump elements 16 and 17. The pump elements 13, 14, 16, 17 are based on the displacement principle and can therefore build up very high pressures, for example up to 1000 bar. Furthermore, the pump elements 13, 14, 16, 17 and possibly further pump elements can be part of a hydraulic pump in the form of a radial piston pump, axial piston pump or similar types of pumps with several displacement elements.

Die Pumpelemente 13, 14 der ersten Pumpenanordnung 12 sowie die Pumpelemente 16, 17 der zweiten Pumpenanordnung 15 werden von einem gemeinsamen Antrieb 18 angetrieben, wobei der Antrieb 18 beispielsweise einen Elektromotor umfassen kann. Für einen mobilen Einsatz ist als Antrieb auch die Verwendung eines Verbrennungsmotors 19 von Vorteil, da eine große räumliche Unabhängigkeit von Stromquellen gegeben ist. Die von den ersten Pumpelementen 13 und 14 erzeugten Volumenströme werden über erste Fluidleitungen 20 bzw. 21 zum ersten Druckanschluss 2 geführt, wobei die zumindest zwei ersten Fluidleitungen 20 und 21 auch in einer ersten Sammelleitung 22 vor dem ersten Druckanschluss 2 zusammengefasst werden können. Analog dazu werden die von den zweiten Pumpelementen 16 und 17 erzeugten Volumenströme über zweite Fluidleitungen 23 bzw. 24 zum zweiten Druckanschluss 3 geführt, wobei auch hier die zweiten Fluidleitungen 23 und 24 vor dem zweiten Druckanschluss 3 zu einer zweiten Sammelleitung 25 zusammen geführt sein können. Die Fluidleitungen 20, 21 sowie 23, 24 sind zur Verdeutlichung der durch sie geführten Volumenströme in Form von Pfeilen dargestellt.The pump elements 13, 14 of the first pump arrangement 12 and the pump elements 16, 17 of the second pump arrangement 15 are driven by a common drive 18, wherein the drive 18 can comprise an electric motor, for example. The use of an internal combustion engine 19 as a drive is also advantageous for mobile use, since there is great spatial independence from power sources. The volume flows generated by the first pump elements 13 and 14 are guided via first fluid lines 20 and 21 to the first pressure connection 2, the at least two first fluid lines 20 and 21 also being able to be combined in a first collecting line 22 upstream of the first pressure connection 2. Analogously to this, the volume flows generated by the second pump elements 16 and 17 are guided via second fluid lines 23 and 24 to the second pressure connection 3, whereby the second fluid lines 23 and 24 can also be brought together in front of the second pressure connection 3 to form a second collecting line 25. The fluid lines 20, 21 and 23, 24 are shown in the form of arrows to clarify the volume flows guided through them.

Zur Vereinfachung der Darstellung sind in Fig. 1 keine Fluidleitungen dargestellt, in denen das Hydraulikfluid 10 innerhalb der Hydraulikkreise 8 oder 9 bzw. von den Geräten 4 oder 5 weitgehend drucklos zum Fluidbehälter 11 zurückgeführt wird.To simplify the representation, in Fig. 1 no fluid lines are shown in which the hydraulic fluid 10 within the hydraulic circuits 8 or 9 or from the devices 4 or 5 is returned to the fluid container 11 largely without pressure.

Grundsätzlich ist vorgesehen, dass am ersten Druckanschluss 2 für das erste Gerät 4 der Volumenstrom der ersten Pumpenanordnung 12, also der ersten Pumpelemente 13 und 14, bereitgestellt wird und analog dazu am zweiten Druckanschluss 3 für das zweite Gerät 5 der Volumenstrom der zweiten Pumpenanordnung 15, also der zweiten Pumpelemente 16 und 17 bereitgestellt wird. Wenn an einem der Druckanschlüsse 2, 3 kein Gerät 4, 5 angeschlossen ist, muss durch aus dem Stand der Technik bekannte Maßnahmen sichergestellt werden, dass die von den Pumpelementen 13, 14, 16, 17 erzeugten Volumenströme ohne Beschädigung des Hydraulikaggregats 1 wieder dem Fluidbehälter 11 zugeführt werden. Dies kann beispielsweise ein den Druckanschlüssen 2, 3 vorgeordnetes Druckentlastungsventil sein, das manuell betätigt wird und die Volumenströme den Druckanschlüssen 2, 3 erst nach Anschließen eines Geräts 4 bzw. 5 zugeführt werden.In principle, it is provided that the volume flow of the first pump arrangement 12, i.e. the first pump elements 13 and 14, is provided at the first pressure connection 2 for the first device 4 and, analogously, the volume flow of the second pump arrangement 15 is provided at the second pressure connection 3 for the second device 5, so the second pump elements 16 and 17 is provided. If no device 4, 5 is connected to one of the pressure connections 2, 3, measures known from the prior art must be used to ensure that the volume flows generated by the pump elements 13, 14, 16, 17 are returned to the fluid container without damaging the hydraulic unit 1 11 are fed. This can, for example, be a pressure relief valve arranged upstream of the pressure connections 2, 3, which is operated manually and the volume flows are only fed to the pressure connections 2, 3 after a device 4 or 5 has been connected.

Die in einem Hydraulikkreis 8 bzw. 9 umgesetzte Leistung ist proportional zum Produkt aus Größe des Volumenstroms und Höhe des Fluiddrucks. Da die Leistung des Antriebs 18, zum Beispiel eines im Hydraulikaggregat 1 eingesetzten Verbrennungsmotors 19 begrenzt ist, ist auch der an den Druckanschlüssen 2 bzw. 3 zur Verfügung stellbare Volumenstrom bei einem bestimmten Druck nach oben begrenzt. Bei geringem Gegendruck durch das angeschlossene Gerät 4 bzw. 5 ist der Volumenstrom zusätzlich durch die höchste Antriebsgeschwindigkeit des Antriebs 18, zum Beispiel durch die Höchstdrehzahl des Verbrennungsmotors 19, nach oben begrenzt. In der Praxis kann jedoch von einer weitgehend konstanten Antriebsgeschwindigkeit ausgegangen werden, weshalb von den Pumpenanordnungen 12, 15 eine weitgehend konstante Gesamtfördermenge geliefert wird und diese, angepasst an die zur Verfügung stehende Antriebsleistung, in Volumenströme mit unterschiedlichen Druckniveaus aufgeteilt werden müssen.The power converted in a hydraulic circuit 8 or 9 is proportional to the product of the size of the volume flow and the level of the fluid pressure. Since the power of the drive 18, for example an internal combustion engine 19 used in the hydraulic unit 1, is limited, the volume flow that can be made available at the pressure connections 2 or 3 is also limited at the top at a certain pressure. In the case of low counterpressure from the connected device 4 or 5, the volume flow is additionally limited by the highest drive speed of the drive 18, for example by the maximum speed of the internal combustion engine 19. In practice, however, a largely constant drive speed can be assumed, which is why the pump arrangements 12, 15 deliver a largely constant total delivery rate and this must be divided into volume flows with different pressure levels, adapted to the available drive power.

Aus dem Stand der Technik ist es bekannt, bei einem gattungsgemäßen Hydraulikaggregat 1 eine Möglichkeit vorzusehen, den in einem Hydraulikkreis 8 oder 9 zur Verfügung stehenden Volumenstrom zumindest teilweise in den jeweils anderen Hydraulikkreis 9 bzw. 8 umzuleiten, wodurch die Leistung des Antriebs 8 besser ausgenützt werden kann und an einem Druckanschluss 2 bzw. 3 ein Volumenstrom genutzt werden kann, der über den von der jeweiligen Pumpenanordnung 12 bzw. 15 bereitgestellten Volumenstrom hinausgeht. Auf diese Weise kann, wenn an einem der Druckanschlüsse 2 oder 3 kein Volumenstrom benötigt wird, da kein Gerät angeschlossen ist oder das Gerät sich in einem inaktiven Zustand befindet, am anderen Druckanschluss ein vergrößerter Volumenstrom zur Verfügung gestellt werden, wodurch mit einem daran angeschlossenen Gerät erhöhte Arbeitsgeschwindigkeiten oder Wirkkräfte erzielt werden können.From the prior art it is known to provide a possibility in a generic hydraulic unit 1 to at least partially divert the volume flow available in a hydraulic circuit 8 or 9 to the other hydraulic circuit 9 or 8, whereby the power of the drive 8 is better utilized and a volume flow can be used at a pressure connection 2 or 3, which goes beyond the volume flow provided by the respective pump arrangement 12 or 15. In this way, if no volume flow is required at one of the pressure ports 2 or 3, since no device is connected or the device is in an inactive state, an increased volume flow is made available at the other pressure connection, whereby increased working speeds or effective forces can be achieved with a device connected to it.

Für diese bedarfsweise Umleitung eines Volumenstroms aus dem ersten Hydraulikkreis 8 zum zweiten Hydraulikkreis 9 weist der erste Hydraulikkreis 8 ein erstes Wegeventil 26 auf, mit dem die erste Fluidleitung 21 über eine erste Verbindungsleitung 27 mit einer zweiten Fluidleitung 24 im zweiten Hydraulikkreis 9 verbunden werden kann. Ebenso ist im zweiten Hydraulikkreis 9 in einer zweiten Fluidleitung 24 ein zweites Wegeventil 28 angeordnet und kann die zweite Fluidleitung 24 über eine zweite Verbindungsleitung 29 mit der ersten Fluidleitung 21 verbunden werden.For this, if necessary, diversion of a volume flow from the first hydraulic circuit 8 to the second hydraulic circuit 9, the first hydraulic circuit 8 has a first directional control valve 26 with which the first fluid line 21 can be connected via a first connection line 27 to a second fluid line 24 in the second hydraulic circuit 9. A second directional control valve 28 is also arranged in a second fluid line 24 in the second hydraulic circuit 9 and the second fluid line 24 can be connected to the first fluid line 21 via a second connecting line 29.

Aus dem Stand der Technik ist es bekannt, Wegeventile zu verwenden, die manuell betätigt werden und ist für die bedarfsgerechte Zuordnung der Volumenströme jeweils ein manueller Umschaltvorgang erforderlich. In der Praxis werden aus dem Stand der Technik bekannte Hydraulikaggregate so gehandhabt, dass ein mit einem Bergegerät tätiger Bediener einem Maschinisten am Hydraulikaggregat entsprechende Kommandos erteilt. Für die bedarfsgerechte Zuteilung der Volumenströme zu den Geräten ist daher beim Stand der Technik ein eigener Bedienungsmann erforderlich.It is known from the prior art to use directional control valves which are operated manually and a manual switching process is necessary for the needs-based allocation of the volume flows. In practice, hydraulic units known from the prior art are handled in such a way that an operator working with a recovery device issues appropriate commands to a machinist on the hydraulic unit. In the prior art, a separate operator is therefore required for the needs-based allocation of the volume flows to the devices.

Bei einem erfindungsgemäßen Hydraulikaggregat 1 ist für die bedarfsgerechte Zuteilung der Volumenströme kein eigener Bedienungsmann erforderlich, indem die Wegeventile 26 und 28 automatisierte Schaltvorgänge ausführen.In the case of a hydraulic unit 1 according to the invention, no separate operator is required for the needs-based allocation of the volume flows, since the directional control valves 26 and 28 carry out automated switching operations.

Die Wegeventile 26, 28 weisen dazu eine in Richtung einer Ausgangsstellung wirkende Feder 30, 31 auf und umfassen weiters ein Betätigungsglied 32, 33, mit denen der Volumenstrom entweder dem jeweiligen Druckanschluss 2 bzw. 3 zugeleitet oder über die Verbindungsleitung 27 bzw. 29 jeweils zum anderen Hydraulikkreis 9 bzw. 8 umgeleitet wird. Das auf das erste Wegeventil 26 wirkende erste Betätigungsglied 32 wird über eine Steuerleitung 34 angesteuert, die im dargestellten Ausführungsbeispiel vom zweiten Hydraulikkreis 9 zum Betätigungsglied 32 verläuft und das auf das zweite Wegeventil 28 wirkende zweite Betätigungsglied 33 wird über eine Steuerleitung 35 angesteuert, die in diesem Ausführungsbeispiel vom ersten Hydraulikkreis 8 zum Betätigungsglied 33 verläuft.The directional control valves 26, 28 have for this purpose a spring 30, 31 acting in the direction of a starting position and furthermore comprise an actuating member 32, 33 with which the volume flow is either fed to the respective pressure connection 2 or 3 or via the connecting line 27 or 29 respectively to the other hydraulic circuit 9 or 8 is diverted. The first actuating member 32 acting on the first directional valve 26 is controlled via a control line 34 which, in the exemplary embodiment shown, runs from the second hydraulic circuit 9 to the actuating member 32 and the second actuating member acting on the second directional valve 28 33 is activated via a control line 35 which, in this exemplary embodiment, runs from the first hydraulic circuit 8 to the actuating member 33.

In der dargestellten Ausführungsform wird die Schaltstellung des Wegeventils 30 durch den im zweiten Hydraulikkreis 9 herrschenden Druck bestimmt, da es sich bei den Steuerleitungen 34 und 35 um hydraulische Steuerleitungen handelt, in denen der Druck in einer Fluidleitung des jeweils anderen Hydraulikkreises an das Betätigungsglied des Wegeventils des anderen Hydraulikkreises übertragen wird. Mit einem derartigen Hydraulikaggregat 1 kann der an einem Druckanschluss 2 bzw. 3 bereitgestellte Volumenstrom um den von einem Pumpelement 17 bzw. 14 des anderen Hydraulikkreises 9 bzw. 8 vergrößert werden, wodurch die Arbeitsgeschwindigkeit eines angeschlossenen Geräts 4 bzw. 5 erhöht werden kann, ohne dass eine manuelle Verstellung der Wegeventile 26, 28 erforderlich wäre.In the embodiment shown, the switching position of the directional control valve 30 is determined by the pressure prevailing in the second hydraulic circuit 9, since the control lines 34 and 35 are hydraulic control lines in which the pressure in a fluid line of the other hydraulic circuit is applied to the actuator of the directional control valve of the other hydraulic circuit is transmitted. With such a hydraulic unit 1, the volume flow provided at a pressure connection 2 or 3 can be increased by that of a pump element 17 or 14 of the other hydraulic circuit 9 or 8, whereby the operating speed of a connected device 4 or 5 can be increased without that manual adjustment of the directional control valves 26, 28 would be required.

Die Steuerleitungen 34 bzw. 35 können auch elektrische Steuerleitungen sein, mit denen Statusinformationen vom jeweils anderen Hydraulikkreis 9 bzw. 8, z.B. Druckniveaus oder Schalterstellungen an den Geräten 4, 5 an das Betätigungsglied 32 bzw. 33 des betrachteten Hydraulikkreises 8, 9 übertragen werden und die zuvor erläuterten Schaltvorgänge bewirkt werden können.The control lines 34 and 35 can also be electrical control lines with which status information from the respective other hydraulic circuit 9 or 8, e.g. Pressure levels or switch positions on the devices 4, 5 can be transmitted to the actuating member 32 or 33 of the hydraulic circuit 8, 9 under consideration and the switching operations explained above can be effected.

Ist beispielsweise das am Hydraulikaggregat 1 angeschlossene Gerät 4 ein hydraulisch angetriebener Rettungszylinder, gibt es bei dessen Einsatz unterschiedliche Betriebszustände. Im Leerlauf des Rettungszylinders kann das Hydraulikfluid 10 bei niedrigem Druckniveau zum Schaltventil des Rettungszylinders und von diesem zurück zum Fluidtank 11 geführt werden. Beim Einfahren oder Ausfahren des Rettungszylinders ohne Last herrscht nur ein geringer Arbeitswiderstand, der in der inneren Reibung des Rettungszylinders und in Leitungswiderständen begründet ist und erfolgt diese Ein- bzw. Ausfahrbewegung bei einem vergleichsweise niedrigen Druckniveau von bis zu etwa 30 bar. Diese Ein- oder Ausfahrbewegung sollte aus Gründen der Zeitersparnis mit möglichst großer Geschwindigkeit durchgeführt werden können und ist daher das Bereitstellen eines großen Volumenstroms von Vorteil und kann aufgrund des relativ niedrigen Druckniveaus auch der Antrieb 18 die dazu nötige Leistung aufbringen.If, for example, the device 4 connected to the hydraulic unit 1 is a hydraulically driven rescue cylinder, there are different operating states when it is used. When the rescue cylinder is idling, the hydraulic fluid 10 can be fed to the switching valve of the rescue cylinder and from there back to the fluid tank 11 at a low pressure level. When retracting or extending the rescue cylinder without a load, there is only a low working resistance, which is due to the internal friction of the rescue cylinder and line resistance, and this retraction and extension movement takes place at a comparatively low pressure level of up to about 30 bar. This retraction or extension movement should be able to be carried out at the highest possible speed in order to save time, and it is therefore advantageous to provide a large volume flow and, due to the relatively low pressure level, the drive 18 can also provide the necessary power.

Bei externer Belastung des Rettungszylinders arbeitet dieser gegen einen höheren Arbeitswiderstand und erhöht sich dabei der erforderliche Fluiddruck und muss dieser auch vom Hydraulikaggregat 1 bereitgestellt werden. Das Druckniveau steigt dabei typischerweise auf bis zu 700 (1000) bar und muss aufgrund der begrenzten Leistung des Antriebs 18 der unter hohem Druck stehende Volumenstrom reduziert werden.When the rescue ram is externally loaded, it works against a higher working resistance and the required fluid pressure increases and this must also be provided by the hydraulic unit 1. The pressure level typically increases to up to 700 (1000) bar and, due to the limited power of the drive 18, the volume flow under high pressure must be reduced.

Bei dem in Fig. 1 dargestellten Hydraulikaggregat 1 kann dies beispielsweise dadurch erfolgen, dass bei einem Druckanstieg am Druckanschluss 2 nur der Volumenstrom des ersten Pumpelements 13 bis zum Druckanschluss 2 geführt wird, während der Volumenstrom des Pumpelements 14 über ein druckgesteuertes Ventil zum Beispiel bei einem Umschaltdruck von 150 bis 250 bar zum Fluidbehälter 11 zurückgeführt wird. Das Pumpelement 14 beansprucht dadurch nur einen vergleichsweise geringen Anteil der Antriebsleistung und steht ein dementsprechend höherer Anteil der Antriebsleistung für das Pumpelement 13, das den hohen Arbeitsdruck erzeugen muss, zur Verfügung.The in Fig. 1 Hydraulic unit 1 shown, this can be done, for example, in that when there is a pressure increase at pressure connection 2, only the volume flow of first pump element 13 is guided to pressure connection 2, while the volume flow of pump element 14 is guided via a pressure-controlled valve, for example at a switching pressure of 150 to 250 bar is returned to the fluid container 11. The pump element 14 thus only uses a comparatively small proportion of the drive power and a correspondingly higher proportion of the drive power is available for the pump element 13, which has to generate the high working pressure.

In Fig. 1 ist die Ausgangsstellung der Wegeventile 26 und 28, die durch die Federn 30 bzw. 31 bewirkt wird, derart, dass der Volumenstrom der Pumpelemente 14 und 17 jeweils im betreffenden Hydraulikkreis 8, 9 verbleibt und somit zum Druckanschluss 2 bzw. 3 geführt wird. Es sind jedoch auch davon abweichende Ausführungsformen möglich.In Fig. 1 is the starting position of the directional control valves 26 and 28, which is effected by the springs 30 and 31, respectively, such that the volume flow of the pump elements 14 and 17 remains in the respective hydraulic circuit 8, 9 and is thus led to the pressure port 2 and 3, respectively. However, embodiments which differ therefrom are also possible.

Die Steuerleitungen 34 und 35 können auch elektrische Steuerleitungen sein, mit denen elektrische Signale vom jeweils anderen Hydraulikkreis oder von einem daran angeschlossenen Gerät an das Betätigungsglied des betreffenden Hydraulikkreises übertragen werden. Elektrische Steuersignale können dabei etwa durch Schaltelemente am angeschlossenen Gerät oder durch Druck-Spannungs-Wandler im Hydraulikkreis generiert werden.The control lines 34 and 35 can also be electrical control lines with which electrical signals from the respective other hydraulic circuit or from a device connected to it are transmitted to the actuator of the hydraulic circuit in question. Electrical control signals can be generated by switching elements on the connected device or by pressure-voltage converters in the hydraulic circuit.

Die Betätigungsglieder 32, 33 können z. B. als Steuerkolben für hydraulische Steuerleitungen 34, 35 oder als Magnetventile für elektrische Steuerleitungen 34, 35 in entsprechenden Wegeventilen realisiert sein.The actuators 32, 33 can, for. B. can be implemented as a control piston for hydraulic control lines 34, 35 or as solenoid valves for electrical control lines 34, 35 in corresponding directional control valves.

Fig. 2 zeigt ein Schema einer weiteren Ausführungsform eines erfindungsgemäßen Hydraulikaggregats 1, wobei die Bauelemente, die bereits in der anhand von Fig. 1 beschriebenen Ausführungsform entsprechend mit denselben Bezugszeichen versehen sind. und wird auf Wiederholungen der Bauteilebeschreibungen weitgehend verzichtet. Fig. 2 shows a diagram of a further embodiment of a hydraulic unit 1 according to the invention, wherein the components that have already been shown in FIG Fig. 1 described Embodiment are provided accordingly with the same reference numerals. and repetitions of the component descriptions are largely dispensed with.

Das am Hydraulikaggregat 1 anschließbare Gerät 4 ist im dargestellten Ausführungsbeispiel durch ein hydraulisches Bergegerät 36 gebildet und umfasst einen doppelt wirkenden Hydraulikzylinder, in dem ein Kolben zwei Arbeitsräume innerhalb des Hydraulikzylinders voneinander trennt. Die Bewegungsrichtung des Bergegeräts 36 hängt davon ab, in welchen der Arbeitsräume das durch die Fluidzuführung 6 zugeführte Hydraulikfluid 10 mittels eines Schaltventils 37 geleitet wird. Das aus dem jeweils anderen Arbeitsraum verdrängte Hydraulikfluid 10 wird über die Fluidrückführung 7 wieder zum Hydraulikaggregat 1 zurückgeführt. Bei angeschlossenem Gerät 4 führt also der Fluidkreislauf vom Druckanschluss 2 über Fluidzuführung 6, Gerät 4 und Fluidrückführung 7 zurück zu einem Rücklaufanschluss 38 und Rücklaufleitung 39 am Hydraulikaggregat 1 oder direkt zurück zum Fluidbehälter 11.The device 4 that can be connected to the hydraulic unit 1 is formed in the illustrated embodiment by a hydraulic recovery device 36 and comprises a double-acting hydraulic cylinder in which a piston separates two working spaces within the hydraulic cylinder. The direction of movement of the recovery device 36 depends on which of the working spaces the hydraulic fluid 10 supplied by the fluid supply 6 is directed by means of a switching valve 37. The hydraulic fluid 10 displaced from the respective other working space is returned to the hydraulic unit 1 via the fluid return 7. When device 4 is connected, the fluid circuit leads from pressure connection 2 via fluid supply 6, device 4 and fluid return 7 back to a return connection 38 and return line 39 on hydraulic unit 1 or directly back to fluid container 11.

In strichlierten Linien ist ein zweites Gerät 5 angedeutet, das ebenfalls am Hydraulikaggregat 1 angeschlossen werden kann.A second device 5, which can also be connected to the hydraulic unit 1, is indicated in dashed lines.

Der Antrieb 18, die Pumpenanordnungen 12 und 15 sowie die Fluidleitungen 20, 21, 23, 24 bzw. Sammelleitungen 22, 25 entsprechen dabei der anhand von Fig. 1 beschriebenen Ausführung, jedoch sind die Leitungen in Fig. 2 durch Striche dargestellt und nicht, wie in Fig. 1, durch Blockpfeile.The drive 18, the pump arrangements 12 and 15 as well as the fluid lines 20, 21, 23, 24 and collecting lines 22, 25 correspond to that based on FIG Fig. 1 described, but the lines are in Fig. 2 represented by dashes and not, as in Fig. 1 , by block arrows.

Die Ausführungsform gemäß Fig. 2 unterscheidet sich insofern von jener in Fig. 1, dass die Wegeventile 26 und 28 von den Federn 30 bzw. 31 in eine Ausgangsstellung gedrückt werden, in der ein Fließweg von der ersten Fluidleitung 21 des ersten Hydraulikkreises 8 zur Verbindungsleitung 27 zum anderen Hydraulikkreis 9 geöffnet ist. In dieser Ausführungsform wird somit der vom Pumpelement 14 gelieferte Volumenstrom in der Ausgangsstellung des Wegeventils 26 zum anderen Hydraulikkreis 9 umgeleitet. Analog dazu ist im zweiten Hydraulikkreis 9 die Ausgangsstellung des Wegeventils 28 derart, dass der vom Pumpelement 17 gelieferte Volumenstrom zum ersten Hydraulikkreis 8 umgeleitet wird.The embodiment according to Fig. 2 differs from that in Fig. 1 that the directional control valves 26 and 28 are pressed by the springs 30 and 31 into an initial position in which a flow path from the first fluid line 21 of the first hydraulic circuit 8 to the connecting line 27 to the other hydraulic circuit 9 is open. In this embodiment, the volume flow supplied by the pump element 14 is thus diverted to the other hydraulic circuit 9 in the starting position of the directional control valve 26. Analogously to this, the starting position of the directional valve 28 in the second hydraulic circuit 9 is such that the volume flow supplied by the pump element 17 is diverted to the first hydraulic circuit 8.

Da die Pumpenanordnungen 12 und 15 üblicherweise identische Förderleistungen aufweisen, ist dieses "Kreuzen" von Volumenströmen zwischen den beiden Hydraulikkreisen 8 und 9 ohne merkbare Auswirkung für die an den Druckanschlüssen 2 bzw. 3 bereitgestellten Volumenströme bzw. Drücke.Since the pump arrangements 12 and 15 usually have identical delivery rates, this “crossing” of volume flows between the two hydraulic circuits 8 and 9 is the result without any noticeable effect on the volume flows or pressures provided at the pressure connections 2 or 3.

Das Betätigungsglied 32, mit welchem das erste Wegeventil 26 entgegen der Wirkung der Feder 30 aus der Ausgangsstellung umgeschaltet wird, wird wiederum von einer ersten Steuerleitung 34 angesprochen, die in dieser Ausführungsform jedoch vom ersten Hydraulikkreis 8 selbst ausgeht und zwar von der ersten Fluidleitung 20, die vom Pumpelement 13 zum ersten Druckanschluss 2 führt.The actuating member 32, with which the first directional valve 26 is switched from the initial position against the action of the spring 30, is in turn addressed by a first control line 34, which in this embodiment, however, originates from the first hydraulic circuit 8 itself, namely from the first fluid line 20, which leads from the pump element 13 to the first pressure connection 2.

Durch diese Ausführungsform holt sich der erste Hydraulikkreis 8 bei einem Druckanstieg in der Fluidleitung 20 gewissermaßen den vom Pumpelement 14 an den zweiten Hydraulikkreis 9 umgeleiteten Volumenstrom zurück für den eigenen Bedarf. Ebenso kann der zweite Hydraulikkreis 9 den in der Ausgangsstellung des zweiten Wegeventils 28 zum ersten Hydraulickreis 8 umgeleiteten Volumenstrom des Pumpelements 17 bei Bedarf zum eigenen Druckanschluss 3 zurückholen.With this embodiment, the first hydraulic circuit 8 retrieves the volume flow diverted from the pump element 14 to the second hydraulic circuit 9 to a certain extent for its own needs when there is a pressure increase in the fluid line 20. Likewise, the second hydraulic circuit 9 can retrieve the volume flow of the pump element 17 diverted to the first hydraulic circuit 8 in the initial position of the second directional valve 28 to its own pressure connection 3, if required.

Wie bereits erläutert, kann mit einem derartigen Hydraulikaggregat 1 ein Gerät 4, 5 mit unterschiedlichen Druckniveaus des Hydraulikfluids 10 versorgt werden, wobei aufgrund der vorgegebenen Leistung des Antriebs 18 bei niedrigem Druck ein großer Volumenstrom und bei hohem Druck nur ein kleiner Volumenstrom bereitgestellt werden kann. Um dies zu ermöglichen, kann vorgesehen sein, einzelne Pumpelemente zum Beispiel die Pumpelemente 14 und/oder 17 bei Ansteigen des Druckniveaus im Arbeitsgerät mittels eines nicht dargestellten Ventils direkt zum Fluidbehälter 11 umzuleiten und damit den Anteil der unter hohem Druck stehenden Fördermenge zu verringern.As already explained, such a hydraulic unit 1 can be used to supply a device 4, 5 with different pressure levels of the hydraulic fluid 10, whereby a large volume flow can be provided at low pressure and only a small volume flow at high pressure due to the predetermined power of the drive 18. In order to make this possible, provision can be made for individual pump elements, for example pump elements 14 and / or 17, to be diverted directly to fluid container 11 by means of a valve (not shown) when the pressure level in the working device rises, thus reducing the proportion of the high-pressure delivery rate.

Weiters ist es möglich, dass die Pumpelemente 13 und 14 der Pumpenanordnung 12 bzw. die Pumpelemente 16 und 17 der Pumpenanordnung 15 unterschiedlich große Förderleistungen aufweisen. Bei einer bestimmten Antriebsintensität des Antriebs 18, zum Beispiel einer Bezugsdrehzahl, kann vorgesehen sein, dass das Pumpelement 14 eine größere Förderleistung als das Pumpelement 13 aufweist und somit für die Versorgung mit einem großen Volumenstrom bei vergleichsweise geringem Druckniveau gut geeignet ist, während das kleinere Pumpelement 13 mit seiner kleineren Förderleistung für die Bereitstellung eines vergleichsweise kleinen Volumenstroms bei hohem Druckniveau optimal geeignet ist. Über die Auslegung derartiger Mehr-Druckstufen-Pumpen wird auf den diesbezüglich bekannten Stand der Technik verwiesen.Furthermore, it is possible for the pump elements 13 and 14 of the pump arrangement 12 or the pump elements 16 and 17 of the pump arrangement 15 to have delivery capacities of different sizes. With a certain drive intensity of the drive 18, for example a reference speed, it can be provided that the pumping element 14 has a greater delivery rate than the pumping element 13 and is thus well suited for supplying a large volume flow at a comparatively low pressure level, while the smaller pumping element 13, with its smaller delivery rate, is ideally suited for providing a comparatively small volume flow at a high pressure level. About the interpretation For such multi-pressure stage pumps, reference is made to the prior art known in this regard.

Ein erfindungsgemäßes Hydraulikaggregat 1 besitzt beispielsweise folgende Fördermengen, die von der jeweiligen Betriebssituation abhängig sind. Als Bezugsintensität des Antriebs 18 wird beispielsweise eine Drehzahl von 3000/min angenommen. Die beiden Pumpelemente 13 und 16 der Hydraulikkreise 8, 9 besitzen bei dieser Bezugsintensität eine Fördermenge von beispielsweise jeweils 0,7 l/min und besitzen die Pumpelemente 14 und 17 beispielsweise eine Fördermenge von 2,0 l/min. Die Pumpelemente 13 und 16 können somit als Hochdruckelemente 40 bzw. 41 bezeichnet werden und können die beiden größeren Pumpelemente 14 und 17 als Niederdruckelemente 42 bzw. 43 bezeichnet werden.A hydraulic unit 1 according to the invention has, for example, the following delivery rates, which are dependent on the respective operating situation. A speed of 3000 rpm is assumed as the reference intensity of the drive 18, for example. At this reference intensity, the two pump elements 13 and 16 of the hydraulic circuits 8, 9 each have a delivery rate of 0.7 l / min, for example, and the pump elements 14 and 17 have a delivery rate of 2.0 l / min, for example. The pump elements 13 and 16 can thus be referred to as high pressure elements 40 and 41 and the two larger pump elements 14 and 17 can be referred to as low pressure elements 42 and 43, respectively.

Bei einer Ausführungsform des Hydraulikaggregats gemäß Fig. 1 ergeben sich dabei folgende Fördermengen bei der Verwendung von zwei Geräten 4, 5. Wenn zwei Geräte 4, 5 an den Druckanschlüssen 2, 3 angeschlossen sind, werden diese im Leerlauf bei einem Druckniveau von bis zu etwa 20 bar durchströmt. Als Fördermenge steht dabei am Druckanschluss 2 der von der Pumpenanordnung 12 gelieferte Volumenstrom von in Summe 2,71 zur Verfügung. Ebenso wird das zweite Gerät 5 vom Druckanschluss 3 mit einem Volumenstrom von 2,7 l/min versorgt.In one embodiment of the hydraulic unit according to Fig. 1 This results in the following flow rates when using two devices 4, 5. If two devices 4, 5 are connected to the pressure connections 2, 3, these are flown through in idle mode at a pressure level of up to about 20 bar. The volume flow delivered by the pump arrangement 12 of a total of 2.71 is available at the pressure connection 2 as the delivery rate. The second device 5 is also supplied from the pressure connection 3 with a volume flow of 2.7 l / min.

Wird nun beispielsweise am Gerät 4 eine Verstellbewegung bei geringem Widerstand eingeleitet, steigt dabei der Druck auf über 20 bar, wodurch über die Steuerleitung 35 ein Umschaltsignal an das zweite Wegeventil 28 gesendet wird und der Volumenstrom des Pumpelements 17 zum ersten Hydraulikkreis 8 umgeleitet wird und dadurch am ersten Druckanschluss 2 eine Fördermenge von 4,7 l/min zur Verfügung steht. Dadurch kann, falls nur ein Gerät aktiviert wird, dieses eine wesentlich höhere Arbeitsgeschwindigkeit erzielen. Wird nun beispielsweise auch das Gerät 5 bei niedrigem Arbeitswiderstand aktiviert, wird aufgrund des Druckanstiegs in der zweiten Fluidleitung 23 über die Steuerleitung 34 ein Umschaltsignal an das erste Wegeventil 26 übermittelt, wobei der Umschaltvorgang vom Betätigungsglied 32 bewirkt wird. Dadurch wird der vom Pumpelement 14 gelieferte Volumenstrom zum zweiten Hydraulikkreis 9 umgeleitet und stehen in diesem Betriebszustand den Geräten 4, 5 wiederum, wie im Leerlaufbetrieb jeweils 2,7 l/min an Fördermenge zur Verfügung. Die erhöhte Arbeitsgeschwindigkeit der Geräte 4 bzw. 5 kann demnach immer automatisch genutzt werden, wenn nur eines der Geräte 4, 5 betätigt wird.If, for example, an adjustment movement is initiated on the device 4 with little resistance, the pressure rises to over 20 bar, whereby a switching signal is sent to the second directional control valve 28 via the control line 35 and the volume flow of the pump element 17 is diverted to the first hydraulic circuit 8 and thereby A delivery rate of 4.7 l / min is available at the first pressure connection 2. As a result, if only one device is activated, it can achieve a significantly higher working speed. If, for example, the device 5 is now also activated with a low working resistance, a switching signal is transmitted to the first directional valve 26 via the control line 34 due to the pressure increase in the second fluid line 23, the switching process being effected by the actuating member 32. As a result, the volume flow supplied by the pumping element 14 is diverted to the second hydraulic circuit 9 and in this operating state the devices 4, 5 again have a delivery rate of 2.7 l / min, as in idle operation. The increased The operating speed of the devices 4 or 5 can therefore always be used automatically if only one of the devices 4, 5 is actuated.

Wird an einem Gerät 4 ein hoher Arbeitswiderstand auftreten, wird der vom Pumpelement 14 gelieferte Volumenstrom mittels eines in Fig. 2 nicht dargestellten Ventils zum Fluidbehälter 11 umgeleitet und steht die Antriebsleistung des Antriebs 18 zum überwiegenden Teil für das erste Pumpelement 13 zur Verfügung, mit dem bei der Bezugsdrehzahl von 3000/min eine Fördermenge von 0,7 l/min am Druckanschluss 2 zur Verfügung gestellt werden kann. Das Druckniveau liegt dabei etwa zwischen dem Umschaltdruck von unter 250 bar, bei dessen Überschreitung der Volumenstrom des Pumpelements 14 weggeschaltet wird und dem durch ein Druckbegrenzungsventil nach oben begrenzten Systemdruck von etwa 750 bar bis 1000 bar.If a high working resistance occurs at a device 4, the volume flow delivered by the pump element 14 is reduced by means of an in Fig. 2 Not shown valve is diverted to the fluid container 11 and the drive power of the drive 18 is predominantly available for the first pump element 13, with which a delivery rate of 0.7 l / min is made available at the pressure port 2 at the reference speed of 3000 rpm can. The pressure level is roughly between the switchover pressure of less than 250 bar, when the volume flow of the pump element 14 is exceeded, and the system pressure of about 750 bar to 1000 bar, which is limited upwards by a pressure limiting valve.

Der große Vorteil des erfindungsgemäßen Hydraulikaggregats 1 besteht darin, dass diese Schaltvorgänge zur bedarfsgerechten Zuweisung der Volumenströme an die Druckanschlüsse 2 und/oder 3 nicht von einer Bedienperson ausgeführt werden müssen, sondern aufgrund der Wegeventile 26, 28.The great advantage of the hydraulic unit 1 according to the invention is that these switching processes for the needs-based allocation of the volume flows to the pressure connections 2 and / or 3 do not have to be carried out by an operator, but rather on the basis of the directional control valves 26, 28.

Bei der in Fig. 2 dargestellten Ausführungsform wird das Gerät 4 vom Druckanschluss 2 im Leerlauf mit einer Fördermenge von 2,7 l/min versorgt, die sich aus einer Teilmenge von 0,7 l/min vom Hochdruckelement 40 des ersten Hydraulikkreises 8 und einer Teilmenge von 2,0 l/min vom Niederdruckelement 43 des zweiten Hydraulikkreises zusammensetzt. Bei einem Druckanstieg durch Aktivieren des Geräts 4 bei geringem Arbeitswiderstand wird zusätzlich der Volumenstrom des Niederdruckelements 42 mit einer Fördermenge von 2,0 l/min zum Druckanschluss 2 geleitet, wodurch dann in Summe 4,7 l/min zur Verfügung stehen, wenn kein Volumenstrom für ein zweites Gerät 5 erforderlich ist.At the in Fig. 2 The illustrated embodiment, the device 4 is supplied from the pressure connection 2 in idle with a delivery rate of 2.7 l / min, which is made up of a partial amount of 0.7 l / min from the high pressure element 40 of the first hydraulic circuit 8 and a partial amount of 2.0 l / min composed of the low pressure element 43 of the second hydraulic circuit. When the pressure increases by activating the device 4 with a low working resistance, the volume flow of the low-pressure element 42 is also fed to the pressure port 2 with a delivery rate of 2.0 l / min, which means that a total of 4.7 l / min is available when there is no volume flow for a second device 5 is required.

In Fig. 1 und 2 sind aus dem Stand der Technik bekannte Maßnahmen, die einen zweistufigen Druckbetrieb ermöglichen, zum Beispiel Druckbegrenzungsventile, Drosselventile, Rückschlagventile etc. nicht näher dargestellt bzw. beschrieben.In Fig. 1 and 2 measures known from the prior art that enable two-stage pressure operation, for example pressure relief valves, throttle valves, check valves, etc., are not shown or described in more detail.

In Fig. 3 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform eines Hydraulikaggregats 1 schematisch gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangen Fig. 1 und 2 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die Beschreibung in den vorangegangenen Fig. 1 und 2 hingewiesen bzw. Bezug genommen.In Fig. 3 a further and possibly independent embodiment of a hydraulic unit 1 is shown schematically, again with the same reference numerals for the same parts or component names as in the previous ones Fig. 1 and 2 be used. To avoid unnecessary repetition, refer to the description in the preceding Fig. 1 and 2 pointed out or referred to.

In dieser Ausführungsform führt die vom ersten Hydraulikkreis 8 am ersten Wegeventil 26 abgehende Verbindungsleitung 27 zum zweiten Wegeventil 28 und wird in diesem der über die Verbindungsleitung 27 gelieferte Volumenstrom je nach Schaltstellung des Wegeventils 28 entweder über eine Rücklaufleitung 39 in den Fluidbehälter 11 abgeleitet oder über einen Fließweg im Wegeventil 28 mit dem vom zweiten Pumpelement 17 gelieferten Volumenstrom in der zweiten Fluidleitung 24 zusammengefasst und in Folge über die zweite Sammelleitung 25 am zweiten Druckanschluss 3 bereitgestellt.In this embodiment, the connecting line 27 outgoing from the first hydraulic circuit 8 at the first directional valve 26 leads to the second directional valve 28 and in this the volume flow delivered via the connecting line 27 is diverted into the fluid container 11 either via a return line 39 or via a, depending on the switching position of the directional valve 28 The flow path in the directional control valve 28 is combined with the volume flow supplied by the second pump element 17 in the second fluid line 24 and then made available to the second pressure connection 3 via the second collecting line 25.

Analog dazu führt die vom zweiten Hydraulikkreis 9 am zweite Wegeventil 28 abgehende Verbindungsleitung 29 zum ersten Wegeventil im ersten Hydraulikkreis 8 und wir der über die Verbindungsleitung 29 gelieferte Volumenstrom je nach Schaltstellung des Ventils 26 entweder über eine Rücklaufleitung 39 dem Fluidbehälter 11 zugeführt oder mit dem vom Pumpelement 14 gelieferten Volumenstrom zusammengefasst und in Folge über die Sammelleitung 22 am ersten Druckanschluss 2 bereitgestellt.Analogously to this, the connecting line 29 outgoing from the second hydraulic circuit 9 at the second directional valve 28 leads to the first directional valve in the first hydraulic circuit 8 and, depending on the switching position of the valve 26, the volume flow delivered via the connecting line 29 is either fed to the fluid container 11 via a return line 39 or to the from The volume flow supplied by the pump element 14 is summarized and made available in sequence via the collecting line 22 at the first pressure connection 2.

Zusätzlich können, wie dargestellt, in den Verbindungsleitungen 27, 29 Rückschlagventile 44 vorgesehen sein, mit denen eine unerwünschte Fließrichtungsumkehr bzw. Druckfortpflanzung in eine unerwünschte Richtung verhindert werden kann.In addition, as shown, non-return valves 44 can be provided in the connecting lines 27, 29, with which an undesired reversal of flow direction or pressure propagation in an undesired direction can be prevented.

Auch bei den Pumpelementen 14 und 17, die als Niederdruckelemente 42 und 43 mit dem Symbol ND versehen sind, können in den von diesen abgehenden Fluidleitungen 21 und 24 Rückschlagventile 44 vorgesehen sein. Weiters kann in den Fluidleitungen zwischen den Wegeventilen 26, 28 und den Druckanschlüssen 2, 3 ebenfalls jeweils ein Rückschlagventil 44 vorgesehen sein, um bei einem Anstieg des Druckniveaus an den Druckanschlüssen 2, 3 keine Druckfortpflanzung in den Niederdruckbereich stattfinden kann.In the case of the pump elements 14 and 17 as well, which are provided with the symbol ND as low-pressure elements 42 and 43, check valves 44 can be provided in the fluid lines 21 and 24 outgoing therefrom. Furthermore, a check valve 44 can also be provided in the fluid lines between the directional control valves 26, 28 and the pressure connections 2, 3 so that no pressure propagation into the low pressure area can take place when the pressure level at the pressure connections 2, 3 increases.

Die Pumpelemente 13, 14, 16, 17 in Fig. 3 sind, wie bereits anhand von Fig. 1 und 2 beschrieben, mit einem nicht dargestellten Antrieb versehen, mit dem die Pumpelemente gleichzeitig angetrieben werden. Zur Anpassung der an den Druckanschlüssen 2, 3 bereitgestellten Fördermengen ist im ersten Hydraulikkreis 8 ein Druckumschaltventil 45 vorgesehen, mit dem der vom Pumpelement 14, also einem Niederdruckelement 42, gelieferte Volumenstrom bei Überschreiten eines Umschaltdruckes nicht mehr zum Druckanschluss 2, sondern in den Fluidbehälter 11 geleitet wird. Die Umschaltung des Druckumschaltventils 45 wird über eine von der ersten Fluidleitung 20 abgehende Steuerleitung 46 bewirkt, mit der der am Druckanschluss 2 herrschende Fluiddruck an das Druckumschaltventil 45 geleitet wird und dieses mittels eines nicht dargestellten Betätigungsglieds einen Umschaltvorgang auslöst, wenn aufgrund eines ansteigenden Druckes in der Steuerleitung 46 eine die Ausgangsstellung des Druckumschaltventils 45 bewirkende Feder 47 überwunden wird.The pumping elements 13, 14, 16, 17 in Fig. 3 are, as already with Fig. 1 and 2 described, provided with a drive, not shown, with which the pump elements are driven simultaneously. To adapt the pressure ports 2, 3 provided A pressure switch valve 45 is provided in the first hydraulic circuit 8, with which the volume flow supplied by the pump element 14, i.e. a low pressure element 42, is no longer directed to the pressure connection 2 but into the fluid container 11 when a switch pressure is exceeded. The switchover of the pressure switchover valve 45 is effected via a control line 46 going out from the first fluid line 20, with which the fluid pressure prevailing at the pressure connection 2 is passed to the pressure switchover valve 45 and this triggers a switchover process by means of an actuating element (not shown) if, due to an increasing pressure in the Control line 46 a spring 47 causing the initial position of the pressure switching valve 45 is overcome.

Im zweiten Hydraulikkreis 9 ist analog dazu ein Druckumschaltventil 48 vorgesehen, mit dem der vom zweiten Pumpelement 17 gelieferte Volumenstrom bei Übersteigen eines Grenzdruckes nicht mehr zum zweiten Druckanschluss 3, sondern in den Fluidbehälter 11 geleitet wird. Eine die Umschaltung bewirkende Steuerleitung 49 greift dabei das zwischen dem zweiten Pumpelement 16, also dem Hochdruckelement 41 und dem zweiten Druckanschluss 3 bestehende Druckniveau ab und wird bei Überschreiten einer von einer Feder 50 bewirkten Rückstellkraft das Ableiten des Volumenstroms des Pumpelements 17 zum Fluidbehälter 11 bewirkt. Die Leistung des Antriebs steht in diesen Fällen also zum überwiegenden Maße für den Antrieb der Hochdruckelemente 40 und 41 zur Verfügung und können mit den angeschlossenen Geräten 4, 5 auch hohe Arbeitswiederstände überwunden werden.In the second hydraulic circuit 9, a pressure switching valve 48 is provided analogously, with which the volume flow supplied by the second pump element 17 is no longer passed to the second pressure connection 3, but into the fluid container 11 when a limit pressure is exceeded. A control line 49 causing the switchover picks up the pressure level existing between the second pump element 16, i.e. the high pressure element 41 and the second pressure connection 3, and when a restoring force caused by a spring 50 is exceeded, the volumetric flow of the pump element 17 is diverted to the fluid container 11. In these cases, the power of the drive is predominantly available for driving the high-pressure elements 40 and 41 and, with the connected devices 4, 5, even high work resistances can be overcome.

Zum Schutz des Hydraulikaggregats 1 kann weiters vorgesehen sein, dass jeder Hydraulickreis 8, 9 mit einem Druckbegrenzungsventil 51 versehen ist, das den an den Druckanschlüssen 2 und 3 maximal bereitgestellten Druck begrenzt und ist der Maximaldruck derart festgelegt, dass ein Bersten von Bestandteilen des Hydraulikaggregats 1 vermieden ist. Als Maximaldruck ist beispielsweise eine Obergrenze von 750 bis 1000 bar eingestellt.To protect the hydraulic unit 1, provision can also be made for each hydraulic circuit 8, 9 to be provided with a pressure limiting valve 51 which limits the maximum pressure provided at the pressure connections 2 and 3 and the maximum pressure is set in such a way that components of the hydraulic unit 1 cannot burst is avoided. An upper limit of 750 to 1000 bar, for example, is set as the maximum pressure.

Die Wirkungsweise der Wegeventile 26, 28 entspricht bei Fig. 3 im Wesentlichen jener der in Fig. 2 dargestellten Ausführung, da hier in deren Ausgangsstellung der vom Pumpelement 14, 15 gelieferte Volumenstrom zum jeweils anderen Hydraulikkreis geleitet wird und bei einem Schaltvorgang des Wegeventils 26 bzw. 28 aufgrund eines ansteigenden Drucks in der Steuerleitung 34 bzw. 35 der Volumenstrom wieder in den jeweils betrachteten Hydraulikkreis 8 bzw. 9 zurückgeholt wird und zum jeweiligen Druckanschluss 2 bzw. 3 geleitet wird.The mode of operation of the directional control valves 26, 28 corresponds to Fig. 3 essentially that of the in Fig. 2 illustrated embodiment, since here in their initial position the volume flow supplied by the pump element 14, 15 is passed to the other hydraulic circuit and, when the directional control valve 26 or 28 is switched, the volume flow returns to the respectively considered due to an increasing pressure in the control line 34 or 35 Hydraulic circuit 8 or 9 is brought back and is routed to the respective pressure port 2 or 3.

In dem dargestellten Ausführungsbeispiel sind beide Wegeventile 26 und 28 in Ausgangsstellung dargestellt und wird direkt vom Ventil der vom jeweils anderen Hydraulikkreis 9 bzw. 8 umgeleitete Volumenstrom über eine Rücklaufleitung 39 im Wesentlichen drucklos in den Fluidbehälter 11 zurückgeführt. Wird nun beispielsweise am Druckanschluss 2 ein Gerät 4 betätigt und steigt dadurch der Fluiddruck, wird über die Steuerleitung 34 ein Umschaltvorgang des Wegeventils 26 bewirkt und werden dem Druckanschluss 2 in diesem Fall die Volumenströme der Pumpelemente 13, 14 und 17 zugeführt. Dies bedeutet eine erhöhte Arbeitsgeschwindigkeit eines Geräts 4 gegenüber einer Versorgung durch lediglich einen Hydraulickreis 8 alleine.In the exemplary embodiment shown, both directional control valves 26 and 28 are shown in their initial position and the volume flow diverted by the other hydraulic circuit 9 or 8 is returned directly from the valve to the fluid container 11 via a return line 39, essentially without pressure. If, for example, a device 4 is actuated at the pressure connection 2 and the fluid pressure rises as a result, a switching operation of the directional control valve 26 is effected via the control line 34 and the volume flows of the pump elements 13, 14 and 17 are fed to the pressure connection 2 in this case. This means an increased operating speed of a device 4 compared to a supply by only one hydraulic circuit 8 alone.

Wird an beiden Druckanschlüssen 2 und 3 durch Betätigung eines angeschlossenen Geräts 4 bzw. 5 eine Druckerhöhung bewirkt, wird über die Verbindungsleitungen 27 und 29 kein Hydraulikfluid mehr übertragen und wird jeder Druckanschluss 2, 3 jeweils durch den zugehören Hydraulikkreis 8, 9 alleine versorgt.If a pressure increase is caused at both pressure connections 2 and 3 by actuating a connected device 4 or 5, no more hydraulic fluid is transmitted via the connecting lines 27 and 29 and each pressure connection 2, 3 is supplied by the associated hydraulic circuit 8, 9 alone.

In Fig. 4 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform eines Hydraulikaggregats 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangenen Fig. 1 bis 3 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die detaillierte Beschreibung in den vorangegangenen Fig. 1 bis 3 hingewiesen bzw. Bezug genommen.In Fig. 4 a further and possibly independent embodiment of a hydraulic unit 1 is shown, again with the same reference numerals or component designations as in the preceding for the same parts Figs. 1 to 3 be used. To avoid unnecessary repetition, please refer to the detailed description in the preceding section Figs. 1 to 3 pointed out or referred to.

Das Hydraulikaggregat 1 gemäß Fig. 4 unterscheidet sich von der Ausführungsform in Fig. 3 in der Einbindung der Wegeventile 26 und 28, bei denen in der durch die Federn 30 bzw. 31 bewirkten Ausgangsstellung die von den Pumpelementen 14 und 17 gelieferten Volumenströme innerhalb des eigenen Hydraulikkreises 8 bzw. 9 am jeweiligen Druckanschluss 2 bzw. 3 bereitgestellt werden und erst bei Druckanstieg im anderen Hydraulikkreis 9 bzw. 8 eine Umleitung eines Volumenstroms erfolgt. Die Betätigungsglieder, die von den Steuerleitungen 34 und 35 aktiviert werden, sind in Fig. 4 aus Platzgründen nicht dargestellt.The hydraulic unit 1 according to Fig. 4 differs from the embodiment in Fig. 3 in the integration of the directional control valves 26 and 28, in which, in the initial position caused by the springs 30 and 31, the volume flows supplied by the pump elements 14 and 17 are provided within their own hydraulic circuit 8 and 9 at the respective pressure connection 2 and 3 and only if the pressure rises in the other hydraulic circuit 9 or 8, a volume flow is diverted. The actuators activated by control lines 34 and 35 are shown in FIG Fig. 4 not shown for reasons of space.

Fig. 4 zeigt weiters, dass optional in den Hydraulikkreisen 8 und 9 jeweils vor den Druckanschlüssen 2 bzw. 3 Druckentlastungsventile 52 vorgesehen sein können, mit denen ein weitgehend druckloser Rücklauf von Hydraulikfluid zum Fluidbehälter 11 hergestellt werden kann, für den Fall, dass kein Gerät am jeweiligen Druckanschluss 2 bzw. 3 angeschlossen ist. Diese auch in anderen Ausführungsformen des Hydraulikaggregats 1 einsetzbaren Druckentlastungsventile 52 können manuell bedienbar sein oder aber auch Bestandteil eines Kupplungssystems, bei dem in einem Kupplungsvorgang sowohl die Fluidzuführung 6 als auch die Fluidrückführung 7 des Geräts (siehe Fig. 1) verbunden werden. Das Druckentlastungsventil 52 kann in diesem Fall als ein By-Pass-Ventil im Druckanschluss 2 bzw. 3 ausgebildet sein. Fig. 4 further shows that pressure relief valves 52 can optionally be provided in the hydraulic circuits 8 and 9 upstream of the pressure connections 2 or 3, with which a largely pressureless return of hydraulic fluid to the fluid container 11 can be established can be used in the event that no device is connected to the respective pressure port 2 or 3. These pressure relief valves 52, which can also be used in other embodiments of the hydraulic unit 1, can be operated manually or they can also be part of a coupling system in which both the fluid feed 6 and the fluid return 7 of the device (see FIG Fig. 1 ) get connected. The pressure relief valve 52 can in this case be designed as a by-pass valve in the pressure port 2 or 3.

In Fig. 4 ist weiters dargestellt, dass den Pumpelementen 14, 17, die als Niederdruckelemente 42 und 43 ausgebildet sein können, jeweils ein Druckbegrenzungsventil (DBV) 53 nachgeordnet sein kann, das im dargestellten Ausführungsbeispiel dann wirksam wird, wenn das Hydraulikfluid von den Wegeventilen 26 bzw. 28 zum jeweils anderen Hydraulikkreis 9 bzw. 8 umgeleitet wird und in diesem aufgrund eines hohen Arbeitswiderstands ein sehr hoher Fluiddruck vorhanden ist. Der Volumenstrom der Pumpelemente 42 und 43 kann in diesem Fall über das Druckbegrenzungsventil 53 in den Fluidbehälter 11 abgeleitet werden. Als Grenzdruck, ab dem ein Druckbegrenzungsventil 53 öffnet, wird ein Druck gewählt, der dem Umschaltdruck der Druckumschaltventile 45 bzw. 48 entspricht, da ab diesem Druckniveau die Volumenströme der Niederdruckelemente 42, 43 nicht mehr zu den Druckanschlüssen 2 bzw. 3 geleitet werden. Ein Druckbegrenzungsventil 53 kann dabei baulich den Druckumschaltventilen 45, 48 entsprechen.In Fig. 4 It is also shown that the pump elements 14, 17, which can be designed as low-pressure elements 42 and 43, can each be followed by a pressure limiting valve (DBV) 53, which in the illustrated embodiment is effective when the hydraulic fluid from the directional control valves 26 and 28, respectively is diverted to the other hydraulic circuit 9 or 8 and a very high fluid pressure is present in this due to a high working resistance. In this case, the volume flow of the pump elements 42 and 43 can be diverted into the fluid container 11 via the pressure limiting valve 53. A pressure is selected as the limit pressure from which a pressure relief valve 53 opens which corresponds to the switching pressure of the pressure switching valves 45 or 48, since from this pressure level the volume flows of the low-pressure elements 42, 43 are no longer directed to the pressure connections 2 or 3. A pressure limiting valve 53 can structurally correspond to the pressure switchover valves 45, 48.

In Fig. 5 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform eines Hydraulikaggregats 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangen Fig. 1 bis 4 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die detaillierte Beschreibung in den vorangegangen Fig. 1 bis 4 hingewiesen bzw. Bezug genommen.In Fig. 5 a further and possibly independent embodiment of a hydraulic unit 1 is shown, with the same reference numerals or component designations for the same parts as in the preceding Figs. 1 to 4 be used. In order to avoid unnecessary repetition, the detailed description in the preceding sections is referred to Figs. 1 to 4 pointed out or referred to.

In diesem Ausführungsbeispiel ist die Funktionsweise der Wegeventile 26 und 28 wie in der anhand von Fig. 3 beschriebenen Ausführungsform und wird von einem Hydraulikkreis 8, bei dem am Druckanschluss 2 kein Gerät angeschlossen ist oder das angeschlossene Gerät sich im Leerlauf befindet, ein Teil des Volumenstroms zum anderen Hydraulikkreis 9 umgeleitet. Die zum Wegeventil 26 führende erste Fluidleitung 21 führt in diesem Ausführungsbeispiel nicht nur den Volumenstrom des Pumpelements 14, sondern auch den Volumenstrom eines weiteren Pumpelements 54 und kann über das Wegeventil 26 zum anderen Hydraulikkreis 9 umgeleitet werden. Während das Pumpelement 14 als Niederdruckelement 42 ausgeführt ist, das eine vergleichsweise hohe Fördermenge aufweist, ist das Pumpelement 54 als Hochdruckelement 55 ausgebildet, das eine vergleichsweise kleine Fördermenge aufweist. In der dargestellten Stellung des Wegeventils 26 werden somit beide Volumenströme der Pumpelemente 14 und 54 über die erste Verbindungsleitung 27 zum zweiten Hydraulikkreis 9 umgeleitet. Falls in diesem kein erhöhter Volumenstrom benötigt wird, da sich das angeschlossene Gerät im Leerlauf befindet, wird diese umgeleitete Fördermenge über die Rücklaufleitung 39 zum Fluidbehälter 11 abgeführt. Bei einem Druckanstieg im zweiten Hydraulikkreis 9 wird dieser Volumenstrom zum zweiten Druckanschluss 3 geleitet, da das zweite Wegeventil 28 über die Steuerleitung 35 des zweiten Hydraulikkreises geschaltet wird. Am Druckanschluss 3 steht dann somit die Fördermenge des zweiten Hydraulikkreises 9 erhöht um die Fördermenge der Pumpelemente 14 und 54 zur Verfügung. Bei einem weiteren Druckanstieg im zweiten Hydraulikkreis 9, der einen Übergang in den Hochdruckbereich bewirkt, wird der Volumenstrom des Pumpelements 14, das ja als Niederdruckelement 42 ausgeführt ist, über das Druckumschaltventil 45 direkt in den Fluidbehälter 11 abgeleitet und wird nur mehr der Volumenstrom des Pumpelements 54, das als Hochdruckelement 55 ausgebildet ist, zum zweiten Hydraulickreis 9 umgeleitet. Somit steht auch im Hochdruckbetrieb am zweiten Druckanschluss 3 des Hydraulikkreises 9 ein um den Volumenstrom des Hochdruckelements 55 erhöhte Fördermenge zur Verfügung.In this exemplary embodiment, the mode of operation of the directional control valves 26 and 28 is as in FIG Fig. 3 described embodiment and is diverted from a hydraulic circuit 8, in which no device is connected to the pressure connection 2 or the connected device is idle, a part of the volume flow to the other hydraulic circuit 9. In this exemplary embodiment, the first fluid line 21 leading to the directional valve 26 not only carries the volume flow of the pump element 14, but also the volume flow of a further pump element 54 and can be diverted to the other hydraulic circuit 9 via the directional valve 26 become. While the pump element 14 is designed as a low-pressure element 42, which has a comparatively high delivery rate, the pump element 54 is designed as a high-pressure element 55, which has a comparatively small delivery rate. In the position of the directional control valve 26 shown, both volume flows of the pump elements 14 and 54 are thus diverted via the first connecting line 27 to the second hydraulic circuit 9. If no increased volume flow is required in this, since the connected device is idling, this diverted delivery rate is discharged via the return line 39 to the fluid container 11. If the pressure in the second hydraulic circuit 9 increases, this volume flow is directed to the second pressure connection 3, since the second directional valve 28 is switched via the control line 35 of the second hydraulic circuit. The delivery rate of the second hydraulic circuit 9 is then available at the pressure connection 3, increased by the delivery rate of the pump elements 14 and 54. In the event of a further pressure increase in the second hydraulic circuit 9, which causes a transition to the high pressure area, the volume flow of the pump element 14, which is designed as a low pressure element 42, is diverted directly into the fluid container 11 via the pressure switch valve 45 and is only the volume flow of the pump element 54, which is designed as a high-pressure element 55, is diverted to the second hydraulic circuit 9. Thus, even in high pressure operation at the second pressure connection 3 of the hydraulic circuit 9, a delivery quantity increased by the volume flow of the high pressure element 55 is available.

Analog dazu ist auch im zweiten Hydraulikkreis 9 ein zusätzliches Pumpelement 56 angeordnet, das als Hochdruckelement 57 ausgeführt ist und kann der am Druckanschluss 2 des ersten Hydraulikkreises 8 bereitgestellte Volumenstrom um die Fördermenge dieses Hochdruckelements 57 und gegebenenfalls auch um den Volumenstrom des Niederdruckelements 43 im zweiten Hydraulikkreis 9 erhöht werden. Durch diese Ausführungsform, bei der auch bei hohem Arbeitswiderstand und hohem Druckniveau ein Volumenstrom vom nicht aktiven Hydraulikkreis zum anderen Hydraulikkreis umgeleitet werden kann, kann auch bei hohem Arbeitswiderstand die Leistung des Antriebs 18 optimal ausgenutzt werden und die Arbeitsgeschwindigkeit eines Geräts auch bei hohem Arbeitswiderstand maximiert werden.Analogously to this, an additional pump element 56 is also arranged in the second hydraulic circuit 9, which is designed as a high pressure element 57 and can increase the volume flow provided at the pressure connection 2 of the first hydraulic circuit 8 by the delivery rate of this high pressure element 57 and possibly also by the volume flow of the low pressure element 43 in the second hydraulic circuit 9 can be increased. With this embodiment, in which a volume flow can be diverted from the non-active hydraulic circuit to the other hydraulic circuit even with high working resistance and high pressure level, the power of drive 18 can be optimally used even with high working resistance and the working speed of a device can be maximized even with high working resistance .

Die Ansteuerung der Druckumschaltventile 45 bzw. 48 erfolgt über Steuerleitungen 46 bzw. 49 mit dem auf die Hochdruckelemente 55 bzw. 57 wirkenden Fluiddruck.The pressure switching valves 45 and 48 are activated via control lines 46 and 49 with the fluid pressure acting on the high-pressure elements 55 and 57, respectively.

In Fig. 6 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform eines Hydraulikaggregats 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangen Fig. 1 bis 5 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die detaillierte Beschreibung in den vorangegangen Fig. 1 bis 5 hingewiesen bzw. Bezug genommen.In Fig. 6 a further and possibly independent embodiment of a hydraulic unit 1 is shown, with the same reference numerals or component designations for the same parts as in the preceding Figs. 1 to 5 be used. In order to avoid unnecessary repetition, the detailed description in the preceding sections is referred to Figs. 1 to 5 pointed out or referred to.

In dieser Ausführungsform des Hydraulikaggregats 1 kann der an einem Druckanschluss bereitgestellte Volumenstrom bei Bedarf um die Fördermenge aller Pumpelemente eines anderen Hydraulikkreis erhöht werden.In this embodiment of the hydraulic unit 1, the volume flow provided at a pressure connection can, if necessary, be increased by the delivery rate of all the pump elements of another hydraulic circuit.

Im Ausführungsbeispiel gemäß Fig. 6 kann beispielsweise der Volumenstrom der Pumpelemente 13 und 14 über das Wegelement 26 zum zweiten Hydraulikkreis 9 umgeleitet werden, wobei die Steuerung des Volumenstromes des Pumpelementes 14, das als Niederdruckelement 42 ausgeführt sein kann, wie anhand der vorhergehenden Ausführungsbeispiele erfolgt. Zur Umleitung des Volumenstromes des Pumpelementes 13, das als Hochdruckelement 40 ausgeführt ist, dient ein in der ersten Fluidleitung 20 angeordnetes Absperrventil 58 sowie eine zwischen Pumpelement 13 und Absperrventil 58 abgehende und zur weiteren ersten Fluidleitung 21 führende Übergangsleitung 59. Das Absperrventil 58 ist in seiner durch eine Feder 60 bewirkten Ausgangsstellung offen und kann der Volumenstrom des Pumpelements 13 zum Druckanschluss 2 des ersten Hydraulikkreises 8 gelangen. Ein Absperren des Absperrventils 58 erfolgt mittels einer Steuerleitung 61, die von der zweiten Fluidleitung 23 im zweiten Hydraulikkreis 9 zum Absperrventil 58 führt. Bei einem Druckanstieg im zweiten Hydraulikkreis 9 wird also die erste Fluidleitung 20 vom Pumpelement 13 zum Druckanschluss 2 abgesperrt und der Volumenstrom des Pumpelements 13 über die Übergangsleitung 59 zum Wegeventil 26 geführt, von dem es in Folge über die erste Verbindungsleitung 27 zum zweiten Hydraulikkreis 9 gelangt. Durch eine analoge Ausbildung des zweiten Hydraulikkreises 9 mit einem Absperrventil 62, einer Übergangsleitung 63 und einer Feder 64 kann in analogerweise der Volumenstrom des Pumpelements 16 zum ersten Hydraulikkreis 8 umgeleitet werden.In the embodiment according to Fig. 6 For example, the volume flow of the pump elements 13 and 14 can be diverted via the path element 26 to the second hydraulic circuit 9, with the control of the volume flow of the pump element 14, which can be designed as a low-pressure element 42, as in the previous embodiments. To divert the volume flow of the pump element 13, which is designed as a high-pressure element 40, a shut-off valve 58 arranged in the first fluid line 20 as well as a transition line 59 leading between the pump element 13 and shut-off valve 58 and leading to the further first fluid line 21 are used. The shut-off valve 58 is in its The initial position brought about by a spring 60 is open and the volume flow of the pump element 13 can reach the pressure connection 2 of the first hydraulic circuit 8. The shut-off valve 58 is shut off by means of a control line 61 which leads from the second fluid line 23 in the second hydraulic circuit 9 to the shut-off valve 58. When the pressure in the second hydraulic circuit 9 rises, the first fluid line 20 from the pump element 13 to the pressure connection 2 is shut off and the volume flow of the pump element 13 is guided via the transition line 59 to the directional control valve 26, from which it then passes via the first connection line 27 to the second hydraulic circuit 9 . By analogous design of the second hydraulic circuit 9 with a shut-off valve 62, a transition line 63 and a spring 64, the volume flow of the pump element 16 can be diverted to the first hydraulic circuit 8 in an analogous manner.

Auf diese Weise können auch die Volumenströme weiterer nicht dargestellter Pumpelemente von jeweils anderen Hydraulikkreis angefordert werden und dadurch automatisch die am jeweiligen Druckanschluss bereitgestellte Fördermenge erhöht werden.In this way, the volume flows of other pump elements (not shown) can also be requested by the other hydraulic circuit in each case, and the delivery rate provided at the respective pressure connection can thereby be automatically increased.

Dadurch, dass beide Hydraulikkreise 8 und 9 im dargestellten Ausführungsbeispiel eine derartige Übergangsfunktion oder Umleitungsfunktion aufweisen, kann nur der Hydraulikkreis, der zeitlich vor dem anderen Hydraulikkreis die Volumenströme der anderen Pumpelemente anfordert, die erhöhte Fördermenge am Druckanschluss bereitstellen. Die Aktivierung der Absperrventile 58, 62 erfolgt bei einem Druck unter etwa 25 bar, wodurch bei nicht betätigten Geräten, also im Leerlaufbetrieb, an beiden Druckanschlüssen der erforderliche Basisdruck zur Verfügung steht und das jeweils früher aktivierte Gerät den Volumenstrom aller Pumpelemente zur Verfügung gestellt bekommt.Because both hydraulic circuits 8 and 9 have such a transition function or diversion function in the illustrated embodiment, only the hydraulic circuit that requests the volume flows of the other pump elements before the other hydraulic circuit can provide the increased delivery rate at the pressure connection. The shut-off valves 58, 62 are activated at a pressure below about 25 bar, which means that the required base pressure is available at both pressure connections when devices are not operated, i.e. in idle mode, and the device activated earlier receives the volume flow of all pump elements.

In den Übergangsleitungen 59 und 60 sind weiters vorteilhafterweise Drosselelemente 65 bzw. 66 angeordnet, mit denen in der ersten Fluidleitung 20 bzw. der zweiten Fluidleitung 23 ein Staudruck aufgebaut wird, der für die gegebenenfalls erforderliche Ansteuerung der Wegeventile 26, 28 bzw. der Absperrventile 58, 62 dient.In the transition lines 59 and 60, throttle elements 65 and 66 are also advantageously arranged, with which a dynamic pressure is built up in the first fluid line 20 and the second fluid line 23, which is necessary for the possibly required control of the directional control valves 26, 28 or the shut-off valves 58 , 62 serves.

Das Hydraulikfluid 10 gelangt vorteilhafterweise über Saugleitungen vom Fluidbehälter 11 zu den Pumpelementen.The hydraulic fluid 10 advantageously reaches the pump elements from the fluid container 11 via suction lines.

Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten des Hydraulikaggregats 1, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten desselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.The exemplary embodiments show possible design variants of the hydraulic unit 1, whereby it should be noted at this point that the invention is not limited to the specially illustrated design variants of the same, but rather various combinations of the individual design variants with one another are possible and this possible variation based on the teaching on technical action The present invention is within the ability of those skilled in this technical field.

Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.All information on value ranges in the objective description should be understood to include any and all sub-ranges, e.g. The indication 1 to 10 is to be understood in such a way that all sub-areas, starting from the lower limit 1 and the upper limit 10, are included, i.e. all subranges start with a lower limit of 1 or greater and end at an upper limit of 10 or less, e.g. 1 to 1.7, or 3.2 to 8.1, or 5.5 to 10.

Abschließend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.Finally, it should be noted that in the differently described embodiments, the same parts are provided with the same reference numerals or the same component names, whereby the disclosures contained in the entire description can be transferred accordingly to the same parts with the same reference numerals or the same component names. The location details chosen in the description, such as above, below, to the side, etc., referring to the figure immediately described and shown, and if there is a change in position, these position details are to be transferred to the new position accordingly.

Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus des Hydraulikaggregats 1 dieses bzw. dessen Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden. Bezugszeichenaufstellung 1 Hydraulikaggregat 31 Feder 2 Druckanschluss 32 Betätigungsglied 3 Druckanschluss 33 Betätigungsglied 4 Gerät 34 Steuerleitung 5 Gerät 35 Steuerleitung 6 Fluidzuführung 36 Bergegerät 7 Fluidrückführung 37 Schaltventil 8 Hydraulikkreis 38 Rücklaufanschluss 9 Hydraulikkreis 39 Rücklaufleitung 10 Hydraulikfluid 40 Hochdruckelement 11 Fluidbehälter 41 Hochdruckelement 12 Pumpenanordnung 42 Niederdruckelement 13 Pumpelement 43 Niederdruckelement 14 Pumpelement 44 Rückschlagventil 15 Pumpenanordnung 45 Druckumschaltventil 16 Pumpelement 46 Steuerleitung 17 Pumpelement 47 Feder 18 Antrieb 48 Druckumschaltventil 19 Verbrennungsmotor 49 Steuerleitung 20 Erste Fluidleitung 50 Feder 21 Erste Fluidleitung 51 Druckbegrenzungsventil 22 Erste Sammelleitung 52 Druckentlastungsventil 23 Zweite Fluidleitung 53 Druckbegrenzungsventil 24 Zweite Fluidleitung 54 Pumpelement 25 Zweite Sammelleitung 55 Hochdruckelement 26 Erstes Wegeventil 56 Pumpelement 27 Erste Verbindungsleitung 57 Hochdruckelement 28 Zweites Wegeventil 58 Absperrventil 29 Zweite Verbindungsleitung 59 Übergangsleitung 30 Feder 60 Feder 61 Steuerleitung 62 Absperrventil 63 Übergangsleitung 64 Feder 65 Drosselelement 66 Drosselelement For the sake of clarity, it should finally be pointed out that for a better understanding of the structure of the hydraulic unit 1, this or its components have been shown partially not to scale and / or enlarged and / or reduced. <b> List of reference symbols </b> 1 Hydraulic power pack 31 feather 2 Pressure connection 32 Actuator 3 Pressure connection 33 Actuator 4th device 34 Control line 5 device 35 Control line 6th Fluid supply 36 Recovery device 7th Fluid return 37 Switching valve 8th Hydraulic circuit 38 Return connection 9 Hydraulic circuit 39 Return line 10 Hydraulic fluid 40 High pressure element 11 Fluid container 41 High pressure element 12 Pump arrangement 42 Low pressure element 13 Pumping element 43 Low pressure element 14th Pumping element 44 check valve 15th Pump arrangement 45 Pressure switching valve 16 Pumping element 46 Control line 17th Pumping element 47 feather 18th drive 48 Pressure switching valve 19th Internal combustion engine 49 Control line 20th First fluid line 50 feather 21st First fluid line 51 Pressure relief valve 22nd First collecting line 52 Pressure relief valve 23 Second fluid line 53 Pressure relief valve 24 Second fluid line 54 Pumping element 25th Second collecting line 55 High pressure element 26th First directional valve 56 Pumping element 27 First connection line 57 High pressure element 28 Second directional valve 58 Shut-off valve 29 Second connection line 59 Interim management 30th feather 60 feather 61 Control line 62 Shut-off valve 63 Interim management 64 feather 65 Throttle element 66 Throttle element

Claims (11)

  1. A hydraulic unit (1) comprising at least two pressure connections (2, 3) for the required supply of one or more hydraulically driven devices (4, 5), in particular hydraulic rescue devices, with hydraulic fluid (10) from a fluid container (11), comprising a first hydraulic circuit (8) with a first pump arrangement (12) consisting of at least two first pump elements (13, 14) from which first fluid lines (20, 21) lead to a first pressure connection (2), at least one second hydraulic circuit (9) with a second pump arrangement (15) consisting of at least two second pump elements (16, 17) from which second fluid lines (23, 24) lead to a second pressure connection (3), wherein the first pump elements (13, 14) and the second pump elements (16, 17) are driven at the same time by a common drive (18), and wherein by means of a first directional valve (26) arranged in one of the first fluid lines (21), the volume flow of said first fluid line (21) can be diverted via a first connecting line (27) to a second fluid line (24) in the second hydraulic circuit (9), and by means of a second directional valve (28) arranged in one of the second fluid lines (24), the volume flow of said second fluid line (24) can be diverted via a second connecting line (29) to a first fluid line (21) in the first hydraulic circuit (8), wherein the directional valves (26, 28) comprise a spring (30, 31) acting in the direction of an initial position and a first control line (34) runs from the first hydraulic circuit (8) or from the second hydraulic circuit (9) to a first actuator (32) acting on the first directional valve (26) and a second control line (35) runs from the second hydraulic circuit (9) or from the first hydraulic circuit (8) to a second actuator (33) acting on the second directional valve (28), wherein the first pump elements (13, 14) comprise at least one high pressure element (40) with a lower flow rate at a reference intensity of the drive (18) and at least one low pressure element (42) with a higher flow rate at the reference intensity, and the second pump elements (16, 17) comprise at least one high pressure element (41) with a lower flow rate and at least one low pressure element (43) with a higher flow rate, and each of the first and second directional valves (26, 28) are arranged in the fluid lines (21, 24) leading away from the low pressure elements (42, 43).
  2. The hydraulic unit (1) according to claim 1, characterized in that the first and/or second control line (34, 35) is designed as a hydraulic control line and acts directly or by means of a pilot valve on the second and/or first directional valve (28, 26).
  3. The hydraulic unit (1) according to claim 1, characterized in that the first and/or second control line (34, 35) is designed as an electric control line and, by means of an electromagnetic adjusting unit, acts directly or with a pilot element on the second directional valve and/or first directional valve (28, 26).
  4. The hydraulic unit (1) according to claim 1, characterized in that the flow rate of the low pressure elements (42, 43) of a hydraulic circuit (8, 9) amounts to at least double the flow rate of the high pressure elements (40, 41) of the same hydraulic circuit (8, 9).
  5. The hydraulic unit (1) according to one of claims 1 to 4, characterized in that, in the initial position of the directional valves (26, 28), a flow path is opened by said directional valves (26, 28), from the respective fluid line (21, 24) of one hydraulic circuit (8, 9) to the connecting line (27, 29) to the other hydraulic circuit (9, 8).
  6. The hydraulic unit (1) according to one of claims 1 to 5 characterized in that the first connecting line (27) runs from the first directional valve (26) to the second directional valve (28) and the second connecting line (29) runs from the second directional valve (28) to the first directional valve (26), wherein the second directional valve (28) can form a flow path from the first connecting line (27) in a first switch position to a second fluid line (24) leading to a second pressure connection (3) and, in an additional switch position, to the fluid container (11), and the first directional valve (26) can form a flow path from the second connecting line (29) in a first switching position to a first fluid line (21) leading to the first pressure connection (2) and, in an additional switching position, to the fluid container (11).
  7. The hydraulic unit (1) according to claim 6, characterized in that a hydraulic circuit (8) comprises at least two high pressure elements (40, 55), at least one of which is connected via a fluid line (20) directly to the pressure connection (2), and at least one can be connected by the directional valve (26) to another hydraulic circuit (9).
  8. The hydraulic unit (1) according to one of claims 1 to 7, characterized in that all first fluid lines (21, 22) can be connected by means of one or more first directional valves (26) and by means of one or more first connecting lines (27, 59) to at least one second fluid line (23, 24) of the second hydraulic circuit (9) and/or all second fluid lines (23, 24) can be connected by means of one or multiple second directional valves (28) and by means of one or more second connecting lines (29, 63) to at least one first fluid line (20, 21) of the first hydraulic circuit (8).
  9. The hydraulic unit (1) according to one of claims 1 to 8, characterized in that in one of the fluid lines (21) of a hydraulic circuit (8), following a pump element (14), a pressure switching valve (45) is arranged, which is controlled by a pressure control line (46) coming from another fluid line (20) of the same hydraulic circuit (8), whereby with an increase in pressure in the other fluid line (20) a flow path from the pump element (14) to the fluid container (11) is created by the pressure switching valve (45).
  10. The hydraulic unit (1) according to one of claims 1 to 9, characterized in that the first pump elements (13, 14) and the second pump elements (16, 17) are arranged relative to one another as in a radial piston pump.
  11. The hydraulic unit (1) according to one of claims 1 to 10, characterized in that suction lines lead from the pump elements (13, 14, 16, 17, 40, 41, 42, 43, 54, 55, 56, 57) into the fluid container (11).
EP15188200.8A 2014-10-08 2015-10-02 Hydraulic assembly Active EP3012463B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50717/2014A AT516181B1 (en) 2014-10-08 2014-10-08 hydraulic power unit

Publications (2)

Publication Number Publication Date
EP3012463A1 EP3012463A1 (en) 2016-04-27
EP3012463B1 true EP3012463B1 (en) 2020-09-02

Family

ID=54252203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15188200.8A Active EP3012463B1 (en) 2014-10-08 2015-10-02 Hydraulic assembly

Country Status (3)

Country Link
US (1) US10041508B2 (en)
EP (1) EP3012463B1 (en)
AT (1) AT516181B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168711B2 (en) * 2019-10-24 2021-11-09 Deere & Company Hydraulic system for a multi-function machine
CN110762071B (en) * 2019-11-01 2021-07-06 中国海洋石油集团有限公司 Hydraulic power system for underground equipment and underground equipment
AT524855B1 (en) 2021-06-18 2022-10-15 Weber Hydraulik Gmbh Hydraulic unit for supplying hydraulically driven rescue equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO124443B (en) * 1970-04-22 1972-04-17 Ingebret Soeyland
FR2259255B1 (en) * 1974-01-30 1976-11-26 Poclain Sa
JPS51101682A (en) * 1975-03-03 1976-09-08 Hitachi Construction Machinery YUATSUSHOBERUNOYUATSUKAIRO
US3955474A (en) * 1975-03-19 1976-05-11 J. I. Case Company Fluid pressure system having pumps and valves
US4000616A (en) * 1976-03-15 1977-01-04 J. I. Case Company Multi-engine multi-pump hydraulic summating system
US4044786A (en) * 1976-07-26 1977-08-30 Eaton Corporation Load sensing steering system with dual power source
FR2437512A1 (en) * 1978-09-28 1980-04-25 Ppm Sa Rotatable joint for multiple hydraulic circuits - has parallel holes in inner cylinder connected to grooves in outer sleeve
JPS58213929A (en) * 1982-06-03 1983-12-13 Hitachi Constr Mach Co Ltd Oil-pressure circuit for construction machine
JPS6053681U (en) * 1983-09-22 1985-04-15 株式会社小松製作所 Hydraulic circuit for steering and work equipment
JPS61204427A (en) * 1985-03-06 1986-09-10 Hitachi Constr Mach Co Ltd Hydraulic circuit for civil engineering and construction machine
JPH061608A (en) * 1992-06-19 1994-01-11 Teijin Ltd Production of conductive oxide thin film
DE4440093A1 (en) * 1994-11-10 1996-05-15 Philips Patentverwaltung Hand-held telephone, e.g. Mobile phone
JPH1061608A (en) * 1996-08-26 1998-03-06 Hitachi Constr Mach Co Ltd Hydraulic driving device
JPH111682A (en) * 1997-06-16 1999-01-06 Lion Corp Antistatic agent for acrylic resin and acrylic resin composition containing the same
AT3018U1 (en) * 1998-06-12 1999-08-25 Weber Hydraulik Gmbh CONTROL DEVICE FOR HYDRAULIC WORK TOOLS
US6892535B2 (en) * 2002-06-14 2005-05-17 Volvo Construction Equipment Holding Sweden Ab Hydraulic circuit for boom cylinder combination having float function
KR101011992B1 (en) * 2002-11-07 2011-01-31 보쉬 렉스로트 아게 Double-circuit hydraulic system
WO2005047709A1 (en) * 2003-11-14 2005-05-26 Komatsu Ltd. Hydraulic pressure control device of construction machinery
US8051651B2 (en) * 2007-08-30 2011-11-08 Coneqtec Corp. Hydraulic flow control system
KR101534697B1 (en) * 2013-05-09 2015-07-07 현대자동차 주식회사 Oil suppply system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT516181B1 (en) 2016-03-15
US10041508B2 (en) 2018-08-07
US20160102687A1 (en) 2016-04-14
EP3012463A1 (en) 2016-04-27
AT516181A4 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
EP1915538B1 (en) Circuit for controlling a double-action hydraulic drive cylinder
EP1828642B1 (en) Hydrostatic drive with speed limitation
EP1574474A2 (en) Hydraulic arrangement
EP2613058B1 (en) Système hydraulique
EP3012463B1 (en) Hydraulic assembly
DE4108915C2 (en) Hydraulic device for supplying pressure medium to a privileged primary load circuit
CH708877B1 (en) Hydraulic valve arrangement with control / regulation function and associated return valve.
DE102015218832A1 (en) Pump-controller combination with power limitation
EP2672124A2 (en) Hydraulic system and pressure limiting valve
DE102012208938A1 (en) Hydraulic control device for mobile working machine e.g. hydraulic excavators, has delivery pressure regulator that includes shuttle valve connected to steering pressure and pump pressure, such that pressure set-point is derived
DE102012001369A1 (en) Adjustable hydraulic pump
DE102006046854B4 (en) Hydrostatic adjustment unit with a servo system and a servo unit controlling the valve unit
CH708876B1 (en) Hydraulic valve arrangement with control / regulation function and associated return valve.
EP2929217B1 (en) Device for controlling the operation of a ventilator, which can be driven by a hydraulic motor, of a cooling device
DE102009038377A1 (en) Hydraulic arrangement for controlling clutches of adjustable torque distributor device in motor vehicle, has common supply connected with high pressure circuit behind branch to low pressure circuit by valve closed against pumping direction
EP3135924B1 (en) Hydraulic device
DE102007051185A1 (en) Hydrostatic drive for use in vehicle, has valve units connected with control lines arranged downstream of motor and connected with operating control, where valve units control operating control based on operating condition of drive
EP1954949B1 (en) Hydraulic control device
DE102012220445A1 (en) Hydraulic control device for hydraulic drive, has pressure relief valves switched parallel to each other, where fluidic connection of pressure relief valve with medium-sink is enhanced based on driving direction of actuator
DE102016105159A1 (en) Hydraulic system of a land or building usable vehicle
EP3135625B1 (en) Hydraulic device for a hydraulically actuated raisable and lowerable hook of a crane
AT524855B1 (en) Hydraulic unit for supplying hydraulically driven rescue equipment
DE102020209387B3 (en) Preselection valve, hydraulic valve bank and hydraulic control device
DE102015204333A1 (en) Pressure medium feed for a hydrostatic drive
DE102016201971A1 (en) Hydraulic drive device with load-dependent pressure divider

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161027

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190701

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEBER-HYDRAULIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013369

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

26N No opposition filed

Effective date: 20210603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1309140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230906

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230904

Year of fee payment: 9