EP3009823A1 - Method and device for detecting defects in rotor blades - Google Patents

Method and device for detecting defects in rotor blades Download PDF

Info

Publication number
EP3009823A1
EP3009823A1 EP15190129.5A EP15190129A EP3009823A1 EP 3009823 A1 EP3009823 A1 EP 3009823A1 EP 15190129 A EP15190129 A EP 15190129A EP 3009823 A1 EP3009823 A1 EP 3009823A1
Authority
EP
European Patent Office
Prior art keywords
rotor blade
imaging camera
heat radiator
thermal imaging
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15190129.5A
Other languages
German (de)
French (fr)
Other versions
EP3009823B1 (en
Inventor
Peter Meinlschmidt
Geert Hobbing
Matthias Ruthe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wka Blade Service GmbH
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Senvion GmbH
Original Assignee
Ges Deutschland GmbH
Deutschland Ges GmbH
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Senvion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ges Deutschland GmbH, Deutschland Ges GmbH, Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Senvion GmbH filed Critical Ges Deutschland GmbH
Publication of EP3009823A1 publication Critical patent/EP3009823A1/en
Application granted granted Critical
Publication of EP3009823B1 publication Critical patent/EP3009823B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the invention relates to a method for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure with fiber mats and / or sandwich materials in a plastic matrix, wherein the rotor blade is heated locally with a guided along the rotor blade heat radiator, the heated point with a is detected on the rotor blade guided thermal imaging camera and the nonuniformities in the thermal image are output by methods of image processing or signal analysis.
  • the invention also relates to a device for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure with fiber mats and / or sandwich materials with a plastic matrix, with a heat radiator along the rotor blade and a heat imager tracked thermal imager, with an evaluation is coupled.
  • the laminate structure can also be made exclusively of fiber mats or sandwich materials. Likewise, the laminate construction can be made of fiber mats with localized sandwich materials. Both the method and the device are in particular for the investigation of rotor blades of large wind turbines provided and suitable.
  • Wind turbine blades may be over 75 m in length and over 15 t in mass.
  • Most rotor blades are made of glass or carbon fiber reinforced plastic in the so-called half-shell sandwich technique, in which the rotor blade half shells are initially produced separately and then glued together with epoxy resins or polyurethane.
  • different methods may be used, e.g. the infusion technique, in which fiber mats are soaked in the mold at low pressure with synthetic resin.
  • prepregs are used in the form of resin-wetted fiber mats with which the mold is lined.
  • the location of the defect or ondulation can be determined cost-effectively, if necessary, even existing consequential damage can be found.
  • the two-dimensional test achieves a significant reduction in the test duration compared to punctiform measuring devices or methods. Destructive testing of the rotor blades need not be performed, but can be checked by the non-destructive material testing a large number of rotor blades in use, so in the assembled state, which prevents major leaf losses can be.
  • a disadvantage of the known method and the known device is that high inaccuracies in the heating as well as the detection of the thermal image arise because an aircraft with a deflection mirror provides no guarantee for uniform heating and a uniform measurement distance.
  • the object of the present invention is to provide a device and a method for detecting defects in rotor blades, which have a higher accuracy compared to the known method and the known device in order to more precisely determine the location of the defect, the ondulation and also the extent of the defect to be able to.
  • the inventive method for detecting defects in rotor blades which have been produced in laminate construction with a layer structure with or from fiber mats and / or sandwich materials in a plastic matrix, wherein the rotor blade is heated locally with a guided along the rotor blade heat radiator, the heated point with a detected on the rotor blade along thermal imager and emitted irregularities in the thermal image with methods of image processing or signal analysis, provides that the heat radiator and the thermal imager are arranged on at least one holder, which is pressed during the heating and detection by the thermal imager against the rotor blade , The holder on which the thermal imaging camera or the heat source or the heat radiator are arranged, is guided along the surface of the rotor blade, wherein the holder is pressed against the rotor blade surface, so that there is always a contact between the holder and the rotor blade, so that due to the fixed geometric assignment of the holder to the heat radiator and the thermal imager always a constant distance can be maintained.
  • the at least one holder can be pressed pneumatically, hydraulically or by way of a mechanical energy store or also by means of the weight force with a pretensioning device against the rotor blade.
  • the defined application of force ensures that there is always contact between the holder and the rotor blade.
  • a contact surface or a contact roller is arranged, which is guided along the surface of the rotor blade.
  • the contact surface may be provided with a reduced-friction coating, so that the surface of the rotor blade is not damaged.
  • An embodiment as a contact roller reduces the frictional resistance and the ability to damage the surface by testing the rotor blade.
  • the heat radiator and the thermal imaging camera are preferably moved at a constant distance from the rotor blade surface in order to rule out that measurement inaccuracies occur due to distance fluctuations.
  • the at least one holder can be guided on a fixed path along the rotor blade or the rotor blade steering axis, which is particularly suitable for a check during and after production in the non-installed state.
  • the measuring device with the heat radiator can be moved on a rail guide along the rotor blade with a uniform, predetermined speed, for example, wherein distance fluctuations due to the curvature of the rotor blade or alignment error by the contact pressure, which presses the holder against the rotor blade, are compensated.
  • the holder can be arranged displaceably on a working platform or the like, wherein due to the change in length of the holder no change in the distance from the heat radiator and the thermal imaging camera to the rotor blade occurs, or if these components at the front part of the holder at a fixed distance to attached to the front end of the holder.
  • the thermal imager is tracked at a constant distance from the heat radiator, so that at a constant travel speed of the heat radiator along the rotor blade between the irradiation and the recording is always the same period, so that a reproducible result can be provided.
  • the orientation of the thermal imager as well as the heat radiator of the surface contour of the rotor blade is adjusted.
  • the thermal imaging camera and the heat radiator are always kept oriented perpendicular or at a constant angle to the surface of the rotor blade, so that the change in the shape of the rotor blade is also taken into account in the transverse direction.
  • the thermal imaging camera and the heat radiator can be tracked, which makes a corresponding articulated mounting on the holder or a bracket required.
  • a development of the method provides that the position of the thermal imaging camera and / or the heat radiator on the rotor blade is detected and assigned to the thermal image data.
  • the position of the thermal imaging camera, the heat radiator or both components on the rotor blade is advantageously measured from a reference point, for example from the starting point of the measurement, for example at the attachment point of the rotor blade to the hub.
  • the path traveled from there is assigned to the respective images which are taken by the thermal imaging camera, for example burned in or stored in parallel, so that a simple retrievability of the respectively examined location on the basis of the evaluated thermal image data is easily possible. If a certain point detected as faulty, this point can be easily recovered, for example, in the context of maintenance, so that the detection of defects and their correction can fall apart in time.
  • the images with detected errors are advantageously stored separately in an error file, preferably with the position data, so that not the entire thermographic evaluation of the rotor blade has to be evaluated for the correction of defects.
  • the device for detecting defects in rotor blades which have been produced in laminate construction with a layer structure of fiber mats in a plastic matrix, with a heat radiator along the rotor blade and a heat tracker tracking thermal imager coupled to an evaluation, provides that the Heat radiator and the thermal imaging camera are arranged on at least one holder, which is associated with a biasing means for pressing the holder against the rotor blade.
  • a development of the invention provides that the at least one holder is mounted displaceably on a working platform, so that the distance from the heat radiator or the thermal imaging camera to the rotor blade or to each other is adjustable.
  • the holder of the holder can be secured to the working platform via a holder, which is telescopic, for example, and on the other hand, the working platform are moved on a path relative to the rotor blade, which does not run parallel or equidistant from the rotor blade contour.
  • the adjustability of the distance of the thermal imager and the heat radiator by an adjustability of the holder relative to the surface of the rotor blade is possible.
  • the thermal imaging camera can be mounted displaceably relative to the heat radiator, in particular on a working platform, so that on the one hand the distance in the direction of displacement of the heat radiator or the thermal imaging camera is given, as the change of the distance from the thermal imager to the rotor blade and the heat radiator to the rotor blade ,
  • the greater the distance of the thermal imaging camera to the heat radiator in the direction of displacement the greater the time interval with which the thermal imaging camera takes the corresponding image, whereby errors in comparatively great depths of the rotor blade structure can also be detected.
  • a slow travel speed or a large distance between the heat radiator and the thermal imager increase the depth range of the technique and the method.
  • the greater the distance of the thermal imager to the surface of the rotor blade the lower the amount of heat that can be absorbed by the camera, so that an adaptation to the sensitivity of the thermal imager by the adjustability of the distances is possible.
  • the heat radiator and / or the thermal imaging camera is advantageously mounted displaceable on the at least one holder, so that, for example, always an orthogonal orientation of the thermal imaging camera and the heat radiator can be ensured to the rotor blade surface.
  • the displaceable mounting can be done for example via a ball joint, a universal joint or another multi-axis joint that allows a shift in several degrees of freedom.
  • the at least one holder can be displaceably mounted along a fixed path, for example along a rail which is oriented alongside and advantageously parallel to the longitudinal extent of the rotor blade to be examined.
  • the work platform can be mounted on a carriage, so that both the thermal imaging camera and the heat radiator can be moved at a constant or almost constant speed along the rotor blade.
  • the work platform can be attached to two ropes, which are either pulled over the two blades not to be examined and are attached to or in the gear housing.
  • the travel speed of the work platform is adjustable so that speed can influence the depth range of the examination.
  • thermal imaging camera and / or the heat radiator can also be arranged displaceably on the holder in order to ensure adjustability of the distances from each other and the rotor blade surface.
  • the device may be associated with a measuring device, with which it is possible to detect the position of the thermal imager on the rotor blade.
  • the measuring device can be designed as a GPS-based sensor device, as a counting wheel or as an evaluation device of a measured travel speed of the thermal imaging camera. Via the measuring device it is possible to determine the position of the thermal imaging camera on the rotor blade and to assign this location data to the respective acquired thermal images.
  • the measuring device by means of external reference data via a satellite-based positioning system work, so that regardless of the distance covered a position of the measuring device and thus the thermal imaging camera can be assigned.
  • a mechanical measuring device may represent a counting wheel or a comparable displacement measuring device, which is preceded or tracked from the beginning of the measurement, for example on the hub, of the thermal imaging camera, so that the position can be determined from an initial position.
  • a counting wheel it is also possible to set up an optical measuring device, for example a laser measuring system.
  • FIG. 1 is shown in a schematic representation of a rotor blade 1 of a wind turbine with a belt 10, which serves as a supporting structure of the rotor blade 1.
  • the rotor blade 1 has a curved surface to obtain a wing-like structure.
  • the rotor blade 1 and in particular the belt 10 are made of a laminate of fiber mats, for example glass fiber mats or carbon fiber mats, which are embedded in a plastic matrix, for example an epoxy resin or the like.
  • the fiber fabric is placed for shaping, for example, in a template and impregnated with the application of negative pressure with resin.
  • the fibers themselves are designed to absorb very high tensile forces, the plastic or resin matrix is used to assign the fiber orientations to each other, for fixing the scrim and their protection against mechanical and chemical effects.
  • FIG. 2 shows the cut-out belt 10 as Gurtlaminat and supporting structure with a wave shape or ondulation 12 in the area in which the fabric or fiber mats are not uniformly linear everywhere, but only partially offset at an angle to each other, laid in a wave or in a fold.
  • the resulting cavity between the fiber layers or on the surface is filled with the resin, so that there are different internal structures in the field of faulty laying of the fiber mats. It happens that in the area of the fillings accumulate bubbles, which are also very well detected by a thermal imaging camera.
  • thermographic examination Due to the different thermal conductivity of the resin relative to a Mixture of resin and fiber fabric may result in a thermographic examination to different thermographic images, if a uniform heating of the rotor blade 1 or a portion of the rotor blade 1, for example, the belt 10 takes place. Since the heat introduced by a heat radiator can not be dissipated so well by the resin or the air deposits, a brighter picture results in the area of the defects, while with a correct or even laying of the fabric layers a uniform, relatively dark image is detected can be.
  • FIG. 3 shows a schematic representation of the rotor blade 1 and the working platform 4, which is fixed to the rotor blade 1.
  • the work platform 4 is in the FIG. 4 shown in an enlarged detail.
  • a heat radiator 2 and a thermal imaging camera 3 are attached to the work platform 4.
  • the heat radiator 2 is supplied via an external energy source, in particular supplied with electricity, so that the heat radiator converts the electrical energy into heat energy.
  • the optics of the thermal imager 3 are set such that the areas heated and to be examined by the heat radiator 2, for example the area of the heat radiation device 2 Belt 10, can be sharply imaged.
  • the thermal imaging camera 3, like the heat radiator 2, is attached to a respective holder 5, at the front end of which in each case a contact roller 6 is fastened, which rolls on the surface of the rotor blade 1.
  • the working platform 4 is located on a cable which is fastened, for example, to the hub of a rotor of the rotor blade.
  • the vertically downward-standing rotor blade 1 can be checked in the assembled state.
  • the work platform 4 is lowered down to the rotor blade 1, wherein a force F is exerted in the direction of the rotor blade 1, for example via a pneumatic or mechanical pressure.
  • the contact rollers 6, at a fixed, constant distance from both the heat radiator 2 and the thermal imager 3 are mounted so as not to disturb the heating and the image field, roll constantly on the rotor blade 1 from.
  • a fixed distance D is set, which is changeable via the displaceable mounting of the heat radiator 2 on a boom 7 of the holder 5.
  • the positions of the heat radiator 2 and the thermal imaging camera 3 along the longitudinal extent of the holder 5 are changeable, which is indicated by the double arrows.
  • the heat radiator 2 can be embodied as a line-shaped jet or area radiator and is arranged in front of the thermal imaging camera 3 in the direction of travel during the examination for defects. Due to the changing radiation at changing densities due to delmamination, angular distortion, wrinkles or the like, heat differences can be detected by the thermal imager 3, so that air pockets and resin accumulations can be detected as warmer spots with the thermal imager 3.
  • the working platforms 4 are used, which may also comprise the entire rotor blade 1 and are guided by the rotor blade 1.
  • the heat radiator 2 is mounted in the illustrated embodiment on the underside of the work platform 4, so that the surface of the rotor blade 1 can be heated linearly and substantially orthogonal to the blade longitudinal axis. As a result, the surface is heated homogeneously at a uniform travel speed in the test direction by the heat radiator 2. This is achieved in that the heat radiator 2 always the same distance to the rotor blade. 1 holds.
  • both the heat radiator 2 and the thermal imager 3 is pivotable, for example, gimbaled, so that always a constant, usually orthogonal orientation both the heat radiator 2 and the thermal imaging camera 3 is ensured relative to the surface of the rotor blade 1.
  • biasing means 5a, 5b shown, which exert a force in the direction of arrow on the respective holders, so that they are pressed against the rotor blade 1.
  • the biasing means 5a, 5b may be spring means, motors, accumulators or similar means biasing the respective components of the apparatus against the rotor blade 1.
  • the working platform 4 may have on the respective rear side of the rotor blade a re-storage, for example in the form of a roller which is guided on a linkage, so that the holder can additionally be supported against the rotor blade 1.

Abstract

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Detektion von Fehlstellen in Rotorblättern (1), die in Laminatbauweise mit einem Lagenaufbau mit Fasermatten und/oder Sandwichmaterialien in einer Kunststoffmatrix hergestellt worden sind, wobei das Rotorblatt (1) mit einem an dem Rotorblatt (1) entlanggeführten Wärmestrahler (2) lokal erwärmt wird, die erwärmte Stelle mit einer an dem Rotorblatt (1) entlanggeführten Wärmebildkamera (3) erfasst und Ungleichmäßigkeiten in dem Wärmebild mit Methoden der Bildverarbeitung oder Signalanalyse ausgegeben werden, wobei der Wärmestrahler (2) und die Wärmebildkamera (3) an zumindest einem Halter (5) angeordnet sind, der während der Erwärmung und Erfassung gegen das Rotorblatt (1) gedrückt wird.The invention relates to a method and a device for detecting defects in rotor blades (1), which have been produced in laminate construction with a layer structure with fiber mats and / or sandwich materials in a plastic matrix, wherein the rotor blade (1) with a on the rotor blade (1 ) is locally heated, the heated spot is detected by a thermal imaging camera (3) guided along the rotor blade (1), and irregularities in the thermal image are output by methods of image processing or signal analysis, wherein the heat radiator (2) and the thermal imaging camera (3) on at least one holder (5) are arranged, which is pressed during the heating and detection against the rotor blade (1).

Description

Die Erfindung betrifft ein Verfahren zur Detektion von Fehlstellen in Rotorblättern, die in Laminatbauweise mit einem Lagenaufbau mit Fasermatten und/oder Sandwichmaterialien in einer Kunststoffmatrix hergestellt worden sind, wobei das Rotorblatt mit einem an dem Rotorblatt entlanggeführten Wärmestrahler lokal erwärmt wird, die erwärmte Stelle mit einer an dem Rotorblatt entlanggeführten Wärmebildkamera erfasst wird und die Ungleichmäßigkeiten in dem Wärmebild mit Methoden der Bildverarbeitung oder Signalanalyse ausgegeben werden. Die Erfindung betrifft ebenfalls eine Vorrichtung zur Detektion von Fehlstellen in Rotorblättern, die in Laminatbauweise mit einem Lagenaufbau mit Fasermatten und/oder Sandwichmaterialien mit einer Kunststoffmatrix hergestellt worden sind, mit einem an dem Rotorblatt entlangführbaren Wärmestrahler und einer dem Wärmestrahler nachgeführten Wärmebildkamera, die mit einer Auswerteeinrichtung gekoppelt ist. Der Laminataufbau kann auch ausschließlich aus Fasermatten oder Sandwichmaterialien ausgeführt sein. Ebenso kann der Laminataufbau aus Fasermatten mit stellenweisen Sandwichmaterialien ausgeführt sein. Sowohl das Verfahren als auch die Vorrichtung sind insbesondere für die Untersuchung von Rotorblättern großer Windenergieanlagen vorgesehen und geeignet.The invention relates to a method for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure with fiber mats and / or sandwich materials in a plastic matrix, wherein the rotor blade is heated locally with a guided along the rotor blade heat radiator, the heated point with a is detected on the rotor blade guided thermal imaging camera and the nonuniformities in the thermal image are output by methods of image processing or signal analysis. The invention also relates to a device for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure with fiber mats and / or sandwich materials with a plastic matrix, with a heat radiator along the rotor blade and a heat imager tracked thermal imager, with an evaluation is coupled. The laminate structure can also be made exclusively of fiber mats or sandwich materials. Likewise, the laminate construction can be made of fiber mats with localized sandwich materials. Both the method and the device are in particular for the investigation of rotor blades of large wind turbines provided and suitable.

Rotorblätter von Windenergieanlagen können eine Länge von über 75 m und eine Masse von mehr als 15 t aufweisen. Hergestellt werden die meisten Rotorblätter aus glas- oder kohlefaserverstärktem Kunststoff in der sogenannten Halbschalen-Sandwich-Technik, bei der Rotorblatt-Halbschalen zunächst separat hergestellt und anschließend mit Epoxidharzen oder Polyurethan miteinander verklebt werden. Bei der Herstellung der Rotorblatt-Halbschalen können unterschiedliche Verfahren eingesetzt werden, z.B. die Infusionstechnik, bei der Fasermatten in der Form bei Unterdruck mit Kunstharz getränkt werden. Bei einem anderen Verfahren werden Prepregs in Gestalt von mit Kunstharz benetzten Fasermatten verwendet, mit denen die Form ausgekleidet wird.Wind turbine blades may be over 75 m in length and over 15 t in mass. Most rotor blades are made of glass or carbon fiber reinforced plastic in the so-called half-shell sandwich technique, in which the rotor blade half shells are initially produced separately and then glued together with epoxy resins or polyurethane. In the manufacture of the rotor blade half shells, different methods may be used, e.g. the infusion technique, in which fiber mats are soaked in the mold at low pressure with synthetic resin. In another method, prepregs are used in the form of resin-wetted fiber mats with which the mold is lined.

Schwerwiegende Schäden an den Halbschalen oder Rotorblättern können sowohl bei Handlaminaten als auch bei Vakuuminfusionsverfahren von Fasergelegen entstehen, wenn die nur auf Zug extrem belastbaren Fasern nicht in der optimalen Ebene parallel zueinander, sondern in Wellen oder Falten gelegt worden sind. Es entstehen dann sogenannte Wrinkles oder Ondulationen. Im Betrieb müssen dann die immensen Zugkräfte bei Spitzenumfangsgeschwindigkeiten von mehr als 200 km/h nicht von den Fasern, sondern von dem Kleber bzw. der Harzmatrix aufgenommen werden. Die Folgen einer solchen fehlerhaften Glasfaserlage, insbesondere in lasttragenden Gurtbereichen, sind Anrisse oder Durchrisse im massiven Fasergelege, aber auch in den Blattschalen, die unter Umständen zur kompletten Zerstörung einzelner Blätter führen können.Serious damage to the half-shells or rotor blades can occur in both hand laminates and in vacuum infusion processes of fiber webs, if the fibers, which are only extremely stress-resistant, have been laid parallel to one another in waves or folds. It then creates so-called wrinkles or ondulations. In operation, then the immense tensile forces at peak peripheral speeds of more than 200 km / h must not be absorbed by the fibers, but by the adhesive or the resin matrix. The consequences of such a faulty fiberglass layer, especially in load-bearing belt areas, are cracks or cracks in the massive fiber layer, but also in the leaf shells, which can possibly lead to complete destruction of individual leaves.

Da Fasergewebe, insbesondere Glasfasergewebe oder Karbonfasergewebe, durch die ihnen innewohnende Steifigkeit und die stets gegebene gerundete Oberflächenform des Rotorblattes beim Auslegen der Form immer nur eine näherungsweise Planarität besitzen können, sind Winkelabweichungen in der Orientierung der Gelege bzw. Gewebe nicht zu vermeiden. Wichtig ist dabei, wie sich betroffene Bereiche unzulässig hoher Winkelabweichungen ohne eine zerstörende Untersuchung erkennen lassen können.Since fiber fabric, in particular glass fiber fabric or carbon fiber fabric, by the inherent stiffness and the always given rounded surface shape of the rotor blade when designing the form can always have only an approximate planarity, angular deviations in the orientation of the scrim or tissue can not be avoided. It is important how affected areas of impermissibly high angular deviations can be detected without a destructive examination.

Es gibt punktuell messende Vorrichtungen, die Ultraschallerreger oder eine Mikrowellentechnik verwenden. Die prinzipielle Möglichkeit, eine Ondulation mit einer Breite von 5 mm zu finden, ist durch solche punktuell messenden Methoden gegeben, allerdings führen die Punktmessverfahren bei Rotorblattoberflächen von mehr als 200 m2 zu einer extrem zeitaufwendigen Prüfung.There are point measuring devices that use ultrasonic exciters or a microwave technique. The principle possibility of finding an ondulation with a width of 5 mm is given by such punctually measuring methods, however, the point measuring methods with rotor blade surfaces of more than 200 m 2 lead to an extremely time-consuming test.

Eine alternative Vorrichtung und ein alternatives Verfahren zur Inspektion von Rotorblättern einer Windkraftanlage ist in der DE 10 2010 046 493 B3 beschrieben, bei dem das zu prüfende Rotorblatt mittels einer Anregungsquelle in Gestalt eines Umlenk- und Fokussiersystems erwärmt wird. Sonnenstrahlen werden von einem Umlenkspiegel fokussiert und auf das Rotorblatt geleitet. Der Spiegel ist an einem fliegenden Träger angeordnet, der in einem kontrollierten Abstand an dem Rotorblatt entlangfliegt. Ein Infrarotsensor kann fest auf dem Boden stationiert oder zusammen mit der Anregungsquelle an dem fliegenden Träger befestigt sein. Der fliegende Träger arbeitet sich mit gleichbleibender Geschwindigkeit an dem zu prüfenden Rotorblatt entlang. Diese Technik setzt das Vorhandensein von Sonnenschein voraus, was nicht immer gegeben ist. Scheint die Sonne, erschwert sie die Erkennung der von dem Rotorblatt abgegebenen IR-Strahlung durch die Wärmebildkamera.An alternative apparatus and method for inspecting rotor blades of a wind turbine is disclosed in US Pat DE 10 2010 046 493 B3 described in which the rotor blade to be tested is heated by means of an excitation source in the form of a deflection and focusing system. Sunbeams are focused by a deflecting mirror and directed to the rotor blade. The mirror is mounted on a flying carrier which flies along the rotor blade at a controlled distance. An infrared sensor may be stationed firmly on the ground or attached to the flying carrier together with the excitation source. The flying carrier works at a constant speed along the rotor blade to be tested. This technique requires the presence of sunshine, which is not always the case. If the sun shines, it hinders the detection of the IR radiation emitted by the rotor blade through the thermal imaging camera.

Aus diesen thermografischen Messungen lässt sich der Ort der Fehlstelle oder Ondulation kosteneffizient bestimmen, ggf. können auch bereits vorhandene Folgeschäden aufgefunden werden. Durch die flächige Prüfung erreicht man eine signifikante Verringerung der Prüfdauer im Vergleich zu punktuell messenden Vorrichtungen oder Verfahren. Zerstörende Prüfungen der Rotorblätter müssen nicht durchgeführt werden, vielmehr kann durch die zerstörungsfreie Materialprüfung eine große Anzahl von Rotorblättern auch im Einsatz, also im montierten Zustand überprüft werden, wodurch kapitale Blattverluste verhindert werden können.From these thermographic measurements, the location of the defect or ondulation can be determined cost-effectively, if necessary, even existing consequential damage can be found. The two-dimensional test achieves a significant reduction in the test duration compared to punctiform measuring devices or methods. Destructive testing of the rotor blades need not be performed, but can be checked by the non-destructive material testing a large number of rotor blades in use, so in the assembled state, which prevents major leaf losses can be.

Nachteilig an dem bekannten Verfahren und der bekannten Vorrichtung ist, dass hohe Ungenauigkeiten bei der Erwärmung ebenso wie der Erfassung des Wärmebildes entstehen, da ein Fluggerät mit einem Umlenkspiegel keine Gewähr für eine gleichmäßige Erwärmung und einen gleichmäßigen Messabstand bietet.A disadvantage of the known method and the known device is that high inaccuracies in the heating as well as the detection of the thermal image arise because an aircraft with a deflection mirror provides no guarantee for uniform heating and a uniform measurement distance.

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren zur Detektion von Fehlstellen in Rotorblättern bereitzustellen, die gegenüber dem bekannten Verfahren und der bekannten Vorrichtung eine höhere Genauigkeit aufweisen, um präziser den Ort der Fehlstelle, der Ondulation und auch das Ausmaß der Fehlstelle bestimmen zu können.The object of the present invention is to provide a device and a method for detecting defects in rotor blades, which have a higher accuracy compared to the known method and the known device in order to more precisely determine the location of the defect, the ondulation and also the extent of the defect to be able to.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Hauptanspruches und eine Vorrichtung mit den Merkmalen des nebengeordneten Anspruchs gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen, der Beschreibung sowie den Figuren offenbart.According to the invention this object is achieved by a method having the features of the main claim and a device having the features of the independent claim. Advantageous embodiments and further developments of the invention are disclosed in the subclaims, the description and the figures.

Das erfindungsgemäße Verfahren zur Detektion von Fehlstellen in Rotorblättern, die in Laminatbauweise mit einem Lagenaufbau mit oder aus Fasermatten und/oder Sandwichmaterialien in einer Kunststoffmatrix hergestellt worden sind, wobei das Rotorblatt mit einem an dem Rotorblatt entlanggeführten Wärmestrahler lokal erwärmt wird, die erwärmte Stelle mit einer an dem Rotorblatt entlanggeführten Wärmebildkamera erfasst und Ungleichmäßigkeiten in dem Wärmebild mit Methoden der Bildverarbeitung oder Signalanalyse ausgegeben werden, sieht vor, dass der Wärmestrahler und die Wärmebildkamera an zumindest einem Halter angeordnet sind, der während der Erwärmung und Erfassung durch die Wärmebildkamera gegen das Rotorblatt gedrückt wird. Der Halter, an dem die Wärmebildkamera bzw. die Wärmequelle oder der Wärmestrahler angeordnet sind, wird auf der Oberfläche des Rotorblattes entlanggeführt, wobei der Halter gegen die Rotorblattoberfläche gedrückt wird, so dass stets ein Kontakt zwischen dem Halter und dem Rotorblatt besteht, so dass aufgrund der festen geometrischen Zuordnung von dem Halter zu dem Wärmestrahler und der Wärmebildkamera stets ein konstanter Abstand eingehalten werden kann. Dadurch ist es möglich, die jeweils zu untersuchende Oberfläche des Rotorblattes mit einer definierten, gleichbleibenden und reproduzierbaren Wärmemenge zu bestrahlen und ebenso in einem definierten Abstand die Wärmebildkamera über den bestrahlten Bereich zu führen, um eine präzise, ortsaufgelöste Darstellung der abgegebenen Wärmestrahlung und der Inhomogenitäten in der Wärmeabstrahlung des untersuchten Rotorblattes festzustellen. Anhand der Inhomogenitäten der erfassten Wärmestrahlung kann auf Inhomogenitäten in der Struktur der Rotorblätter geschlossen werden. Darüber hinaus ist es möglich, beispielsweise unter Nutzung einer an dem Rotorblatt entlanggeführten Arbeitsbühne, die Oberfläche des Rotorblattes an der Fundstelle sofort aufzuschleifen, optisch zu inspizieren und ggf. unmittelbar zu reparieren.The inventive method for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure with or from fiber mats and / or sandwich materials in a plastic matrix, wherein the rotor blade is heated locally with a guided along the rotor blade heat radiator, the heated point with a detected on the rotor blade along thermal imager and emitted irregularities in the thermal image with methods of image processing or signal analysis, provides that the heat radiator and the thermal imager are arranged on at least one holder, which is pressed during the heating and detection by the thermal imager against the rotor blade , The holder on which the thermal imaging camera or the heat source or the heat radiator are arranged, is guided along the surface of the rotor blade, wherein the holder is pressed against the rotor blade surface, so that there is always a contact between the holder and the rotor blade, so that due to the fixed geometric assignment of the holder to the heat radiator and the thermal imager always a constant distance can be maintained. This makes it possible to irradiate each surface of the rotor blade to be examined with a defined, consistent and reproducible amount of heat and also to guide the thermal imaging camera over the irradiated area at a defined distance to a precise, spatially resolved representation of the emitted heat radiation and the inhomogeneities in determine the heat radiation of the investigated rotor blade. On the basis of the inhomogeneities of the detected thermal radiation, inhomogeneities in the structure of the rotor blades can be concluded. In addition, it is possible, for example, using a run along the rotor blade platform, the surface of the rotor blade at the reference immediately aufschleleifen, visually inspect and possibly repair immediately.

Der zumindest eine Halter kann pneumatisch, hydraulisch oder über einen mechanischen Kraftspeicher oder auch über die Gewichtskraft mit einer Vorspanneinrichtung gegen das Rotorblatt gedrückt werden. Durch die definierte Kraftaufbringung wird gewährleistet, dass stets der Kontakt zwischen dem Halter und dem Rotorblatt besteht.The at least one holder can be pressed pneumatically, hydraulically or by way of a mechanical energy store or also by means of the weight force with a pretensioning device against the rotor blade. The defined application of force ensures that there is always contact between the holder and the rotor blade.

An dem Halter ist eine Kontaktfläche oder eine Kontaktrolle angeordnet, die auf der Oberfläche des Rotorblattes entlanggeführt wird. Die Kontaktfläche kann mit einer reibungsreduzierten Beschichtung versehen sein, so dass die Oberfläche des Rotorblattes nicht beschädigt wird. Eine Ausgestaltung als Kontaktrolle verringert den Reibungswiderstand und die Möglichkeit, durch die Prüfung des Rotorblattes die Oberfläche zu beschädigen.On the holder, a contact surface or a contact roller is arranged, which is guided along the surface of the rotor blade. The contact surface may be provided with a reduced-friction coating, so that the surface of the rotor blade is not damaged. An embodiment as a contact roller reduces the frictional resistance and the ability to damage the surface by testing the rotor blade.

Der Wärmestrahler und die Wärmebildkamera werden bevorzugt in einen konstanten Abstand zu der Rotorblattoberfläche verfahren, um auszuschließen, dass durch Abstandsschwankungen Messungenauigkeiten auftreten.The heat radiator and the thermal imaging camera are preferably moved at a constant distance from the rotor blade surface in order to rule out that measurement inaccuracies occur due to distance fluctuations.

Der zumindest eine Halter kann auf einer festgelegten Bahn entlang des Rotorblattes oder der Rotorblattlenkachse geführt werden, was insbesondere bei einer Überprüfung während und nach der Produktion im nicht eingebauten Zustand geeignet ist. Die Messvorrichtung mit dem Wärmestrahler kann beispielsweise auf einer Schienenführung entlang dem Rotorblatt mit einer gleichmäßigen, vorbestimmten Geschwindigkeit verfahren werden, wobei Distanzschwankungen aufgrund der Krümmung des Rotorblattes oder Ausrichtfehler durch die Anpresskraft, die die Halter gegen das Rotorblatt drückt, ausgeglichen werden. Hierzu kann der Halter verlagerbar an einer Arbeitsplattform oder dergleichen angeordnet werden, wobei durch die Längenveränderung des Halters keine Veränderung des Abstandes von dem Wärmestrahler und der Wärmebildkamera zu dem Rotorblatt eintritt, wenn oder weil diese Komponenten an dem vorderen Teil des Halters in einem festen Abstand zu dem vorderen Ende des Halters befestigt sind.The at least one holder can be guided on a fixed path along the rotor blade or the rotor blade steering axis, which is particularly suitable for a check during and after production in the non-installed state. The measuring device with the heat radiator can be moved on a rail guide along the rotor blade with a uniform, predetermined speed, for example, wherein distance fluctuations due to the curvature of the rotor blade or alignment error by the contact pressure, which presses the holder against the rotor blade, are compensated. For this purpose, the holder can be arranged displaceably on a working platform or the like, wherein due to the change in length of the holder no change in the distance from the heat radiator and the thermal imaging camera to the rotor blade occurs, or if these components at the front part of the holder at a fixed distance to attached to the front end of the holder.

Um Ungenauigkeiten weiter zu reduzieren, wird die Wärmebildkamera in einem konstanten Abstand dem Wärmestrahler nachgeführt, so dass bei einer konstanten Verfahrgeschwindigkeit des Wärmestrahlers entlang des Rotorblattes zwischen der Bestrahlung und der Aufnahme stets der gleiche Zeitraum liegt, so dass ein reproduzierbares Ergebnis bereitgestellt werden kann.In order to further reduce inaccuracies, the thermal imager is tracked at a constant distance from the heat radiator, so that at a constant travel speed of the heat radiator along the rotor blade between the irradiation and the recording is always the same period, so that a reproducible result can be provided.

Vorteilhafterweise wird die Orientierung der Wärmebildkamera ebenso wie des Wärmestrahlers der Oberflächenkontur des Rotorblattes angepasst. Dazu werden die Wärmebildkamera und der Wärmestrahler stets senkrecht oder in einem gleichbleibenden Winkel zu der Oberfläche des Rotorblattes orientiert gehalten, so dass der Änderung der Form des Rotorblattes auch in Querrichtung Rechnung getragen wird. Die Wärmebildkamera und der Wärmestrahler können nachgeführt werden, was eine entsprechende gelenkige Lagerung an dem Halter oder einer Halterung erforderlich macht.Advantageously, the orientation of the thermal imager as well as the heat radiator of the surface contour of the rotor blade is adjusted. For this purpose, the thermal imaging camera and the heat radiator are always kept oriented perpendicular or at a constant angle to the surface of the rotor blade, so that the change in the shape of the rotor blade is also taken into account in the transverse direction. The thermal imaging camera and the heat radiator can be tracked, which makes a corresponding articulated mounting on the holder or a bracket required.

Eine Weiterbildung des Verfahrens sieht vor, dass die Position der Wärmebildkamera und/oder des Wärmestrahlers auf dem Rotorblatt erfasst und den Wärmebilddaten zugeordnet wird. Die Position der Wärmebildkamera, des Wärmestrahlers oder beider Komponenten auf dem Rotorblatt wird vorteilhafterweise von einer Bezugsstelle ausgemessen, beispielsweise von dem Ausgangspunkt der Messung, beispielsweise am Befestigungspunkt des Rotorblattes an der Nabe. Der von dort aus zurückgelegte Weg wird den jeweiligen Bildern, die von der Wärmebildkamera aufgenommen werden, zugeordnet, beispielsweise eingebrannt oder parallel dazu gespeichert, so dass eine einfache Wiederauffindbarkeit der jeweils untersuchten Stelle anhand der ausgewerteten Wärmebilddaten leicht möglich ist. Wird eine bestimmte Stelle als fehlerhaft detektiert, kann beispielsweise im Rahmen einer Wartung diese Stelle einfach wiedergefunden werden, so dass die Detektion der Fehlstellen und deren Behebung zeitlich auseinanderfallen kann.A development of the method provides that the position of the thermal imaging camera and / or the heat radiator on the rotor blade is detected and assigned to the thermal image data. The position of the thermal imaging camera, the heat radiator or both components on the rotor blade is advantageously measured from a reference point, for example from the starting point of the measurement, for example at the attachment point of the rotor blade to the hub. The path traveled from there is assigned to the respective images which are taken by the thermal imaging camera, for example burned in or stored in parallel, so that a simple retrievability of the respectively examined location on the basis of the evaluated thermal image data is easily possible. If a certain point detected as faulty, this point can be easily recovered, for example, in the context of maintenance, so that the detection of defects and their correction can fall apart in time.

Die Bilder mit erkannten Fehlern werden vorteilhafterweise in einer Fehlerdatei gesondert abgespeichert, bevorzugt mit dem Positionsdaten, so dass nicht die gesamte thermografische Auswertung des Rotorblattes zur Behebung von Fehlstellen ausgewertet werden muss.The images with detected errors are advantageously stored separately in an error file, preferably with the position data, so that not the entire thermographic evaluation of the rotor blade has to be evaluated for the correction of defects.

Die Vorrichtung zur Detektion von Fehlstellen in Rotorblättern, die in Laminatbauweise mit einem Lagenaufbau aus Fasermatten in einer Kunststoffmatrix hergestellt worden sind, mit einem an dem Rotorblatt entlangführbaren Wärmestrahler und einer dem Wärmestrahler nachgeführten Wärmebildkamera, die mit einer Auswerteeinrichtung gekoppelt ist, sieht vor, dass der Wärmestrahler und die Wärmebildkamera an zumindest einem Halter angeordnet sind, dem eine Vorspanneinrichtung zum Andrücken des Halters gegen das Rotorblatt zugeordnet ist. Durch die Vorspanneinrichtung wird der Halter gegen das Rotorblatt gedrückt und beim Entlangführen über die Oberfläche des Rotorblattes, insbesondere entlang der Längserstreckung des Rotorblattes, an dem Rotorblatt gehalten, so dass Änderungen der Form des Rotorblattes in Querrichtung gefolgt werden kann.The device for detecting defects in rotor blades, which have been produced in laminate construction with a layer structure of fiber mats in a plastic matrix, with a heat radiator along the rotor blade and a heat tracker tracking thermal imager coupled to an evaluation, provides that the Heat radiator and the thermal imaging camera are arranged on at least one holder, which is associated with a biasing means for pressing the holder against the rotor blade. By the biasing means of the holder against the rotor blade pressed and held on the rotor blade when passing over the surface of the rotor blade, in particular along the longitudinal extent of the rotor blade, so that changes in the shape of the rotor blade in the transverse direction can be followed.

Eine Weiterbildung der Erfindung sieht vor, dass der zumindest eine Halter an einer Arbeitsplattform verlagerbar gelagert ist, so dass der Abstand von dem Wärmestrahler oder der Wärmebildkamera zu dem Rotorblatt oder untereinander einstellbar ist. Darüber hinaus kann über einen Halter, der beispielsweise teleskopierbar ist, einerseits die Führung des Halters an der Arbeitsplattform sichergestellt und andererseits die Arbeitsplattform auf einer Bahn relativ zu dem Rotorblatt verfahren werden, die nicht parallel oder äquidistant zur Rotorblattkontur verläuft. Darüber hinaus ist die Einstellbarkeit des Abstandes der Wärmebildkamera und des Wärmestrahlers durch eine Verstellbarkeit des Halters relativ zu der Oberfläche des Rotorblattes möglich.A development of the invention provides that the at least one holder is mounted displaceably on a working platform, so that the distance from the heat radiator or the thermal imaging camera to the rotor blade or to each other is adjustable. In addition, on the one hand, the holder of the holder can be secured to the working platform via a holder, which is telescopic, for example, and on the other hand, the working platform are moved on a path relative to the rotor blade, which does not run parallel or equidistant from the rotor blade contour. In addition, the adjustability of the distance of the thermal imager and the heat radiator by an adjustability of the holder relative to the surface of the rotor blade is possible.

Die Wärmebildkamera kann relativ zu dem Wärmestrahler verlagerbar gelagert sein, insbesondere an einer Arbeitsplattform, so dass einerseits der Abstand in Verlagerungsrichtung des Wärmestrahlers bzw. der Wärmebildkamera ebenso gegeben ist, wie die Veränderung des Abstandes von der Wärmebildkamera zu dem Rotorblatt und des Wärmestrahlers zu dem Rotorblatt. Je größer der Abstand der Wärmebildkamera zu dem Wärmestrahler in der Verlagerungsrichtung ist, desto größer ist der zeitliche Abstand, mit der die Wärmebildkamera das entsprechende Bild aufnimmt, wobei dadurch auch Fehler in vergleichsweise großen Tiefen der Rotorblattstruktur erkannt werden können. Eine langsame Verfahrgeschwindigkeit oder ein großer Abstand zwischen dem Wärmestrahler und der Wärmebildkamera vergrößern die Tiefenreichweite der Technik und des Verfahrens. Je größer die Entfernung der Wärmebildkamera zu der Oberfläche des Rotorblattes ist, desto geringer ist die Wärmemenge, die von der Kamera aufgenommen werden kann, so dass eine Anpassung auch an die Empfindlichkeit der Wärmebildkamera durch die Verstellbarkeit der Abstände möglich ist.The thermal imaging camera can be mounted displaceably relative to the heat radiator, in particular on a working platform, so that on the one hand the distance in the direction of displacement of the heat radiator or the thermal imaging camera is given, as the change of the distance from the thermal imager to the rotor blade and the heat radiator to the rotor blade , The greater the distance of the thermal imaging camera to the heat radiator in the direction of displacement, the greater the time interval with which the thermal imaging camera takes the corresponding image, whereby errors in comparatively great depths of the rotor blade structure can also be detected. A slow travel speed or a large distance between the heat radiator and the thermal imager increase the depth range of the technique and the method. The greater the distance of the thermal imager to the surface of the rotor blade, the lower the amount of heat that can be absorbed by the camera, so that an adaptation to the sensitivity of the thermal imager by the adjustability of the distances is possible.

Um die Orientierung sowohl der Wärmebildkamera als auch des Wärmestrahlers gleichmäßig relativ zu der Oberfläche des Rotorblattes ausrichten zu können, ist der Wärmestrahler und/oder die Wärmebildkamera vorteilhafterweise verlagerbar an dem zumindest einen Halter gelagert, so dass beispielsweise stets eine orthogonale Ausrichtung der Wärmebildkamera und des Wärmestrahlers zu der Rotorblattoberfläche gewährleistet sein kann. Die verlagerbare Lagerung kann beispielsweise über ein Kugelgelenk, ein Kardangelenk oder ein anderes mehrachsiges Gelenk erfolgen, das eine Verlagerung in mehreren Freiheitsgraden zulässt.In order to be able to align the orientation of both the thermal imaging camera and the heat radiator uniformly relative to the surface of the rotor blade, the heat radiator and / or the thermal imaging camera is advantageously mounted displaceable on the at least one holder, so that, for example, always an orthogonal orientation of the thermal imaging camera and the heat radiator can be ensured to the rotor blade surface. The displaceable mounting can be done for example via a ball joint, a universal joint or another multi-axis joint that allows a shift in several degrees of freedom.

Der zumindest eine Halter kann entlang einer festgelegten Bahn verlagerbar gelagert sein, beispielsweise entlang einer Schiene, die neben und vorteilhafterweise parallel zur Längserstreckung des Rotorblattes, das untersucht werden soll, orientiert ist. Beispielsweise kann die Arbeitsplattform auf einem Schlitten gelagert sein, so dass sowohl die Wärmebildkamera als auch der Wärmestrahler mit einer konstanten oder nahezu konstanten Geschwindigkeit entlang des Rotorblattes verfahren werden kann. Die Arbeitsplattform kann an zwei Seilen befestigt sein, die entweder über die beiden nicht zu untersuchenden Rotorblätter gezogen werden und an oder in dem Getriebegehäuse befestigt sind. Ein Motor oder mehrere Motoren, die synchron betrieben werden und beispielsweise oberhalb der Arbeitsplattform angebracht sind, ziehen die Arbeitsplattform hoch oder lassen sie herab. Die Verfahrgeschwindigkeit der Arbeitsplattform ist einstellbar, so dass über die Geschwindigkeit Einfluss auf die Tiefenreichweite der Untersuchung genommen werden kann.The at least one holder can be displaceably mounted along a fixed path, for example along a rail which is oriented alongside and advantageously parallel to the longitudinal extent of the rotor blade to be examined. For example, the work platform can be mounted on a carriage, so that both the thermal imaging camera and the heat radiator can be moved at a constant or almost constant speed along the rotor blade. The work platform can be attached to two ropes, which are either pulled over the two blades not to be examined and are attached to or in the gear housing. One or more motors operating synchronously, for example mounted above the work platform, raise or lower the work platform. The travel speed of the work platform is adjustable so that speed can influence the depth range of the examination.

Neben einer verschwenkbaren Lagerung der Wärmebildkamera und/oder des Wärmestrahlers an dem Halter können diese auch verschieblich an dem Halter angeordnet sein, um eine Einstellbarkeit der Abstände zueinander und der Rotorblattoberfläche zu gewährleisten.In addition to a pivotable mounting of the thermal imaging camera and / or the heat radiator on the holder, these can also be arranged displaceably on the holder in order to ensure adjustability of the distances from each other and the rotor blade surface.

Der Vorrichtung kann eine Messeinrichtung zugeordnet sein, mit der es möglich ist, die Position der Wärmebildkamera auf dem Rotorblatt zu erfassen. Die Messeinrichtung kann als GPS-basierte Sensoreinrichtung, als Zählrad oder als Auswerteeinrichtung einer gemessenen Verfahrgeschwindigkeit der Wärmebildkamera ausgebildet sein. Über die Messeinrichtung ist es möglich, die Position der Wärmebildkamera auf dem Rotorblatt zu bestimmen und diese Ortsdaten den jeweiligen erfassten Wärmebildern zuzuordnen. Dabei kann die Messeinrichtung mittels externer Bezugsdaten über ein satellitengesteuertes Ortungssystem arbeiten, so dass unabhängig von der zurückgelegten Fahrstrecke eine Position der Messeinrichtung und damit auch der Wärmebildkamera zugeordnet werden kann. Voraussetzung hierfür ist es, die Position des Rotorblattes ebenfalls zu bestimmen oder zumindest eine definierte Orientierung des Rotorblattes bei der Messung festzulegen, beispielsweise in einer senkrecht nach unten orientierten Stellung. Eine mechanische Messeinrichtung kann ein Zählrad oder eine vergleichbare Wegmesseinrichtung darstellen, die von Beginn der Messung, beispielsweise an der Nabe beginnend, der Wärmebildkamera vor- oder nachgeführt wird, so dass die Position von einer Ausgangsposition her bestimmt werden kann. Alternativ zu einem Zählrad kann auch eine optische Messeinrichtung, beispielsweise ein Lasermesssystem eingerichtet werden. Auch ist es möglich, anhand der Daten der Motorsteuerung, die zum Verfahren der Messeinrichtung oder der Wärmebildkamera entlang des Rotorblattes eingesetzt wird, über die Verfahrgeschwindigkeit und die Verfahrdauer die Verfahrstrecke abzuleiten oder anhand der Drehzahl und der Übersetzungen zu errechnen, an welcher Position des Rotorblattes die jeweilige Messung zu einem bestimmten Zeitpunkt stattgefunden hat und diese Positionsdaten dem Bild zuzuordnen.The device may be associated with a measuring device, with which it is possible to detect the position of the thermal imager on the rotor blade. The measuring device can be designed as a GPS-based sensor device, as a counting wheel or as an evaluation device of a measured travel speed of the thermal imaging camera. Via the measuring device it is possible to determine the position of the thermal imaging camera on the rotor blade and to assign this location data to the respective acquired thermal images. In this case, the measuring device by means of external reference data via a satellite-based positioning system work, so that regardless of the distance covered a position of the measuring device and thus the thermal imaging camera can be assigned. The prerequisite for this is likewise to determine the position of the rotor blade or to determine at least one defined orientation of the rotor blade during the measurement, for example in a vertically downwardly oriented position. A mechanical measuring device may represent a counting wheel or a comparable displacement measuring device, which is preceded or tracked from the beginning of the measurement, for example on the hub, of the thermal imaging camera, so that the position can be determined from an initial position. As an alternative to a counting wheel, it is also possible to set up an optical measuring device, for example a laser measuring system. It is also possible, based on the data of the engine control, which is used to move the measuring device or the thermal imaging camera along the rotor blade, derive the trajectory over the traversing speed and the travel time or to calculate based on the speed and the translations, at which position of the rotor blade respective measurement has taken place at a certain time and assign this position data to the image.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beigefügten Figuren näher erläutert. Es zeigen:

Figur 1 -
ein Rotorblatt in einer Gesamtansicht;
Figur 2 -
eine vergrößerte Schnittdarstellung eines Gurtlaminats;
Figur 3 -
eine schematische Darstellung einer Untersuchung; sowie
Figur 4 -
eine schematische Einzeldarstellung einer Vorrichtung.
Hereinafter, an embodiment of the invention will be explained in more detail with reference to the accompanying figures. Show it:
FIG. 1 -
a rotor blade in an overall view;
FIG. 2 -
an enlarged sectional view of a Gurtlaminats;
FIG. 3 -
a schematic representation of an investigation; such as
FIG. 4 -
a schematic single representation of a device.

In der Figur 1 ist in einer schematischen Darstellung einer Rotorblatt 1 einer Windenergieanlage mit einem Gurt 10 gezeigt, der als tragende Struktur des Rotorblattes 1 dient. Das Rotorblatt 1 weist eine gewölbte Oberfläche auf, um eine tragflügelartige Struktur zu erhalten. Das Rotorblatt 1 und insbesondere der Gurt 10 sind aus einem Laminat aus Fasermatten, beispielsweise Glasfasermatten oder Kohlefasermatten hergestellt, die in einer Kunststoffmatrix, beispielsweise einem Epoxidharz oder dergleichen, eingebettet sind. Das Fasergewebe wird zur Formgebung beispielsweise in eine Schablone gelegt und unter Anlegen von Unterdruck mit Harz durchtränkt. Die Fasern selbst sind darauf ausgelegt, sehr hohe Zugkräfte aufzunehmen, die Kunststoff- oder Harzmatrix dient zur Zuordnung der Faserorientierungen zueinander, zur Fixierung der Gelege sowie deren Schutz vor mechanischen und chemischen Einwirkungen.In the FIG. 1 is shown in a schematic representation of a rotor blade 1 of a wind turbine with a belt 10, which serves as a supporting structure of the rotor blade 1. The rotor blade 1 has a curved surface to obtain a wing-like structure. The rotor blade 1 and in particular the belt 10 are made of a laminate of fiber mats, for example glass fiber mats or carbon fiber mats, which are embedded in a plastic matrix, for example an epoxy resin or the like. The fiber fabric is placed for shaping, for example, in a template and impregnated with the application of negative pressure with resin. The fibers themselves are designed to absorb very high tensile forces, the plastic or resin matrix is used to assign the fiber orientations to each other, for fixing the scrim and their protection against mechanical and chemical effects.

Figur 2 zeigt den ausgeschnittenen Gurt 10 als Gurtlaminat und tragende Struktur mit einer Wellengestalt oder Ondulation 12 in dem Bereich, in dem die Gewebe oder Fasermatten nicht überall gleichmäßig linear, sondern nur bereichsweise in einem Winkel versetzt zueinander, in einer Welle oder in einer Falte verlegt sind. Der dabei entstandene Hohlraum zwischen den Faserlagen oder an der Oberfläche ist mit dem Harz aufgefüllt, so dass sich unterschiedliche innere Strukturen im Bereich der fehlerhaften Verlegung der Fasermatten ergeben. Es kommt vor, dass sich im Bereich der Auffüllungen Luftblasen anlagern, die ebenfalls sehr gut über eine Wärmebildkamera detektierbar sind. Aufgrund der unterschiedlichen Wärmeleitfähigkeit des Harzes relativ zu einem Gemisch aus Harz und Fasergewebe kann es bei einer thermografischen Untersuchung zu unterschiedlichen Thermografiebildern kommen, wenn eine gleichmäßige Erwärmung des Rotorblattes 1 oder eines Bereiches des Rotorblattes 1, beispielsweise des Gurtes 10 erfolgt. Da die Wärme, die durch einen Wärmestrahler eingebracht wurde, durch das Harz oder die Lufteinlagerungen nicht so gut abgeleitet werden kann, ergibt sich ein helleres Bild im Bereich der Fehlstellen, während bei einer korrekten oder gleichmäßigen Verlegung der Gewebelagen ein gleichmäßiges, relativ dunkles Bild erfasst werden kann. FIG. 2 shows the cut-out belt 10 as Gurtlaminat and supporting structure with a wave shape or ondulation 12 in the area in which the fabric or fiber mats are not uniformly linear everywhere, but only partially offset at an angle to each other, laid in a wave or in a fold. The resulting cavity between the fiber layers or on the surface is filled with the resin, so that there are different internal structures in the field of faulty laying of the fiber mats. It happens that in the area of the fillings accumulate bubbles, which are also very well detected by a thermal imaging camera. Due to the different thermal conductivity of the resin relative to a Mixture of resin and fiber fabric may result in a thermographic examination to different thermographic images, if a uniform heating of the rotor blade 1 or a portion of the rotor blade 1, for example, the belt 10 takes place. Since the heat introduced by a heat radiator can not be dissipated so well by the resin or the air deposits, a brighter picture results in the area of the defects, while with a correct or even laying of the fabric layers a uniform, relatively dark image is detected can be.

Figur 3 zeigt eine schematische Darstellung des Rotorblattes 1 und der Arbeitsplattform 4, die an dem Rotorblatt 1 befestigt ist. Die Arbeitsplattform 4 ist in der Figur 4 in einer vergrößerten Detaildarstellung gezeigt. Zur Durchführung des Prüfverfahrens wird an der Arbeitsplattform 4 ein Wärmestrahler 2 und eine Wärmebildkamera 3 angebracht. Der Wärmestrahler 2 wird über eine externe Energiequelle versorgt, insbesondere mit Strom versorgt, so dass der Wärmestrahler die elektrische Energie in Wärmeenergie umwandelt Die Optik der Wärmebildkamera 3 wird so eingestellt, dass die von dem Wärmestrahler 2 erwärmten und zu untersuchenden Bereiche, beispielsweise der Bereich des Gurtes 10, scharf abgebildet werden kann. Die Wärmebildkamera 3 ist ebenso wie der Wärmestrahler 2 an jeweils einem Halter 5 angebracht, an dessen vorderem Ende jeweils eine Kontaktrolle 6 befestigt ist, die auf der Oberfläche des Rotorblattes 1 abrollt. FIG. 3 shows a schematic representation of the rotor blade 1 and the working platform 4, which is fixed to the rotor blade 1. The work platform 4 is in the FIG. 4 shown in an enlarged detail. To carry out the test method, a heat radiator 2 and a thermal imaging camera 3 are attached to the work platform 4. The heat radiator 2 is supplied via an external energy source, in particular supplied with electricity, so that the heat radiator converts the electrical energy into heat energy. The optics of the thermal imager 3 are set such that the areas heated and to be examined by the heat radiator 2, for example the area of the heat radiation device 2 Belt 10, can be sharply imaged. The thermal imaging camera 3, like the heat radiator 2, is attached to a respective holder 5, at the front end of which in each case a contact roller 6 is fastened, which rolls on the surface of the rotor blade 1.

In der Darstellung der Figur 3 befindet sich die Arbeitsplattform 4 an einem Seil, das beispielsweise an der Nabe eines Rotors des Rotorblattes befestigt ist. Über das Seil kann das senkrecht nach unten stehende Rotorblatt 1 im montierten Zustand überprüft werden. Die Arbeitsplattform 4 wird an dem Rotorblatt 1 herunterfahrend abgelassen, wobei eine Kraft F in Richtung auf das Rotorblatt 1 ausgeübt wird, beispielsweise über einen pneumatischen oder mechanischen Andruck. Die Kontaktrollen 6, die in einem festgelegten, konstanten Abstand sowohl von dem Wärmestrahler 2 als auch der Wärmebildkamera 3 angebracht sind, um die Erwärmung und das Bildfeld nicht zu stören, rollen ständig auf dem Rotorblatt 1 ab. Zwischen dem Wärmestrahler 2 und der Wärmebildkamera 3 ist ein fester Abstand D eingestellt, der über die verschiebliche Lagerung des Wärmestrahlers 2 an einem Ausleger 7 des Halters 5 veränderbar ist. Ebenso sind die Positionen des Wärmestrahlers 2 und der Wärmebildkamera 3 entlang der Längserstreckung der Halter 5 veränderbar, was durch die Doppelpfeile angedeutet ist.In the presentation of the FIG. 3 the working platform 4 is located on a cable which is fastened, for example, to the hub of a rotor of the rotor blade. About the rope, the vertically downward-standing rotor blade 1 can be checked in the assembled state. The work platform 4 is lowered down to the rotor blade 1, wherein a force F is exerted in the direction of the rotor blade 1, for example via a pneumatic or mechanical pressure. The contact rollers 6, at a fixed, constant distance from both the heat radiator 2 and the thermal imager 3 are mounted so as not to disturb the heating and the image field, roll constantly on the rotor blade 1 from. Between the heat radiator 2 and the thermal imaging camera 3, a fixed distance D is set, which is changeable via the displaceable mounting of the heat radiator 2 on a boom 7 of the holder 5. Likewise, the positions of the heat radiator 2 and the thermal imaging camera 3 along the longitudinal extent of the holder 5 are changeable, which is indicated by the double arrows.

Während die Arbeitsplattform 4 mit einer vordefinierten, einstellbaren, konstanten Geschwindigkeit entlang dem Rotorblatt 1 entlanggefahren wird, werden Infrarotbilder oder Videos von der Wärmeverteilung der Oberfläche des Rotorblattes 1 durch die Wärmebildkamera 3 aufgenommen und an eine nicht dargestellte Auswerteeinrichtung übermittelt. Der Wärmestrahler 2 kann als linienförmiger Strahle oder Flächenstrahler ausgebildet sein und ist in Verfahrrichtung bei der Untersuchung auf Fehlstellen vor der Wärmebildkamera 3 angeordnet. Aufgrund der sich verändernden Abstrahlung bei sich verändernden Dichten aufgrund von Delmaminationen, Winkelverwerfungen, Falten oder dergleichen, können Wärmeunterschiede durch die Wärmebildkamera 3 detektiert werden, so dass Lufteinschlüsse und Harzansammlungen als wärmere Stellen mit der Wärmebildkamera 3 detektiert werden können.While the work platform 4 is moved along the rotor blade 1 at a predefined, adjustable, constant speed, infrared images or videos of the heat distribution of the surface of the rotor blade 1 are taken by the thermal imaging camera 3 and transmitted to an evaluation device, not shown. The heat radiator 2 can be embodied as a line-shaped jet or area radiator and is arranged in front of the thermal imaging camera 3 in the direction of travel during the examination for defects. Due to the changing radiation at changing densities due to delmamination, angular distortion, wrinkles or the like, heat differences can be detected by the thermal imager 3, so that air pockets and resin accumulations can be detected as warmer spots with the thermal imager 3.

Für die optische Kontrolle und eine möglicherweise notwendigere Reparatur einzelner Teilbereiche an Rotorblättern 1 einer Windenergieanlage werden die Arbeitsplattformen 4 eingesetzt, die auch das gesamte Rotorblatt 1 umfassen können und durch das Rotorblatt 1 geführt werden. Der Wärmestrahler 2 ist im dargestellten Ausführungsbeispiel an der Unterseite der Arbeitsplattform 4 angebracht, so dass die Oberfläche des Rotorblattes 1 linienförmig und im Wesentlichen orthogonal zur Blattlängsachse erwärmt werden kann. Dadurch wird bei einer gleichmäßigen Verfahrgeschwindigkeit in Prüfrichtung durch den Wärmestrahler 2 die Oberfläche homogen erwärmt. Dies wird dadurch erreicht, dass der Wärmestrahler 2 immer die gleiche Entfernung zu dem Rotorblatt 1 innehat. Für die Nachführung der Wärmebildkamera 3 und des Wärmestrahlers 2 bei einer Änderung der Form des Rotorblattes in Querrichtung entlang seiner Längserstreckung ist sowohl der Wärmestrahler 2 als auch die Wärmebildkamera 3 verschwenkbar, beispielsweise kardanisch aufgehängt, so dass stets eine gleichbleibende, in der Regel orthogonale Ausrichtung sowohl des Wärmestrahlers 2 als auch der Wärmebildkamera 3 relativ zu der Oberfläche des Rotorblattes 1 gewährleistet ist.For the optical control and a possibly necessary repair of individual sections of rotor blades 1 of a wind turbine, the working platforms 4 are used, which may also comprise the entire rotor blade 1 and are guided by the rotor blade 1. The heat radiator 2 is mounted in the illustrated embodiment on the underside of the work platform 4, so that the surface of the rotor blade 1 can be heated linearly and substantially orthogonal to the blade longitudinal axis. As a result, the surface is heated homogeneously at a uniform travel speed in the test direction by the heat radiator 2. This is achieved in that the heat radiator 2 always the same distance to the rotor blade. 1 holds. For the tracking of the thermal imaging camera 3 and the heat radiator 2 in a change in the shape of the rotor blade in the transverse direction along its longitudinal extent, both the heat radiator 2 and the thermal imager 3 is pivotable, for example, gimbaled, so that always a constant, usually orthogonal orientation both the heat radiator 2 and the thermal imaging camera 3 is ensured relative to the surface of the rotor blade 1.

In der Figur 4 sind ebenfalls die Vorspanneinrichtungen 5a, 5b gezeigt, die eine Kraft in Pfeilrichtung auf die jeweiligen Halter ausüben, so dass diese gegen das Rotorblatt 1 gedrückt werden. Die Vorspanneinrichtungen 5a, 5b können Federeinrichtungen, Motore, Druckspeicher oder ähnliche Einrichtungen sein, die die jeweiligen Komponenten der Vorrichtung gegen das Rotorblatt 1 vorspannen. Die Arbeitsplattform 4 kann auf der jeweils rückwärtigen Seite des Rotorblattes ein Wiederlager haben, beispielsweise in Gestalt einer Rolle, die an einem Gestänge geführt ist, so dass sich die Halter zusätzlich gegen das Rotorblatt 1 abstützen können.In the FIG. 4 are also the biasing means 5a, 5b shown, which exert a force in the direction of arrow on the respective holders, so that they are pressed against the rotor blade 1. The biasing means 5a, 5b may be spring means, motors, accumulators or similar means biasing the respective components of the apparatus against the rotor blade 1. The working platform 4 may have on the respective rear side of the rotor blade a re-storage, for example in the form of a roller which is guided on a linkage, so that the holder can additionally be supported against the rotor blade 1.

Claims (16)

Verfahren zur Detektion von Fehlstellen in Rotorblättern (1), die in Laminatbauweise mit einem Lagenaufbau mit Fasermatten und/oder Sandwichmaterialien in einer Kunststoffmatrix hergestellt worden sind, wobei das Rotorblatt (1) mit einem an dem Rotorblatt (1) entlanggeführten Wärmestrahler (2) lokal erwärmt wird, die erwärmte Stelle mit einer an dem Rotorblatt (1) entlanggeführten Wärmebildkamera (3) erfasst und Ungleichmäßigkeiten in dem Wärmebild mit Methoden der Bildverarbeitung oder Signalanalyse ausgegeben werden, dadurch gekennzeichnet, dass der Wärmestrahler (2) und die Wärmebildkamera (3) an zumindest einem Halter (5) angeordnet sind, der während der Erwärmung und Erfassung gegen das Rotorblatt (1) gedrückt wird.Method for detecting defects in rotor blades (1) which have been produced in laminate construction with a layer structure comprising fiber mats and / or sandwich materials in a plastic matrix, the rotor blade (1) being local with a heat radiator (2) guided along the rotor blade (1) is heated, the heated spot detected with a on the rotor blade (1) along thermal imaging camera (3) and output irregularities in the thermal image with methods of image processing or signal analysis, characterized in that the heat radiator (2) and the thermal imaging camera (3) at least one holder (5) are arranged, which is pressed during the heating and detection against the rotor blade (1). Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der zumindest eine Halter (5) pneumatisch, hydraulisch oder über einen mechanischen Kraftspeicher mit einer Vorspanneinrichtung (5a, 5b) gegen das Rotorblatt (1) gedrückt wird.A method according to claim 1, characterized in that the at least one holder (5) is pressed pneumatically, hydraulically or via a mechanical energy accumulator with a biasing means (5a, 5b) against the rotor blade (1). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an dem zumindest einen Halter (5) eine Kontaktfläche oder eine Kontaktrolle (6) angeordnet ist, die auf der Oberfläche des Rotorblattes (1) entlanggeführt wird.A method according to claim 1 or 2, characterized in that on the at least one holder (5) a contact surface or a contact roller (6) is arranged, which is guided along on the surface of the rotor blade (1). Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmestrahler (2) und die Wärmebildkamera (3) in einem konstanten Abstand zu der Rotorblattoberfläche verfahren werden.Method according to one of the preceding claims, characterized in that the heat radiator (2) and the thermal imaging camera (3) are moved at a constant distance from the rotor blade surface. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Halter (5) auf einer festgelegten Bahn entlang des Rotorblattes (1) oder der Rotorblattlängsachse geführt wird.Method according to one of the preceding claims, characterized in that the at least one holder (5) is guided on a fixed path along the rotor blade (1) or the rotor blade longitudinal axis. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmebildkamera (3) in einem konstanten Abstand (D) dem Wärmestrahler (2) nachgeführt wird.Method according to one of the preceding claims, characterized in that the thermal imaging camera (3) is tracked at a constant distance (D) from the heat radiator (2). Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass Bilder mit erkannten Fehlern in einer Fehlerdatei gesondert abgespeichert werden.Method according to one of the preceding claims, characterized in that images with detected errors are stored separately in an error file. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Position der Wärmebildkamera (3) und/oder des Wärmestrahlers (2) auf dem Rotorblatt (1) erfasst und den Wärmebilddaten zugeordnet wird.Method according to one of the preceding claims, characterized in that the position of the thermal imaging camera (3) and / or the heat radiator (2) on the rotor blade (1) is detected and assigned to the thermal image data. Vorrichtung zur Detektion von Fehlstellen in Rotorblättern (1), die in Laminatbauweise mit einem Lagenaufbau aus Fasermatten und/oder Sandwichmaterialien in einer Kunststoffmatrix hergestellt worden sind, mit einem an dem Rotorblatt (1) entlangführbaren Wärmestrahler (2)und einer dem Wärmestrahler (2) nachgeführten Wärmebildkamera (3), die mit einer Auswerteeinrichtung gekoppelt ist, dadurch gekennzeichnet, dass der Wärmestrahler (2) und die Wärmebildkamera (3) an zumindest einem Halter (5) angeordnet sind, dem eine Vorspanneinrichtung (5a, 5b) zum Andrücken des Halters (5) gegen das Rotorblatt (1) zugeordnet ist.Device for detecting defects in rotor blades (1) which have been produced in laminate construction with a layer structure of fiber mats and / or sandwich materials in a plastic matrix, with a heat radiator (2) which can be guided along the rotor blade (1) and a heat radiator (2) tracked thermal imaging camera (3), which with a Evaluation device is coupled, characterized in that the heat radiator (2) and the thermal imaging camera (3) are arranged on at least one holder (5) to which a biasing means (5a, 5b) for pressing the holder (5) against the rotor blade (1) assigned. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der zumindest ein Halter (5) an einer Arbeitsplattform (4) verlagerbar gelagert ist.Apparatus according to claim 9, characterized in that the at least one holder (5) on a working platform (4) is mounted displaceably. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Wärmebildkamera (3) relativ zu dem Wärmestrahler (2) verlagerbar gelagert ist.Apparatus according to claim 9 or 10, characterized in that the thermal imaging camera (3) relative to the heat radiator (2) is mounted displaceably. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der Wärmestrahler (2) und/oder die Wärmebildkamera (3) verlagerbar an den zumindest einen Halter (5) gelagert sind.Device according to one of claims 9 to 11, characterized in that the heat radiator (2) and / or the thermal imaging camera (3) are displaceably mounted on the at least one holder (5). Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der zumindest eine Halter (5) entlang einer festgelegten Bahn verlagerbar gelagert ist.Device according to one of claims 9 to 12, characterized in that the at least one holder (5) is displaceably mounted along a predetermined path. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Wärmebildkamera (3) und/oder der Wärmestrahler (2) verschwenkbar an dem zumindest einen Halter (5) gelagert sind.Device according to one of claims 9 to 13, characterized in that the thermal imaging camera (3) and / or the heat radiator (2) are pivotally mounted on the at least one holder (5). Vorrichtung nach einem der Ansprüche 9 bis 14, gekennzeichnet durch eine Messeinrichtung, die die Position der Wärmebildkamera (3) auf dem Rotorblatt (1) erfasst.Device according to one of claims 9 to 14, characterized by a measuring device which detects the position of the thermal imaging camera (3) on the rotor blade (1). Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Messeinrichtung als GPS-basierte Sensoreinrichtung, als Zählrad oder als Auswerteeinrichtung einer gemessenen Verfahrgeschwindigkeit der Wärmebildkamera (3) ausgebildet ist.Apparatus according to claim 15, characterized in that the measuring device as a GPS-based sensor device, as counting wheel or as evaluation of a measured traversing speed of the thermal imaging camera (3) is formed.
EP15190129.5A 2014-10-17 2015-10-16 Method and device for detecting defects in rotor blades Active EP3009823B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014015322.3A DE102014015322A1 (en) 2014-10-17 2014-10-17 Method and device for detecting defects in rotor blades

Publications (2)

Publication Number Publication Date
EP3009823A1 true EP3009823A1 (en) 2016-04-20
EP3009823B1 EP3009823B1 (en) 2019-02-20

Family

ID=54360859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15190129.5A Active EP3009823B1 (en) 2014-10-17 2015-10-16 Method and device for detecting defects in rotor blades

Country Status (3)

Country Link
EP (1) EP3009823B1 (en)
DE (1) DE102014015322A1 (en)
DK (1) DK3009823T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835336B2 (en) 2020-01-24 2023-12-05 Lm Wind Power A/S Measuring device for measuring uneveness of a surface of an item

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116563280B (en) * 2023-07-07 2023-09-12 深圳市鑫典金光电科技有限公司 Composite copper heat dissipation bottom plate processing detection method and system based on data analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059502B3 (en) * 2007-12-07 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for testing a rotor blade of a wind turbine and testing device
DE102010046493B3 (en) 2010-09-24 2012-03-08 Thermosensorik Gmbh Method for non-contact and non-destructive inspection of fault in rotor blades of wind power plant using heat flow thermography, involves arranging flying carrier at controlled distance from rotor blade to be tested

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866276A (en) * 1987-12-29 1989-09-12 The Boeing Company Method and apparatus for nondestructive analysis of subsurface features of material
EP2583262A1 (en) * 2008-10-27 2013-04-24 Scot I. Williams Wind turbine inspection
US8281442B2 (en) * 2009-07-17 2012-10-09 General Electric Company Wind turbine blade inspection and cleaning system
US8743196B2 (en) * 2010-12-16 2014-06-03 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
PL2492671T3 (en) * 2011-02-28 2015-10-30 Siemens Ag Method of detecting wrinkles in a fiber reinforced laminated structure
EP2752621B1 (en) * 2011-09-02 2016-12-07 Samsung Heavy Ind. Co., Ltd. Apparatus for maintaining wind turbine blades
KR101444153B1 (en) * 2013-09-27 2014-09-26 삼성중공업 주식회사 Maintenance apparatus for wind turbine and method of maintaining blade using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059502B3 (en) * 2007-12-07 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for testing a rotor blade of a wind turbine and testing device
DE102010046493B3 (en) 2010-09-24 2012-03-08 Thermosensorik Gmbh Method for non-contact and non-destructive inspection of fault in rotor blades of wind power plant using heat flow thermography, involves arranging flying carrier at controlled distance from rotor blade to be tested

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Lasers in the Conservation of Artworks", 18 August 2008, CRC PRESS, ISBN: 978-0-203-88208-5, article K DICKMANN ET AL: "Laser ablation-and LIBS-ranging by webcam and image processing during laser cleaning", pages: 127 - 131, XP055256295, DOI: 10.1201/9780203882085.ch20 *
MEINLSCHMIDT P ET AL: "Thermographic inspection of rotor blades", INTERNET CITATION, 26 September 2006 (2006-09-26), pages 1 - 9, XP002525987, ISSN: 1435-4934, Retrieved from the Internet <URL:http://www.ndt.net/article/ecndt2006/doc/Tu.1.5.3.pdf> [retrieved on 20090429] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835336B2 (en) 2020-01-24 2023-12-05 Lm Wind Power A/S Measuring device for measuring uneveness of a surface of an item

Also Published As

Publication number Publication date
DE102014015322A1 (en) 2016-04-21
EP3009823B1 (en) 2019-02-20
DK3009823T3 (en) 2019-05-13

Similar Documents

Publication Publication Date Title
DE102015122205B4 (en) Terahertz measurement method and terahertz measurement device for determining a layer thickness or a distance of a measurement object
EP1121586B1 (en) Device for contactless testing of test bodies
DE60012781T2 (en) METHOD FOR DETECTING THE DYNAMIC BEHAVIOR OF A VEHICLE ON A TEST BENCH
DE102010046493B3 (en) Method for non-contact and non-destructive inspection of fault in rotor blades of wind power plant using heat flow thermography, involves arranging flying carrier at controlled distance from rotor blade to be tested
DE102015106366B4 (en) Method and device for determining a position of defects or damage to rotor blades of a wind turbine in the installed state
DE102009009272A1 (en) Quality inspection for rotor blades of a wind energy plant
WO2014059964A1 (en) Robot for inspecting rotor blades of wind energy installations
DE102008010916A1 (en) Method and device for determining an orientation of two rotatably mounted machine parts, an alignment of two hollow cylindrical machine parts or for testing a component for straightness along a longitudinal side
EP3009823B1 (en) Method and device for detecting defects in rotor blades
DE2743054A1 (en) OPTICAL MEASURING DEVICE WITH A LONGITUDINAL, FOCUSED BEAM
DE102015101328A1 (en) System and method for repairing a component made from a plastic
DE102004007830B4 (en) Method for locating defects and marking system
EP3534145A1 (en) Joint test bench
DE102016205469A1 (en) Measuring system for measuring a surface
DE102017010055A1 (en) Laser beam welding of geometric figures with OCT seam guide
DE102019112312A1 (en) Method and device for three-dimensional detection of a fiber material surface
DE102018101689A1 (en) Method and device for measuring rotor blade movements of an aircraft
DE102018003818A1 (en) A method and apparatus for nondestructive optical determination of a stress condition in a visible light impermeable member
EP2153166B1 (en) Method for measuring the shape of freeform surfaces
DE102012221067A1 (en) Strain gages and mechanical component
EP3387369B1 (en) Method for measuring a contour of a body or for checking the position thereof about an axis of rotation
DE10022568A1 (en) Exposed object monitor has aircraft mounted thermal camera with location system can correct for position
DE102021117283A1 (en) Method and computer program for determining the sensor quality of an optical sensor system
EP3966486A1 (en) Device for the rehabilitation of pipelines, comprising a slope sensor
DE102015016556A1 (en) Method and device for quality testing of conveyor belts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161018

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008000

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1098831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190508

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: WKA BLADE SERVICE GMBH

Owner name: FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: SENVION SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008000

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151016

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1098831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 9

Ref country code: DK

Payment date: 20231025

Year of fee payment: 9

Ref country code: DE

Payment date: 20231018

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 9