EP3011807B1 - Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves - Google Patents

Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves Download PDF

Info

Publication number
EP3011807B1
EP3011807B1 EP14744363.4A EP14744363A EP3011807B1 EP 3011807 B1 EP3011807 B1 EP 3011807B1 EP 14744363 A EP14744363 A EP 14744363A EP 3011807 B1 EP3011807 B1 EP 3011807B1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic waves
plasma
plasma chamber
waveguide
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14744363.4A
Other languages
German (de)
French (fr)
Other versions
EP3011807A1 (en
Inventor
Stephan Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eeplasma GmbH
Original Assignee
Eeplasma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51228455&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3011807(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eeplasma GmbH filed Critical Eeplasma GmbH
Publication of EP3011807A1 publication Critical patent/EP3011807A1/en
Application granted granted Critical
Publication of EP3011807B1 publication Critical patent/EP3011807B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides

Definitions

  • the present invention relates to a device for the treatment of process gases in a plasma excited by in particular high-frequency electromagnetic waves comprising a plasma chamber, a generator for generating the electromagnetic waves and a waveguide arrangement for supplying the electromagnetic waves in the plasma chamber. Furthermore, the invention relates to a method for the treatment of process gases in a plasma, are generated in the electromagnetic waves and fed to a plasma chamber.
  • Plasma devices have been known in the art for decades and are used as external plasma sources for isotropically etching different layers on semiconductor substrates and removing damaged silicon layers on the back side of the semiconductor substrate after mechanical thin grinding of the silicon substrates. Furthermore, external plasma sources are used for cleaning process chambers for coating processes of so-called chemical vapor deposition processes with and without plasma assistance. Further, they are used for conditioning surfaces of plastics and other materials by excited oxygen, nitrogen or hydrogen. Another field of application is the decomposition of grossly polluting greenhouse gases such as carbon tetrafluoride, sulfur hexafluoride and nitrogen trifluoride, etc., which are used in the course of the production of integrated circuits as process gases and are only partially consumed in the individual process steps.
  • greenhouse gases such as carbon tetrafluoride, sulfur hexafluoride and nitrogen trifluoride, etc.
  • the document SU 397139 discloses a device having a vacuum chamber in which a plasma excited by electromagnetic waves can be formed, and a generator for generating the electromagnetic waves. On the inner wall of the vacuum chamber, a dielectric resonator is provided.
  • the document US 6,198,224 B1 discloses a device with a plasma chamber in which a dielectric container is located. The plasma chamber is surrounded by at least one waveguide resonator. In the arranged between the respective waveguide resonator and the plasma chamber wall slots are provided, can be coupled by the electromagnetic waves from the waveguide resonator in the plasma chamber.
  • the object of the invention is to provide a device and a method for the treatment of process gases in a plasma, which is suitable by its design features and method steps, even at higher powers of the electromagnetic waves to distribute the supplied energy as evenly as possible over the gas discharge chamber.
  • This object is achieved by a device for the treatment of process gases in a plasma excited by electromagnetic waves having the features of claim 1.
  • the device comprises a plasma chamber lined with a dielectric, a generator for generating the electromagnetic waves and a waveguide arrangement for feeding the electromagnetic waves into the plasma chamber, the waveguide arrangement having at least two feed points, each having an E-field waveguide branch, to feed the electromagnetic waves as continuous waves in the dielectric.
  • a multi-sided feeding of the electromagnetic waves is advantageous over a one-sided feed, as this can form a comparatively uniform plasma density over the entire circumference of the plasma chamber.
  • the dielectric, in particular a hollow cylinder, in particular a hollow ceramic cylinder, which covers the inner surfaces of a plasma chamber housing, is therefore uniformly thermally stressed. As a result, a large process window with regard to the parameters gas flow, process pressure and fed microwave power can be ensured.
  • the feed points are arranged distributed uniformly around the plasma chamber or the dielectric. With two feed sources, these are then preferably arranged on opposite sides of the plasma chamber. In the case of an even number of feed sources, two feed sources are preferably arranged on opposite sides of the plasma chamber. In principle, however, an odd number of supply sources is possible. An even distribution is also present when the feed sources are arranged substantially uniformly distributed around the plasma chamber.
  • the waveguide arrangement is designed such that superimpose constructively coherent from various, in particular all feed points fed electromagnetic waves, in particular in the center of the plasma chamber.
  • the device may be designed such that the electromagnetic waves fed by the feed points are generated by a single or common generator.
  • the waveguide arrangement may comprise at least one waveguide branch to supply the electromagnetic waves to multiple feed points, wherein the lengths of the respective sections of the waveguide array from the respective waveguide branch to the respective feed points are equal to or different from each other by a multiple of half the wavelength of the electromagnetic waves.
  • the respective feed point has an oscillator element which forms an oscillator together with the respective E-field waveguide branching.
  • the inner cross section of the respective section of the waveguide arrangement, with which the waveguide arrangement rests against the dielectric is completely covered by the dielectric.
  • a device for treating process gases in an electromagnetic wave excited plasma comprising a plasma chamber lined with a dielectric, a generator for generating the electromagnetic waves and a waveguide arrangement for feeding the electromagnetic waves into the plasma chamber the inner cross section of the respective section of the waveguide arrangement, with which the waveguide arrangement bears against the dielectric, is completely covered by the dielectric.
  • an ignition device for igniting a plasma is provided in the plasma chamber, wherein the ignition device comprises an ignition element with at least one elongated ignition section. With such an ignition device ignition of the plasma can be achieved even at low power of the injected electromagnetic wave.
  • the ignition device in particular the ignition element, be designed such that the longitudinal axis of the or at least one ignition section is oriented at an angle of at most 45 °, in particular at least substantially parallel to the propagation direction of the electromagnetic waves at least one feed point.
  • the invention relates to a method for the treatment of process gases in an electromagnetic wave excited plasma, in which generates the electromagnetic waves and lined with a dielectric Plasma chamber are supplied such that the electromagnetic waves are fed to at least two, each having an E-field waveguide junction having feed points as continuous waves in the dielectric.
  • Electromagnetic waves in particular microwaves, in particular with the customary and ex officio approved frequencies of 2.45 GHz, 5.8 GHz and 915 MHz, are used in the device and the method according to the invention.
  • the electromagnetic waves become corresponding Fig. 1 to 3 generated in a microwave generator 11 and passed by means of a waveguide 12 via a tuning device 13 to a plasma chamber housing 14, in which a ceramic cylinder 16 or a tube or a tube is inserted.
  • the electromagnetic waves are conducted directly to the plasma chamber housing 14 ( Fig.1 ) or at a particular first waveguide branch 15a split in pairs and - if desired - branched again at two other waveguide branches 15b and led to the plasma chamber housing 14 and then passed to the ceramic cylinder 16, where they through E-field waveguide branches 18 as running waves in the Ceramic can spread ( Fig. 2 and Fig. 3 ).
  • the boundaries of the electromagnetic waves in the ceramic form on the one hand the inner surfaces of the plasma chamber housing 14 made of metal and on the other hand, a layer of high electron concentration in the plasma, which forms near the inner surface of the ceramic cylinder 16.
  • a first device according to the invention and a method described which is predominantly applied under atmospheric pressure is preferred at a pressure in the range between 10 kPa and 1 MPa, wherein the electromagnetic wave in the present device is supplied from both sides of the plasma chamber 25.
  • the electromagnetic wave can also be supplied only from one side of the plasma chamber 25 and the opposite opening for feeding the microwave is in this case closed or even not present at all.
  • the coaxial outer conductor may be formed by the inner surface 29 of the plasma chamber housing 14, and the coaxial inner conductor by the frusto-conical plasma cloud 25.
  • a two-sided feed by means of constructive coherent waves 17 compared to a one-sided feeding of the microwave advantageous, since thereby already at the feed level a perfect coaxial TM mode 19 is formed, which stabilizes the plasma well over a very large process window in terms of gas flow and fed microwave power.
  • the electric field of the electromagnetic wave is shown schematically by the vectors 27. As is clear from the Fig. 4 and 5 results, the inner cross section of the rectangular waveguide 12 is completely covered at the feed points of the ceramic cylinder 16.
  • an oscillator pin 28 is advantageous, in each case an oscillator is formed, which consists of an E-field waveguide branch 18 in the ceramic cylinder 16 and the adjacent oscillator pin 28 consists.
  • the position, the height and the cross section of the oscillator pin 28 are chosen so that the incoming wave is almost completely fed via the E-field waveguide branch 18 into the ceramic cylinder 16.
  • the cross section of the oscillator pin 28 can be round, elliptical or rectangular, but also have a different shape. A remaining vote of the plasma devices in Fig.1 to Fig. 3 takes place via the tuning devices 13.
  • the process gas is introduced through in particular two gas inlets 21 tangentially to the ceramic cylinder 16 in the plasma chamber 25 in order to generate there a rotating flow in the direction of the gas outlet 24.
  • the plasma is ignited by an igniter 37, in detail 37a or 37b (FIG. FIGS. 8 and 9 ) ignited and spreads frusto-conical over the entire length of the ceramic cylinder 16 to a reactor cylinder 34, which consists of a refractory metal alloy.
  • a further device according to the invention and a method is described, which is mainly used in the low pressure range, preferably at a pressure in the range between 10 Pa and 1500 Pa, more preferably at a pressure in the range between 30 Pa and 300 Pa, wherein the electromagnetic wave in the present device is supplied from both sides of the plasma chamber 25, in which case the electric field of the shaft is perpendicular to the axis of the ceramic cylinder 16.
  • the electromagnetic wave can also be supplied only from one side of the plasma chamber 25 and the opposite opening for feeding the microwave is in this case closed or even not present at all.
  • an H-mode of the electromagnetic wave may be formed with a waveguide surface formed by the inner surface 29 of the plasma chamber housing 14 and the opposite surface by the high plasma density 35 near the ceramic surface in the plasma chamber 25.
  • a double-sided feed by means of constructive coherent waves 17 is advantageous over a one-sided feed of the microwave, as a uniform plasma density over the entire circumference of the ceramic cylinder 16 is formed, which has a uniform thermal load of the ceramic cylinder 16 result and thereby a very large Process window with regard to gas flow, process pressure and injected microwave power allowed.
  • the electric field of the electromagnetic wave is shown schematically by the vectors 27. As is clear from the Fig. 6 and 7 results, the inner cross section of the rectangular waveguide 12 is completely covered at the feed points of the ceramic cylinder 16.
  • an oscillator pin 28 is advantageous, in each case an oscillator is formed, which consists of an E-field waveguide branch 18 in the ceramic cylinder 16 and the adjacent oscillator pin 28.
  • the position, the height and the cross section of the oscillator pin 28 are chosen so that the incoming wave is almost completely fed via the E-field waveguide branch 18 into the ceramic cylinder 16.
  • the cross section of the oscillator pin 28 can be round, elliptical or rectangular, but also have a different shape. A remaining vote of the plasma devices in Fig.1 to Fig. 3 takes place via the tuning devices 13.
  • the process gas is admitted through two gas inlets 22 and 23, with the gas inlet 22 opening onto the rear side of the ceramic cylinder 16, and the gas inlet 23 opposite to the gas outlet 24.
  • the gas inlet 22 on the rear side of the ceramic cylinder 16 serves to better cool the ceramic cylinder 16 in the case the operation of the plasma device at very low pressure.
  • ceramic components 26 are additionally inserted, which seal the process gas from the environment by means of vacuum seals 36.
  • a gas inlet is provided which enters the plasma chamber in the area of the cylindrical surface of the ceramic cylinder.
  • Ignition devices 37 are shown, in particular for the device in Fig. 4 and Fig. 5 , which is mainly used for plasma at atmospheric pressure, wherein in Fig. 8 a rectangular plate 37 a with rounded edges is aligned in its longitudinal axis to the directions of incidence of the electromagnetic wave.
  • this plate 37a for example by means of a rod, raised in the plane of the rectangular waveguide 14, and there is a corresponding field strength in the center of the plate 37a, which is sufficient to ignite the plasma even at low power of the injected electromagnetic wave ,
  • the plate 37a may also be sharpened at its ends arrow-shaped or semi-circular shaped.
  • Fig. 9 Fig. 3 is a star-shaped plate 37b with 6 ends shown, whose ends are formed as well as the ends of the plate 37a.
  • the advantage of plate 37b over plate 37a is given by the fact that in each rotational position of the plate 37b, a reliable ignition of the plasma takes place.
  • the ignition device 37 may also have 5, 7, 8 and even more ends.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Behandlung von Prozessgasen in einem Plasma angeregt durch insbesondere hochfrequente elektromagnetische Wellen umfassend eine Plasmakammer, einen Generator zur Erzeugung der elektromagnetischen Wellen und eine Hohlleiteranordnung zur ZufĂĽhrung der elektromagnetischen Wellen in die Plasmakammer. Ferner betrifft die Erfindung ein Verfahren zur Behandlung von Prozessgasen in einem Plasma, bei dem elektromagnetische Wellen erzeugt und einer Plasmakammer zugefĂĽhrt werden.The present invention relates to a device for the treatment of process gases in a plasma excited by in particular high-frequency electromagnetic waves comprising a plasma chamber, a generator for generating the electromagnetic waves and a waveguide arrangement for supplying the electromagnetic waves in the plasma chamber. Furthermore, the invention relates to a method for the treatment of process gases in a plasma, are generated in the electromagnetic waves and fed to a plasma chamber.

Plasmavorrichtungen sind seit Jahrzehnten als Stand der Technik bekannt und werden als externe Plasmaquellen zum isotropen Ätzen von unterschiedlichen Schichten auf Halbleitersubstraten sowie zum Entfernen geschädigter Siliziumschichten auf der Rückseite des Halbleitersubstrats nach einem mechanischen Dünnschleifen der Siliziumsubstrate verwendet. Ferner werden externe Plasmaquellen zum Reinigen von Prozesskammern für Beschichtungsprozesse von so genannten chemischen Gasphasenabscheideprozessen mit und ohne Plasmaunterstützung verwendet. Weiter werden sie zur Konditionierung von Oberflächen von Kunststoffen und anderen Materialien durch angeregten Sauerstoff, Stickstoff oder Wasserstoff verwendet. Ein weiteres Anwendungsfeld ist das Zerlegen von grob umweltschädlichen Treibhausgasen wie Kohlenstofftetrafluorid, Schwefelhexafluorid und Stickstofftrifluorid etc., die im Zuge der Herstellung von integrierten Schaltkreisen als Prozessgase verwendet werden und bei den einzelnen Prozessschritten nur teilweise verbraucht werden. Diese unverbrauchten Prozessgase werden entweder in Niederdruckplasmavorrichtungen zerlegt, welche in die Vakuumpumpleitungen der Ätzanlagen integriert sind, oder in Atmosphärendruckplasmavorrichtungen aufgespalten, die der Vakuumpumpe nachgeschaltet sind. Die aufgespalteten Prozessgase werden anschließend standardgemäß in Gaswäschern beziehungsweise Gasabsorbern entsorgt. Das Dokument WO 2013/029593 A2 offenbart eine Vorrichtung zur Erzeugung eines kalten Plasmas unter Standard Atmosphärischen Bedingungen durch Einbringung von Mikrowellenstrahlung in eine Plasmakammer und anschließender Überlagerung mehrerer Wellen in konstruktiver Interferenz.Plasma devices have been known in the art for decades and are used as external plasma sources for isotropically etching different layers on semiconductor substrates and removing damaged silicon layers on the back side of the semiconductor substrate after mechanical thin grinding of the silicon substrates. Furthermore, external plasma sources are used for cleaning process chambers for coating processes of so-called chemical vapor deposition processes with and without plasma assistance. Further, they are used for conditioning surfaces of plastics and other materials by excited oxygen, nitrogen or hydrogen. Another field of application is the decomposition of grossly polluting greenhouse gases such as carbon tetrafluoride, sulfur hexafluoride and nitrogen trifluoride, etc., which are used in the course of the production of integrated circuits as process gases and are only partially consumed in the individual process steps. These unconsumed process gases are either decomposed into low pressure plasma devices integrated into the vacuum pumping lines of the etchers, or into atmospheric pressure plasma devices split, which are connected downstream of the vacuum pump. The split process gases are then disposed of by default in gas scrubbers or gas absorbers. The document WO 2013/029593 A2 discloses a device for generating a cold plasma under standard atmospheric conditions by introducing microwave radiation into a plasma chamber and then superposing a plurality of waves in constructive interference.

Das Dokument SU 397139 offenbart eine Vorrichtung mit einer Vakuumkammer, in der ein durch elektromagnetische Wellen angeregtes Plasma entstehen kann, und mit einem Generator zur Erzeugung der elektromagnetischen Wellen. An der Innenwand der Vakuumkammer ist ein dielektrischer Resonator vorgesehen.
Das Dokument US 6,198,224 B1 offenbart eine Vorrichtung mit einer Plasmakammer, in der sich ein dielektrischer Behälter befindet. Die Plasmakammer ist von wenigstens einem Hohlleiterresonator umgeben. In der zwischen dem jeweiligen Hohlleiterresonator und der Plasmakammer angeordneten Wand sind Schlitze vorgesehen, durch die elektromagnetische Wellen aus dem Hohlleiterresonator in die Plasmakammer eingekoppelt werden können.
Aufgabe der Erfindung ist es, eine Vorrichtung und ein Verfahren zur Behandlung von Prozessgasen in einem Plasma bereitzustellen, das durch seine Konstruktionsmerkmale und Verfahrensschritte geeignet ist, auch bei höheren Leistungen der elektromagnetischen Wellen die zugeführte Energie möglichst gleichmäßig über die Gasentladungskammer zu verteilen.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung zur Behandlung von Prozessgasen in einem durch elektromagnetische Wellen angeregten Plasma mit den Merkmalen des Anspruchs 1 gelöst. Die Vorrichtung umfasst eine Plasmakammer, die mit einem Dielektrikum ausgekleidet ist, einen Generator zur Erzeugung der elektromagnetischen Wellen und eine Hohlleiteranordnung zur Zuführung der elektromagnetischen Wellen in die Plasmakammer, wobei die Hohlleiteranordnung wenigstens zwei Einspeisungsstellen aufweist, die jeweils eine E-Feld-Hohlleiterverzweigung aufweisen, um die elektromagnetischen Wellen als fortlaufende Wellen in das Dielektrikum einzuspeisen.
The document SU 397139 discloses a device having a vacuum chamber in which a plasma excited by electromagnetic waves can be formed, and a generator for generating the electromagnetic waves. On the inner wall of the vacuum chamber, a dielectric resonator is provided.
The document US 6,198,224 B1 discloses a device with a plasma chamber in which a dielectric container is located. The plasma chamber is surrounded by at least one waveguide resonator. In the arranged between the respective waveguide resonator and the plasma chamber wall slots are provided, can be coupled by the electromagnetic waves from the waveguide resonator in the plasma chamber.
The object of the invention is to provide a device and a method for the treatment of process gases in a plasma, which is suitable by its design features and method steps, even at higher powers of the electromagnetic waves to distribute the supplied energy as evenly as possible over the gas discharge chamber.
This object is achieved by a device for the treatment of process gases in a plasma excited by electromagnetic waves having the features of claim 1. The device comprises a plasma chamber lined with a dielectric, a generator for generating the electromagnetic waves and a waveguide arrangement for feeding the electromagnetic waves into the plasma chamber, the waveguide arrangement having at least two feed points, each having an E-field waveguide branch, to feed the electromagnetic waves as continuous waves in the dielectric.

Eine mehrseitige Einspeisung der elektromagnetischen Wellen ist gegenüber einer einseitigen Einspeisung vorteilhaft, da sich dadurch über den gesamten Umfang der Plasmakammer eine vergleichsweise gleichmäßige Plasmadichte ausbilden kann. Das Dielektrikum, insbesondere ein Hohlzylinder, insbesondere ein Keramikhohlzylinder, das bzw. der die Innenflächen eines Plasmakammergehäuses bedeckt, wird daher gleichmäßig thermisch belastet. Hierdurch kann ein großes Prozessfenster hinsichtlich der Parameter Gasdurchfluss, Prozessdruck und eingespeiste Mikrowellenleistung gewährleistet werden.A multi-sided feeding of the electromagnetic waves is advantageous over a one-sided feed, as this can form a comparatively uniform plasma density over the entire circumference of the plasma chamber. The dielectric, in particular a hollow cylinder, in particular a hollow ceramic cylinder, which covers the inner surfaces of a plasma chamber housing, is therefore uniformly thermally stressed. As a result, a large process window with regard to the parameters gas flow, process pressure and fed microwave power can be ensured.

Der vorgenannten Vorteil wird in besonderem Maße erreicht, wenn die Einspeisungsstellen gleichverteilt um die Plasmakammer bzw. das Dielektrikum herum angeordnet sind. Bei zwei Einspeisungsquellen sind diese dann bevorzugt auf einander gegenüberliegenden Seiten der Plasmakammer angeordnet. Bei einer geradzahligen Anzahl an Einspeisungsquellen sind bevorzugt jeweils zwei Einspeisungsquellen auf einander gegenüberliegenden Seiten der Plasmakammer angeordnet. Grundsätzlich ist aber auch eine ungeradzahlige Anzahl an Einspeisungsquellen möglich. Eine Gleichverteilung liegt auch dann vor, wenn die Einspeisungsquellen im Wesentlichen gleichverteilt um die Plasmakammer herum angeordnet sind.The aforementioned advantage is achieved to a particular extent if the feed points are arranged distributed uniformly around the plasma chamber or the dielectric. With two feed sources, these are then preferably arranged on opposite sides of the plasma chamber. In the case of an even number of feed sources, two feed sources are preferably arranged on opposite sides of the plasma chamber. In principle, however, an odd number of supply sources is possible. An even distribution is also present when the feed sources are arranged substantially uniformly distributed around the plasma chamber.

Vorzugsweise ist die Hohlleiteranordnung derart ausgebildet ist, dass sich von verschiedenen, insbesondere allen Einspeisungsstellen eingespeiste elektromagnetische Wellen insbesondere im Zentrum der Plasmakammer konstruktiv kohärent überlagern. Alternativ und/oder zusätzlich kann die Vorrichtung derart ausgebildet sein, dass die von den Einspeisungsstellen eingespeisten elektromagnetische Wellen von einem einzigen bzw. gemeinsamen Generator erzeugt werden.Preferably, the waveguide arrangement is designed such that superimpose constructively coherent from various, in particular all feed points fed electromagnetic waves, in particular in the center of the plasma chamber. Alternatively and / or additionally, the device may be designed such that the electromagnetic waves fed by the feed points are generated by a single or common generator.

Insbesondere hierfür kann die Hohlleiteranordnung wenigstens eine Hohlleiterverzweigung aufweisen, um die elektromagnetischen Wellen mehreren Einspeisungsstellen zuzuführen, wobei die Längen der jeweiligen Abschnitte der Hohlleiteranordnung von der jeweiligen Hohlleiterverzweigung zu den jeweiligen Einspeisungsstellen gleich oder um ein Vielfaches der halben Wellenlänge der elektromagnetischen Wellen voneinander verschieden sind.In particular, for this purpose, the waveguide arrangement may comprise at least one waveguide branch to supply the electromagnetic waves to multiple feed points, wherein the lengths of the respective sections of the waveguide array from the respective waveguide branch to the respective feed points are equal to or different from each other by a multiple of half the wavelength of the electromagnetic waves.

Um dem Dielektrikum die Energie der elektromagnetischen Wellen möglichst vollständig zuzuführen, ist es bevorzugt, wenn die jeweilige Einspeisungsstelle ein Oszillatorelement aufweist, das zusammen mit der jeweiligen E-Feld-Hohlleiterverzweigung einen Oszillator bildet.In order to supply the energy of the electromagnetic waves as completely as possible to the dielectric, it is preferred if the respective feed point has an oscillator element which forms an oscillator together with the respective E-field waveguide branching.

Gemäß einer Ausbildung der Erfindung ist der Innenquerschnitt des jeweiligen Abschnitts der Hohlleiteranordnung, mit dem die Hohlleiteranordnung an dem Dielektrikum anliegt, von dem Dielektrikum vollständig abgedeckt. Hierdurch kann ebenfalls eine vollständige Zuführung der Energie der elektromagnetischen Wellen an das Dielektrikum gewährleistet werden. Dieser Aspekt wird auch unabhängig von den wenigstens zwei Einspeisungsstellen beansprucht. Die Erfindung betrifft daher auch eine Vorrichtung zur Behandlung von Prozessgasen in einem durch elektromagnetische Wellen angeregten Plasma, umfassend eine Plasmakammer, die mit einem Dielektrikum ausgekleidet ist, einen Generator zur Erzeugung der elektromagnetischen Wellen und eine Hohlleiteranordnung zur Zuführung der elektromagnetischen Wellen in die Plasmakammer, wobei der Innenquerschnitt des jeweiligen Abschnitts der Hohlleiteranordnung, mit dem die Hohlleiteranordnung an dem Dielektrikum anliegt, von dem Dielektrikum vollständig abgedeckt wird.According to one embodiment of the invention, the inner cross section of the respective section of the waveguide arrangement, with which the waveguide arrangement rests against the dielectric, is completely covered by the dielectric. In this way, a complete supply of the energy of the electromagnetic waves to the dielectric can also be ensured. This aspect is also claimed independently of the at least two feed points. The invention therefore also relates to a device for treating process gases in an electromagnetic wave excited plasma, comprising a plasma chamber lined with a dielectric, a generator for generating the electromagnetic waves and a waveguide arrangement for feeding the electromagnetic waves into the plasma chamber the inner cross section of the respective section of the waveguide arrangement, with which the waveguide arrangement bears against the dielectric, is completely covered by the dielectric.

Nach einer weiteren Ausbildung der Erfindung ist eine Zündeinrichtung zur Zündung eines Plasmas in der Plasmakammer vorgesehen, wobei die Zündeinrichtung ein Zündelement mit wenigstens einem länglichen Zündabschnitt umfasst. Mit einer derartigen Zündeinrichtung kann eine Zündung des Plasmas auch bei geringen Leistungen der eingespeisten elektromagnetischen Welle erreicht werden.According to a further embodiment of the invention, an ignition device for igniting a plasma is provided in the plasma chamber, wherein the ignition device comprises an ignition element with at least one elongated ignition section. With such an ignition device ignition of the plasma can be achieved even at low power of the injected electromagnetic wave.

Dabei kann die Zündeinrichtung, insbesondere das Zündelement, derart ausgebildet sein, dass die Längsachse des oder wenigstens eines Zündabschnitts unter einem Winkel von höchstens 45°, insbesondere zumindest im Wesentlichen parallel, zu der Ausbreitungsrichtung der elektromagnetischen Wellen an zumindest einer Einspeisungsstelle orientiert ist.In this case, the ignition device, in particular the ignition element, be designed such that the longitudinal axis of the or at least one ignition section is oriented at an angle of at most 45 °, in particular at least substantially parallel to the propagation direction of the electromagnetic waves at least one feed point.

Ferner betrifft die Erfindung ein Verfahren zur Behandlung von Prozessgasen in einem durch elektromagnetische Wellen angeregten Plasma, bei dem die elektromagnetische Wellen erzeugt und einer mit einem Dielektrikum ausgekleideten Plasmakammer derart zugefĂĽhrt werden, dass die elektromagnetischen Wellen an wenigstens zwei, jeweils eine E-Feld-Hohlleiterverzweigung aufweisende Einspeisungsstellen als fortlaufende Wellen in das Dielektrikum eingespeist werden.Furthermore, the invention relates to a method for the treatment of process gases in an electromagnetic wave excited plasma, in which generates the electromagnetic waves and lined with a dielectric Plasma chamber are supplied such that the electromagnetic waves are fed to at least two, each having an E-field waveguide junction having feed points as continuous waves in the dielectric.

Fortbildungen des erfindungsgemäßen Verfahrens ergeben sich in analoger Weise aus den Weiterbildungen der erfindungsgemäßen Vorrichtung.Further developments of the method according to the invention result in an analogous manner from the developments of the device according to the invention.

Bei der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren kommen elektromagnetische Wellen, insbesondere Mikrowellen, insbesondere mit den gebräuchlichen und von Amts wegen zugelassenen Frequenzen von 2,45 GHz, 5,8 GHz und 915MHz, zum Einsatz.Electromagnetic waves, in particular microwaves, in particular with the customary and ex officio approved frequencies of 2.45 GHz, 5.8 GHz and 915 MHz, are used in the device and the method according to the invention.

Vorteilhafte AusfĂĽhrungsformen der Erfindung sind auch in den UnteransprĂĽchen, der Figurenbeschreibung und der Zeichnung beschrieben.Advantageous embodiments of the invention are also described in the subclaims, the description of the figures and the drawing.

Die Erfindung wird im Folgenden beispielhaft unter Bezugnahme auf die Zeichnung beschrieben. Es zeigen,

Fig. 1
eine schematische Darstellung einer Plasmavorrichtung,
Fig. 2
eine schematische Darstellung einer erfindungsgemäßen Plasmavorrichtung,
Fig. 3
eine schematische Darstellung einer weiteren erfindungsgemäßen Plasmavorrichtung,
Fig. 4
eine erfindungsgemäße Atmosphärendruckplasmavorrichtung im Querschnitt,
Fig. 5
die Atmosphärendruckplasmavorrichtung aus Fig. 4 im Längsschnitt,
Fig. 6
eine erfindungsgemäße Niederdruckplasmavorrichtung im Querschnitt,
Fig. 7
die Niederdruckplasmavorrichtung aus Fig. 6 im Längsschnitt,
Fig. 8
eine Zündvorrichtung für die Atmosphärendruckplasmavorrichtung aus Fig. 4, und
Fig. 9
eine weitere Zündvorrichtung für die Atmosphärendruckplasmavorrichtung aus Fig. 4.
The invention will now be described by way of example with reference to the drawings. Show it,
Fig. 1
a schematic representation of a plasma device,
Fig. 2
a schematic representation of a plasma device according to the invention,
Fig. 3
a schematic representation of another plasma device according to the invention,
Fig. 4
an atmospheric pressure plasma apparatus according to the invention in cross-section,
Fig. 5
the atmospheric pressure plasma device Fig. 4 in longitudinal section,
Fig. 6
a low-pressure plasma apparatus according to the invention in cross-section,
Fig. 7
the low-pressure plasma device off Fig. 6 in longitudinal section,
Fig. 8
an ignition device for the atmospheric pressure plasma device Fig. 4 , and
Fig. 9
another ignition device for the atmospheric pressure plasma device Fig. 4 ,

Die elektromagnetischen Wellen werden entsprechend Fig. 1 bis 3 in einem Mikrowellengenerator 11 erzeugt und mittels eines Hohlleiters 12 über eine Abstimmvorrichtung 13 zu einem Plasmakammergehäuse 14 geleitet, in das ein Keramikzylinder 16 oder ein Rohr bzw. ein Röhrchen eingesetzt ist. Im Einzelnen werden dabei die elektromagnetischen Wellen direkt zum Plasmakammergehäuse 14 geleitet (Fig.1) oder an einer insbesondere ersten Hohlleiterverzweigung 15a paarweise aufgeteilt und - falls gewünscht - an zwei weiteren Hohlleiterverzweigungen 15b nochmals verzweigt und zum Plasmakammergehäuse 14 geführt und dort dann zum Keramikzylinder 16 geleitet, wo sie sich durch E-Feld-Hohlleiterverzweigungen 18 als laufende Wellen in der Keramik ausbreiten können (Fig. 2 und Fig. 3). Die Begrenzungen der elektromagnetischen Wellen in der Keramik bilden dabei einerseits die inneren Oberflächen des Plasmakammergehäuses 14 aus Metall und andererseits eine Schicht aus hoher Elektronenkonzentration im Plasma, die sich nahe der inneren Oberfläche des Keramikzylinders 16 ausbildet.The electromagnetic waves become corresponding Fig. 1 to 3 generated in a microwave generator 11 and passed by means of a waveguide 12 via a tuning device 13 to a plasma chamber housing 14, in which a ceramic cylinder 16 or a tube or a tube is inserted. In detail, the electromagnetic waves are conducted directly to the plasma chamber housing 14 ( Fig.1 ) or at a particular first waveguide branch 15a split in pairs and - if desired - branched again at two other waveguide branches 15b and led to the plasma chamber housing 14 and then passed to the ceramic cylinder 16, where they through E-field waveguide branches 18 as running waves in the Ceramic can spread ( Fig. 2 and Fig. 3 ). The boundaries of the electromagnetic waves in the ceramic form on the one hand the inner surfaces of the plasma chamber housing 14 made of metal and on the other hand, a layer of high electron concentration in the plasma, which forms near the inner surface of the ceramic cylinder 16.

In Fig. 4 und 5 ist eine erste erfindungsgemäße Vorrichtung und ein Verfahren beschrieben, das vorwiegend unter Atmosphärendruck angewendet wird, bevorzugt bei einem Druck im Bereich zwischen 10 kPa und 1 MPa, wobei die elektromagnetische Welle in der vorliegenden Vorrichtung von beiden Seiten der Plasmakammer 25 zugeführt wird. Die elektromagnetische Welle kann grundsätzlich aber auch nur von einer Seite der Plasmakammer 25 zugeführt werden und die gegenüberliegende Öffnung zur Zuführung der Mikrowelle ist in diesem Fall geschlossen oder bereits überhaupt nicht vorhanden. Die elektromagnetischen Wellen in Fig. 4 und 5 werden mittels Rechteckhohlleiter 12 im H10 Mode der Plasmakammer 25 zugeführt und im Keramikzylinder 16 durch Einspeisungsstellen in Form von E-Feld-Hohlleiterverzweigungen 18 an beiden Seiten des Keramikzylinders 16 jeweils in zwei gleiche Komponenten aufgespalten, die sich dort in einander entgegengesetzter und jeweils axialer Richtung, d.h. entlang der Längsachse des Keramikzylinders 16, als fortlaufende Wellen auszubreiten. Wird in der Plasmakammer 25 das Plasma durch eine Vorrichtung 37 wie in Fig. 8 bzw. Fig. 9 dargestellt gezündet, dann kann sich ein koaxialer TM Mode 19 der elektromagnetischen Welle ausbilden, wobei der koaxiale Außenleiter durch die innere Oberfläche 29 des Plasmakammergehäuses 14 gebildet wird, und der koaxiale Innenleiter durch die kegelstumpfförmige Plasmawolke 25. Eine doppelseitige Einspeisung mittels konstruktiver kohärenter Wellen 17 ist gegenüber einer einseitigen Einspeisung der Mikrowelle vorteilhaft, da dadurch sich bereits an der Einspeisungsebene ein perfekter koaxialer TM Mode 19 ausbildet, der das Plasma über ein sehr großes Prozessfenster hinsichtlich Gasdurchfluss und eingespeister Mikrowellenleistung gut stabilisiert. Zur Illustration der Ausbreitung der elektromagnetischen Wellen im Hohlleiter 12, in der E-Feld-Hohlleiterverzweigung 18 und im Keramikzylinder 16 ist das elektrische Feld der elektromagnetischen Welle schematisch durch die Vektoren 27 dargestellt. Wie sich aus den Fig. 4 und 5 ergibt, wird der Innenquerschnitt der Rechteckhohlleiter 12 an den Einspeisungsstellen von dem Keramikzylinder 16 vollständig abgedeckt.In Fig. 4 and 5 a first device according to the invention and a method described which is predominantly applied under atmospheric pressure is preferred at a pressure in the range between 10 kPa and 1 MPa, wherein the electromagnetic wave in the present device is supplied from both sides of the plasma chamber 25. In principle, however, the electromagnetic wave can also be supplied only from one side of the plasma chamber 25 and the opposite opening for feeding the microwave is in this case closed or even not present at all. The electromagnetic waves in Fig. 4 and 5 be supplied by rectangular waveguide 12 in the H 10 mode of the plasma chamber 25 and split in the ceramic cylinder 16 through feed points in the form of E-field waveguide branches 18 on both sides of the ceramic cylinder 16 each in two identical components, which there in opposite and each axial direction , ie along the longitudinal axis of the ceramic cylinder 16, to spread as continuous waves. In the plasma chamber 25, the plasma is passed through a device 37 as in FIG Fig. 8 respectively. Fig. 9 9, the coaxial outer conductor may be formed by the inner surface 29 of the plasma chamber housing 14, and the coaxial inner conductor by the frusto-conical plasma cloud 25. A two-sided feed by means of constructive coherent waves 17 compared to a one-sided feeding of the microwave advantageous, since thereby already at the feed level a perfect coaxial TM mode 19 is formed, which stabilizes the plasma well over a very large process window in terms of gas flow and fed microwave power. To illustrate the propagation of the electromagnetic waves in the waveguide 12, in the E-field waveguide junction 18 and in the ceramic cylinder 16, the electric field of the electromagnetic wave is shown schematically by the vectors 27. As is clear from the Fig. 4 and 5 results, the inner cross section of the rectangular waveguide 12 is completely covered at the feed points of the ceramic cylinder 16.

Zum Betrieb der Vorrichtung ist auch die Verwendung eines Oszillatorstiftes 28 vorteilhaft, wobei jeweils ein Oszillator gebildet wird, der aus einer E-Feld-Hohlleiterverzweigung 18 im Keramikzylinder 16 und dem benachbarten Oszillatorstift 28 besteht. Die Position, die Höhe und der Querschnitt des Oszillatorstiftes 28 sind so gewählt, dass die eintretende Welle nahezu vollständig über die E-Feld-Hohlleiterverzweigung 18 in den Keramikzylinder 16 eingespeist wird. Der Querschnitt des Oszillatorstiftes 28 kann rund, elliptisch oder rechteckig sein, aber auch eine andere Form aufweisen. Eine restliche Abstimmung der Plasmavorrichtungen in Fig.1 bis Fig. 3 erfolgt über die Abstimmvorrichtungen 13.For the operation of the device, the use of an oscillator pin 28 is advantageous, in each case an oscillator is formed, which consists of an E-field waveguide branch 18 in the ceramic cylinder 16 and the adjacent oscillator pin 28 consists. The position, the height and the cross section of the oscillator pin 28 are chosen so that the incoming wave is almost completely fed via the E-field waveguide branch 18 into the ceramic cylinder 16. The cross section of the oscillator pin 28 can be round, elliptical or rectangular, but also have a different shape. A remaining vote of the plasma devices in Fig.1 to Fig. 3 takes place via the tuning devices 13.

Das Prozessgas wird durch insbesondere zwei Gaseinlässe 21 tangential zum Keramikzylinder 16 in die Plasmakammer 25 eingelassen, um dort eine rotierende Strömung in Richtung Gasauslass 24 zu erzeugen. Das Plasma wird durch eine Zündeinrichtung 37, im Detail 37a, bzw. 37b (Fig. 8 und Fig. 9) gezündet und breitet sich kegelstumpfförmig über die gesamte Länge des Keramikzylinders 16 bis zu einem Reaktorzylinder 34 aus, der aus einer hitzebeständigen Metalllegierung besteht.The process gas is introduced through in particular two gas inlets 21 tangentially to the ceramic cylinder 16 in the plasma chamber 25 in order to generate there a rotating flow in the direction of the gas outlet 24. The plasma is ignited by an igniter 37, in detail 37a or 37b (FIG. FIGS. 8 and 9 ) ignited and spreads frusto-conical over the entire length of the ceramic cylinder 16 to a reactor cylinder 34, which consists of a refractory metal alloy.

In Fig. 6 und 7 ist eine weitere erfindungsgemäße Vorrichtung und ein Verfahren beschrieben, das vorwiegend im Niederdruckbereich angewendet wird, bevorzugt bei einem Druck im Bereich zwischen 10 Pa und 1500 Pa, besonders bevorzugt bei einem Druck im Bereich zwischen 30 Pa und 300 Pa, wobei die elektromagnetische Welle in der vorliegenden Vorrichtung von beiden Seiten der Plasmakammer 25 zugeführt wird, wobei in diesem Fall das elektrische Feld der Welle senkrecht zur Achse des Keramikzylinders 16 steht. Die elektromagnetische Welle kann grundsätzlich aber auch nur von einer Seite der Plasmakammer 25 zugeführt werden und die gegenüberliegende Öffnung zur Zuführung der Mikrowelle ist in diesem Fall geschlossen oder bereits überhaupt nicht vorhanden. Die elektromagnetischen Wellen in Fig. 6 und 7 werden mittels Rechteckhohlleiter 12 im H10 Mode der Plasmakammer 25 zugeführt und im Keramikzylinder 16 durch Einspeisungsstellen in Form von E-Feld-Hohlleiterverzweigungen 18 an beiden Seiten des Keramikzylinders 16 jeweils in zwei gleiche Komponenten aufgespalten, die sich dort in einander entgegengesetzter und jeweils tangentialer Richtung, .d.h. in Umfangsrichtung des Keramikzylinders 16, als fortlaufende Wellen auszubreiten. Wird in der Plasmakammer 25 das Plasma gezündet, dann kann sich ein H-Mode der elektromagnetischen Welle ausbilden, wobei eine Hohleiteroberfläche durch die innere Oberfläche 29 des Plasmakammergehäuses 14 gebildet wird, und die gegenüberliegende Oberfläche durch die hohe Plasmadichte 35 nahe der Keramikoberfläche in der Plasmakammer 25. Eine doppelseitige Einspeisung mittels konstruktiver kohärenter Wellen 17 ist gegenüber einer einseitigen Einspeisung der Mikrowelle vorteilhaft, da dadurch über den gesamten Umfang des Keramikzylinders 16 eine gleichmäßige Plasmadichte sich ausbildet, die eine gleichmäßige thermische Belastung des Keramikzylinders 16 zur Folge hat und dadurch ein sehr großes Prozessfenster hinsichtlich Gasdurchfluss, Prozessdruck und eingespeister Mikrowellenleistung erlaubt. Zur Illustration der Ausbreitung der elektromagnetischen Wellen im Hohlleiter 12, in der E-Feld-Hohlleiterverzweigung 18 und im Keramikzylinder 16 ist das elektrische Feld der elektromagnetischen Welle schematisch durch die Vektoren 27 dargestellt. Wie sich aus den Fig. 6 und 7 ergibt, wird der Innenquerschnitt der Rechteckhohlleiter 12 an den Einspeisungsstellen von dem Keramikzylinder 16 vollständig abgedeckt.In Fig. 6 and 7 a further device according to the invention and a method is described, which is mainly used in the low pressure range, preferably at a pressure in the range between 10 Pa and 1500 Pa, more preferably at a pressure in the range between 30 Pa and 300 Pa, wherein the electromagnetic wave in the present device is supplied from both sides of the plasma chamber 25, in which case the electric field of the shaft is perpendicular to the axis of the ceramic cylinder 16. In principle, however, the electromagnetic wave can also be supplied only from one side of the plasma chamber 25 and the opposite opening for feeding the microwave is in this case closed or even not present at all. The electromagnetic waves in Fig. 6 and 7 be supplied by rectangular waveguide 12 in H 10 mode of the plasma chamber 25 and split in the ceramic cylinder 16 by feed points in the form of E-field waveguide branches 18 on both sides of the ceramic cylinder 16 each in two identical components, the There in opposite and each tangential direction .Dh in the circumferential direction of the ceramic cylinder 16, to propagate as continuous waves. When the plasma is ignited in the plasma chamber 25, an H-mode of the electromagnetic wave may be formed with a waveguide surface formed by the inner surface 29 of the plasma chamber housing 14 and the opposite surface by the high plasma density 35 near the ceramic surface in the plasma chamber 25. A double-sided feed by means of constructive coherent waves 17 is advantageous over a one-sided feed of the microwave, as a uniform plasma density over the entire circumference of the ceramic cylinder 16 is formed, which has a uniform thermal load of the ceramic cylinder 16 result and thereby a very large Process window with regard to gas flow, process pressure and injected microwave power allowed. To illustrate the propagation of the electromagnetic waves in the waveguide 12, in the E-field waveguide junction 18 and in the ceramic cylinder 16, the electric field of the electromagnetic wave is shown schematically by the vectors 27. As is clear from the Fig. 6 and 7 results, the inner cross section of the rectangular waveguide 12 is completely covered at the feed points of the ceramic cylinder 16.

Zum Betrieb der Vorrichtung ist auch die Verwendung eines Oszillatorstiftes 28 vorteilhaft, wobei jeweils ein Oszillator gebildet wird, der aus einer E-Feld-Hohlleiterverzweigung 18 im Keramikzylinder 16 und dem benachbarten Oszillatorstift 28 besteht. Die Position, die Höhe und der Querschnitt des Oszillatorstiftes 28 sind so gewählt, dass die eintretende Welle nahezu vollständig über die E-Feld-Hohlleiterverzweigung 18 in den Keramikzylinder 16 eingespeist wird. Der Querschnitt des Oszillatorstiftes 28 kann rund, elliptisch oder rechteckig sein, aber auch eine andere Form aufweisen. Eine restliche Abstimmung der Plasmavorrichtungen in Fig.1 bis Fig. 3 erfolgt über die Abstimmvorrichtungen 13.For the operation of the device, the use of an oscillator pin 28 is advantageous, in each case an oscillator is formed, which consists of an E-field waveguide branch 18 in the ceramic cylinder 16 and the adjacent oscillator pin 28. The position, the height and the cross section of the oscillator pin 28 are chosen so that the incoming wave is almost completely fed via the E-field waveguide branch 18 into the ceramic cylinder 16. The cross section of the oscillator pin 28 can be round, elliptical or rectangular, but also have a different shape. A remaining vote of the plasma devices in Fig.1 to Fig. 3 takes place via the tuning devices 13.

Das Prozessgas wird durch zwei Gaseinlässe 22 und 23 eingelassen, wobei der Gaseinlass 22 auf der Rückseite des Keramikzylinders 16 einmündet, und der Gaseinlass 23 gegenüber dem Gasauslass 24. Der Gaseinlass 22 an der Rückseite des Keramikzylinders 16 dient zur besseren Kühlung des Keramikzylinders 16 im Falle des Betriebs der Plasmavorrichtung bei sehr geringem Druck. In Fig. 6 und 7 sind zur Abdichtung des Gaseinlasses 22 zusätzlich Keramikbauteile 26 eingefügt, die durch Vakuumdichtungen 36 das Prozessgas gegenüber der Umgebung abdichten. Grundsätzlich und unabhängig von beschriebenen Ausführungsform ist es bevorzugt, wenn ein Gaseinlass vorgesehen ist, der im Bereich der Zylinderfläche des Keramikzylinders in die Plasmakammer eintritt.The process gas is admitted through two gas inlets 22 and 23, with the gas inlet 22 opening onto the rear side of the ceramic cylinder 16, and the gas inlet 23 opposite to the gas outlet 24. The gas inlet 22 on the rear side of the ceramic cylinder 16 serves to better cool the ceramic cylinder 16 in the case the operation of the plasma device at very low pressure. In Fig. 6 and 7 For sealing the gas inlet 22 ceramic components 26 are additionally inserted, which seal the process gas from the environment by means of vacuum seals 36. In principle and independently of the described embodiment, it is preferred if a gas inlet is provided which enters the plasma chamber in the area of the cylindrical surface of the ceramic cylinder.

In Fig. 8 und Fig. 9 sind Zündeinrichtungen 37 dargestellt, insbesondere für die Vorrichtung in Fig. 4 und Fig. 5, die vorwiegend für Plasma unter Atmosphärendruck angewendet wird, wobei in Fig. 8 eine rechteckförmige Platte 37a mit abgerundeten Kanten in seiner Längsachse zu den Einfallsrichtungen der elektromagnetischen Welle ausgerichtet ist. Zum Zünden des Plasmas wird diese Platte 37a, beispielsweise mittels eines Stabs, in die Ebene des Rechteckhohleiters 14 hochgefahren, und es entsteht dabei eine entsprechende Feldstärke im Zentrum der Platte 37a, die zur Zündung des Plasmas selbst bei geringen Leistungen der eingespeisten elektromagnetischen Welle ausreichend ist. Die Platte 37a kann an seinen Enden auch pfeilförmig zugespitzt sein oder auch halbrund geformt sein.In FIGS. 8 and 9 Ignition devices 37 are shown, in particular for the device in Fig. 4 and Fig. 5 , which is mainly used for plasma at atmospheric pressure, wherein in Fig. 8 a rectangular plate 37 a with rounded edges is aligned in its longitudinal axis to the directions of incidence of the electromagnetic wave. To ignite the plasma, this plate 37a, for example by means of a rod, raised in the plane of the rectangular waveguide 14, and there is a corresponding field strength in the center of the plate 37a, which is sufficient to ignite the plasma even at low power of the injected electromagnetic wave , The plate 37a may also be sharpened at its ends arrow-shaped or semi-circular shaped.

In Fig. 9 ist eine sternförmige Platte 37b mit 6 Enden abgebildet, deren Enden ebenso ausgebildet sind wie die Enden der Platte 37a. Der Vorteil von Platte 37b gegenüber Platte 37a ist dadurch gegeben, dass in jeder Drehlage der Platte 37b eine sichere Zündung des Plasma erfolgt. Die Zündeinrichtung 37 kann aber auch 5, 7, 8 und noch weitere Enden aufweisen.In Fig. 9 Fig. 3 is a star-shaped plate 37b with 6 ends shown, whose ends are formed as well as the ends of the plate 37a. The advantage of plate 37b over plate 37a is given by the fact that in each rotational position of the plate 37b, a reliable ignition of the plasma takes place. However, the ignition device 37 may also have 5, 7, 8 and even more ends.

Claims (10)

  1. An apparatus for treating process gases in a plasma excited by electromagnetic waves, said apparatus comprising a plasma chamber (25); a generator (11) for generating the electromagnetic waves; and a waveguide arrangement (12) for supplying the electromagnetic waves into the plasma chamber (25), characterized in that
    the plasma chamber (6) is lined with a dielectric (16), wherein the waveguide arrangement (12) has at least two feeding points, each having an E-field waveguide branch (18), for feeding the electromagnetic waves into the dielectric (16) as continuous waves.
  2. An apparatus in accordance with claim 1,
    characterized in that
    the feeding points are arranged evenly distributed around the plasma chamber (25), with in particular a respective two feeding sources being arranged at mutually oppositely disposed sides of the plasma chamber (25).
  3. An apparatus in accordance with claim 1 or claim 2,
    characterized in that
    the waveguide arrangement (12) is configured such that electromagnetic waves fed from different feeding points are superposed constructively and coherently in the plasma chamber.
  4. An apparatus in accordance with at least one of the preceding claims,
    characterized in that
    the waveguide arrangement (12) has at least one waveguide branch (15a, 15b) to supply the electromagnetic waves to a plurality of feeding points, with the lengths of the respective sections of the waveguide arrangement (12) from the respective waveguide branch (15a, 15b) to the respective feeding points being the same or differing from one another by a multiple of half the wavelength of the electromagnetic waves.
  5. An apparatus in accordance with at least one of the preceding claims,
    characterized in that
    the respective feeding point has an oscillator element (28) which forms an oscillator together with the respective E-field waveguide branch (18).
  6. An apparatus in accordance with at least one of the preceding claims,
    characterized in that
    the dielectric (16) is configured as a hollow cylinder.
  7. An apparatus in accordance with claim 6,
    characterized in that
    the inner cross-section of the respective section of the waveguide arrangement (12) by which the waveguide arrangement (12) contacts the dielectric (16) is completely covered by the dielectric (16).
  8. An apparatus in accordance with at least one of the preceding claims,
    characterized in that
    an ignition device (37) is provided for igniting a plasma in the plasma chamber (25), with the ignition device (37) comprising an ignition element (37a, 37b) having at least one elongate ignition section.
  9. An apparatus in accordance with claim 8,
    characterized in that
    the ignition device (37), in particular the ignition element (37a, 37b), is configured such that the longitudinal axis of the ignition section or of at least one ignition section is oriented at an angle of at most 45°, in particular at least substantially in parallel, with respect to the direction of propagation of the electromagnetic waves at at least one feeding point.
  10. A method of treating process gases in a plasma excited by electromagnetic waves, in which the electromagnetic waves are generated and are supplied to a plasma chamber lined with a dielectric such that the electromagnetic waves are fed into the dielectric as continuous waves at at least two feeding points which each have an E-field waveguide branch.
EP14744363.4A 2013-08-02 2014-07-29 Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves Active EP3011807B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013215252.3A DE102013215252A1 (en) 2013-08-02 2013-08-02 Apparatus and method for treating process gases in a plasma excited by high frequency electromagnetic waves
PCT/EP2014/066277 WO2015014839A1 (en) 2013-08-02 2014-07-29 Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves

Publications (2)

Publication Number Publication Date
EP3011807A1 EP3011807A1 (en) 2016-04-27
EP3011807B1 true EP3011807B1 (en) 2017-11-15

Family

ID=51228455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14744363.4A Active EP3011807B1 (en) 2013-08-02 2014-07-29 Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves

Country Status (3)

Country Link
EP (1) EP3011807B1 (en)
DE (1) DE102013215252A1 (en)
WO (1) WO2015014839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114845455A (en) * 2022-05-07 2022-08-02 季华实验室 Microwave plasma chemical vapor deposition device and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015215858B4 (en) 2015-08-20 2019-01-24 Siltronic Ag Process for heat treatment of granules of silicon, granules of silicon and process for producing a single crystal of silicon
DE102017125723A1 (en) 2017-04-25 2018-10-25 Eeplasma Gmbh Method and apparatus for growing a single crystal
EP4108647A1 (en) 2021-06-21 2022-12-28 eeplasma GmbH Method for the preparation of core particles which can be coated with liquid fertilisers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU397139A1 (en) * 1971-01-25 1975-03-05 Device for exciting electromagnetic waves in plasma

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230740A (en) * 1991-12-17 1993-07-27 Crystallume Apparatus for controlling plasma size and position in plasma-activated chemical vapor deposition processes comprising rotating dielectric
JP3129814B2 (en) * 1992-01-17 2001-01-31 新日本無線株式会社 Microwave plasma device
DE69318480T2 (en) * 1992-06-23 1998-09-17 Nippon Telegraph & Telephone Plasma processing device
US5606571A (en) * 1994-03-23 1997-02-25 Matsushita Electric Industrial Co., Ltd. Microwave powered gas laser apparatus
DE19600223A1 (en) * 1996-01-05 1997-07-17 Ralf Dr Dipl Phys Spitzl Device for generating plasmas using microwaves
FR2762748B1 (en) * 1997-04-25 1999-06-11 Air Liquide SURFACE WAVE PLASMA GAS EXCITATION DEVICE
JPH11162956A (en) * 1997-11-25 1999-06-18 Hitachi Ltd Plasma treatment equipment
DE10327853A1 (en) * 2003-06-18 2005-01-05 Krohmann, Udo, Dipl.-Ing. Plasma treatment of surfaces and materials with moving microwave plasma in wave-conducting hollow conductor structure involves moving plasma away from microwave input coupling point
US8633648B2 (en) * 2011-06-28 2014-01-21 Recarbon, Inc. Gas conversion system
DE102011111884B3 (en) * 2011-08-31 2012-08-30 Martin Weisgerber Device for generating thermodynamic cold plasma by microwaves, has resonance chambers distributed in evacuated, electrically conductive anode, where plasma is generated by microwaves under standard atmospheric conditions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU397139A1 (en) * 1971-01-25 1975-03-05 Device for exciting electromagnetic waves in plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114845455A (en) * 2022-05-07 2022-08-02 季华实验室 Microwave plasma chemical vapor deposition device and system

Also Published As

Publication number Publication date
EP3011807A1 (en) 2016-04-27
DE102013215252A1 (en) 2015-02-05
WO2015014839A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
EP1053660B1 (en) Device for producing a free cold non-thermal plasma beam
DE4340224C2 (en) Device for generating plasma using microwave radiation
EP3011807B1 (en) Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves
DE2952046C2 (en) Method and device for generating an electrical discharge in a gas flowing at supersonic speed
DE102006048815B4 (en) Apparatus and method for generating high power microwave plasmas
DE102006048816A1 (en) Apparatus and method for local generation of microwave plasmas
DE102006048814A1 (en) Apparatus and method for generating high plasma density microwave plasmas
WO1996023318A1 (en) Plasma reactor
EP1183709B1 (en) Linearly extended device for large-surface microwave treatment and for large surface plasma production
DE19847848C1 (en) Device and generation of excited / ionized particles in a plasma
DE102018000401A1 (en) Microwave plasma device
EP1946623B1 (en) Device for igniting and generating an expanding diffuse microwave plasma and device for plasma treating surfaces and substances by using this plasma
EP2751826B1 (en) Apparatus for generating thermodynamically cold microwave plasma
DE19801366B4 (en) Device for generating plasma
WO2001020640A1 (en) Device and method for generating a local plasma by micro-structure electrode discharges with microwaves
EP1819208B1 (en) Device and method for creating activated and/or ionised particles in a plasma
EP0094053B1 (en) Plasma method for making a dielectric rod
DE102009044496A1 (en) Device for generating plasma by means of microwaves
DE10341239A1 (en) ECR plasma source with linear plasma outlet
EP3180800B1 (en) Device for anisotropically etching a substrate, and method for operating a device for anisotropically etching a substrate
DE10024699A1 (en) Plasma etching system
AT504487A4 (en) Device for the production of plasma or radicals using microwaves
EP2142679B1 (en) Method for the plasma-assisted surface treatment of large-volume components
DE102008009624A1 (en) Method and device for cleaning the exhaust gases of a process plant
WO2008131997A1 (en) Electrode for a plasma generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNEIDER, STEPHAN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 947485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006251

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014006251

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

26 Opposition filed

Opponent name: MUEGGE GMBH

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140729

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 947485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190729

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190729

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 10

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MUEGGE GMBH

Effective date: 20180816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230927

Year of fee payment: 10