EP3004625B1 - Steuerventil für eine kraftstoffeinspritzdüse - Google Patents
Steuerventil für eine kraftstoffeinspritzdüse Download PDFInfo
- Publication number
- EP3004625B1 EP3004625B1 EP14713864.8A EP14713864A EP3004625B1 EP 3004625 B1 EP3004625 B1 EP 3004625B1 EP 14713864 A EP14713864 A EP 14713864A EP 3004625 B1 EP3004625 B1 EP 3004625B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- armature
- fuel
- chamber
- arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 98
- 238000002347 injection Methods 0.000 claims description 26
- 239000007924 injection Substances 0.000 claims description 26
- 239000012530 fluid Substances 0.000 claims description 22
- 238000007789 sealing Methods 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 description 10
- 230000007704 transition Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0031—Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0031—Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
- F02M63/004—Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0073—Pressure balanced valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/007—Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
- F02M63/0077—Valve seat details
Definitions
- This invention relates to a control valve for use in a fuel injector, and in particular, but not exclusively, to a control valve for use in a fuel injector in a high pressure fuel injection system for an internal combustion engine.
- Fuel injectors are a conventional means of delivering fuel to the combustion chambers of an internal combustion engine.
- movement of a valve needle is controlled hydraulically through the balancing of pressures acting around the needle.
- Fuel injectors of this type typically include a nozzle control valve (NCV) which is used to control drainage of high-pressure fuel to a low-pressure drain.
- NCV nozzle control valve
- An example of a conventional fuel injector including such a nozzle control valve is described in the Applicant's earlier patent, EP 0 798 459 B1 , and is illustrated in Figures 1a and 1b .
- Figure 1a which shows the control valve
- Figure 1b which shows a nozzle of the fuel injector.
- a known fuel injector 8 includes a nozzle 9 having a nozzle body 10 which includes a bore 12, within which a valve needle 14 is slidably received.
- the valve needle 14 controls injection of fuel into an engine cylinder.
- the bore 12 is provided with openings (not shown) at a tip end. The openings define a fuel injector outlet.
- a valve needle seat 16 is disposed upstream of the outlet. The valve needle 14 engages with the valve needle seat 16 when in a closed position, in order to stop fuel flow to the outlet and prevent injection.
- a spring 18 biases the valve needle 14 into its closed position.
- a control chamber 20 is defined by the bore 12 and an end of the valve needle 14 remote from the outlet.
- An annular volume 24 is defined between the bore 12 and the valve needle 14.
- the annular volume 24 is substantially isolated from the control chamber 20, and is arranged to deliver fuel to the tip of the bore 12.
- High pressure fuel is supplied to the annular volume 24 through a supply passage 26, which also supplies high pressure fuel to the control chamber 20 by way of an auxiliary passage 28.
- the auxiliary passage 28 has a small diameter so as to create a restriction.
- a drain passage or spill passage 30 in an intermediate injector part allows fuel to drain from the control chamber 20 to a low pressure drain (not shown). Flow from the control chamber 20 to the low pressure drain is under the control of a nozzle control valve 31 (see Figure 1a ), which is described further below.
- the valve needle 14 includes several downstream-facing thrust surfaces 32 which are angled such that fuel pressure acting on the thrust surfaces 32 generates a force on the needle that acts in an opposite direction to the force resulting from fuel pressure acting on the end of the valve needle 14 in the control chamber 20.
- the nozzle control valve 31 is closed to prevent fuel flow to drain, high pressure fuel fills both the control chamber 20 and the annular volume 24, and in this condition the net force on the valve needle 14 acts in the closing direction to keep the needle 14 in its closed position.
- valve needle 14 When fuel injection is required, the valve needle 14 is lifted from the valve needle seat 16 by opening the nozzle control valve 31 to allow fuel to flow from the control chamber 20 to the low pressure drain. As a result, the pressure in the control chamber 20 drops, and the forces acting on the thrust surfaces 32 begin to overcome the forces acting in the closing direction, and thus the valve needle 14 lifts.
- the valve needle 14 When the valve needle 14 is lifted away from the valve needle seat 16, fuel is injected through the fuel injector outlet.
- the nozzle control valve 31 To return the valve needle 14 to its closed position, the nozzle control valve 31 is closed to cut off the flow to drain, and the control chamber 20 re-fills with high pressure fuel, and therefore the valve needle 14 returns to its closed position.
- high-pressure fuel refills the annular volume 24 around the needle, such that the pressures around the valve needle 14 equalise.
- the nozzle control valve 31 includes a valve body 34 having a valve bore 36 in which a valve member 38 is slidably received.
- the nozzle control valve 31 further includes a solenoid actuator 39 which abuts the valve body 34 and is positioned coaxially with respect to the valve bore 36.
- the actuator 39 comprises a magnetic core member 40, a generally tubular magnetic sleeve 42 arranged concentrically around the core member 40, a coil 44 disposed annularly between the core member 40 and the sleeve 42, and a return spring 46.
- the valve body 34 is clamped to the nozzle 9 by means of a cap nut 47.
- the valve body 34 includes drillings 48 which connect the spill passage 30 to the valve bore 36.
- An armature chamber 50 is defined by a recess in an upper end face 51 of the valve body 34.
- the upper end face 51 of the valve body 34 mates with the lower end face of an injector body part 52 which houses the actuator 39.
- the armature chamber 50 is disposed concentrically with respect to the valve bore 36, so that an upper end of the valve bore 36 opens into the armature chamber 50.
- the upper end of the valve bore 36 defines a frusto-conical valve seat 54.
- the armature chamber 50 is in communication with the low-pressure drain (not shown).
- An armature 56 associated with the actuator 39 is received within the armature chamber 50.
- the armature 56 is coupled to the valve member 38, such that the two components move together.
- the armature 56 may be press-fitted to the valve member 38.
- the valve member 38 includes a reduced-diameter portion 58 defining a frusto-conical sealing surface 60.
- the sealing surface 60 engages with the valve seat 54 to create a seal against high-pressure fuel.
- a portion of the sealing surface 60 which is exposed to fuel pressure in the valve bore 36 when the valve member 38 is closed defines an upper balance surface 61.
- a lower frusto-conical surface of the reduced-diameter portion 58 defines a lower balance surface 62, which opposes the upper balance surface 61.
- An annular working chamber 64 is defined around the reduced-diameter portion 58 between the upper and lower balance surfaces 61, 62.
- the drillings 48 in the valve body 34 connect the working chamber 64 to the spill passage 30.
- both the upper and lower balance surfaces 61, 62 are exposed to fuel at high pressure, so the valve member 38 is substantially hydraulically balanced when in its closed position.
- the force required to move the valve member 38 between its open and closed positions is relatively small. This allows the size of the armature 56, the actuator 39 and the return spring 46 to be minimised, thereby affording a more compact design.
- FIG 2 is an enlarged view of a portion (labelled R in Figure 1a ) of the nozzle control valve 31, showing more clearly the geometry of the valve member 38 and the valve body 34 in the region of the location at which they engage.
- An end of the valve bore 36 that opens into the armature chamber 50 is chamfered to define the frusto-conical valve seat 54, with which the sealing surface 60 of the valve member 38 can engage to define a closed position for the nozzle control valve 31.
- the valve member 38 and valve seat 54 create a seal which prevents fuel from flowing from the control chamber 20 through the drillings 48 into the armature chamber 50 and hence to the low-pressure drain.
- the frusto-conical valve seat 54 typically has a cone angle of 90°, so that the valve seat 54 is inclined at an angle of 45° (labelled A in Figure 2 ) with respect to the axis of the valve bore 36.
- the valve member 38 In an open position of the nozzle control valve 31, the valve member 38 is not engaged with the valve seat 54 so that fuel from the working chamber 64 can flow into the armature chamber 50 through a gap defined between the valve seat 54 and the valve member 38.
- the return spring 46 exerts a force to urge the valve member 38 into engagement with the valve seat 54, such that the sealing surface 60 is in contact with the valve seat 54 when the coil 44 is not energised.
- the armature 56 moves towards the core member 40, carrying the valve member 38 away from the valve seat 54 and allowing fuel to flow from the control chamber 20 to drain. In this way, fuel pressure in the control chamber 20 is reduced, which causes opening movement of the valve needle 14 of the fuel injector nozzle 9.
- valve member 38 moves back towards the valve seat 54 under the action of the return spring 46 in a period of valve closing movement.
- the valve closing movement completes when the sealing surface 60 of the valve member 38 engages with the valve seat 54, such that the nozzle control valve 31 returns to the closed position.
- the flow to drain from the control chamber 20 is stopped, so that the pressure in the control chamber 20 rises and the needle 14 moves on to its seat, ending the injection.
- a conventional fuel injector 8 such as that described above offers accurate metering of the fuel that is delivered in an injection event, which has been an important factor in providing more reliable and predictable combustion in vehicle engines and reducing emissions. The result of this is that modern engines are highly refined, and consequently produce more power whilst releasing lower emissions than engines of the past as disclosed in DE102010031670A1 .
- the quantity of fuel that is delivered in a fuel injection (or the "injection quantity") is directly related to the length of time for which the valve needle is lifted from the valve needle seat 16. Therefore, the injection quantity is indirectly related to the length of time for which the nozzle control valve is open. For this reason, the nozzle control valve has been identified as a potential cause of shot-to-shot variation. Against this background, it would be desirable to provide an improved fuel injector having a reduced shot-to-shot variation.
- a valve arrangement for use in a fuel injector of a high-pressure fuel injection system for an internal combustion engine.
- the valve arrangement comprises a valve body defining a valve seat and a valve member which is engageable with the valve seat.
- the valve arrangement further comprises an armature disposed within an armature chamber and cooperable with the valve member, and an electromagnetic actuator operable to cause movement of the valve member to control the flow of fluid into the armature chamber past the valve seat.
- the valve arrangement is arranged such that fluid flowing into the armature chamber is directed away from the armature.
- the inventors of the present invention have determined that, by using a control valve arrangement according to the invention in a fuel injector so that the fluid flowing into the armature is directed away from the armature when the control chamber is connected to a low-pressure drain, a reduction in the shot-to-shot variation of the injector can be achieved, as will now be explained.
- the jet follows a path that extends substantially in line with the valve seat 54 and is disposed conically around the valve member 38.
- the jet of fuel is therefore directed towards the armature 56.
- the problem caused by the jet is particularly pronounced when the pressure of the fuel is very high, as the force created by the jet on the armature increases with the pressure of the fuel.
- the problem is more noticeable for shorter injection timings, in which the period of valve closing movement is shorter, as the jet persists for a larger proportion of each injection.
- valve arrangement according to the present invention offers a solution to the problem of reducing shot-to-shot variation, by reducing the effect that the fluid flow behaviour within the armature chamber has on the movement of the valve member.
- valve arrangement is arranged so that fluid flowing into the armature chamber is directed away from the armature, undesirable forces that might otherwise act on the armature due to jets of fluid that form during closure of the valve member, or due to other fluid flow effects, are reduced or avoided.
- the valve member is moveable in a valve closing movement from an open position, in which fluid flows into the armature chamber, to a closed position, in which the valve member engages the valve seat.
- the valve arrangement may be arranged to direct fluid flowing into the armature chamber away from the armature during at least part of the valve closing movement. For example, the fluid may be directed away from the armature towards the end of the valve closing movement.
- Fuel flowing into the armature chamber may be formed into a jet during at least part of the valve closing movement, and the valve arrangement may be arranged to direct the jet away from the armature. In this way, forces that might otherwise be imparted on the armature by the jet may be substantially avoided, therefore minimising resistance to valve closing movement.
- the valve body may be shaped so as to direct the jet using the Coand ⁇ effect. This arrangement beneficially facilitates re-direction of the jet without major modification of the shape of the valve body compared to known arrangements.
- the valve seat may be frusto-conical to define a first cone angle. This arrangement beneficially reduces the impact of manufacturing tolerances on the functioning of the valve arrangement.
- the valve arrangement may further comprise a flow redirecting region next to the valve seat.
- the flow redirecting region may be shaped to direct fluid flowing into the armature chamber away from the armature.
- the flow redirecting region may comprise a rounded surface of the valve body.
- the flow redirecting region may comprise a frusto-conical surface of the valve body. The frusto-conical surface of the flow redirecting region may be directly adjacent to the valve seat.
- valve seat is frusto-conical to define a first cone angle
- flow redirecting region comprises a frusto-conical surface that defines a second cone angle that is larger than the first cone angle
- the first cone angle may be between approximately 80° and approximately 100°. Preferably, the first cone angle is approximately 90°.
- the second cone angle may be between approximately 100° and approximately 160°. Preferably, the second cone angle is approximately 120°.
- valve seat itself may be shaped to direct fluid flowing into the armature chamber away from the armature.
- valve seat may be frusto-conical to define a cone angle equal to or greater than approximately 120°.
- the valve body may include a recess which defines the armature chamber.
- the recess may be formed in a mating face of the valve body.
- the valve body may include a bore within which the valve member is slidably received, and a supply passage which opens into the bore.
- the actuator may comprise a magnetic core, a coil and a biasing means.
- the armature may be arranged to carry the valve member away from the valve seat when the actuator is energised. Said another way, the valve arrangement may be of the energise-to-open type.
- the valve member may comprise a sealing surface, and at least part of the sealing surface may be arranged to engage with the valve seat to create a seal.
- the sealing surface may be frusto-conical.
- the valve member may comprise a further surface which opposes the sealing surface, such that the sealing surface and the further surface define a working chamber for high-pressure fluid therebetween. In this way, the valve member is substantially hydraulically balanced when in the closed position, such that fuel pressure in the working chamber does not significantly act to lift the valve member away from the valve seat.
- the further surface may be frusto-conical.
- a fuel injector for use in a high-pressure fuel injection system for an internal combustion engine, comprising a valve arrangement according to the first aspect.
- the valve arrangement may be a nozzle control valve of the fuel injector.
- the fuel injector may further comprise an injection nozzle including a valve needle which is engageable with a valve needle seating to control fuel delivery from the injector.
- a surface associated with the valve needle may be exposed to fuel pressure within a control chamber.
- the valve arrangement is operable to connect the control chamber to a low-pressure drain to control the fuel pressure within the control chamber, and the armature chamber is in communication with the low-pressure drain. This arrangement allows for fast and predictable movement of the valve needle, thereby providing a high level of control over injection timings.
- Figure 3 illustrates part of a modified control valve arrangement 131 according to an embodiment of the invention.
- the control valve is designed to mitigate the above identified problem of the jet of fuel impacting the armature 156.
- Figure 3 is an enlarged view of a portion of the valve arrangement 131, which corresponds to the view of the conventional nozzle control valve 31 shown in Figure 2 (and hence region R in Figure 1a ).
- Those components of the valve arrangement 131 that are not illustrated in Figure 3 are the same as those shown in Figure 1 a.
- the valve arrangement 131 includes a valve body 134, a valve member 138, an armature 156 coupled to the valve member 138, and a solenoid actuator 139 comprising a magnetic core member 140.
- the valve body 134 includes a valve bore 136 within which the valve member 138 is slidably received.
- An annular working chamber 164 is defined around a portion of the valve member 138.
- An armature chamber 150 is defined by a recess in the valve body 134 which is disposed coaxially with respect to the valve bore 136, at an upper end of the valve bore 136 and adjacent to the magnetic core member 140.
- the armature 156 is received in the armature chamber 150.
- An upper end of the valve bore 136 opens into the armature chamber 150 and is shaped to form a chamfered frusto-conical surface.
- the frusto-conical surface defines a valve seat 154 for the valve member 138.
- a downwardly-directed frusto-conical sealing surface 160 of the valve member 138 engages with the valve seat 154 to create a seal, in order to prevent fuel from flowing past the valve seat 154 and into the armature chamber 150 when the valve member 138 is seated on the valve seat 154.
- the valve arrangement 131 of this embodiment of the invention includes a flow redirecting region in the form of a frusto-conical redirection surface 168 on the valve body 134 which links the valve seat 154 with a planar lower surface of the armature chamber 170.
- the flow redirecting region redirects fuel flowing into the armature chamber 150 away from the armature 156, so as to reduce the resistance to valve closing movement. Accordingly, the valve closing movement is completed with a much smaller deviation from the desired timing than would be the case in the absence of the redirection surface 168, leading to more reliable and consistent injection quantities, and thus reducing the shot-to-shot variation of the fuel injector 8.
- the altered path of the jet is generally indicated in Figure 3 by arrow 166. As indicated by the arrow, the path of the jet is directed away from the armature 156, towards a side of the armature chamber 150.
- the frusto-conical valve seat 154 typically has a cone angle of 90°, which in the context of this embodiment is referred to as a first cone angle.
- the valve seat 154 is therefore inclined at an angle of 45° (labelled A in Figure 3 ) with respect to the axis of the valve bore 136.
- the redirection surface 168 defines a second cone angle which is larger than the first cone angle, typically 120°.
- the redirection surface 168 is therefore inclined at an angle of 60° (labelled B in Figure 3 ) with respect to the axis of the valve bore 136.
- the second frusto-conical surface exploits the Coand ⁇ effect, which is a phenomenon whereby a fluid jet has a tendency to be attracted to and "attach” to a nearby surface.
- the fluid jet remains close to the surface and follows its contours.
- the Coand ⁇ effect is relatively weak, and depends upon a relatively modest change in the angle of the nearby surface relative to the direction of travel of the fluid jet. If the change in angle is too large, the attraction is too weak to have an effect, and the jet separates or "detaches" from the surface.
- the angle at which the valve seat 54 meets the planar lower surface of the armature chamber 70 is too large for the Coand ⁇ effect to dominate, and therefore the jet separates from the surface of the valve body 34 where the valve seat 54 meets the planar lower surface of the armature chamber 70 (hereafter referred to as the top end of the valve seat 54). The jet then continues on its path towards the armature 56, resulting in the problem described previously.
- the redirection surface 168 adjoins the valve seat 154, so as to provide a graduated change in angle between the valve seat 154 and the lower surface 170 of the armature chamber 150. Therefore, the redirection surface 168 creates a second step in the transition between the valve seat 154 and the lower surface 170 of the armature chamber 150 such that the transition involves two step changes in angle. In contrast, in the conventional nozzle control valve 31 of Figure 2 , the transition between the valve seat 54 and the lower surface 70 of the armature chamber 150 involves only one step change in angle.
- the maximum change in angle of the surface of the valve body 134 relative to the jet of fuel is reduced compared with the conventional nozzle control valve 31. Consequently, in this arrangement, the jet of fuel does not detach from the surface of the valve body 134 at the top end of the valve seat 154. Instead, the Coand ⁇ effect causes the jet to change direction and remain close to the redirection surface 168.
- the direction of travel of the jet is altered compared with the conventional valve arrangement 31, such that the path of the jet is diverted away from the armature 156.
- Figure 3 shows how the path of the jet follows the profile of the redirection surface 168.
- the second step change in angle is similar in size to the first step change in angle. Therefore, the jet may continue to follow the profile of the surface of the valve body 134 as it flows outwardly from the valve seat 154, such that the path of the jet eventually becomes substantially parallel with the lower surface of the armature chamber 170.
- the jet may instead detach from the surface of the valve body 134 at an end 172 of the redirection surface 168 that is remote from the valve seat 154 (hereafter referred to as the top end 172 of the redirection surface 168).
- the jet does detach at the top end 172 of the redirection surface 168, the direction of travel of the jet has been altered sufficiently by that stage that the jet no longer impinges on the armature 156. Therefore, the jet applies substantially no additional force to the armature 156, or at least a significantly reduced force. This means that the effect of the jet on the valve closing movement is reduced, thereby reducing the shot-to-shot variation of the fuel injector.
- the manufacture of the redirection surface 168 is relatively straightforward.
- the redirection surface 168 can be ground in the same manufacturing process as the valve seat 154. Therefore the embodiment of the invention presented in Figure 3 offers a convenient and relatively inexpensive solution to the above described problem found in conventional valve arrangements 31.
- FIG. 4 illustrates a valve arrangement 231 according to another embodiment of the invention which is similar to the embodiment of Figure 3 .
- the valve arrangement 231 of Figure 4 includes a valve body 234 defining a valve bore 236 in which a valve member 238 is slidably received.
- the arrangement 231 further comprises an actuator 239 comprising a magnetic core member 240, and an armature 256 coupled to the valve member 238.
- the valve member 238 includes a sealing surface 260 which engages with a valve seat 254, to prevent fuel flowing from a working chamber 264 to an armature chamber 250.
- the arrangement 232 of Figure 4 differs from that of Figure 3 in that, in the arrangement of Figure 4 , the flow redirecting region comprises a rounded surface 274, rather than a frusto-conical surface.
- the rounded surface 274 creates a gradual transition between the valve seat 254 and a planar lower surface 270 of the armature chamber 250.
- the valve arrangement 231 of Figure 4 is otherwise identical to the valve arrangement 131 of Figure 3 .
- the influence of the Coand ⁇ effect is enhanced in this embodiment, as the path of the jet is diverted in a continuous and gradual manner. Because the transition between the valve seat 254 and the planar lower surface 270 of the armature chamber 250 is gradual and continuous, the change in angle is always small enough for the Coand ⁇ effect to dominate at all positions on the surface of the valve body 234. This ensures that the jet remains attached to the surface of the valve body 234, which in turn ensures that the path of the jet, as generally indicated by arrow 266, is re-directed away from the armature 256 as much as possible. Therefore, the reduction in the shot-to-shot variation of the fuel injector as a result of diverting the jet is maximised.
- the rounded surface 274 of the valve arrangement 231 of Figure 4 can be added to a conventional valve arrangement 31 without a significant development burden. Therefore, this embodiment offers an alternative convenient solution to the previously described problem, and the rounded surface 274 provides a particularly effective shape for re-directing the jet.
- the flow redirecting region may comprise both a rounded surface portion and a frusto-conical surface portion.
- the flow of fuel into the armature chamber is directed away from the armature by altering the cone angle of the valve seat of the conventional valve arrangement, such that the jet is directed away from the armature at the point of creation of the jet.
- An increase in the cone angle of the valve seat reduces the step change in angle between the top of the valve seat and the planar lower surface of the armature chamber.
- the Coand ⁇ effect may act to re-direct the jet of fuel at the top of the valve seat, to move the jet further away from the armature.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Claims (11)
- Ventilanordnung (131, 231) zur Verwendung in einem Kraftstoffinjektor eines Hochdruckkraftstoffeinspritzsystems für einen Verbrennungsmotor, wobei die Ventilanordnung (131, 231) aufweist:einen Ventilkörper (134, 234), der einen Ventilsitz (154, 254) definiert;ein Ventilelement (138, 238), das mit dem Ventilsitz (154, 254) in Eingriff bringbar ist;einen Anker (156, 256), der in einer Ankerkammer (150, 250) angeordnet ist und mit dem Ventilelement (138, 238) kooperierbar ist;einen elektromagnetischen Aktuator (139, 239), der betriebsfähig ist zum Veranlassen einer Bewegung des Ventilelements (138, 238), um den Fluidstrom in die Ankerkammer (150, 250) über den Ventilsitz (154, 254) hinaus zu steuern;und einen Stromumleitungsbereich (168, 272) angrenzend an den Ventilsitz (154,254),dadurch gekennzeichnet, dass der Stromumleitungsbereich aufweist:eine gerundete Oberfläche (274) des Ventilkörpers (234), odereine kegelstumpfförmige Oberfläche (168) des Ventilkörpers (134),wobei der Ventilsitz (154) kegelstumpfförmig ist, um einen ersten Kegelwinkel zu definieren, und wobei die kegelstumpfförmige Oberfläche des Stromumleitungsbereichs einen zweiten Kegelwinkel definiert, der größer ist als der erste Kegelwinkel.
- Ventilanordnung (131, 231) gemäß Anspruch 1, wobei das Ventilelement (138, 238) in einer Ventilschließbewegung von einer offenen Position, in der Fluid in die Ankerkammer (150, 250) strömt, in eine geschlossene Position bewegbar ist, in der das Ventilelement (138, 238) in den Ventilsitz (154, 254) eingreift, und wobei die Ventilanordnung (131, 231) ausgebildet ist zum Leiten von Fluid, das in die Ankerkammer (150, 250) strömt, weg von dem Anker (156, 256) während zumindest eines Teils der Ventilschließbewegung.
- Ventilanordnung (131, 231) gemäß Anspruch 2, wobei in die Ankerkammer (150, 250) strömender Kraftstoff während zumindest eines Teils der Ventilschließbewegung zu einem Strahl geformt ist und wobei die Ventilanordnung (131, 231) ausgebildet ist zum Leiten des Strahls weg von dem Anker (156,256).
- Ventilanordnung (131, 231) gemäß Anspruch 3, wobei der Ventilkörper (134, 234) derart geformt ist, um den Strahl unter Verwendung des Coandä-Effekts zu leiten.
- Ventilanordnung (131, 231) gemäß einem der Ansprüche 1 bis 4, wobei der Ventilkörper (134, 234) eine Ausnehmung, die die Ankerkammer (150, 250) definiert, eine Bohrung (136, 236), in der das Ventilelement (138, 238) gleitbar aufgenommen ist, und einen Einlasskanal umfasst, der in die Bohrung (136, 236) mündet.
- Ventilanordnung (131, 231) gemäß einem der Ansprüche 1 bis 5, wobei der Anker (156, 256) das Ventilelement (138, 238) weg von dem Ventilsitz (154, 254) führt, wenn der Aktuator (139, 239) erregt wird.
- Ventilanordnung (131, 231) gemäß einem der Ansprüche 1 bis 6, wobei das Ventilelement (138, 238) eine Dichtfläche (160, 260) aufweist, wobei zumindest ein Teil der Dichtfläche (160, 260) ausgebildet ist, mit dem Ventilsitz (154, 254) in Eingriff zu sein, um eine Dichtung zu bilden.
- Ventilanordnung (131, 231) gemäß Anspruch 7, wobei die Dichtfläche (160, 260) kegelstumpfförmig ist.
- Ventilanordnung (131, 231) gemäß Anspruch 7 oder Anspruch 8, wobei das Ventilelement (138, 238) eine weitere Oberfläche (62) aufweist, die der Dichtfläche (160, 260) gegenüberliegt, und wobei die Dichtfläche (160, 260) und die weitere Oberfläche eine Arbeitskammer (164, 264) für ein Hochdruckfluid dazwischen definieren.
- Kraftstoffinjektor zur Verwendung in einem Hochdruck-Kraftstoffeinspritzsystem für einen Verbrennungsmotor mit einer Ventilanordnung (131, 231) gemäß einem der Ansprüche 1 bis 9.
- Kraftstoffinjektor gemäß Anspruch 10, der weiter eine Einspritzdüse (9) mit einer Ventilnadel (14) aufweist, die mit einem Ventilnadelsitz (16) in Eingriff bringbar ist, um eine Kraftstoffzufuhr von dem Injektor zu steuern, wobei eine Oberfläche, die mit der Ventilnadel (14) assoziiert ist, einem Kraftstoffdruck in einer Steuerkammer (20) ausgesetzt ist;
wobei die Ventilanordnung (131, 231) betriebsfähig ist zum Verbinden der Steuerkammer (20) mit einem Niederdruckablauf, um den Kraftstoffdruck in der Steuerkammer (20) zu steuern; und
wobei die Ankerkammer (150, 250) in Verbindung mit dem Niederdruckablauf ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14713864.8A EP3004625B1 (de) | 2013-05-30 | 2014-04-01 | Steuerventil für eine kraftstoffeinspritzdüse |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13169876.3A EP2808534A1 (de) | 2013-05-30 | 2013-05-30 | Steuerventil für eine Kraftstoffeinspritzdüse |
PCT/EP2014/056501 WO2014191127A1 (en) | 2013-05-30 | 2014-04-01 | Control valve for a fuel injector |
EP14713864.8A EP3004625B1 (de) | 2013-05-30 | 2014-04-01 | Steuerventil für eine kraftstoffeinspritzdüse |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3004625A1 EP3004625A1 (de) | 2016-04-13 |
EP3004625B1 true EP3004625B1 (de) | 2017-10-11 |
Family
ID=48534264
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13169876.3A Withdrawn EP2808534A1 (de) | 2013-05-30 | 2013-05-30 | Steuerventil für eine Kraftstoffeinspritzdüse |
EP14713864.8A Active EP3004625B1 (de) | 2013-05-30 | 2014-04-01 | Steuerventil für eine kraftstoffeinspritzdüse |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13169876.3A Withdrawn EP2808534A1 (de) | 2013-05-30 | 2013-05-30 | Steuerventil für eine Kraftstoffeinspritzdüse |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP2808534A1 (de) |
CN (1) | CN105264215B (de) |
WO (1) | WO2014191127A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022128904A1 (de) | 2022-11-02 | 2024-05-02 | Schaeffler Technologies AG & Co. KG | Hubkolbenverbrennungsmotor, Betriebsverfahren und Kraftstoffdüse für den Hubkolbenverbrennungsmotor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201513309D0 (en) * | 2015-07-29 | 2015-09-09 | Delphi Int Operations Lux Srl | Fuel injector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6394072B1 (en) * | 1990-08-31 | 2002-05-28 | Yamaha Hatsudoki Kabushiki Kaisha | Fuel injection device for engine |
GB9606803D0 (en) | 1996-03-30 | 1996-06-05 | Lucas Ind Plc | Injection nozzle |
DE10115401A1 (de) * | 2001-03-29 | 2002-10-02 | Daimler Chrysler Ag | Kraftstoffeinspritzsystem für eine Brennkraftmaschine |
JP2005146882A (ja) * | 2003-11-11 | 2005-06-09 | Toyota Motor Corp | 内燃機関の燃料噴射装置 |
DE102010031670A1 (de) * | 2010-07-22 | 2012-01-26 | Robert Bosch Gmbh | Steuerventil |
DE102011004640A1 (de) * | 2011-02-24 | 2012-08-30 | Robert Bosch Gmbh | Steuerventil für einen Kraftstoffinjektor sowie Kraftstoffinjektor |
DE102011078564A1 (de) * | 2011-07-04 | 2013-01-10 | Robert Bosch Gmbh | Steuerventil für einen Kraftstoffinjektor und Kraftstoffinjektor |
-
2013
- 2013-05-30 EP EP13169876.3A patent/EP2808534A1/de not_active Withdrawn
-
2014
- 2014-04-01 CN CN201480031219.6A patent/CN105264215B/zh active Active
- 2014-04-01 WO PCT/EP2014/056501 patent/WO2014191127A1/en active Application Filing
- 2014-04-01 EP EP14713864.8A patent/EP3004625B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022128904A1 (de) | 2022-11-02 | 2024-05-02 | Schaeffler Technologies AG & Co. KG | Hubkolbenverbrennungsmotor, Betriebsverfahren und Kraftstoffdüse für den Hubkolbenverbrennungsmotor |
Also Published As
Publication number | Publication date |
---|---|
WO2014191127A1 (en) | 2014-12-04 |
CN105264215B (zh) | 2018-09-18 |
EP2808534A1 (de) | 2014-12-03 |
CN105264215A (zh) | 2016-01-20 |
EP3004625A1 (de) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6499467B1 (en) | Closed nozzle fuel injector with improved controllabilty | |
US6705543B2 (en) | Variable pressure fuel injection system with dual flow rate injector | |
US6557776B2 (en) | Fuel injector with injection rate control | |
EP1382836B1 (de) | Kraftstoffeinspritzventil | |
US7334741B2 (en) | Fuel injector with injection rate control | |
US5860597A (en) | Injection rate shaping nozzle assembly for a fuel injector | |
US6557779B2 (en) | Variable spray hole fuel injector with dual actuators | |
US6637675B2 (en) | Rate shaping fuel injector with limited throttling | |
US9140223B2 (en) | Fuel injection system with high repeatability and stability of operation for an internal-combustion engine | |
US9234487B2 (en) | Injection nozzle | |
EP2405121A1 (de) | Einspritzanlage für einen Verbrennungsmotor | |
US7568634B2 (en) | Injection nozzle | |
EP3004625B1 (de) | Steuerventil für eine kraftstoffeinspritzdüse | |
US9670890B2 (en) | Fuel injector | |
US9297343B2 (en) | Needle for needle valve | |
EP2960485A1 (de) | Regelventil | |
GB2336628A (en) | A fuel injector, for an I.C. engine, having a three way two position needle control valve | |
US20050224593A1 (en) | Fuel injector with hydraulic flow control | |
US20060091233A1 (en) | Pressure-compensated, directly controlled valve | |
EP1143139A1 (de) | Kraftstoffsystem | |
WO2009092690A1 (en) | Injection nozzle | |
EP2216541A1 (de) | Brennstoffeinspritzventil für eine akkumulator-brennstoffeinspritzvorrichtung | |
EP1717435B1 (de) | Einspritzdüse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 936291 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014015664 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 936291 Country of ref document: AT Kind code of ref document: T Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180112 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180211 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180111 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014015664 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
26N | No opposition filed |
Effective date: 20180712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180401 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602014015664 Country of ref document: DE Owner name: DELPHI TECHNOLOGIES IP LIMITED, BB Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190222 AND 20190227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140401 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171011 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230327 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602014015664 Country of ref document: DE Owner name: PHINIA DELPHI LUXEMBOURG SARL, LU Free format text: FORMER OWNER: DELPHI TECHNOLOGIES IP LIMITED, ST. MICHAEL, BB |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240314 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240315 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240315 Year of fee payment: 11 |