EP2997249B1 - Egr valve for combustion engine - Google Patents

Egr valve for combustion engine Download PDF

Info

Publication number
EP2997249B1
EP2997249B1 EP14705118.9A EP14705118A EP2997249B1 EP 2997249 B1 EP2997249 B1 EP 2997249B1 EP 14705118 A EP14705118 A EP 14705118A EP 2997249 B1 EP2997249 B1 EP 2997249B1
Authority
EP
European Patent Office
Prior art keywords
housing
exhaust gas
actor
coolant
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14705118.9A
Other languages
German (de)
French (fr)
Other versions
EP2997249A1 (en
Inventor
Guido Barabasch
Holger Paffrath
Osman Sari
Norbert Simons
Rafael SOGLOWEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP2997249A1 publication Critical patent/EP2997249A1/en
Application granted granted Critical
Publication of EP2997249B1 publication Critical patent/EP2997249B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/72Housings
    • F02M26/73Housings with means for heating or cooling the EGR valve

Definitions

  • the invention relates to an exhaust valve device for an internal combustion engine with an actuator, an actuator housing in which the actuator is arranged, and a valve housing connected to the actuator housing, an exhaust gas inlet and an exhaust gas outlet, a valve with a movement transmission member and a control body via which a flow cross section between the exhaust gas inlet and the exhaust gas outlet can be regulated and a coolant channel with a coolant inlet connector and a coolant outlet connector.
  • Valves used in the exhaust gas area and in particular exhaust gas recirculation valves serve to reduce exhaust emissions.
  • exhaust gas quantities adapted to the respective operating state of the internal combustion engine are returned to the cylinders of the internal combustion engine in order to reduce the environmentally harmful components, in particular nitrogen oxides.
  • the exhaust gas recirculation valves usually consist of an actuator, which is mostly electromotive today, which is usually in operative connection with a valve rod via a transmission, which is guided via a guide bushing in a housing of the valve and at its end opposite the actuator has at least one control body which is connected to corresponds to a corresponding valve seat between an exhaust gas inlet and an exhaust gas outlet.
  • exhaust gas recirculation valves are designed in such a way that the valve rod as well as the gearbox and the actuator are in the closed state of the valve is arranged in the fresh air containing area and separated from the exhaust side by the control body.
  • the valve When the valve is opened, i.e. when the regulating body is lifted off the valve seat, hot exhaust gas flows in the direction of the intake manifold, so that the hot exhaust gas is connected to the gearbox housing.
  • exhaust valve devices have become known in which the housing through which there is a flow is thermally separated from the actuator by means of a coolant channel through which the heat is removed from the exhaust gas.
  • Such a valve is for example from DE 103 44 218 A1 known.
  • the valve described herein has a valve rod which can be actuated via an actuator and has a valve disk which controls a flow cross section.
  • a coolant channel is formed radially around the valve rod in the flow housing, which is open towards the actuator housing and is closed by placing the actuator housing on. The connecting pieces are pressed into corresponding receptacles in the flow housing.
  • JP 07-233762 A discloses an exhaust gas recirculation valve which can be actuated via a stepping motor and in which the electric motor is surrounded by a coolant duct in the actuator housing.
  • connecting pieces for the coolant supply are screwed or pressed into appropriately shaped holes.
  • an exhaust gas recirculation valve which is driven by an actuator arranged in an actuator housing.
  • the valve is located in a valve housing with an inlet and an outlet.
  • a heat dissipation housing is arranged between the valve housing and the actuator housing, in which a Coolant channel is formed with an inlet nozzle and an outlet nozzle.
  • the object is therefore to avoid excessive thermal loading of the actuator, thermal shielding of the actuator and reliable heat dissipation from the actuator housing being ensured without this resulting in increased assembly costs.
  • valve housing has a flow housing part in which the exhaust gas inlet and the exhaust gas outlet are formed and a transmission housing part in which a transmission connected to the actuator is arranged, the coolant inlet connector and the coolant outlet connector being arranged on the actuator housing and fluidically connected to one another via the coolant channel , which extends partly in the actuator housing and partly in the transmission housing part, it is ensured that on the one hand heat is extracted from the exhaust gas before it reaches the actuator and on the other hand heat can also be dissipated directly from the actuator housing. There are no additional Connections required.
  • the coolant inlet connector and the coolant outlet connector are preferably designed in one piece with the actuator housing. This eliminates the need to assemble the connecting pieces, which are screwed in or pressed in in known designs and often additionally have to be coated with a sealing material.
  • the actuator housing with the coolant inlet connector and the coolant outlet connector is a plastic injection-molded part. Due to the good thermal shielding and heat dissipation, the actuator housing can be manufactured inexpensively from plastic.
  • the actuator housing is attached to the gear housing part, so that direct contact between the actuator housing and the flow housing that is most thermally stressed is avoided.
  • the coolant channel advantageously extends from the actuator housing into the transmission housing part and from the transmission housing part to the actuator housing.
  • the heat is thus dissipated from both the gearbox and the actuator.
  • the most heat-sensitive actuator housing is thus over shields the coolant duct in the gearbox housing and can still dissipate the heat that enters the actuator housing or the heat generated there. This leads to a long service life for the actuator, which is reliably protected against overheating.
  • gear housing part and the flow housing part are designed as a one-piece cast part.
  • the cast design results in a high thermal load capacity of the valve housing.
  • the valve housing preferably has a flange surface to which the actuator housing is fastened with its flange surface with a seal interposed. This simplifies assembly and creates a sealed interior that is closed to the outside so that dirt is prevented from penetrating from the outside.
  • seal radially surrounds an actuator and gear chamber on the flange surfaces and radially surrounds the coolant duct on one of the flange surfaces.
  • additional seals for the transition of the coolant channel from one housing part to the other can be dispensed with. This facilitates assembly and lowers manufacturing costs.
  • This seal is particularly easy to assemble if it is arranged in an axial groove on the flange surface of the actuator housing.
  • two pipe sections are formed in one piece with the actuator housing, which pipe pieces extend the coolant channel in the actuator housing and protrude into the coolant channel in the transmission housing part.
  • the actuator housing can be pre-fixed in its position on the gearbox housing before it is fastened, with a correct position of the coolant channels in the actuator housing and in the gear housing part is ensured to one another.
  • the two pipe sections are each surrounded by a sealing ring which is each arranged in a radial groove formed in the coolant channel of the transmission housing part. A reliable seal of the coolant channel is thus produced in a simple manner.
  • An actuator designed as an electric motor is particularly preferred, since it ensures a high level of positioning accuracy.
  • an exhaust valve device is thus created in which the actuator is significantly better protected from thermal overload compared to known designs and thus an electrical actuator can be used even in very high temperature ranges without fear of overheating. Accordingly, the actuator housing can be made of plastic. The assembly of such a valve device is particularly simple.
  • the exhaust valve devices according to the invention shown in the figures have an actuator 12, arranged in an actuator housing 10, in the form of an electric motor, which has an in Figure 3 partially visible gear 14 drives.
  • This gear 14 is in operative connection with a valve 15, which has a movement transmission element 16 in the form of a valve rod and a control body 18 in the form of a valve disk.
  • the rotary movement of the electric motor 12 is converted in a known manner into a translational movement of the valve rod 16 via the gear mechanism 14, for example via an eccentric link connection.
  • valve plate 18 At the end of the valve rod 16 opposite the transmission 14, the valve plate 18 is attached, which cooperates with a valve seat 20 which surrounds a flow cross-section between an exhaust gas inlet 22 and an exhaust gas outlet 24, so that, depending on the position of the valve plate 18, a different amount of exhaust gas from the exhaust gas inlet 22 can reach the exhaust gas outlet 24 via the flow cross section.
  • the exhaust gas inlet 22 and the exhaust gas outlet 24 as well as the valve seat 20 are formed in a section of a valve housing 28 serving as a flow housing part 26.
  • the valve rod 16 protrudes from the transmission housing part 30 into the flow housing part 26.
  • the transmission housing part 30 has a flange surface 32 which rests against a flange surface 34 of the actuator housing 10 and via which the actuator housing 10 is fastened to the transmission housing part 30 by means of screws 36.
  • an actuator and transmission space 38 is correspondingly formed, which is closed off from the outside.
  • a connector housing part 40 is attached to the actuator housing 10 in both variants shown, which is previously pushed into a corresponding opening 43 in the actuator housing 10 from the inside with a connector seal 41 in between. In the first variant, this is attached to the end of the actuator housing 10 opposite to the flow housing part 26, and in the second variant according to FIG Figures 3 and 4 arranged laterally to the electric motor 12.
  • the connector housing part 40 can be positioned in a correspondingly variable manner.
  • the actuator housing 10 designed as a plastic injection-molded part has two connecting pieces which are designed as coolant inlet stubs 42 and coolant outlet stubs 44. These are formed in one piece with the actuator housing 10 and extend from the actuator housing 10 in the opposite direction to the gear housing part 30 and are arranged in the area facing the flow housing 26, arranged on both sides of the actuator 12.
  • the coolant inlet connector 42 and the coolant outlet connector 44 are fluidically connected to one another via a coolant channel 46 which extends partly in the actuator housing 10 and partly in the transmission housing part 30.
  • the coolant channel 46 initially extends as an extension of the coolant inlet connector 42 through the actuator housing 10 into a second channel section 50 in the transmission housing part 30 that again just extends this first channel section 48.
  • the coolant channel 46 experiences a vertical deflection, which is in a third channel section 52 opens.
  • This third channel section 52 extends essentially along the width of the gear housing part 30 and is designed as a bore that is closed by a plug 55 at the insertion end of the drill.
  • the third channel section 52 undergoes another 90 ° deflection at its other end, behind which a fourth, concealed channel section follows, which runs parallel to the second channel section 50, but is formed on the opposite side of the transmission housing part 30.
  • This fourth channel section in turn opens straight into a fifth channel section 53, which is correspondingly formed parallel to the first channel section 48 in the actuator housing 10 and the end of which is formed by the coolant outlet connector 44.
  • a coolant channel 46 running on three sides is formed in the actuator housing 10 and in the transmission housing part 30, which accordingly surrounds the movement transmission member 16 on three sides. This positioning of the coolant channel ensures that the actuator 12 is thermally separated from the hot flow housing, so that heat is dissipated via the coolant before it can reach the actuator.
  • the arrangement of the first and fifth coolant channel sections 48, 53 in the actuator housing 10 also allows heat generated by the electric motor 12 to be dissipated.
  • the one-piece design of the two coolant connection pieces 42, 44 significantly reduces the otherwise necessary assembly steps, since no additional connection pieces have to be built in, that is to say pressed in or screwed on.
  • a pipe section 54 extending from the flange surface 34 of the actuator housing 10 in the direction of the gearbox housing part 30 is formed as an extension of the first coolant duct section 48 on the actuator housing 10. This protrudes into the second channel section 50 of the coolant channel 46 formed in the transmission housing part 30, the inner diameter of this channel section 50 in this area essentially corresponding to the outer diameter of the pipe section 54.
  • an annular radial groove 56 is formed, in which a sealing ring 58 is arranged which radially surrounds the pipe section 54.
  • the connection between the fourth and fifth duct sections is established and sealed in the same way.
  • the axial groove 60 and the seal 62 are shaped in such a way that on the one hand the electric motor 12 with its control board and the pinion driven by the electric motor, which engages in the following gear 14, are radially surrounded by the seal 62 in the area of the flange surface 34 and on the other hand the two ends of the first and fifth channel sections 48, 53 facing the transmission housing part 30 are surrounded by the seal 62, so that here too a seal of the Coolant channel 46 and a seal of the transmission and actuator space 38 is made with only one seal 62.
  • the area surrounding the coolant channel ends could also be sealed by a separate seal.
  • the screws 36 for connecting the actuator housing 10 to the transmission housing part 30, like the two coolant duct sections 48, 53, are located radially outside of the seal 62, so that there is also no risk of leakage via the screw connections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Housings (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

Die Erfindung betrifft eine Abgasventilvorrichtung für eine Verbrennungskraftmaschine mit einem Aktor, einem Aktorgehäuse, in dem der Aktor angeordnet ist, und einem mit dem Aktorgehäuse verbundenen Ventilgehäuse, einem Abgaseinlass und einem Abgasauslass, einem Ventil mit einem Bewegungsübertragungsglied und einem Regelkörper, über den ein Durchströmungsquerschnitt zwischen dem Abgaseinlass und dem Abgasauslass regelbar ist und einem Kühlmittelkanal mit einem Kühlmitteleinlassstutzen und einem Kühlmittelauslassstutzen.The invention relates to an exhaust valve device for an internal combustion engine with an actuator, an actuator housing in which the actuator is arranged, and a valve housing connected to the actuator housing, an exhaust gas inlet and an exhaust gas outlet, a valve with a movement transmission member and a control body via which a flow cross section between the exhaust gas inlet and the exhaust gas outlet can be regulated and a coolant channel with a coolant inlet connector and a coolant outlet connector.

Im Abgasbereich eingesetzte Ventile und insbesondere Abgasrückführventile dienen der Reduktion von Abgasemissionen. Dabei werden von an den jeweiligen Betriebszustand der Brennkraftmaschine angepasste Abgasmengen zur Reduzierung der umweltschädlichen Anteile, insbesondere von Stickoxiden, in die Zylinder der Verbrennungskraftmaschine zurückgeführt. Die Abgasrückführventile bestehen üblicherweise aus einem in heutiger Zeit zumeist elektromotorischen Aktor, der zumeist über ein Getriebe in Wirkverbindung mit einer Ventilstange steht, die über eine Führungsbuchse in einem Gehäuse des Ventils geführt wird und an ihrem dem Aktuator entgegengesetzten Ende zumindest einen Regelkörper aufweist, der mit einem entsprechendem Ventilsitz zwischen einem Abgaseinlass und einem Abgasauslass korrespondiert. Die meisten Abgasrückführventile sind dabei so ausgeführt, dass die Ventilstange sowie das Getriebe und der Aktor im geschlossenen Zustand des Ventils in dem Frischluft enthaltenden Bereich angeordnet ist und von der Abgasseite durch den Regelkörper getrennt sind. Beim Öffnen des Ventils also einem Abheben des Regelkörpers vom Ventilsitz strömt heißes Abgas in Richtung des Saugrohres, so dass eine Verbindung des heißen Abgases zum Getriebegehäuse entsteht. Hierdurch steigt die thermische Belastung des Aktors, weswegen Abgasventilvorrichtungen bekannt geworden sind, bei denen eine thermische Trennung des durchströmten Gehäuses vom Aktor mittels eines Kühlmittelkanals vorgenommen wird, über den die Wärme aus dem Abgas abgeführt wird.Valves used in the exhaust gas area and in particular exhaust gas recirculation valves serve to reduce exhaust emissions. In this case, exhaust gas quantities adapted to the respective operating state of the internal combustion engine are returned to the cylinders of the internal combustion engine in order to reduce the environmentally harmful components, in particular nitrogen oxides. The exhaust gas recirculation valves usually consist of an actuator, which is mostly electromotive today, which is usually in operative connection with a valve rod via a transmission, which is guided via a guide bushing in a housing of the valve and at its end opposite the actuator has at least one control body which is connected to corresponds to a corresponding valve seat between an exhaust gas inlet and an exhaust gas outlet. Most exhaust gas recirculation valves are designed in such a way that the valve rod as well as the gearbox and the actuator are in the closed state of the valve is arranged in the fresh air containing area and separated from the exhaust side by the control body. When the valve is opened, i.e. when the regulating body is lifted off the valve seat, hot exhaust gas flows in the direction of the intake manifold, so that the hot exhaust gas is connected to the gearbox housing. This increases the thermal load on the actuator, which is why exhaust valve devices have become known in which the housing through which there is a flow is thermally separated from the actuator by means of a coolant channel through which the heat is removed from the exhaust gas.

Ein derartiges Ventil ist beispielsweise aus der DE 103 44 218 A1 bekannt. Das hierin beschriebene Ventil weist eine über einen Aktor betätigbare Ventilstange mit einem Ventilteller auf, der einen Durchströmungsquerschnitt beherrscht. Radial um die Ventilstange ist im Strömungsgehäuse ein Kühlmittelkanal ausgebildet, der zum Aktorgehäuse hin offen ist und durch Aufsetzen des Aktorgehäuse verschlossen wird. Die Anschlussstutzen sind in entsprechende Aufnahmen des Strömungsgehäuses eingepresst.Such a valve is for example from DE 103 44 218 A1 known. The valve described herein has a valve rod which can be actuated via an actuator and has a valve disk which controls a flow cross section. A coolant channel is formed radially around the valve rod in the flow housing, which is open towards the actuator housing and is closed by placing the actuator housing on. The connecting pieces are pressed into corresponding receptacles in the flow housing.

Des Weiteren wird in der JP 07-233762 A ein über einen Schrittmotor betätigbares Abgasrückführventil offenbart, bei dem der Elektromotor von einem Kühlmittelkanal im Aktorgehäuse umgeben Ist. Auch hier werden in entsprechend ausgeformte Löcher Anschlussstutzen zur Kühlmittelversorgung eingeschraubt oder eingepresst.Furthermore, in the JP 07-233762 A discloses an exhaust gas recirculation valve which can be actuated via a stepping motor and in which the electric motor is surrounded by a coolant duct in the actuator housing. Here, too, connecting pieces for the coolant supply are screwed or pressed into appropriately shaped holes.

Zusätzlich ist aus der EP 2 357 350 A1 ein Abgasrückführventil bekannt, welches über einen in einem Aktorgehäuse angeordneten Aktor angetrieben wird. Das Ventil befindet sich in einem Ventilgehäuse mit einem Einlass und einem Auslass. Zwischen dem Ventilgehäuse und dem Aktorgehäuse ist ein Wärmeabführgehäuse angeordnet, in dem ein Kühlmittelkanal mit einem Einlassstutzen und einem Auslassstutzen ausgebildet ist.In addition, from the EP 2 357 350 A1 an exhaust gas recirculation valve is known which is driven by an actuator arranged in an actuator housing. The valve is located in a valve housing with an inlet and an outlet. A heat dissipation housing is arranged between the valve housing and the actuator housing, in which a Coolant channel is formed with an inlet nozzle and an outlet nozzle.

Bei diesen bekannten Abgasrückführventilen besteht üblicherweise entweder eine Wärmeabfuhr vom Aktor, jedoch ohne dass ein Eindringen der Wärme in das Aktorgehäuse eingeschränkt würde oder es besteht lediglich eine thermische Trennung durch den Kühlmittelkanal, so dass einmal im Aktor vorhandene Wärme nicht mehr in ausreichendem Maß abgeführt werden kann. Des Weiteren besteht ein erhöhter Montageaufwand, da die Verbindung zum Kühlmittelkreislauf des Verbrennungsmotors über separat zu montierende Anschlussstutzen erfolgen muss, da diese in den bekannten Gussgehäusen nicht darstellbar sind.With these known exhaust gas recirculation valves, there is usually either a heat dissipation from the actuator, but without the penetration of heat into the actuator housing being restricted, or there is only a thermal separation through the coolant channel, so that heat that is once present in the actuator can no longer be dissipated to a sufficient extent . Furthermore, there is an increased installation effort, since the connection to the coolant circuit of the internal combustion engine has to be made via connecting pieces to be installed separately, since these cannot be represented in the known cast housings.

Es stellt sich daher die Aufgabe, eine zu hohe thermische Belastung des Aktors zu vermeiden, wobei eine thermische Abschirmung des Aktors und eine zuverlässige Wärmeabführung aus dem Aktorgehäuse sichergestellt werden sollen, ohne dass hieraus ein erhöhter Montageaufwand folgt.The object is therefore to avoid excessive thermal loading of the actuator, thermal shielding of the actuator and reliable heat dissipation from the actuator housing being ensured without this resulting in increased assembly costs.

Diese Aufgabe wird durch eine Abgasventilvorrichtung mit den Merkmalen des Hauptanspruchs 1 gelöst. Dadurch, dass das Ventilgehäuse ein Strömungsgehäuseteil, in dem der Abgaseinlass und der Abgasauslass ausgebildet sind und ein Getriebegehäuseteil aufweist, in welchem ein an den Aktor angeschlossenes Getriebe angeordnet ist, wobei der Kühlmitteleinlassstutzen und der Kühlmittelauslassstutzen am Aktorgehäuse angeordnet sind und fluidisch über den Kühlmittelkanal miteinander verbunden sind, der sich teilweise im Aktorgehäuse und teilweise im Getriebegehäuseteil erstreckt, wird sichergestellt, dass einerseits Wärme aus dem Abgas bereits entnommen wird, bevor diese zum Aktor gelangt und andererseits auch Wärme direkt aus dem Aktorgehäuse abgeführt werden kann. Hierfür werden keine zusätzlichen Anschlüsse benötigt. Es besteht eine direkte fluidische Verbindung des Kühlmittelkanalteils im Aktorgehäuse mit dem im Ventilgehäuse, wodurch zusätzliche zu montierende Leitungen nicht benötigt werden. Durch die Verwendung des Getriebes wird eine sehr genaue Verstellung des Abgasventils gewährleistet. Die Aufteilung des Gehäuses ermöglicht eine gute Abdichtung und Abschirmung der unterschiedlich thermisch belastbaren und verschmutzungsempfindlichen Bauteile zueinander.This object is achieved by an exhaust gas valve device with the features of main claim 1. The fact that the valve housing has a flow housing part in which the exhaust gas inlet and the exhaust gas outlet are formed and a transmission housing part in which a transmission connected to the actuator is arranged, the coolant inlet connector and the coolant outlet connector being arranged on the actuator housing and fluidically connected to one another via the coolant channel , which extends partly in the actuator housing and partly in the transmission housing part, it is ensured that on the one hand heat is extracted from the exhaust gas before it reaches the actuator and on the other hand heat can also be dissipated directly from the actuator housing. There are no additional Connections required. There is a direct fluidic connection between the coolant duct part in the actuator housing and that in the valve housing, so that additional lines to be installed are not required. By using the gearbox, a very precise adjustment of the exhaust valve is guaranteed. The division of the housing enables good sealing and shielding of the components that can withstand different thermal loads and are sensitive to contamination from one another.

Vorzugsweise sind der Kühlmitteleinlassstutzen und der Kühlmittelauslassstutzen einstückig mit dem Aktorgehäuse ausgebildet. So entfällt die Montage der Anschlussstutzen, die in bekannten Ausführungen eingeschraubt oder eingepresst werden und häufig zusätzlich zunächst mit einem dichtenden Material beschichtet werden müssen.The coolant inlet connector and the coolant outlet connector are preferably designed in one piece with the actuator housing. This eliminates the need to assemble the connecting pieces, which are screwed in or pressed in in known designs and often additionally have to be coated with a sealing material.

In einer hierzu weiterführenden Ausführung ist das Aktorgehäuse mit dem Kühlmitteleinlassstutzen und dem Kühlmittelauslassstutzen ein Kunststoffspritzgussteil. Durch die gute thermische Abschirmung und Wärmeabführung kann das Aktorgehäuse kostengünstig aus Kunststoff hergestellt werden.In a further embodiment, the actuator housing with the coolant inlet connector and the coolant outlet connector is a plastic injection-molded part. Due to the good thermal shielding and heat dissipation, the actuator housing can be manufactured inexpensively from plastic.

In einer Weiterführung der Erfindung ist das Aktorgehäuse am Getriebegehäuseteil befestigt, so dass ein direkter Kontakt des Aktorgehäuses zum am stärksten thermisch belasteten Strömungsgehäuse vermieden wird.In a further development of the invention, the actuator housing is attached to the gear housing part, so that direct contact between the actuator housing and the flow housing that is most thermally stressed is avoided.

Der Kühlmittelkanal erstreckt sich vorteilhafterweise vom Aktorgehäuse in das Getriebegehäuseteil und vom Getriebegehäuseteil zum Aktorgehäuse. Die Wärme wird somit sowohl aus dem Getriebe als auch vom Aktor abgeführt. Bei entsprechender Anordnung dieses Kühlmittelkanals wird das wärmeempfindlichste Aktorgehäuse somit über den Kühlmittelkanal im Getriebegehäuse abgeschirmt und kann dennoch in das Aktorgehäuse gelangende oder die dort entstehende Wärme abführen. Dies führt zu einer hohen Lebensdauer des Aktors, der zuverlässig vor Überhitzung geschützt wird.The coolant channel advantageously extends from the actuator housing into the transmission housing part and from the transmission housing part to the actuator housing. The heat is thus dissipated from both the gearbox and the actuator. With an appropriate arrangement of this coolant channel, the most heat-sensitive actuator housing is thus over shields the coolant duct in the gearbox housing and can still dissipate the heat that enters the actuator housing or the heat generated there. This leads to a long service life for the actuator, which is reliably protected against overheating.

Eine besonders einfache Montage und Herstellung wird erreicht, indem das Getriebegehäuseteil und das Strömungsgehäuseteil als einstückiges Gussteil ausgebildet sind. Durch die Ausführung in Guss entsteht eine hohe thermische Belastbarkeit des Ventilgehäuses.A particularly simple assembly and production is achieved in that the gear housing part and the flow housing part are designed as a one-piece cast part. The cast design results in a high thermal load capacity of the valve housing.

Vorzugsweise weist das Ventilgehäuse eine Flanschfläche auf, an der das Aktorgehäuse mit seiner Flanschfläche unter Zwischenlage einer Dichtung befestigt ist. Dies vereinfacht die Montage und erzeugt einen nach außen geschlossenen dichten Innenraum, so dass ein Eindringen von Schmutz von außen verhindert wird.The valve housing preferably has a flange surface to which the actuator housing is fastened with its flange surface with a seal interposed. This simplifies assembly and creates a sealed interior that is closed to the outside so that dirt is prevented from penetrating from the outside.

Besonders vorteilhaft ist es, wenn die Dichtung einen Aktor- und Getrieberaum an den Flanschflächen radial umgibt und den Kühlmittelkanal an einer der Flanschflächen radial umgibt. Bei einer derartigen Ausführung kann auf zusätzliche Dichtungen für den Übergang des Kühlmittelkanals von einem Gehäuseteil zum anderen verzichtet werden. Dies erleichtert die Montage und senkt die Herstellkosten.It is particularly advantageous if the seal radially surrounds an actuator and gear chamber on the flange surfaces and radially surrounds the coolant duct on one of the flange surfaces. In such an embodiment, additional seals for the transition of the coolant channel from one housing part to the other can be dispensed with. This facilitates assembly and lowers manufacturing costs.

Besonders einfach Ist diese Dichtung zu montieren, wenn sie in einer Axialnut an der Flanschfläche des Aktorgehäuses angeordnet ist.This seal is particularly easy to assemble if it is arranged in an axial groove on the flange surface of the actuator housing.

In einer vorteilhaften alternativen Ausbildung der Erfindung sind einstückig mit dem Aktorgehäuse zwei Rohrstücke ausgebildet, die den Kühlmittelkanal im Aktorgehäuse verlängern und in den Kühlmittelkanal im Getriebegehäuseteil ragen. So kann das Aktorgehäuse vor dem Befestigen in seiner Lage am Getriebegehäuse vorfixiert werden, wobei eine korrekte Lage der Kühlmittelkanäle Im Aktorgehäuse und im Getriebegehäuseteil zueinander sichergestellt wird.In an advantageous alternative embodiment of the invention, two pipe sections are formed in one piece with the actuator housing, which pipe pieces extend the coolant channel in the actuator housing and protrude into the coolant channel in the transmission housing part. Thus, the actuator housing can be pre-fixed in its position on the gearbox housing before it is fastened, with a correct position of the coolant channels in the actuator housing and in the gear housing part is ensured to one another.

In einer hierzu weiterführenden Ausbildung der Erfindung sind die beiden Rohrstücke jeweils von einem Dichtring umgeben, der jeweils in einer im Kühlmittelkanal des Getriebegehäusetells ausgebildeten Radialnut angeordnet ist. So wird auf einfache Weise eine zuverlässige Abdichtung des Kühlmittelkanals hergestellt.In a further development of the invention, the two pipe sections are each surrounded by a sealing ring which is each arranged in a radial groove formed in the coolant channel of the transmission housing part. A reliable seal of the coolant channel is thus produced in a simple manner.

Besonders bevorzugt ist ein als Elektromotor ausgeführter Aktor, da dieser eine hohe Stellgenauigkeit sicherstellt.An actuator designed as an electric motor is particularly preferred, since it ensures a high level of positioning accuracy.

Es wird somit eine Abgasventilvorrichtung geschaffen, bei der der Aktor im Vergleich zu bekannten Ausführungen deutlich besser vor thermischer Überlastung geschützt ist und somit auch in sehr hohen Temperaturbereichen ein elektrischer Aktor eingesetzt werden kann, ohne dass eine Überhitzung zu befürchten ist. Entsprechend kann das Aktorgehäuse aus Kunststoff hergestellt werden. Die Montage einer derartigen Ventilvorrichtung ist besonders einfach.An exhaust valve device is thus created in which the actuator is significantly better protected from thermal overload compared to known designs and thus an electrical actuator can be used even in very high temperature ranges without fear of overheating. Accordingly, the actuator housing can be made of plastic. The assembly of such a valve device is particularly simple.

Ein Ausführungsbeispiel einer erfindungsgemäßen Abgasventilvorrichtung ist in den Figuren dargestellt und wird nachfolgend beschrieben.

  • Figur 1 zeigt eine Seitenansicht einer ersten erfindungsgemäßen Abgasventilvorrichtung in perspektivischer Darstellung.
  • Figur 2 zeigt eine Seitenansicht eines vergrößerten Ausschnitts der Abgasventilvorrichtung aus Figur 1 in geschnittener Darstellung.
  • Figur 3 zeigt eine Seitenansicht einer zweiten erfindungsgemäßen Abgasventilvorrichtung in geschnittener Darstellung.
  • Figur 4 zeigt eine perspektivische Ansicht auf ein Aktorgehäuse der in Figur 3 dargestellten Abgasventilvorrichtung.
An embodiment of an exhaust valve device according to the invention is shown in the figures and is described below.
  • Figure 1 shows a side view of a first exhaust valve device according to the invention in a perspective illustration.
  • Figure 2 FIG. 11 shows a side view of an enlarged section of the exhaust valve device from FIG Figure 1 in cut representation.
  • Figure 3 shows a side view of a second exhaust valve device according to the invention in a sectional illustration.
  • Figure 4 FIG. 11 shows a perspective view of an actuator housing in FIG Figure 3 illustrated exhaust valve device.

Die in den Figuren dargestellten erfindungsgemäßen Abgasventilvorrichtungen weisen einen in einem Aktorgehäuse 10 angeordneten Aktor 12 in Form eines Elektromotors auf, der ein in Figur 3 teilweise sichtbares Getriebe 14 antreibt. Dieses Getriebe 14 steht mit einem Ventil 15 in Wirkverbindung, welches ein Bewegungsübertragungsglied 16 in Form einer Ventilstange und einen Regelkörper 18 in Form eines Ventiltellers aufweist. Die rotatorische Bewegung des Elektromotors 12 wird über das Getriebe 14 beispielswiese über eine Exzenter-Kulissenverbindung in bekannter Weise in eine translatorische Bewegung der Ventilstange 16 umgewandelt wird. Am zum Getriebe 14 entgegengesetzten Ende der Ventilstange 16 ist der Ventilteller 18 befestigt, der mit einem Ventilsitz 20 zusammenwirkt, der einen Durchströmungsquerschnitt zwischen einem Abgaseinlass 22 und einem Abgasauslass 24 umgibt, so dass in Abhängigkeit der Stellung des Ventiltellers 18 eine unterschiedliche Abgasmenge vom Abgaseinlass 22 über den Durchströmungsquerschnitt zum Abgasauslass 24 gelangen kann.The exhaust valve devices according to the invention shown in the figures have an actuator 12, arranged in an actuator housing 10, in the form of an electric motor, which has an in Figure 3 partially visible gear 14 drives. This gear 14 is in operative connection with a valve 15, which has a movement transmission element 16 in the form of a valve rod and a control body 18 in the form of a valve disk. The rotary movement of the electric motor 12 is converted in a known manner into a translational movement of the valve rod 16 via the gear mechanism 14, for example via an eccentric link connection. At the end of the valve rod 16 opposite the transmission 14, the valve plate 18 is attached, which cooperates with a valve seat 20 which surrounds a flow cross-section between an exhaust gas inlet 22 and an exhaust gas outlet 24, so that, depending on the position of the valve plate 18, a different amount of exhaust gas from the exhaust gas inlet 22 can reach the exhaust gas outlet 24 via the flow cross section.

Der Abgaseinlass 22 und der Abgasauslass 24 sowie der Ventilsitz 20 sind in einem als Strömungsgehäuseteil 26 dienenden Abschnitt eines Ventilgehäuses 28 ausgebildet. Das Ventilgehäuse 28, welches in vorliegender Ausführungsform als einstückiges Leichtmetalldruckgussteil hergestellt ist, weist zusätzlich ein das Getriebe 14 aufnehmendes Getriebegehäuseteil 30 auf. Vom Getriebegehäuseteil 30 ragt die Ventilstange 16 in das Strömungsgehäuseteil 26.The exhaust gas inlet 22 and the exhaust gas outlet 24 as well as the valve seat 20 are formed in a section of a valve housing 28 serving as a flow housing part 26. The valve housing 28, which in the present embodiment is produced as a one-piece light metal die-cast part, additionally has a gear housing part 30 that accommodates the gear 14. The valve rod 16 protrudes from the transmission housing part 30 into the flow housing part 26.

Das Getriebegehäuseteil 30 weist eine Flanschfläche 32 auf, die gegen eine Flanschfläche 34 des Aktorgehäuses 10 anliegt und über die das Aktorgehäuse 10 mittels Schrauben 36 am Getriebegehäuseteil 30 befestigt ist. Im Innern des Aktorgehäuses 10 und des Getriebegehäuseteils 30 wird entsprechend ein Aktor- und Getrieberaum 38 gebildet, der nach außen abgeschlossen ist.The transmission housing part 30 has a flange surface 32 which rests against a flange surface 34 of the actuator housing 10 and via which the actuator housing 10 is fastened to the transmission housing part 30 by means of screws 36. In the interior of the actuator housing 10 and the transmission housing part 30, an actuator and transmission space 38 is correspondingly formed, which is closed off from the outside.

Zum Antrieb und zur Steuerung des Aktors 12 ist am Aktorgehäuse 10 bei beiden dargestellten Varianten ein Steckergehäuseteil 40 angebracht, welches zur Montage zuvor unter Zwischenlage einer Steckerdichtung 41 von innen in eine entsprechende Öffnung 43 im Aktorgehäuse 10 geschoben wird. Dieses ist bei der ersten Variante am zum Strömungsgehäuseteil 26 entgegengesetzten Ende des Aktorgehäuses 10 befestigt und in der zweiten Variante gemäß der Figuren 3 und 4 seitlich zum Elektromotor 12 angeordnet. Je nach Raum zum Einbau der Abgasventilvorrichtung kann das Steckergehäuseteil 40 entsprechend variabel positioniert werden.To drive and control the actuator 12, a connector housing part 40 is attached to the actuator housing 10 in both variants shown, which is previously pushed into a corresponding opening 43 in the actuator housing 10 from the inside with a connector seal 41 in between. In the first variant, this is attached to the end of the actuator housing 10 opposite to the flow housing part 26, and in the second variant according to FIG Figures 3 and 4 arranged laterally to the electric motor 12. Depending on the space for installing the exhaust valve device, the connector housing part 40 can be positioned in a correspondingly variable manner.

Erfindungsgemäß weist das als Kunststoffspritzgussteil ausgeführte Aktorgehäuse 10 zwei Anschlussstutzen auf, die als Kühlmitteleinlassstutzen 42 und Kühlmittelauslassstutzen 44 ausgebildet sind. Diese sind einstückig mit dem Aktorgehäuse 10 ausgebildet und erstrecken sich in zum Getriebegehäuseteil 30 entgegengesetzter Richtung vom Aktorgehäuse 10 und sind im zum Strömungsgehäuse 26 weisenden Bereich angeordnet, beidseits des Aktors 12 angeordnet. Der Kühlmitteleinlassstutzen 42 und der Kühlmittelauslassstutzen 44 sind fluidisch über einen Kühlmittelkanal 46 miteinander verbunden, der sich teilweise im Aktorgehäuse 10 und teilweise im Getriebegehäuseteil 30 erstreckt.According to the invention, the actuator housing 10 designed as a plastic injection-molded part has two connecting pieces which are designed as coolant inlet stubs 42 and coolant outlet stubs 44. These are formed in one piece with the actuator housing 10 and extend from the actuator housing 10 in the opposite direction to the gear housing part 30 and are arranged in the area facing the flow housing 26, arranged on both sides of the actuator 12. The coolant inlet connector 42 and the coolant outlet connector 44 are fluidically connected to one another via a coolant channel 46 which extends partly in the actuator housing 10 and partly in the transmission housing part 30.

Der Kühlmittelkanal 46 erstreckt sich dabei zunächst in Verlängerung des Kühlmitteleinlassstutzens 42 durch das Aktorgehäuse 10 in einen diesen ersten Kanalabschnitt 48 erneut gerade verlängernden zweiten Kanalabschnitt 50 im Getriebegehäuseteil 30. Im zum Aktorgehäuse 10 weg weisenden Bereich erfährt der Kühlmittelkanal 46 eine senkrechte Umlenkung, die in einen dritten Kanalabschnitt 52 mündet. Dieser dritte Kanalabschnitt 52 erstreckt sich im Wesentlichen entlang der Breite des Getriebegehäuseteils 30 und ist als Bohrung ausgeführt, die am Einschubende des Bohrers durch einen Stopfen 55 verschlossen wird. Der dritte Kanalabschnitt 52 erfährt an seinem anderen Ende erneut eine 90°Umlenkung, hinter der ein vierter, verdeckter Kanalabschnitt folgt, der parallel zum zweiten Kanalabschnitt 50 verläuft, jedoch an der gegenüberliegenden Seite des Getriebegehäuseteils 30 ausgebildet ist. Dieser vierte Kanalabschnitt mündet wiederum gerade in einen fünften Kanalabschnitt 53, der entsprechend parallel zum ersten Kanalabschnitt 48 im Aktorgehäuse 10 ausgebildet ist und dessen Ende durch den Kühlmittelauslassstutzen 44 gebildet wird. Entsprechend wird unmittelbar oberhalb des Strömungsgehäuseteils 26 ein an drei Seiten verlaufender Kühlmittelkanal 46 im Aktorgehäuse 10 und im Getriebegehäuseteil 30 gebildet, der das Bewegungsübertragungsglied 16 entsprechend an drei Seiten umgibt. Diese Positionierung des Kühlmittelkanals sorgt dafür, dass der Aktor 12 thermisch gegenüber dem heißen Strömungsgehäuse getrennt ist, so dass Wärme, bevor sie zum Aktor gelangen kann über das Kühlmittel abgeführt wird. Gleichzeitig kann durch die Anordnung des ersten und fünften Kühlmittelkanalabschnitts 48, 53 im Aktorgehäuse 10 auch durch den Elektromotor 12 erzeugte Wärme abgeführt werden.The coolant channel 46 initially extends as an extension of the coolant inlet connector 42 through the actuator housing 10 into a second channel section 50 in the transmission housing part 30 that again just extends this first channel section 48. In the area facing away from the actuator housing 10, the coolant channel 46 experiences a vertical deflection, which is in a third channel section 52 opens. This third channel section 52 extends essentially along the width of the gear housing part 30 and is designed as a bore that is closed by a plug 55 at the insertion end of the drill. The third channel section 52 undergoes another 90 ° deflection at its other end, behind which a fourth, concealed channel section follows, which runs parallel to the second channel section 50, but is formed on the opposite side of the transmission housing part 30. This fourth channel section in turn opens straight into a fifth channel section 53, which is correspondingly formed parallel to the first channel section 48 in the actuator housing 10 and the end of which is formed by the coolant outlet connector 44. Correspondingly, directly above the flow housing part 26, a coolant channel 46 running on three sides is formed in the actuator housing 10 and in the transmission housing part 30, which accordingly surrounds the movement transmission member 16 on three sides. This positioning of the coolant channel ensures that the actuator 12 is thermally separated from the hot flow housing, so that heat is dissipated via the coolant before it can reach the actuator. At the same time, the arrangement of the first and fifth coolant channel sections 48, 53 in the actuator housing 10 also allows heat generated by the electric motor 12 to be dissipated.

Die einstückige Ausbildung der beiden Kühlmittelanschlussstutzen 42, 44 vermindert die sonst notwendigen Montageschritte deutlich, da keine zusätzlichen Stutzen verbaut, also eingepresst oder verschraubt werden müssen.The one-piece design of the two coolant connection pieces 42, 44 significantly reduces the otherwise necessary assembly steps, since no additional connection pieces have to be built in, that is to say pressed in or screwed on.

Um nicht nur einen solchen einfachen Anschluss an den Kühlmittelkreislauf herstellen zu können, sondern diesen auch abdichten zu können, ist bei der Ausführung gemäß der Figuren 1 und 2 ein sich von der Flanschfläche 34 des Aktorgehäuses 10 in Richtung zum Getriebegehäuseteil 30 erstreckendes Rohrstück 54 als Verlängerung des ersten Kühlmittelkanalabschnitts 48 am Aktorgehäuse 10 ausgebildet. Dieses ragt in den im Getriebegehäuseteil 30 ausgebildeten zweiten Kanalabschnitt 50 des Kühlmittelkanals 46, wobei der Innendurchmesser dieses Kanalabschnitts 50 in diesem Bereich im Wesentlichen dem Außendurchmesser des Rohrstücks 54 entspricht. Im zweiten Kanalabschnitt 50 ist eine ringförmige Radialnut 56 ausgebildet, in der ein Dichtring 58 angeordnet ist, der das Rohrstück 54 radial umgibt. Entsprechend besteht ein dichter Anschluss zwischen dem ersten Kühlmittelkanalabschnitt 48 im Aktorgehäuse 10 und dem zweiten Kühlmittelkanalabschnitt 50 im Getriebegehäuseteil 30. Die Verbindung zwischen dem vierten und fünften Kanalabschnitt wird in gleicher Weise hergestellt und abgedichtet.In order not only to be able to produce such a simple connection to the coolant circuit, but also to be able to seal it, the embodiment according to FIG Figures 1 and 2 a pipe section 54 extending from the flange surface 34 of the actuator housing 10 in the direction of the gearbox housing part 30 is formed as an extension of the first coolant duct section 48 on the actuator housing 10. This protrudes into the second channel section 50 of the coolant channel 46 formed in the transmission housing part 30, the inner diameter of this channel section 50 in this area essentially corresponding to the outer diameter of the pipe section 54. In the second channel section 50, an annular radial groove 56 is formed, in which a sealing ring 58 is arranged which radially surrounds the pipe section 54. Correspondingly, there is a tight connection between the first coolant duct section 48 in the actuator housing 10 and the second coolant duct section 50 in the transmission housing part 30. The connection between the fourth and fifth duct sections is established and sealed in the same way.

In der in den Figuren 3 und 4 dargestellten Ausführungsvariante ist der Verlauf des Kühlmittelkanals 46 im Wesentlichen der Gleiche, jedoch wird die Abdichtung anders hergestellt. Die Rohrstücke 54 entfallen hier, so dass eine im Wesentlichen glatte Flanschfläche 34 besteht. Diese weist lediglich eine Axialnut 60 auf, in der eine Dichtung 62 angeordnet ist. Die Axialnut 60 und die Dichtung 62 sind, derart ausgeformt, dass einerseits der Elektromotor 12 mit seiner Ansteuerplatine sowie das durch den Elektromotor angetriebene Ritzel, welches in das folgende Getriebe 14 greift, von der Dichtung 62 im Bereich der Flanschfläche 34 radial umgeben werden und andererseits die beiden zum Getriebegehäuseteil 30 weisenden Enden des ersten und fünften Kanalabschnitts 48, 53 von der Dichtung 62 umgeben sind, so dass auch hier eine Abdichtung des Kühlmittelkanals 46 und eine Abdichtung des Getriebe- und Aktorraums 38 mit nur einer Dichtung 62 hergestellt wird. Selbstverständlich könnte der die Kühlmittelkanalenden umgebende Bereich auch durch eine separate Dichtung abgedichtet werden.In the in the Figures 3 and 4 The variant shown in the embodiment, the course of the coolant channel 46 is essentially the same, but the seal is produced differently. The pipe sections 54 are omitted here, so that there is an essentially smooth flange surface 34. This only has one axial groove 60 in which a seal 62 is arranged. The axial groove 60 and the seal 62 are shaped in such a way that on the one hand the electric motor 12 with its control board and the pinion driven by the electric motor, which engages in the following gear 14, are radially surrounded by the seal 62 in the area of the flange surface 34 and on the other hand the two ends of the first and fifth channel sections 48, 53 facing the transmission housing part 30 are surrounded by the seal 62, so that here too a seal of the Coolant channel 46 and a seal of the transmission and actuator space 38 is made with only one seal 62. Of course, the area surrounding the coolant channel ends could also be sealed by a separate seal.

Die Schrauben 36 zur Verbindung des Aktorgehäuses 10 mit dem Getriebegehäuseteil 30 liegen ebenso wie die beiden Kühlmittelkanalabschnitte 48, 53 radial außerhalb der Dichtung 62, so dass eine Undichtigkeit über die Schraubverbindungen ebenfalls nicht zu befürchten ist.The screws 36 for connecting the actuator housing 10 to the transmission housing part 30, like the two coolant duct sections 48, 53, are located radially outside of the seal 62, so that there is also no risk of leakage via the screw connections.

Entsprechend wird bei beiden Ausführungen eine exzellente Wärmeabfuhr über den Kühlmittelkanal sowohl aus dem Aktorgehäuse als auch aus dem Getriebegehäuseteil sichergestellt. Durch die Positionierung des Kühlmittelkanals wird zusätzlich eine thermische Abschirmung des Aktorgehäuses vom Strömungsgehäuseteil hergestellt. Der Montageaufwand insbesondere auch zur Herstellung des Anschlusses an den Kühlmittelkreis ist im Vergleich zu anderen Ausführungen sehr gering, da die Anschlussstutzen mit dem Aktorgehäuse in einem Schritt hergestellt werden können.Correspondingly, excellent heat dissipation via the coolant channel from both the actuator housing and the transmission housing part is ensured in both designs. By positioning the coolant channel, thermal shielding of the actuator housing from the flow housing part is also produced. The assembly effort, especially also for establishing the connection to the coolant circuit, is very low compared to other designs, since the connecting pieces can be manufactured with the actuator housing in one step.

Es sollte deutlich sein, dass der Schutzbereich des Hauptanspruchs nicht auf die beschriebenen Ausführungsbeispiele begrenzt ist. So kann insbesondere die Lage und Positionierung des Kühlmittelkanals geändert werden. Denkbar ist beispielsweise auch eine Ausführung mit vollständig geschlossenem Umlauf des Kühlmittelkanals. Auch eignet sich die erfindungsgemäße Ausführung für Abgasventilvorrichtungen, die als Regelkörper eine Klappe aufweisen. Selbstverständlich sind weitere konstruktive Änderungen im Schutzbereich des Hauptanspruchs für den Fachmann ersichtlich.It should be clear that the scope of protection of the main claim is not limited to the exemplary embodiments described. In particular, the location and positioning of the coolant channel can be changed. For example, an embodiment with a completely closed circulation of the coolant channel is also conceivable. The embodiment according to the invention is also suitable for exhaust valve devices which have a flap as a control body. Of course, further structural changes within the scope of protection of the main claim are apparent to the person skilled in the art.

Claims (12)

  1. An exhaust gas valve device for an internal combustion engine, comprising
    an actor (12),
    an actor housing (10) in which the actor (12) is arranged, and
    a valve housing (28) connected to the actor housing (10),
    an exhaust gas inlet (22) and an exhaust gas outlet (24),
    a valve (15) comprising a movement transmission member (16) and a control body (18) via which a flow cross-section between the exhaust gas inlet (22) and the exhaust gas outlet (24) can be controlled, and
    a coolant channel (46) having a coolant inlet socket (42) and a coolant outlet socket (44),
    characterized in that
    the valve housing (28) comprises a flow housing portion, in which the exhaust gas inlet (22) and the exhaust gas outlet (24) are formed, and a transmission housing portion (30), in which a transmission (14) is arranged that is connected with the actor (12), wherein the coolant inlet socket (42) and the coolant outlet socket (44) are arranged on the actor housing (10) and are in fluid communication with one another via the coolant channel (46) which extends in part in the actor housing (10) and in part in the valve housing (28).
  2. The exhaust gas valve device for an internal combustion engine of claim 1, characterized in that the coolant inlet socket (42) and the coolant outlet socket (44) are formed integrally with the actor housing (10).
  3. The exhaust gas valve device for an internal combustion engine of claim 2, characterized in that the actor housing (10) with the coolant inlet socket (42) and the coolant outlet socket (44) is an injection molded plastic part.
  4. The exhaust gas valve device for an internal combustion engine of the preceding claims, characterized in that the actor housing (10) is fastened on the transmission housing portion (30).
  5. The exhaust gas valve device for an internal combustion engine of one of the preceding claims, characterized in that the coolant channel (46) extends from the actor housing (10) into the transmission housing portion (30) and from the transmission housing portion (30) to the actor housing (10).
  6. The exhaust gas valve device for an internal combustion engine of one of the preceding claims, characterized in that the transmission housing portion (30) and the flow housing portion (26) are formed as an integral cast part.
  7. The exhaust gas valve device for an internal combustion engine of one of the preceding claims, characterized in that the valve housing (28) comprises a flange surface (32) on which the actor housing (10) is fastened by its flange surface (34) under interposition of a seal (62).
  8. The exhaust gas valve device for an internal combustion engine of claim 7, characterized in that the seal (62) radially surrounds an actor and transmission space (38) at the flange surfaces (32, 34) and radially surrounds the coolant channel (46) at one of the flange surfaces (32, 34).
  9. The exhaust gas valve device for an internal combustion engine of claim 8, characterized in that the seal (62) is arranged in an axial groove (60) in the flange surface (34) of the actor housing (10).
  10. The exhaust gas valve device for an internal combustion engine of one of claims 4 to 7, characterized in that two pipe pieces (54) are formed integrally with the actor housing (10), which pipe pieces extend the coolant channel (46) in the actor housing (10) and protrude into the coolant channel (46) in the transmission housing portion (30).
  11. The exhaust gas valve device for an internal combustion engine of claim 10, characterized in that the two pipe pieces (54) are each surrounded by a respective seal ring (58) arranged in a radial groove (56) formed in the coolant channel (46) of the transmission housing portion (30).
  12. The exhaust gas valve device for an internal combustion engine of one of the preceding claims, characterized in that the actor (12) is an electric motor.
EP14705118.9A 2013-03-13 2014-02-14 Egr valve for combustion engine Active EP2997249B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013102549.8A DE102013102549B4 (en) 2013-03-13 2013-03-13 Exhaust valve device for an internal combustion engine
PCT/EP2014/052897 WO2014139753A1 (en) 2013-03-13 2014-02-14 Exhaust gas valve device for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2997249A1 EP2997249A1 (en) 2016-03-23
EP2997249B1 true EP2997249B1 (en) 2020-11-04

Family

ID=50115868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14705118.9A Active EP2997249B1 (en) 2013-03-13 2014-02-14 Egr valve for combustion engine

Country Status (5)

Country Link
US (1) US9638141B2 (en)
EP (1) EP2997249B1 (en)
CN (1) CN105074189B (en)
DE (1) DE102013102549B4 (en)
WO (1) WO2014139753A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385786B2 (en) * 2014-06-26 2019-08-20 MAGNETI MARELLI S.p.A. Throttle valve for an internal combustion engine provided with a conditioning circuit
DE102015206893A1 (en) * 2015-04-16 2016-10-20 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas recirculation module with cooled exhaust gas recirculation valve
DE102015206899A1 (en) * 2015-04-16 2016-10-20 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas recirculation valve with internal coolant distribution
DE102015006100A1 (en) * 2015-05-09 2016-11-10 Motorenfabrik Hatz Gmbh & Co Kg Device and method for exhaust gas recirculation
EP3444466B1 (en) * 2016-04-12 2024-05-08 Hitachi Astemo, Ltd. Valve body, electronically controlled throttle body, motor-driven throttle body, and valve device
DE102016217222B4 (en) * 2016-09-09 2022-08-11 Vitesco Technologies GmbH Method and device for controlling the residual gas mass remaining in the cylinder of an internal combustion engine after a gas exchange process and/or the scavenging air mass flushed into the exhaust manifold of the internal combustion engine during a gas exchange process
DE102017110489A1 (en) * 2017-05-15 2018-11-15 Pierburg Gmbh Adjusting device for an internal combustion engine
DE102017110491B4 (en) * 2017-05-15 2024-09-12 Ralf Neise Actuating device for an internal combustion engine
DE102019131798B4 (en) * 2019-11-25 2021-10-07 Pierburg Gmbh Exhaust gas recirculation device for an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624901A1 (en) * 1995-06-22 1997-01-09 Nissan Motor Flow control valve
DE10344218A1 (en) * 2003-09-22 2005-04-14 Mahle Filtersysteme Gmbh Exhaust gas return control valve for a combustion engine especially a motor vehicle has housing with an actuator and a channel for a cooling medium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233762A (en) 1994-02-23 1995-09-05 Unisia Jecs Corp Exhaust reflux control device
JP3420403B2 (en) 1995-09-13 2003-06-23 本田技研工業株式会社 Engine EGR valve support structure
US6216677B1 (en) * 1999-09-10 2001-04-17 Eaton Corporation EGR assembly mounted on exhaust system of a heavy duty diesel engine
JP2002349360A (en) * 2001-05-28 2002-12-04 Mitsubishi Electric Corp Exhaust gas recirculation valve
US6789532B2 (en) * 2001-07-09 2004-09-14 Mitsubishi Denki Kabushiki Kaisha Mounting device for exhaust gas recirculation valve
DE10153033B4 (en) 2001-10-26 2018-03-01 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas recirculation heat exchanger for a liquid-cooled internal combustion engine
JP4065239B2 (en) * 2002-01-16 2008-03-19 三菱電機株式会社 Exhaust gas recirculation device
EP1509692B1 (en) 2002-05-15 2009-05-13 Behr GmbH & Co. KG Switchable waste gas exchanger
JP4285267B2 (en) 2004-02-19 2009-06-24 株式会社デンソー Exhaust gas recirculation device
JP2007107389A (en) * 2005-10-11 2007-04-26 Mazda Motor Corp Egr valve device for engine
CN101451622B (en) * 2007-11-28 2011-02-16 财团法人工业技术研究院 Electric drive shunt valve and cooling system with the same
BRPI1013738A2 (en) 2009-04-20 2019-09-24 Int Eng Ip Co Llc exhaust gas recirculation valve and cooling method.
US8281771B2 (en) * 2010-02-16 2012-10-09 Kamtec Inc. Exhaust gas recirculation valve in vehicle
EP2357350B1 (en) 2010-02-16 2012-10-31 Kamtec Inc. Exhaust gas recirculation valve in vehicle
DE112010005712B4 (en) * 2010-06-29 2015-09-24 Mitsubishi Electric Corp. Fluid control valve
DE102011001461B4 (en) * 2011-03-22 2017-01-26 Pierburg Gmbh Exhaust gas recirculation module for an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624901A1 (en) * 1995-06-22 1997-01-09 Nissan Motor Flow control valve
DE10344218A1 (en) * 2003-09-22 2005-04-14 Mahle Filtersysteme Gmbh Exhaust gas return control valve for a combustion engine especially a motor vehicle has housing with an actuator and a channel for a cooling medium

Also Published As

Publication number Publication date
US9638141B2 (en) 2017-05-02
DE102013102549B4 (en) 2022-07-14
CN105074189B (en) 2018-09-11
EP2997249A1 (en) 2016-03-23
DE102013102549A1 (en) 2014-09-18
WO2014139753A1 (en) 2014-09-18
US20160025047A1 (en) 2016-01-28
CN105074189A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
EP2997249B1 (en) Egr valve for combustion engine
EP3140531B1 (en) Turbocharger having a waste-gate valve
EP3140529B1 (en) Turbocharger with a waste gate valve
EP1762712B1 (en) Bypass valve for Internal combustion engines
DE102012103374B4 (en) Exhaust flap device for an internal combustion engine
DE102006054041B3 (en) Regulating device for an internal combustion engine
EP2855910B1 (en) Control valve for mounting on an internal combustion engine
EP2616657B1 (en) Cooler arrangement
EP2992255B1 (en) Electrical actuated valve for volume flow control in a heating or cooling system of a vehicle
EP2507498B1 (en) Valve arrangement for internal combustion engine
DE102006043559B4 (en) Throttle valve device for high temperature applications in internal combustion engines
EP3164591A1 (en) Control valve for installation on a motor vehicle engine
DE102014104578B4 (en) Flap device for an internal combustion engine
EP3140530B1 (en) Turbocharger with a waste gate valve
DE102004043644A1 (en) Fluid valve assembly
EP3087261B1 (en) Valve in internal combustion engines
WO2022042974A1 (en) Control valve and line system
EP2558751B1 (en) Arrangement of a valve in a bore of a duct housing
DE102013019299B4 (en) Electromotive coolant pump with arranged in the pump housing and actuated by the coolant Stellaktor
EP2107231B1 (en) Valve, in particular for controlling exhaust gases in combustion engines
DE102019116156A1 (en) Valve, exhaust system for an internal combustion engine and vehicle with an internal combustion engine
DE102019131798B4 (en) Exhaust gas recirculation device for an internal combustion engine
EP3269959A1 (en) Actuacting device
DE102011054091B4 (en) Sealing arrangement for a valve disposed in a bore of an exhaust passage housing exhaust valve
DE102014115793B4 (en) Flap device for an internal combustion engine and method for producing such a flap device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014014954

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0026000000

Ipc: F02M0026540000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 26/54 20160101AFI20200511BHEP

Ipc: F02M 26/73 20160101ALI20200511BHEP

Ipc: F02M 26/66 20160101ALI20200511BHEP

INTG Intention to grant announced

Effective date: 20200603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1331122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014954

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014954

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

26N No opposition filed

Effective date: 20210805

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210214

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1331122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 11

Ref country code: GB

Payment date: 20240222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104