EP3004401B1 - Method for producing a component by hot forming a pre-product made of steel - Google Patents

Method for producing a component by hot forming a pre-product made of steel Download PDF

Info

Publication number
EP3004401B1
EP3004401B1 EP14731900.8A EP14731900A EP3004401B1 EP 3004401 B1 EP3004401 B1 EP 3004401B1 EP 14731900 A EP14731900 A EP 14731900A EP 3004401 B1 EP3004401 B1 EP 3004401B1
Authority
EP
European Patent Office
Prior art keywords
max
product
hot
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14731900.8A
Other languages
German (de)
French (fr)
Other versions
EP3004401A1 (en
Inventor
Stefan MÜTZE
Michael Braun
Manuel Maikranz-Valentin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3004401A1 publication Critical patent/EP3004401A1/en
Application granted granted Critical
Publication of EP3004401B1 publication Critical patent/EP3004401B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for producing a component by hot forming a precursor of steel according to the preamble of claim 1.
  • precursors z.
  • Such components are mainly used in the automotive and commercial vehicle industry, but also in mechanical engineering or construction offer opportunities.
  • the hotly contested market is forcing automakers to constantly seek solutions to reduce their fleet consumption while maintaining the highest possible comfort and occupant safety.
  • the weight saving of all vehicle components plays a decisive role, on the other hand, but also a most favorable behavior of the individual components with high static and dynamic stress during operation as well as in the event of a crash.
  • the primary suppliers are trying to meet this need by reducing the wall thickness by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.
  • the metallic coating is applied as corrosion protection usually in the continuous hot dip process on a hot or cold strip or on the precursor produced therefrom, z. B. as hot dip galvanizing or Feueralum ist.
  • the board is cut to fit the hot forming forming tool. It is also possible to provide the respective workpiece to be formed, or the blank, with a hot-dip coating.
  • the application of a metallic coating on the preform to be formed prior to hot forming is advantageous in this method because the coating effectively prevents scaling of the base material and, due to an additional lubricating effect, excessive tool wear.
  • thermoformable steels for this application are z. B. the manganese-boron steel "22MnB5" and more recently also luftvergütbare steels according to the DE 10 2010 024 664 A1 ,
  • the EP 2 546 375 A1 It is known to reshape a steel having a microstructure in the initial state by means of press-hardening and to adjust a structure of bainite, tempered martensite and retained austenite on the finished component by means of a step-shaped process control.
  • the sheet to be formed is first heated to a temperature of 750 to 1000 ° C and held at this temperature for 5 to 1000 seconds, then formed at 350 to 900 ° C and cooled to 50 to 350 ° C. Finally, reheating to a temperature of 350 to 490 ° C, which is held in a period of 5 to 1000 seconds.
  • the microstructure on the finished component consists of 10 to 85% martensite, 5 to 40% retained austenite and at least 5% bainite.
  • this process requires a great deal of energy by heating the precursor to austenitizing temperature and converting ferrite into austenite, which makes the process expensive and produces significant amounts of CO 2 .
  • a further disadvantage is that to obtain appropriate component strengths after press hardening only convertible steels can be used with a sufficient conversion inertia, which must have correspondingly expensive alloying additions for the structure to be achieved and hardness after forming.
  • a method for producing a component by hot forging of a precursor of steel below the Ac 1 transformation temperature in which an increase in strength in the component is achieved by cold forming the precursor before heating to forming temperature.
  • an additional increase in strength in the component can be achieved by using higher-strength materials, such as bainitic, martensitic, microalloyed and dual or multiphase steels.
  • the disadvantage here is the additional expense of the necessary cold forming before heating to forming temperature.
  • Dual phase steels also have the disadvantage of hot edge deformation susceptibility to edge crack induced failure during forming.
  • the object of the invention is to provide a method for producing a component by hot working a precursor of steel at temperatures below the A c1 conversion point, which is inexpensive and can be achieved with the comparable or improved properties of the formed component as in the known hot forming by press hardening.
  • strengths of more than 800 MPa at yield strengths of more than 700 MPa and breaking elongations A 80 of more than 8% on the finished component should be achieved with a ductile failure behavior of the component.
  • this object is achieved by a method for producing a component by hot forming a precursor of steel, in which the precursor is heated to forming temperature and then formed, wherein the component after forming a bainitic microstructure with a minimum tensile strength of 800 MPa which is characterized in that the heating takes place at a temperature below the A c1 transformation temperature, wherein even the precursor of a
  • the inventive method has opposite to that of DE 601 19 826 T2 or the EP 2 546 375 A1 known method for producing a component by means of press hardening on the advantage that at significantly lower energy requirements for heating by the use of a bainitic steel already in the initial state, a component with mechanical characteristics is provided which are equal or even better than the mechanical properties in the initial state of the precursor. This saves energy costs.
  • Opposite the DE 10 2011 108 162 A1 can with the alloy composition according to the invention and a precursor, which already has a microstructure with at least 50% bainite in the initial state, waived the additional step of cold deformation of the precursor to increase the strength and the required mechanical properties of the component can be adjusted specifically after the warm forging.
  • the bainitic steel used for the process according to the invention obtains its microstructure according to the invention via an appropriate temperature control during the production process of the preliminary product.
  • a “softening” is often associated with a structural transformation and is thus time and temperature critical.
  • the use of the precursor of the invention of mainly bainitic steel, however, is largely insensitive, so that z. B. intended or unintended Zeitund temperature changes during heating and forming cause no deterioration of the mechanical properties. Due to this advantageous material behavior even demanding multi-stage process steps can be carried out reproducibly.
  • the particular advantage of using this alloy concept and the bainitic microstructure remains in a very fine and homogeneous microstructure with at least 70% bainite and only small amounts of ferrite, retained austenite and martensite. It is necessary for the achievement of the required mechanical properties that the structure has at least 70% bainite and the amounts of retained austenite + martensite are ⁇ 10% and the remainder consists of ferrite.
  • Sheets were tested with a thickness of 1.8 to 2.25 mm, which were heated in the oven at a temperature of 600 ° C for 3 minutes and then cooled between two flat tool components in a forming press.
  • the materials tested are indicated in Tables 1 and 2 by the letters a, b, c, d, e and f.
  • the alloy compositions of the materials correspond to the invention, but the microstructures were set differently in the initial state.
  • steel a had a ferritic-bainitic basic structure "FB" before being heated to forming temperature
  • steel b a bainitic "B”
  • steel c a mixed structure of martensite, bainite and ferrite "MBF”
  • the steels d and e had a ferritic "F” and the steel f a martensitic matrix "M”.
  • the bainite content in the microstructure was below 50% and in steel b over 50%. It can be seen from Table 2 that only the steel b with a predominantly bainitic starting structure of the precursor satisfies the requirements for mechanical properties with a minimum tensile strength of 800 MPa and a minimum elongation at break A80 of more than 8% after hot forging.
  • Typical applications for exploiting the high strength potential while at the same time saving weight on the component are mobile crane construction, longitudinal and transverse beams in trucks and trailers, safety and chassis parts in passenger cars and wagon construction.
  • the steel according to the invention or the component produced therefrom is characterized by a very high yield strength and tensile strength of more than 800 MPa with a sufficiently high elongation. Due to the chemical composition also good weldability is given.
  • the aforementioned steel can furthermore be provided in a known manner with a scale-inhibiting or corrosion-inhibiting layer based on lacquer or with a metallic coating.
  • the metallic coating may contain zinc and / or magnesium and / or aluminum and / or silicon.
  • surface-finished hot or cold strip can already be used for forming following heating, since the adhesion and the ductility endure half-warm forming with low degrees of deformation.
  • the metallic coating is resistant to short-term reheating of the substrate / coating combination (steel strip / coating) below the Ac 1 temperature of the substrate to survive reheating prior to semi-hot forming and actual semi-hot forming.
  • the reheating takes place before the half-warm forms by means of radiation, since the efficiency is significantly higher than when heated in an oven or conductive heating and the energy input into the material takes place faster and more effective depending on the surface condition.
  • the material is also very suitable for partial heating.
  • z. B. emitters can be selectively heated individual areas of the preform to be formed in order to obtain formability optimized zones. This advantageously allows the use of conventional presses for cold forming, so that it is possible to dispense with a complex hot-forming installation, as is necessary in press-hardening.
  • the precursor is heated to a temperature of below 720 ° C advantageously in a temperature range of 400 - 700 ° C and then formed into a component.
  • the optimum forming temperature is dependent on the required strength of the component and is preferably between about 500 ° C and 700 ° C. Long holding times to obtain a bainitic structure as in the EP 2 546 375 A1 are not required, so that the process time for the production of the component is significantly shortened.
  • the temperature range of the semi-warming is locally exceeded in the austenitizing region in order to undertake local changes in properties (eg local hardening) which, in combination with the increase in the strength of the remaining material, later Demands of the component are adjusted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl gemäß dem Oberbegriff des Patentanspruches 1. Als Vorprodukte werden nachfolgend z. B. Bleche vom Coil geschnitten oder als Platinenzuschnitt oder nahtlose bzw. geschweißte Rohre, die fallweise zusätzlich kaltgezogen sein können, verstanden.The invention relates to a method for producing a component by hot forming a precursor of steel according to the preamble of claim 1. As precursors z. As sheets cut from the coil or as a blank board or seamless or welded tubes, which may be additionally cold drawn case by case, understood.

Derartige Bauteile werden hauptsächlich in der Automobil- und Nutzfahrzeugindustrie verwendet, aber auch im Maschinenbau oder Bauwesen bieten sich Einsatzmöglichkeiten.Such components are mainly used in the automotive and commercial vehicle industry, but also in mechanical engineering or construction offer opportunities.

Der heiß umkämpfte Markt zwingt die Automobilhersteller ständig nach Lösungen zur Senkung ihres Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts und Insassenschutzes zu suchen. Dabei spielt einerseits die Gewichtsersparnis aller Fahrzeugkomponenten eine entscheidende Rolle andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung im Betrieb wie auch im Crashfall.The hotly contested market is forcing automakers to constantly seek solutions to reduce their fleet consumption while maintaining the highest possible comfort and occupant safety. On the one hand, the weight saving of all vehicle components plays a decisive role, on the other hand, but also a most favorable behavior of the individual components with high static and dynamic stress during operation as well as in the event of a crash.

Dieser Notwendigkeit versuchen die Vormateriallieferanten dadurch Rechnung zu tragen, dass durch die Bereitstellung hoch- und höchstfester Stähle die Wanddicken reduziert werden können bei gleichzeitig verbessertem Bauteilverhalten bei der Fertigung und im Betrieb.The primary suppliers are trying to meet this need by reducing the wall thickness by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.

Diese Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich Festigkeit, Dehnfähigkeit, Zähigkeit, Energieaufnahme und Korrosionsbeständigkeit sowie ihrer Verarbeitbarkeit beispielsweise bei der Kaltumformung und beim Schweißen genügen.These steels must therefore meet comparatively high requirements in terms of strength, ductility, toughness, energy absorption and corrosion resistance and their processability, for example in cold forming and welding.

Unter den vorgenannten Aspekten gewinnt die Herstellung von Bauteilen aus warmumformbaren Stählen zunehmend an Bedeutung, da diese bei geringerem Materialaufwand die gestiegenen Anforderungen an die Bauteileigenschaften ideal erfüllen. Die Herstellung von Bauteilen mittels Abschreckung von Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus der DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800 - 1200°C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Presshärtung) erfährt und dadurch die geforderten Gefüge- und Festigkeitseigenschaften erreicht.Among the above-mentioned aspects, the production of components made of hot-processable steels is becoming increasingly important since they ideally meet the increased demands on the component properties with less material expenditure. The production of components by means of quenching precursors from press-hardenable steels by hot forming in a forming tool is known from US Pat DE 601 19 826 T2 known. Here is a previously heated above the Austenitisierungstemperatur to 800 - 1200 ° C and possibly provided with a metallic coating of zinc or based on zinc sheet metal blank formed in a case by case cooled tool by hot forming into a component, during the forming by rapid heat removal the Sheet metal or component undergoes quench hardening (press hardening) in the forming tool and thereby achieves the required microstructural and strength properties.

Der metallische Überzug wird als Korrosionsschutz üblicherweise im kontinuierlichen Schmelztauchverfahren auf ein Warm- oder Kaltband bzw. auf das daraus hergestellte Vorprodukt aufgebracht, z. B. als Feuerverzinkung oder Feueraluminierung.The metallic coating is applied as corrosion protection usually in the continuous hot dip process on a hot or cold strip or on the precursor produced therefrom, z. B. as hot dip galvanizing or Feueralumierung.

Anschließend wird die Platine für das Umformwerkzeug der Warmumformung passend zugeschnitten. Möglich ist auch, das jeweils umzuformende Werkstück, bzw. den Zuschnitt, mit einem Schmelztauchüberzug zu versehen.Subsequently, the board is cut to fit the hot forming forming tool. It is also possible to provide the respective workpiece to be formed, or the blank, with a hot-dip coating.

Das Aufbringen eines metallischen Überzugs auf das umzuformende Vorprodukt vor dem Warmumformen ist bei diesem Verfahren von Vorteil, weil durch den Überzug eine Verzunderung des Grundmaterials und durch eine zusätzliche Schmierwirkung übermäßiger Werkzeugverschleiß wirksam vermieden werden.The application of a metallic coating on the preform to be formed prior to hot forming is advantageous in this method because the coating effectively prevents scaling of the base material and, due to an additional lubricating effect, excessive tool wear.

Bekannte warmumformbare Stähle für diesen Einsatzbereich sind z. B. der Mangan-Bor-Stahl "22MnB5" und neuerdings auch luftvergütbare Stähle gemäß der DE 10 2010 024 664 A1 .Known thermoformable steels for this application are z. B. the manganese-boron steel "22MnB5" and more recently also luftvergütbare steels according to the DE 10 2010 024 664 A1 ,

Um Bauteile mit sehr hohen Festigkeiten von mehr als 980 MPa bei noch ausreichend hoher Zähigkeit zu erreichen, ist es aus der EP 2 546 375 A1 bekannt, einen Stahl mit einem im Ausgangszustand ferritischen Gefüge mittels Pressformhärtung entsprechend umzuformen und durch eine stufenförmige Prozessführung ein Gefüge aus Bainit, angelassenem Martensit und Restaustenit am fertigen Bauteil einzustellen. Hierbei wird das umzuformende Blech zunächst auf eine Temperatur von 750 bis 1000°C erwärmt und auf dieser Temperatur 5 bis 1000 Sekunden gehalten, anschließend bei 350 bis 900°C umgeformt und auf 50 bis 350°C abgekühlt. Schließlich erfolgt eine Wiedererwärmung auf eine Temperatur von 350 bis 490°C, die in einem Zeitraum von 5 bis 1000 Sekunden gehalten wird. Das Gefüge am fertigen Bauteil besteht dabei aus 10 bis 85% Martensit, 5 bis 40% Restaustenit und mindestens 5% Bainit.In order to achieve components with very high strengths of more than 980 MPa with still sufficiently high toughness, it is from the EP 2 546 375 A1 It is known to reshape a steel having a microstructure in the initial state by means of press-hardening and to adjust a structure of bainite, tempered martensite and retained austenite on the finished component by means of a step-shaped process control. In this case, the sheet to be formed is first heated to a temperature of 750 to 1000 ° C and held at this temperature for 5 to 1000 seconds, then formed at 350 to 900 ° C and cooled to 50 to 350 ° C. Finally, reheating to a temperature of 350 to 490 ° C, which is held in a period of 5 to 1000 seconds. The microstructure on the finished component consists of 10 to 85% martensite, 5 to 40% retained austenite and at least 5% bainite.

Die Herstellung eines Bauteils durch Warmumformen mittels Presshärtung weist jedoch mehrere Nachteile auf.However, the production of a component by hot forming by means of press hardening has several disadvantages.

Zum Einen benötigt dieses Verfahren durch die Aufheizung des Vorproduktes auf Austenitisierungstemperatur sowie bei der Umwandlung von Ferrit in Austenit sehr viel Energie, was das Verfahren teuer macht und erhebliche Mengen CO2 produziert.On the one hand, this process requires a great deal of energy by heating the precursor to austenitizing temperature and converting ferrite into austenite, which makes the process expensive and produces significant amounts of CO 2 .

Außerdem ist zur Vermeidung einer übermäßigen Verzunderung der Blechoberfläche wie oben beschrieben eine zusätzliche metallische Schutzschicht oder eine Schutzschicht auf Lackbasis erforderlich oder eine erhebliche Nacharbeit der durch Erwärmung und Umformung verzunderten Oberfläche.In addition, to avoid excessive scaling of the sheet surface as described above, an additional metallic protective layer or a lacquer-based protective layer is required or a considerable reworking of the surface rendered difficult by heating and deformation.

Da die Umformung bei Temperaturen oberhalb der Ac3-Temperatur in der Regel deutlich oberhalb 800°C erfolgt, werden zudem extrem hohe Anforderungen bezüglich der Temperaturstabilität an diese Schichten gestellt.Since the forming takes place at temperatures above the Ac 3 temperature usually well above 800 ° C, also extremely high demands are placed on the temperature stability of these layers.

Ein weiterer Nachteil ist auch, dass zur Erlangung entsprechender Bauteilfestigkeiten nach der Presshärtung nur umwandlungsfähige Stähle mit einer ausreichenden Umwandlungsträgheit eingesetzt werden können, die entsprechend teure Legierungszusätze für die zu erreichende Gefügestruktur und Härte nach der Umformung aufweisen müssen.A further disadvantage is that to obtain appropriate component strengths after press hardening only convertible steels can be used with a sufficient conversion inertia, which must have correspondingly expensive alloying additions for the structure to be achieved and hardness after forming.

Zusammengefasst ist festzustellen, dass das bekannte Verfahren zur Herstellung von Bauteilen aus Stahl durch Warmumformung oberhalb der Austenitisierungstemperatur aufgrund der erforderlichen großen Öfen verbunden mit langen Aufheizzeiten zu hohen Fertigungs- und Energiekosten und damit hohen Bauteilkosten führt.In summary, it should be noted that the known method for producing steel components by hot working above the austenitizing temperature due to the required large furnaces associated with long heating times leads to high manufacturing and energy costs and thus high component costs.

Zur Verbesserung des Umformvermögens hochfester Stähle ist aus der DE 10 2004 028 236 B3 außerdem bekannt, Werkstücke anstatt durch Kaltumformung durch Warmumformung bei Temperaturen von 400 bis 700°C weiter zu einem Bauteil zu verarbeiten (Halbwarmumformung). Nachteilig ist hierbei, dass das umgeformte Bauteil im Gegensatz zu pressgehärteten Bauteilen durch die Erwärmung unterhalb der Umwandlungstemperatur eine Erweichung erfährt, die Festigkeit gegenüber dem Ausgangszustand also verringert wird.To improve the formability of high strength steels is from DE 10 2004 028 236 B3 In addition, it is known to process workpieces instead of by cold forming by hot forming at temperatures of 400 to 700 ° C on to a component (warm forging). The disadvantage here is that the deformed component, in contrast to press-hardened components by the heating below the transformation temperature a softening experiences, the strength compared to the initial state is thus reduced.

Aus der DE 10 2011 108 162 A1 ist ein Verfahren zur Herstellung eines Bauteils durch Halbwarmumformen eines Vorproduktes aus Stahl unterhalb der Ac1-Umwandlungstemperatur bekannt, bei dem eine Festigkeitssteigerung im Bauteil durch eine Kaltumformung des Vorproduktes vor der Erwärmung auf Umformtemperatur erreicht wird. Wahlweise kann eine zusätzliche Festigkeitssteigerung im Bauteil durch Verwendung höherfester Werkstoffe, wie bainitische, martensitische, mikrolegierte und Dual- oder Mehrphasenstähle erreicht werden. Nachteilig ist hierbei der zusätzliche Aufwand durch die notwendige Kaltumformung vor der Erwärmung auf Umformtemperatur. Dualphasenstähle weisen bei der Warmumformung zudem den Nachteil einer Empfindlichkeit gegen kantenrissinduziertes Versagen während der Umformung auf.From the DE 10 2011 108 162 A1 a method for producing a component by hot forging of a precursor of steel below the Ac 1 transformation temperature is known, in which an increase in strength in the component is achieved by cold forming the precursor before heating to forming temperature. Optionally, an additional increase in strength in the component can be achieved by using higher-strength materials, such as bainitic, martensitic, microalloyed and dual or multiphase steels. The disadvantage here is the additional expense of the necessary cold forming before heating to forming temperature. Dual phase steels also have the disadvantage of hot edge deformation susceptibility to edge crack induced failure during forming.

Hinweise auf konkret einzuhaltende Legierungszusammensetzungen oder Vorgaben für das Gefüge des Vorproduktes zur gezielten Einstellung der mechanischen Eigenschaften des Bauteils nach der Halbwarmumformung bei Einsatz höherfester Stähle werden nicht offenbart.References to specific alloy compositions or specifications for the structure of the precursor for the targeted adjustment of the mechanical properties of the component after hot forging when using high-strength steels are not disclosed.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung eines Bauteils durch Warmumformung eines Vorproduktes aus Stahl bei Temperaturen unterhalb des Ac1-Umwandlungspunktes anzugeben, welches kostengünstig ist und mit dem vergleichbare oder verbesserte Eigenschaften des umgeformten Bauteils wie beim bekannten Warmumformen durch Presshärten erreicht werden. Insbesondere sollen Festigkeiten von mehr als 800 MPa bei Streckgrenzen von über 700 MPa und Bruchdehnungen A80 von mehr als 8% am fertigen Bauteil bei einem duktilen Versagensverhalten des Bauteils erreicht werden.The object of the invention is to provide a method for producing a component by hot working a precursor of steel at temperatures below the A c1 conversion point, which is inexpensive and can be achieved with the comparable or improved properties of the formed component as in the known hot forming by press hardening. In particular, strengths of more than 800 MPa at yield strengths of more than 700 MPa and breaking elongations A 80 of more than 8% on the finished component should be achieved with a ductile failure behavior of the component.

Nach der Lehre der Erfindung wird diese Aufgabe durch ein Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl gelöst, bei dem das Vorprodukt auf Umformtemperatur erwärmt und anschließend umgeformt wird, wobei das Bauteil nach der Umformung eine bainitische Gefügestruktur mit einer Mindestzugfestigkeit von 800 MPa aufweist, welches dadurch gekennzeichnet ist, dass die Erwärmung auf eine Temperatur unterhalb der Ac1-Umwandlungstemperatur erfolgt, wobei schon das Vorprodukt aus einemAccording to the teachings of the invention, this object is achieved by a method for producing a component by hot forming a precursor of steel, in which the precursor is heated to forming temperature and then formed, wherein the component after forming a bainitic microstructure with a minimum tensile strength of 800 MPa which is characterized in that the heating takes place at a temperature below the A c1 transformation temperature, wherein even the precursor of a

Stahl mit einem Gefüge aus mindestens 70% Bainit besteht, und wobei das Vorprodukt folgende Legierungszusammensetzung in Gew.% aufweist:

  • C: 0,02 bis 0,3
  • Si: 0,01 bis 0,5
  • Mn: 1,0 bis 3,0
  • P: max. 0,02
  • S: max. 0,01
  • N: max. 0,01
  • Al: bis 0,1
  • Cu: bis 0,2
  • Cr: bis 3,0
  • Ni: bis 0,2
  • Mo: bis 0,2
  • Ti: bis 0,2
  • V: bis 0,2
  • Nb: bis 0,1
  • B: bis 0,01
Steel having a microstructure of at least 70% bainite, and wherein the precursor has the following alloy composition in% by weight:
  • C: 0.02 to 0.3
  • Si: 0.01 to 0.5
  • Mn: 1.0 to 3.0
  • P: max. 0.02
  • S: max. 0.01
  • N: max. 0.01
  • Al: to 0.1
  • Cu: to 0.2
  • Cr: up to 3.0
  • Ni: up to 0.2
  • Mo: to 0.2
  • Ti: to 0.2
  • V: to 0.2
  • Nb: to 0.1
  • B: to 0.01

Rest Eisen und erschmelzungsbedingte Verunreinigungen.Remaining iron and impurities caused by melting.

Das erfindungsgemäße Verfahren weist gegenüber dem aus der DE 601 19 826 T2 oder der EP 2 546 375 A1 bekannten Verfahren zur Herstellung eines Bauteils mittels Presshärtung den Vorteil auf, dass bei deutlich geringerem Energiebedarf für die Erwärmung durch den Einsatz eines schon im Ausgangszustand bainitischen Stahls ein Bauteil mit mechanischen Kennwerten bereitgestellt wird, die gleich oder sogar besser sind, als die mechanischen Eigenschaften im Ausgangszustand des Vorproduktes. Dadurch werden Energiekosten eingespart.The inventive method has opposite to that of DE 601 19 826 T2 or the EP 2 546 375 A1 known method for producing a component by means of press hardening on the advantage that at significantly lower energy requirements for heating by the use of a bainitic steel already in the initial state, a component with mechanical characteristics is provided which are equal or even better than the mechanical properties in the initial state of the precursor. This saves energy costs.

Gegenüber der DE 10 2011 108 162 A1 kann mit der erfindungsgemäßen Legierungszusammensetzung und einem Vorprodukt, welches im Ausgangszustand schon ein Gefüge mit mindestens 50% Bainit aufweist, auf den zusätzlichen Schritt einer Kaltverformung des Vorproduktes zur Festigkeitssteigerung verzichtet und die geforderten mechanischen Eigenschaften des Bauteils nach der Halbwarmumformung gezielt eingestellt werden.Opposite the DE 10 2011 108 162 A1 can with the alloy composition according to the invention and a precursor, which already has a microstructure with at least 50% bainite in the initial state, waived the additional step of cold deformation of the precursor to increase the strength and the required mechanical properties of the component can be adjusted specifically after the warm forging.

Die Verwendung eines schon am Vorprodukt erzeugten bainitischen Stahls mit der angegebenen Legierungszusammensetzung ist von großem Vorteil, da schon der Ausgangswerkstoff eine hohe Zugfestigkeit und Dehnung aufweist, die auch nach der (umwandlungsfreien) Umformung erhalten bleiben oder sogar höher sind.The use of an already produced on the precursor bainitic steel with the specified alloy composition is of great advantage, since even the starting material has a high tensile strength and elongation, which are retained even after the (conversion) conversion or even higher.

Der für das erfindungsgemäße Verfahren eingesetzte bainitische Stahl erhält sein Gefüge erfindungsgemäß über eine entsprechende Temperaturführung schon beim Herstellungsprozess des Vorproduktes. Bei Warmband kann die Gefügeeinstellung z. B. über thermomechanisches Walzen, bei Kaltband z. B. durch den Glühprozess nach dem Kaltwalzen oder bei der Feuerverzinkung erfolgen.The bainitic steel used for the process according to the invention obtains its microstructure according to the invention via an appropriate temperature control during the production process of the preliminary product. For hot strip, the microstructure z. B. on thermomechanical rolling, for cold strip z. B. done by the annealing process after cold rolling or hot dip galvanizing.

Eine wie bei anderen höherfesten Stählen bekannte "Erweichung" nach der Umformung konnte bei diesem bainitischen Stahl nicht beobachtet werden. Eine "Erweichung" geht oftmals einher mit einer Gefügeumwandlung und ist somit zeit- und temperaturkritisch. Der Einsatz des erfindungsgemäßen Vorproduktes aus mehrheitlich bainitischem Stahl ist dagegen weitgehend unempfindlich, so dass z. B. beabsichtigte oder unbeabsichtigte Zeitund Temperaturänderungen bei Erwärmung und Umformung keine Verschlechterungen der mechanischen Eigenschaften bewirken. Durch dieses vorteilhafte Werkstoffverhalten können auch anspruchsvolle mehrstufige Prozessschritte reproduzierbar durchgeführt werden.A "softening" after forming, as known with other high-strength steels, could not be observed with this bainitic steel. A "softening" is often associated with a structural transformation and is thus time and temperature critical. The use of the precursor of the invention of mainly bainitic steel, however, is largely insensitive, so that z. B. intended or unintended Zeitund temperature changes during heating and forming cause no deterioration of the mechanical properties. Due to this advantageous material behavior even demanding multi-stage process steps can be carried out reproducibly.

Der besondere Vorteil der Verwendung dieses Legierungskonzeptes und der bainitischen Gefügestruktur besteht weiterhin in einer sehr feinen und homogenen Gefügestruktur mit mindestens 70% Bainit und nur geringen Anteilen an Ferrit, Restaustenit und Martensit. Notwendig zur Erreichung der geforderten mechanischen Eigenschaften ist es, dass das Gefüge mindestens 70% Bainit aufweist und die Anteile an Restaustenit + Martensit <10% sind und der Rest aus Ferrit besteht.The particular advantage of using this alloy concept and the bainitic microstructure remains in a very fine and homogeneous microstructure with at least 70% bainite and only small amounts of ferrite, retained austenite and martensite. It is necessary for the achievement of the required mechanical properties that the structure has at least 70% bainite and the amounts of retained austenite + martensite are <10% and the remainder consists of ferrite.

Besonders gleichmäßige und homogene Werkstoffeigenschaften können erreicht werden, wenn der bainitische Stahl des Vorproduktes folgende Legierungszusammensetzung in Gew. % aufweist:

  • C: 0,02 bis 0,11%
  • Si: 0,01 bis 0,5%
  • Mn: 1,0 bis 2,0%
  • P: max. 0,02%
  • S: max. 0,01%
  • N: max. 0,01%
  • Almin: 0,015 bis 0,1%
  • B: max. 0,004%
  • Nb+V+Ti: max. 0,2%
Particularly uniform and homogeneous material properties can be achieved if the bainitic steel of the precursor has the following alloy composition in% by weight:
  • C: 0.02 to 0.11%
  • Si: 0.01 to 0.5%
  • Mn: 1.0 to 2.0%
  • P: max. 0.02%
  • S: max. 0.01%
  • N: max. 0.01%
  • Al min : 0.015 to 0.1%
  • B: max. 0.004%
  • Nb + V + Ti: max. 0.2%

In einer weiter verbesserten Ausgestaltung der Erfindung weist der Stahl des Vorproduktes folgende Legierungszusammensetzung in Gew.% auf:

  • C: 0,05 bis 0,11%
  • Si: 0,1 bis 0,5%
  • Mn: 1,0 bis 2,0%
  • P: max. 0,02%
  • S: max. 0,01%
  • N: 0,003 bis 0,01%
  • Almin: 0,03 bis 0,1%
  • B: max. 0,004%
  • Mo: 0,04 bis 0,2
  • Ti: 0,04 bis 0,2
  • Nb+V+Ti: 0,1 bis 0,2%
In a further improved embodiment of the invention, the steel of the precursor has the following alloy composition in% by weight:
  • C: 0.05 to 0.11%
  • Si: 0.1 to 0.5%
  • Mn: 1.0 to 2.0%
  • P: max. 0.02%
  • S: max. 0.01%
  • N: 0.003 to 0.01%
  • Al min : 0.03 to 0.1%
  • B: max. 0.004%
  • Mo: 0.04 to 0.2
  • Ti: 0.04 to 0.2
  • Nb + V + Ti: 0.1 to 0.2%

Die Zugabe von Stickstoff von mindestens 0,003 bis 0,01 Gew.-% sorgt in Kombination mit Kohlenstoff und einem Mindestgehalt an Titan von 0,04 bis 0,2 Gew.-% durch die Bildung von Titancarbonitriden vorteilhaft für ein feinkörniges Gefüge mit hohen Festigkeits- und Zähigkeitseigenschaften. Durch die Zugabe von Molybdän in Gehalten von 0,04 bis 0,2 Gew.-% werden zudem die sich bildenden Ausscheidungen vorteilhaft sehr klein gehalten.The addition of nitrogen of at least 0.003 to 0.01 wt .-% in combination with carbon and a minimum content of titanium from 0.04 to 0.2 wt .-% by the formation of titanium carbonitrides advantageously for a fine-grained structure with high strength and toughness properties. In addition, the addition of molybdenum in contents of 0.04 to 0.2 wt .-%, the forming precipitates are advantageously kept very small.

Vergleichsuntersuchungen wurden an Stählen mit den in Tabelle 1 abgegebenen Legierungszusammensetzungen durchgeführt. Die Ergebnisse für die mechanischen Eigenschaften vor und nach der Halbwarmumformung zeigt die Tabelle 2.Comparative tests were carried out on steels with the alloy compositions given in Table 1. The results for the mechanical properties before and after the warm forging are shown in Table 2.

Untersucht wurden Bleche mit einer Dicke von 1,8 bis 2,25 mm die im Ofen bei einer Temperatur von 600°C für 3 Minuten aufgeheizt und im Anschluss zwischen zwei ebenen Werkzeugkomponenten in einer Umformpresse abgekühlt wurden.Sheets were tested with a thickness of 1.8 to 2.25 mm, which were heated in the oven at a temperature of 600 ° C for 3 minutes and then cooled between two flat tool components in a forming press.

Die untersuchten Werkstoffe sind in den Tabellen 1 und 2 mit den Buchstaben a, b, c, d, e und f bezeichnet. Die Legierungszusammensetzungen der Werkstoffe entsprechen der erfindungsgemäßen, wobei die Gefüge aber im Ausgangszustand unterschiedlich eingestellt waren. Stahl a wies im Ausgangszustand also vor der Erwärmung auf Umformtemperatur ein ferritisch-bainitisches Grundgefüge "FB", Stahl b ein bainitisches "B", Stahl c ein Mischgefüge aus Martensit, Bainit und Ferrit "MBF", wobei der Martensitanteil dominant ist. Die Stähle d und e wiesen ein ferritisches "F" und der Stahl f ein martensitisches Grundgefüge "M" auf. Bei den Stählen a und c lag der Bainitanteil im Gefüge unter 50% und bei Stahl b über 50%. Ersichtlich ist aus Tabelle 2, dass nur der Stahl b mit einem mehrheitlich bainitischen Ausgangsgefüge des Vorproduktes, die Anforderungen an die mechanischen Eigenschaften mit einer Mindestzugfestigkeit von 800 MPa und einer Mindestbruchdehnung A80 von mehr als 8% nach der Halbwarmumformung erfüllt.The materials tested are indicated in Tables 1 and 2 by the letters a, b, c, d, e and f. The alloy compositions of the materials correspond to the invention, but the microstructures were set differently in the initial state. Thus, in the initial state, steel a had a ferritic-bainitic basic structure "FB" before being heated to forming temperature, steel b a bainitic "B", steel c a mixed structure of martensite, bainite and ferrite "MBF", the martensite content being dominant. The steels d and e had a ferritic "F" and the steel f a martensitic matrix "M". For steels a and c, the bainite content in the microstructure was below 50% and in steel b over 50%. It can be seen from Table 2 that only the steel b with a predominantly bainitic starting structure of the precursor satisfies the requirements for mechanical properties with a minimum tensile strength of 800 MPa and a minimum elongation at break A80 of more than 8% after hot forging.

Typische Anwendungen zur Ausnutzung des hohen Festigkeitspotentials bei gleichzeitiger Gewichtseinsparung am Bauteil sind der Mobilkranbau, Längs- und Querträger in Lastwagen und Anhängern, Sicherheits- und Fahrwerksteile im Pkw und der Waggonbau.Typical applications for exploiting the high strength potential while at the same time saving weight on the component are mobile crane construction, longitudinal and transverse beams in trucks and trailers, safety and chassis parts in passenger cars and wagon construction.

Der erfindungsgemäße Stahl oder das daraus hergestellte Bauteil zeichnet sich durch eine sehr hohe Streckgrenze und Zugfestigkeit von über 800 MPa bei einer ausreichend hohen Dehnung aus. Aufgrund der chemischen Zusammensetzung ist zudem eine gute Schweißbarkeit gegeben.The steel according to the invention or the component produced therefrom is characterized by a very high yield strength and tensile strength of more than 800 MPa with a sufficiently high elongation. Due to the chemical composition also good weldability is given.

Der vorab genannte Stahl kann weiterhin in bekannter Weise mit einer zunder- bzw. korrosions-hemmenden Schicht auf Lackbasis oder mit einem metallischen Überzug versehen sein. Der metallische Überzug kann Zink und/oder Magnesium und/oder Aluminium und/oder Silizium enthalten.The aforementioned steel can furthermore be provided in a known manner with a scale-inhibiting or corrosion-inhibiting layer based on lacquer or with a metallic coating. The metallic coating may contain zinc and / or magnesium and / or aluminum and / or silicon.

Im Gegensatz zu gängigen Fertigungsrouten kann bereits oberflächenveredeltes Warm- oder Kaltband für die Umformung im Anschluss an eine Erwärmung eingesetzt werden, da die Haftung und die Duktilität eine Halbwarmumformung mit geringen Umformgraden erträgt. Der metallische Überzug ist gegen kurzzeitige Wiedererwärmungen der Kombination Substrat/Beschichtung (Stahlband/Beschichtung) unterhalb der Ac1-Temperatur des Substrats resistent, um die Wiedererwärmung vor der Halbwarmformung und der eigentlichen Halbwarmformung zu überstehen.In contrast to conventional production routes, surface-finished hot or cold strip can already be used for forming following heating, since the adhesion and the ductility endure half-warm forming with low degrees of deformation. The metallic coating is resistant to short-term reheating of the substrate / coating combination (steel strip / coating) below the Ac 1 temperature of the substrate to survive reheating prior to semi-hot forming and actual semi-hot forming.

Aufgrund der vergleichsweise geringen Wärmemenge kann auf großräumige Wiedererwärmungsaggregate, wie z. B. auf Tunnelöfen oder Kammeröfen, zugunsten schnell und direkt wirkender Systeme (induktiv, konduktiv und insbesondere Strahlung) verzichtet werden.Due to the relatively low amount of heat can be used on large-scale reheating units such. As tunnel kilns or chamber furnaces, in favor of fast and direct-acting systems (inductive, conductive and in particular radiation) are dispensed with.

Außerdem kommt das beschriebene neue Verfahren mit erheblich weniger Wärmeenergie aus, bzw. der energetische Wirkungsgrad ist höher als beim Presshärten. Dadurch sind die Prozesskosten geringer und der CO2 Ausstoß wird reduziert.In addition, the new method described with significantly less heat energy, or the energy efficiency is higher than during press hardening. This reduces process costs and reduces CO 2 emissions.

Bevorzugt erfolgt die Wiedererwärmung vor dem Halbwarmformen mittels Strahlung, da hier der Wirkungsgrad deutlich höher ist als bei einer Erwärmung in einem Ofen oder bei konduktiver Erwärmung und der Energieeintrag in das Material je nach Oberflächenbeschaffenheit schneller und effektiver erfolgt.Preferably, the reheating takes place before the half-warm forms by means of radiation, since the efficiency is significantly higher than when heated in an oven or conductive heating and the energy input into the material takes place faster and more effective depending on the surface condition.

Der Werkstoff ist auch sehr gut für eine partielle Erwärmung geeignet. Durch den Einsatz von z. B. Strahlern können gezielt einzelne Bereiche des umzuformenden Vorprodukts erwärmt werden, um umformbarkeitsoptimierte Zonen zu erhalten. Dies ermöglicht vorteilhaft die Nutzung von konventionellen Pressen zur Kaltumformung, so dass auf eine komplexe Warmumformanlage, wie sie beim Presshärten notwendig ist, verzichtet werden kann.The material is also very suitable for partial heating. By the use of z. B. emitters can be selectively heated individual areas of the preform to be formed in order to obtain formability optimized zones. This advantageously allows the use of conventional presses for cold forming, so that it is possible to dispense with a complex hot-forming installation, as is necessary in press-hardening.

Für den Transport zwischen Wärmequelle und Umformwerkzeug kann es weiterhin sinnvoll sein, besonders im Falle von sehr dünnen Blechen (z. B. <0,8mm), eine Profilierung der Zuschnitte zur Erhöhung der lokalen Steifigkeit vorzusehen. Dies ist beim konventionellen Presshärten nicht möglich, da die zu erzielende Festigkeit eine schroffe Abkühlung erfordert, welche sich über Leibung im Werkzeug aufgrund der Profilierung ausschließt.For the transport between the heat source and the forming tool, it may also be useful, especially in the case of very thin sheets (eg <0.8 mm), to provide a profiling of the blanks to increase the local rigidity. This is not possible in conventional press hardening, since the strength to be achieved requires a rapid cooling, which excludes over mold in the tool due to the profiling.

Bei dem erfindungsgemäßen Verfahren wird das Vorprodukt auf eine Temperatur von unterhalb 720°C vorteilhaft in einem Temperaturbereich von 400 - 700°C erwärmt und anschließend zu einem Bauteil umgeformt. Die optimale Umformtemperatur ist abhängig von der geforderten Festigkeit des Bauteils und liegt bevorzugt etwa zwischen 500°C und 700°C. Lange Haltezeiten, um ein bainitisches Gefüge zu erhalten wie in der EP 2 546 375 A1 beschrieben, sind nicht erforderlich, so dass die Prozesszeit für die Herstellung des Bauteils deutlich verkürzt wird.In the method according to the invention, the precursor is heated to a temperature of below 720 ° C advantageously in a temperature range of 400 - 700 ° C and then formed into a component. The optimum forming temperature is dependent on the required strength of the component and is preferably between about 500 ° C and 700 ° C. Long holding times to obtain a bainitic structure as in the EP 2 546 375 A1 are not required, so that the process time for the production of the component is significantly shortened.

In einer vorteilhaften Ausgestaltung der Erfindung wird bei Erwärmung des Vorproduktes auf Umformtemperatur eine lokale Überschreitung des Temperaturbereichs des Halbwarmformens in den Austenitisierungsbereich vorgenommen, um gezielt lokale Eigenschaftsänderungen vorzunehmen (z. B. lokale Härtung), die in Kombination mit der Festigkeitssteigerung des restlichen Materials den späteren Beanspruchungen des Bauteils angepasst sind. Tab. 1 Werkstoff C Si Mn P S N Al Cu Cr Ni V Ti Nb Mo B FB a 0,07 0,08 1,4 0,01 0,002 0,005 0,041 0,03 0,04 0,04 0,05 - 0,04 - - B b 0,08 0,47 1,9 0,01 0,001 0,006 0,066 0,03 0,03 0,04 0,01 0,12 0,05 0,14 - MBF C 0,23 0,25 1,2 0,01 0,002 0,005 0,038 0,04 0,16 0,04 0,01 0,03 - - 0,003 F d 0,10 0,28 2,0 0,01 0,001 0,006 0,041 0,02 0,33 0,04 0,01 0,04 0,04 - 0,003 M f 0,15 0,12 1,7 0,01 0,001 0,005 0,045 0,02 0,33 0,04 0,01 0,02 - - - F e 0,09 0,25 1,8 0,01 0,001 0,005 0,041 0,03 0,33 0,04 0,01 - 0,01 - - Tabelle 2 Werkstoff Zugfestigkeit Rm[MPa] Streckgrenze Rp0,2[MPa] Bruchdehnung A80[%] vor HWU nach HWU vor HWU nach HWU vor HWU nach HWU FB a 591 632 552 589 19 16 B b 788 854 678 833 14 12 MBF C 982 979 915 922 7 7 F d 855 778 644 767 13 12 M f 1343 1246 1047 1173 6 1 F e 676 650 407 498 22 18 In an advantageous embodiment of the invention, when the precursor is heated to forming temperature, the temperature range of the semi-warming is locally exceeded in the austenitizing region in order to undertake local changes in properties (eg local hardening) which, in combination with the increase in the strength of the remaining material, later Demands of the component are adjusted. Tab. 1 material C Si Mn P S N al Cu Cr Ni V Ti Nb Not a word B FB a 0.07 0.08 1.4 0.01 0,002 0.005 0,041 0.03 0.04 0.04 0.05 - 0.04 - - B b 0.08 0.47 1.9 0.01 0.001 0,006 0.066 0.03 0.03 0.04 0.01 0.12 0.05 0.14 - MBF C 0.23 0.25 1.2 0.01 0,002 0.005 0,038 0.04 0.16 0.04 0.01 0.03 - - 0,003 F d 0.10 0.28 2.0 0.01 0.001 0,006 0,041 0.02 0.33 0.04 0.01 0.04 0.04 - 0,003 M f 0.15 0.12 1.7 0.01 0.001 0.005 0,045 0.02 0.33 0.04 0.01 0.02 - - - F e 0.09 0.25 1.8 0.01 0.001 0.005 0,041 0.03 0.33 0.04 0.01 - 0.01 - - material Tensile strength R m [MPa] Yield strength R p0.2 [MPa] Elongation at break A 80 [%] before HWU to HWU before HWU to HWU before HWU to HWU FB a 591 632 552 589 19 16 B b 788 854 678 833 14 12 MBF C 982 979 915 922 7 7 F d 855 778 644 767 13 12 M f 1343 1246 1047 1173 6 1 F e 676 650 407 498 22 18

Claims (14)

  1. A method for producing a component by hot forming a pre-product made of steel, in which the pre-product is heated to forming temperature and then formed, wherein the component after forming has a bainitic microstructure with a minimum tensile strength of 800 MPa,
    characterised in that
    the heating takes place to a temperature below the Ac1 transformation temperature, wherein the pre-product already consists of a steel having a structure of at least 70% bainite and the contents of residual austenite + martensite are <10% and the remainder consists of ferrite, and wherein the pre-product has the following alloy composition in wt. %:
    C: 0.02 to 0.3
    Si: 0.01 to 0.5
    Mn: 1.0 to 3.0
    P: max 0.02
    S: max 0.01
    N: max 0.01
    Al: up to 0.1
    Cu: up to 0.2
    Cr: up to 3.0
    Ni: up to 0.2
    Mo: up to 0.2
    Ti: up to 0.2
    V: up to 0.2
    Nb: up to 0.1
    B: up to 0.01
    remainder iron and impurities associated with smelting.
  2. The method according to claim 1,
    characterised in that
    the steel comprises an alloy with the following composition in wt.%:
    C: 0.02 to 0.11%
    Si: 0.01 to 0.5%
    Mn: 1.0 to 2%
    P: max 0.02%
    S: max 0.01%
    Al: 0.015 to 0.1%
    B: max. 0.004%
    Nb+V+Ti: max 0.2%.
  3. The method according to claim 1,
    characterised in that
    the steel comprises an alloy with the following composition in wt.%:
    C: 0.05 to 0.11%
    Si: 0.1 to 0.5%
    Mn: 1.0 to 2.0%
    P: max. 0.02%
    S: max 0.01%
    N: 0.003 to 0.01%
    Al min: 0.03 to 0.1%
    B: max 0.004%
    Mo: 0.04 to 0.2
    Ti: 0.04 to 0.2
    Nb+V+Ti: 0.1 to 0.2%.
  4. The method according to one of claims 1 to 3,
    characterised in that
    the heating of the pre-product to hot forming temperature takes place only partially and the partial heating optionally takes place above the Ac1 transformation temperature.
  5. The method according to at least one of claims 1 to 4,
    characterised in that
    the heating of the pre-product takes place to a temperature below 720°C.
  6. The method according to claim 5,
    characterised in that
    the heating of the pre-product takes place to a temperature in a range from 400 to 700°C.
  7. The method according to claim 6,
    characterised in that
    the heating of the pre-product takes place to a temperature in a range from 500 to 700°C.
  8. The method according to one of claims 1 to 7,
    characterised in that
    prior to the heating step, the pre-product is provided with a metallic or lacquer-like coating.
  9. The method according to claim 8,
    characterised in that
    the metallic coating contains Zn and/or Mg and/or Al and/or Si.
  10. The method according to at least one of claims 1 to 9,
    characterised in that
    the heating to forming temperature is accomplished inductively, conductively or by means of radiation.
  11. The method according to at least one of claims 1 to 10,
    characterised in that
    a sheet metal blank or a tube is used as the pre-product.
  12. The method according to claim 11,
    characterised in that
    the sheet metal blank consists of hot-rolled strip or cold-rolled strip.
  13. The method according to claim 11,
    characterised in that
    the tube is a seamlessly hot rolled tube or a welded tube made of hot-rolled strip or cold-rolled strip.
  14. The method according to claim 13,
    characterised in that
    the tube is a seamlessly hot rolled tube or a welded tube made of hot-rolled strip or cold-rolled strip which has been subjected again to one or multiple drawing and/or annealing processes.
EP14731900.8A 2013-05-28 2014-04-30 Method for producing a component by hot forming a pre-product made of steel Active EP3004401B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013009232.9A DE102013009232A1 (en) 2013-05-28 2013-05-28 Process for producing a component by hot forming a precursor of steel
PCT/DE2014/000233 WO2014190957A1 (en) 2013-05-28 2014-04-30 Method for producing a component by hot forming a pre-product made of steel

Publications (2)

Publication Number Publication Date
EP3004401A1 EP3004401A1 (en) 2016-04-13
EP3004401B1 true EP3004401B1 (en) 2017-05-31

Family

ID=50980089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14731900.8A Active EP3004401B1 (en) 2013-05-28 2014-04-30 Method for producing a component by hot forming a pre-product made of steel

Country Status (6)

Country Link
US (1) US20160130675A1 (en)
EP (1) EP3004401B1 (en)
KR (1) KR20160014658A (en)
DE (1) DE102013009232A1 (en)
RU (1) RU2664848C2 (en)
WO (1) WO2014190957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220721B2 (en) 2017-01-20 2022-01-11 Thyssenkrupp Steel Europe Ag Hot rolled flat steel product consisting of a complex-phase steel with a largely bainitic microstructure and method for manufacturing such a flat steel product

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151345A1 (en) * 2015-03-23 2016-09-29 Arcelormittal Parts with a bainitic structure having high strength properties and manufacturing process
WO2017006144A1 (en) * 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
DE102016104800A1 (en) 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Method for producing a hot-formed steel component and a hot-formed steel component
DE102016107152B4 (en) 2016-04-18 2017-11-09 Salzgitter Flachstahl Gmbh Component of press-hardened aluminum-coated steel sheet and method for producing such a component and its use
DE102016107143A1 (en) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Motor vehicle, chassis component, in particular for a chassis component and use of the chassis component and a material
DE102016107141A1 (en) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Motor vehicle trailer, suspension axle, in particular for a motor vehicle trailer and use of the chassis axle and a material
KR20200035259A (en) 2017-07-25 2020-04-02 타타 스틸 이즈무이덴 베.뷔. Steel strips, sheets or blanks for manufacturing hot formed parts, and methods for hot forming parts and blanks into parts.
DE102018102974A1 (en) 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh A method of manufacturing a component by hot working a manganese steel precursor and a hot worked steel component
DE102018207205A1 (en) * 2018-05-09 2019-11-14 Thyssenkrupp Ag Hybrid steel-plastic housing for power electronics
DE102018207211A1 (en) * 2018-05-09 2019-11-14 Thyssenkrupp Ag Hybrid steel-plastic semi-finished product with shielding properties
DE102019123334A1 (en) * 2019-08-30 2021-03-04 Mannesmann Precision Tubes Gmbh Steel material for a drive shaft, method for producing a drive shaft from this steel material and drive shaft therefrom
CN114867883B (en) * 2019-12-20 2023-09-19 Posco公司 Steel material for thermoforming, thermoformed part, and method for producing same
KR102359303B1 (en) * 2020-06-18 2022-02-07 국방과학연구소 Second hardening type martensite alloy and preparation method thereof
WO2022080489A1 (en) * 2020-10-16 2022-04-21 日本製鉄株式会社 Steel plate for hot stamping, method for manufacturing same, hot stamp member, and method for manufacturing same
DE102022202607A1 (en) 2022-03-16 2023-09-21 Volkswagen Aktiengesellschaft Method for producing a sheet steel component and motor vehicle with a sheet steel component
CN117568569A (en) 2022-08-08 2024-02-20 通用汽车环球科技运作有限责任公司 Method for producing high-performance press-hardened steel component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318931C1 (en) * 1993-06-03 1994-12-01 Mannesmann Ag Method for the production of welded tubes
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
DE102004028236B3 (en) 2004-06-11 2005-11-17 Rolf-Josef Schwartz Assembly for heating workpieces before shaping in a press, e.g. high tensile steel sheets for automobile bodywork components, has a kiln with a jet field and fans to give the workpieces a convective heating action
SK288275B6 (en) * 2005-12-01 2015-06-02 Posco Hot rolled steel sheet having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof
MX2009008557A (en) * 2007-02-23 2009-08-21 Corus Staal Bv Method of thermomechanical shaping a final product with very high strength and a product produced thereby.
KR101313957B1 (en) * 2009-05-27 2013-10-01 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
DE102010024664A1 (en) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Method for producing a component made of an air-hardenable steel and a component produced therewith
JP5779907B2 (en) * 2010-02-26 2015-09-16 新日鐵住金株式会社 Steel for heat treatment
JP5327106B2 (en) 2010-03-09 2013-10-30 Jfeスチール株式会社 Press member and manufacturing method thereof
WO2012048841A1 (en) * 2010-10-12 2012-04-19 Tata Steel Ijmuiden B.V. Method of hot forming a steel blank and the hot formed part
WO2012147963A1 (en) * 2011-04-28 2012-11-01 株式会社神戸製鋼所 Hot press molded article, fabrication method therefor, and thin steel plate for hot press molding
DE102011108162B4 (en) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220721B2 (en) 2017-01-20 2022-01-11 Thyssenkrupp Steel Europe Ag Hot rolled flat steel product consisting of a complex-phase steel with a largely bainitic microstructure and method for manufacturing such a flat steel product

Also Published As

Publication number Publication date
RU2015155181A (en) 2017-06-30
KR20160014658A (en) 2016-02-11
DE102013009232A1 (en) 2014-12-04
RU2015155181A3 (en) 2018-03-14
RU2664848C2 (en) 2018-08-23
WO2014190957A1 (en) 2014-12-04
US20160130675A1 (en) 2016-05-12
EP3004401A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
EP3004401B1 (en) Method for producing a component by hot forming a pre-product made of steel
EP2655673B1 (en) Method for producing hardened structural elements
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
DE102005014298B4 (en) Armor for a vehicle
EP2449138B1 (en) Process of manufacturing a part from an air hardenable steel and the part manufactured by the process
EP2297367B9 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP2734652B1 (en) Method for producing a component by hot-forming a steel precursor product
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
EP2831295B1 (en) Method for producing a component from steel by hot forming
EP3724359B1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind
EP2664682A1 (en) Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same
DE102007033950A1 (en) Workpiece made of a high-strength steel alloy and its use
DE102009049398B3 (en) Method for producing a structural component for a motor vehicle, hot-forming board and structural component
EP3430180B1 (en) Method for producing a hot-formed steel component
DE102008022401B4 (en) Process for producing a steel molding having a predominantly bainitic structure
EP3749469B1 (en) Method for producing a component by hot-forming a precursor product made of steel containing manganese, and a hot-formed steel component
DE102019219235B3 (en) Process for the production of a hot-formed and press-hardened sheet steel component
DE102019208040A1 (en) Process for the production of a hot-formed and press-hardened sheet steel component
DE102022202607A1 (en) Method for producing a sheet steel component and motor vehicle with a sheet steel component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAIKRANZ-VALENTIN, MANUEL

Inventor name: BRAUN, MICHAEL

Inventor name: MUETZE, STEFAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014004022

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0001340000

Ipc: C21D0007130000

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20161027BHEP

Ipc: C21D 9/46 20060101ALI20161027BHEP

Ipc: C21D 9/08 20060101ALI20161027BHEP

Ipc: C22C 38/14 20060101ALI20161027BHEP

Ipc: C22C 38/02 20060101ALI20161027BHEP

Ipc: C21D 8/10 20060101ALI20161027BHEP

Ipc: C22C 38/04 20060101ALI20161027BHEP

Ipc: C22C 38/08 20060101ALI20161027BHEP

Ipc: C22C 38/12 20060101ALI20161027BHEP

Ipc: C23C 2/12 20060101ALI20161027BHEP

Ipc: C22C 38/00 20060101ALI20161027BHEP

Ipc: C23C 2/06 20060101ALI20161027BHEP

Ipc: C21D 1/34 20060101ALI20161027BHEP

Ipc: C21D 7/13 20060101AFI20161027BHEP

Ipc: C22C 38/06 20060101ALI20161027BHEP

Ipc: C22C 38/16 20060101ALI20161027BHEP

Ipc: C21D 1/673 20060101ALI20161027BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 897546

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004022

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170531

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004022

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140430

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 897546

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 10

Ref country code: DE

Payment date: 20230420

Year of fee payment: 10