EP2991822B1 - Verfahren zur herstellung von formbaren wabenkernen - Google Patents

Verfahren zur herstellung von formbaren wabenkernen Download PDF

Info

Publication number
EP2991822B1
EP2991822B1 EP14731138.5A EP14731138A EP2991822B1 EP 2991822 B1 EP2991822 B1 EP 2991822B1 EP 14731138 A EP14731138 A EP 14731138A EP 2991822 B1 EP2991822 B1 EP 2991822B1
Authority
EP
European Patent Office
Prior art keywords
folded
honeycomb
web
expansion
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14731138.5A
Other languages
English (en)
French (fr)
Other versions
EP2991822A1 (de
Inventor
Stefan LIPPITSCH
Christian Korn
Marcus Herzberg
Max Britzke
Jan Hendrik HEROLD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Publication of EP2991822A1 publication Critical patent/EP2991822A1/de
Application granted granted Critical
Publication of EP2991822B1 publication Critical patent/EP2991822B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D3/00Making articles of cellular structure, e.g. insulating board
    • B31D3/02Making articles of cellular structure, e.g. insulating board honeycombed structures, i.e. the cells having an essentially hexagonal section
    • B31D3/0223Making honeycomb cores, e.g. by piling a plurality of web sections or sheets

Definitions

  • the invention relates to a method for the production of moldable honeycomb cores according to the preamble of claim 1.
  • Plate-shaped sandwich composites usually consist of two cover layers, which are shear-resistant connected with a light core layer. Based on this structure, advantageous mechanical properties of the composite result with comparably low weight.
  • Cores for sandwich composites especially cores having a void structure (e.g., honeycomb structure) typically have a significantly lower density than the liners.
  • a void structure e.g., honeycomb structure
  • a variant of a core with a cavity structure are hexagonal honeycomb cores.
  • hexagonal honeycomb cores are produced as unexpanded paper honeycomb cores for the field of furniture and interior design as well as for related areas and are only expanded immediately prior to the production of the sandwich panels, which entails the advantage of a very low transport volume.
  • sandwich panels with such cores enable high specific compressive strengths across the board plane, an enormous weight saving and a reduced consumption of raw materials.
  • Conventional hexagonal honeycomb cores consist of a honeycomb-like, hexagonal structure, which is formed by the gluing of paper strips k of defined thickness s and subsequent expansion, expansion.
  • the direction of production X is the direction in which it is expanded.
  • a three-dimensional view of a clipping is going in Fig.2 and a single cut out cell as a top view Fig. 3 shown.
  • the regions of the bond are referred to as double webs a1 and the non-bonded regions as simple webs a2. With most production plants a variety of core heights h can be produced.
  • honeycomb cores there are already different three-dimensionally formable honeycomb cores.
  • a honeycomb core is for example from the EP 0 955109 A2 known.
  • Such structures are complex in their production and also do not offer the possibility of transport to the final processor in the unexpanded state.
  • three-dimensionally deformable cores are expensive and are used only for a few applications. They consist, for example, of aramid fiber paper, which is impregnated with resin after being formed, or of aluminum.
  • the 3-d expansion honeycomb consists of individual web layers / folded paper strips of thickness s, which are connected to one another by alternately following double webs b1 and simple webs b2, so that upon expansion a honeycomb-like structure is formed. The connection is made by the strip sections are glued together in the region of the double webs.
  • the simple webs b2 of the 3-d expansion honeycomb additionally have predetermined bending lines which divide the simple webs into three regions b2.1, b2.2, b2.3.
  • This structure allows the defined folding of the honeycomb core formed in the transverse and / or longitudinal direction and at the same time increases the compressive strength of the sandwich composite.
  • it is also possible to produce one-dimensional and two-dimensional sandwich composites.
  • other raw materials such as aramid fiber paper with subsequent impregnation of resin or aluminum can be used.
  • the 3-d expansion honeycomb can be manufactured in any desired core heights h.
  • honeycomb cores Components with conventional honeycomb cores have significantly reduced strength values due to the buckling or tearing of webs in the case of two- or three-dimensional deformation on. Therefore, such honeycomb cores are rarely used for two-dimensionally or three-dimensionally shaped components.
  • a variant of the application is the use of petroleum-based foams (eg polyurethane foams) as the core layer of three-dimensional sandwich elements, which in some cases is also combined with the use of conventional honeycomb cores.
  • foams eg polyurethane foams
  • the production of such a sandwich composite is relatively expensive and disadvantageous for later recycling.
  • Sandwich composites of the type discussed here can be implemented as a one-dimensional plate as well as a two-dimensional or three-dimensionally shaped component.
  • two- and three-dimensionally shaped components are increasingly used in industries such as aircraft, automotive, caravan construction, ship and boat building, but also in furniture and exhibition construction and in immobile interior design.
  • the cover layers usually consist of correspondingly deformable materials such as plastic, metal, wood and wood-based material or (natural) fibers.
  • the US 2012 / 0205035A1 describes a method for producing a honeycomb core.
  • a planar web is moved by a pair of rollers that converts the web into a ribbed web.
  • the ribbed web has flat valley sections and also flat cover sections, which are connected to one another by connecting sections of the web.
  • the ribbed web is cut and folded to obtain the desired honeycomb core. Subsequently, this can be provided with a cover and a base.
  • the object of the present invention is to provide an industrially applicable method for producing the 3-d expansion honeycomb with improved technology.
  • sheet or sheet-shaped flat product consisting mostly of paper, alternatively, from other starting materials such as aramid fiber paper with subsequent resin impregnation or aluminum processed.
  • connecting elements or means for joining the individual web layers / folded paper strips such as e.g. Adhesive used.
  • the complex transformation required for the production of the 3-d expansion honeycomb is achieved in several successive substeps.
  • the possibly present fiber orientation of the material to be processed as well as the deflections and fold lines introduced during processing lie parallel to the machine direction of rotation (MLR).
  • the folded sheet or the fold path is alternately cut from above and below at a distance of the later core height h to the whereabouts of only one paper thickness transverse to the machine direction and the coherent blocks thus formed by folding around the remaining processing material and the 3rd -d expansion honeycomb pressed.
  • the application of adhesive can take place before or after the cutting.
  • webs / folded paper strips are separated from the folding sheet or the folding web transversely to the machine direction and lined up by pressing them about the longitudinal axis in the correct position to form double webs of the 3-d expansion honeycomb and compressed.
  • the application of adhesive can take place before or after the separation. The distance between the two cuts gives the core height h.
  • a plurality of folded sheets or folding webs are adhesively bonded to one another in the correct position to form double webs.
  • the processing takes place further in that at the same time several, already bonded web layers / folded paper strips are separated transversely to the machine direction and these aligned in the same direction to form double webs of the 3-d expansion honeycomb and pressed to the 3-d expansion honeycomb.
  • the second application of adhesive may take place before or after the separation of the already glued folded sheets or folding paths. The distance between the two cuts gives the core height h.
  • a plurality of signatures or folds are glued together in the correct position assignment to form double webs. From the resulting block, the 3-d expansion honeycomb in any core height h is separated.
  • the meander-shaped structure is formed with substantially horizontal and vertical surfaces in a pronounced Zinnenfriesform or with larger radii at the transitions, to a complete curvature of the horizontal sections.
  • the mold rails are designed in such a way that all required deflections of the folded sheet or the fold web are introduced into the processed good by multiple, parallel longitudinal folding.
  • the mold rails can be correspondingly shaped individual parts or assemblies with correspondingly shaped individual elements.
  • a form of rail is characterized in that it introduces the required deflections in the processed material during conveyance through the mold rail assembly. For this vertical elevations of the form rail of the meandering shape along the Increase the rail to the folded sheet or to the folding path and reduce the height of the rail, so that the deformation can take place without unwanted mechanical impairment of the processed material. Vertical indentations of the mold rail, which increase along the mold rail, provide the space needed for the forming.
  • individual mold rails can be moved relative to the rest to reduce the required conveying forces.
  • a flow around the mold rails with air and thus a reduction of the conveying forces can be achieved. But it can also find other lubricants application.
  • a flat, bow-shaped or web-shaped processing material is conveyed into or through a die.
  • the resulting shape consists of alternating vertically and horizontally contiguous surfaces. Transverse to the machine direction Y thus creates a meandering, in the example Fig. 6 a pinnacle frieze shape.
  • the result of this first parting process can also be a cross section that is slightly different from the Zinnenfries form.
  • the deflections between vertical 5 and horizontal surfaces 4 can also be performed with a larger radius.
  • up to the complete curvature of the horizontal surfaces Fig. 9 ,
  • the existing meandering shape is further formed by L Lucassfalzen to the folded sheet or Falzbahn.
  • special tools mold rails are necessary, which bring in all the required fold lines during conveying of the processing material by a multiple, parallel Leksfalzen.
  • the horizontal surfaces 4, Figure 7 extended to a part of the previously vertical surfaces 5a. The remaining area is formed in a zigzag pattern 5b, c, d.
  • a section of the processed material during the Forming provides Fig. 7 It is not absolutely necessary that the bending lines be introduced with sharp-edged tools.
  • the tools may, for example, also be designed so that the edges required for the forming are designed with a radius 5r decreasing along the tool.
  • the resulting folding pattern is compressed by means of suitable aids, such as a roller pair, whereby the fold lines are finally formed on the deflections, Fig. 8 ,
  • suitable aids such as a roller pair
  • the fold lines are finally formed on the deflections, Fig. 8 .
  • Fig. 1 this form exists between section 1.2 and 1.3.
  • the introduced fold lines act in the later honeycomb core like hinges between the surfaces.
  • the enlarged horizontal surfaces 4 + 5a, Figure 8 form the double webs b1 in the expanded state of the 3-d expansion honeycomb, Figure 4 and the zigzag folded surfaces 5b, c, d, Figure 8 the simple webs b2.1, b2.2, b2.3, Figure 4 ,
  • a kind of constantly changing ornament emerges from one long and three shorter lines.
  • the lines are connected via deflections, transferred to the room these are the fold lines.
  • the pattern can be mirrored by half of the long lines, as exemplified in Fig. 8 is illustrated with the mirror image plane 5s and the sections a and a '.
  • Fig.1 For the further processing of the folding sheet or the folding path to the 3-D expansion honeycomb there are several possible embodiments.
  • One is in Fig.1 exemplified with.
  • a side view of this process is in Fig. 10 shown. It is the folded material to be processed in the area of the later double webs first adhesive on one side. This is done between section 1.2 and 1.3.
  • the folding pattern is cut to the last layer of the processed material and hinged around 180 °.
  • the previously applied adhesive layer on the double webs causes the material connection of the individual hitherto only hinge-like sections to the 3-d expansion honeycomb.
  • Another way to make the 3-expansion honeycomb from the fold sheet or the fold path is to separate strips from the folding pattern, apply these before or after the separation with adhesive and handle the individual folding pattern strips so that they glued and accordingly compressed form the 3-d expansion honeycomb, Fig. 11 ,
  • the folding pattern can be previously glued together already in several versions Fig. 12 ,
  • the unexpanded honeycomb core can be expanded in two directions to the 3-d expansion honeycomb.
  • the expansion can be temporally and spatially offset, similar to the expansion of conventional hexagonal honeycomb cores, carried out only at the user.
  • Another way to inexpensively transport and store the 3-d expansion honeycomb is to fully expand the 3-d expansion honeycomb already in the manufacturing process and repress the machine direction in just one dimension.
  • the 3D expansion honeycomb is transported and stored in a space-saving and cost-effective manner.
  • the advantage of this design is that expanders for conventional honeycomb cores can also be used to expand the 3D expansion honeycomb and so the user does not need to provide new machine technology.
  • the presented method for producing the 3d expansion honeycomb can work continuously or discontinuously.
  • sheets or webs can be processed.

Landscapes

  • Laminated Bodies (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von formbaren Wabenkernen nach dem Oberbegriff des Anspruchs 1.
  • Plattenförmige Sandwichverbunde bestehen meist aus zwei Deckschichten, welche schubfest mit einer leichten Kernschicht verbunden sind. Ausgehend von diesem Aufbau resultieren vorteilhafte mechanischen Eigenschaften des Verbundes bei vergleichbar geringem Gewicht.
  • Kerne für Sandwichverbunde, besonders Kerne mit einer Hohlraumstruktur (z.B. Wabenstruktur) weisen in der Regel eine deutlich geringere Dichte auf als die Decklagen.
  • Eine Variante eines Kerns mit Hohlraumstruktur sind Hexagonalwabenkerne. Erstmals wurde eine solche Struktur in der Patentschrift DRP 133165 beschrieben. Für den Bereich des Möbel- und Innenausbaus sowie für artverwandte Bereiche werden heute Hexagonalwabenkerne als unexpandierte Papierwabenkerne produziert und erst unmittelbar vor der Herstellung der Sandwichplatten expandiert, was den Vorteil eines sehr geringen Transportvolumens mit sich führt. Sandwichplatten mit solchen Kernen ermöglichen unter anderem hohe spezifische Druckfestigkeiten quer zur Plattenebene, eine enorme Gewichtseinsparung sowie einen reduzierten Rohstoffverbrauch.
  • Herkömmliche Hexagonalwabenkerne bestehen aus einer wabenartigen, hexagonalen Struktur, welche durch das Verkleben von Papierstreifen k definierter Dicke s und anschließendem Auseinanderziehen, dem Expandieren, gebildet wird. Dabei ist die Produktionsrichtung X gleich der Richtung, in die expandiert wird. Eine dreidimensionale Ansicht eines Ausschnitts wird in Fig.2 und eine einzelne ausgeschnittene Zelle als Draufsicht in Fig. 3 gezeigt.
  • Die Bereiche der Verklebung werden als Doppelstege a1 und die nicht verklebten Bereiche als Einfachstege a2 bezeichnet. Mit den meisten Produktionsanlagen können verschiedenste Kernhöhen h hergestellt werden.
  • Aufgrund ihrer Struktur sind herkömmliche expandierte Wabenkerne stark in ihrer Formbarkeit eingeschränkt. Bei der zweidimensionalen Umformung besteht i.d.R. das Problem der sog. Sattelbildung. Eine Herstellung beliebig zwei- und dreidimensional geformter Sandwichbauteile mit expandierbaren Wabenkern ist bisher nur durch die Zerstörung der Kernstruktur in den Bereichen starker Umformung möglich. Bei sehr dünnen Bauteilen wird teilweise bewusst das unkontrollierbare Einknicken oder Einreißen von Stegen der Wabenstruktur in Kauf genommen.
  • Es gibt bereits unterschiedliche dreidimensional formbare Wabenkerne. Ein solcher Wabenkern ist beispielsweise aus der EP 0 955109 A2 bekannt. Derartige Strukturen sind in ihrer Herstellung aufwändig und bieten zudem nicht die Möglichkeit eines Transportes zum Endverarbeiter im unexpandierten Zustand. Somit sind solche dreidimensional verformbaren Kerne kostenintensiv und werden nur für wenige Anwendungen eingesetzt. Sie bestehen z.B. aus Aramidfaserpapier, welches nach seiner Umformung mit Harz getränkt wird, oder aus Aluminium.
  • In der Druckschrift DE 10 2009 005 869 A1 wird ein expandierbarer Wabenkern beschrieben, der in Quer- und Längsrichtung ohne Beschädigung der Struktur formbar ist und somit eine dreidimensionale Formgebung von Sandwichbauteilen ohne Beeinträchtigung des Wabenkerns ermöglicht (3-d-Expansionswabe). Eine dreidimensionale Ansicht eines Ausschnitts wird in Fig.4 und eine einzelne ausgeschnittene Zelle als Draufsicht in Fig. 5 gezeigt. Ähnlich den herkömmlichen expandierbaren Wabenkernen besteht die 3-d-Expansionswabe aus einzelnen Steglagen/ gefalzten Papierstreifen der Dicke s, die durch abwechselnd folgende doppelte Stege b1 und einfache Stege b2 so miteinander verbunden sind, dass beim Expandieren eine wabenartige Struktur entsteht. Die Verbindung erfolgt, indem die Streifenabschnitte im Bereich der doppelten Stege miteinander verklebt werden. Erfindungsgemäß weisen die einfachen Stege b2 der 3-d-Expansionswabe zusätzlich Sollknicklinien auf, die die einfachen Stege in drei Bereiche b2.1, b2.2, b2.3 teilen. Diese Struktur ermöglicht die definierte Faltung des in Quer- und/oder Längsrichtung geformten Wabenkerns und erhöht zugleich die Druckfestigkeit des Sandwichverbundes. Neben der dreidimensionalen Formgebung ist zudem auch die Herstellung ein- und zweidimensionaler Sandwichverbunde möglich. Neben Papier als Ausgangsmaterial für die 3-d-Expansionswabe können auch andere Rohstoffe wie beispielsweise Aramidfaserpapier mit anschließender Harz-Tränkung oder Aluminium verwendet werden. Die 3-d-Expansinswabe kann in beliebigen Kernhöhen h hergestellt werden.
  • Bauteile mit herkömmlichen Wabenkernen weisen durch das Einknicken oder Einreißen von Stegen bei zwei-, bzw. dreidimensionaler Verformung deutlich reduzierte Festigkeitswerte auf. Daher werden solche Wabenkerne für zwei- bzw. dreidimensional geformte Bauteile selten verwendet. Eine Variante der Anwendung ist die Nutzung von Schäumen auf Erdölbasis (z.B. Polyurethanschäume) als Kernlage dreidimensionaler Sandwichelemente, die z.T. auch mit der Verwendung herkömmlicher Wabenkerne kombiniert wird. Die Herstellung eines solchen Sandwichverbundes ist jedoch vergleichsweise kostenintensiv und nachteilig für das spätere Recycling.
  • Sandwichverbunde der hier zur Diskussion stehenden Art können eindimensional als Platte sowie als zweidimensional oder dreidimensional geformtes Bauteil ausgeführt werden. Speziell zwei- und dreidimensional geformte Bauteile werden zunehmend in Branchen wie beispielsweise Flugzeugbau, Automobilbau, Caravanbau, Schiffs- und Bootsbau, aber auch im Möbel- und Messebau sowie im immobilen Innenausbau eingesetzt. Die Decklagen bestehen dabei zumeist aus entsprechend verformbaren Materialien wie Kunststoff, Metall, Holz und Holzwerkstoff oder (Natur-) Fasern.
  • Bereits in ihrer Form bestehende dreidimensional formbare Wabenkerne sind derzeit bereits erhältlich, jedoch sind diese sehr preisintensiv, so dass sie nur in wenigen Anwendungen eingesetzt werden. Zudem folgen aufgrund der bereits bestehenden expandierten Form vergleichbar hohe Lager- und Transportkosten. Preisgünstige dreidimensional geformte Sandwichbauteile mit expandierbarem Wabenkern können bisher wegen des Fehlens einer industriell herstellbaren verformbaren Kernlage nicht produziert werden.
  • Die US 2012/0205035A1 beschreibt ein Verfahren zur Herstellung eines Wabenkerns. Dabei wird eine planare Bahn durch ein Rollenpaar bewegt, dass die Bahn in eine gerippte Bahn umwandelt. Die gerippte Bahn weist dabei flache Talabschnitte und ebenfalls flache Deckabschnitte auf, die durch Verbindungsabschnitte der Bahn miteinander verbunden sind. Die gerippte Bahn wird zugeschnitten und gefaltet, um den angestrebten Wabenkern zu erhalten. Anschließend kann dieser mit einer Deck- und einer Grundfläche versehen werden.
  • Das in der Patentschrift ( DE 10 2009 005 869 A1 ) vorgestellte Verfahren zur Herstellung der 3-d-Expansionswabe sieht vor, die Sollknicklinien in den Bereichen der freien Stege durch Falzen, Prägen o. dgl. einzubringen. In der praktischen Umsetzung zeigt sich, dass ein zielgerichtetes Umknicken maschinell erzeugter Wabenkerne auf die geschützte Weise technisch nur äußerst aufwendig realisierbar ist.
  • Aufgabe der Erfindung
  • Aufgabe der vorliegenden Erfindung ist es, ein industriell anwendbares Verfahren zur Herstellung der 3-d-Expansionswabe mit verbesserter Technologie anzugeben.
  • Bei dem Verfahren wird blatt- bzw. bahnförmiges Flachformgut, bestehend zumeist aus Papier, alternativ auch aus anderen Ausgangsmaterialien wie beispielsweise Aramidfaserpapier mit anschließender Harz-Tränkung oder Aluminium, verarbeitet. Zusätzlich werden noch Verbindungselemente bzw. -mittel zum Fügen der einzelnen Steglagen/ gefalzten Papierstreifen, wie z.B. Klebstoff verwendet.
  • Die zur Herstellung der 3-d-Expansionswabe erforderliche komplexe Umformung wird in mehreren aufeinanderfolgenden Teilschritten gelöst. Die ggf. vorhandene Faserorientierung des Verarbeitungsguts sowie die bei der Verarbeitung eingebrachten Umlenkungen und Falzlinien liegen bei dem Verfahren parallel zur Maschinenlaufrichtung (MLR).
  • Das erfindungsgemäße Verfahren zur Herstellung der 3-d-Expansionswabe erfolgt durch folgende Schritte:
    • 1.1 Umformen eines flachen , bogen- bzw. bahnförmigen Verarbeitungsgutes, dem Rohbogen bzw. der Rohbahn, zu einem mäanderförmigen Gebilde mit im Wesentlichen horizontalen und vertikalen Flächen,
    • 1.2 Einbringen eines Faltmusters in die vertikalen Flächen des mäanderförmigen Gebildes durch Längsfalzen entlang der Maschinenlaufrichtung, wobei die horizontalen Flächen um einen Teil der zuvor vertikalen Flächen vergrößert werden und die restlichen vorherigen vertikalen Flächen im Zickzack-Muster umgeformt werden,
    • 1.3 Komprimieren des eingebrachten Musters zum Falzbogen, bzw. zur Falzbahn,
    • 1.4 Weiterverarbeiten des Falzbogens, bzw. der Falzbahn zur 3-d-Expansionswabe
  • Bei einer vorteilhaften Variante des Verfahrens wird der Falzbogen bzw. die Falzbahn abwechselnd von oben und unten im Abstand der späteren Kernhöhe h bis auf Verbleib nur einer Papierdicke quer zur Maschinenlaufrichtung eingeschnitten und die so gebildeten zusammenhängenden Blöcke durch Umlegen um das verbleibende Verarbeitungsgut aufgestellt und zur 3-d-Expansionswabe verpresst. Dabei kann das Beaufschlagen mit Klebstoff vor bzw. nach dem Einschneiden erfolgen.
  • Bei einer weiteren vorteilhaften Variante des Verfahrens werden von dem Falzbogen bzw. der Falzbahn quer zur Maschinenlaufrichtung Steglagen/ gefalzte Papierstreifen abgetrennt und durch entsprechendes Drehen um die Längsachse lagerichtig zur Bildung doppelter Stege der 3-d-Expansionswabe aneinandergereiht und verpresst. Das Beaufschlagen mit Klebstoff kann vor, bzw. nach dem Abtrennen erfolgen. Der Abstand zwischen den beiden Schnitten ergibt die Kernhöhe h.
  • Bei einer weiteren vorteilhaften Variante des Verfahrens werden mehrere Falzbögen bzw. Falzbahnen mit lagerichtiger Zuordnung zur Bildung von doppelten Stegen miteinander verklebt. Die Verarbeitung erfolgt weiter indem quer zur Maschinenlaufrichtung zugleich mehrere, bereits verklebte Steglagen/ gefalzte Papierstreifen abgetrennt werden und diese lagerichtig zur Bildung doppelter Stege der 3-d-Expansionswabe aneinandergereiht und zur 3-d-Expansionswabe verpresst werden. Das zweite Beaufschlagen mit Klebstoff kann vor, bzw. nach dem Abtrennen der bereits verklebten Falzbögen bzw. Falzbahnen erfolgen. Der Abstand zwischen den beiden Schnitten ergibt die Kernhöhe h.
  • Bei einer weiteren vorteilhaften Variante des Verfahrens wird eine Vielzahl von Falzbögen bzw. Falzbahnen in lagerichtiger Zuordnung zur Bildung von doppelten Stegen miteinander verklebt. Von dem so entstandenen Block wird die 3-d-Expansionswabe in beliebiger Kernhöhe h abgetrennt.
  • Vorteilhaft wird das mäanderförmigen Gebilde mit im Wesentlichen horizontal und vertikal verlaufenden Flächen in einer ausgeprägten Zinnenfriesform oder mit größeren Radien an den Übergängen, bis hin zu einer völligen Wölbung der horizontalen Abschnitte ausgebildet.
  • Weiter vorteilhaft wird das Einbringen eines Faltmusters in die vertikalen Flächen des mäanderförmigen Gebildes in Zick-Zack-Form durch Einwirken von entsprechenden Bahnleitelementen, ausgeführt als Formschienenanordnung, beim Vorschub des Bogens bzw. der Bahn erreicht.
  • Vorteilhaft sind die Formschienen derart ausgeführt, dass durch mehrfaches, paralleles Längsfalzen alle benötigten Umlenkungen des Falzbogens bzw. der Falzbahn in das Verarbeitungsgut eingebracht werden. Die Formschienen können entsprechend geformte Einzelteile oder auch Baugruppen mit entsprechend geformten Einzelelementen sein. Eine Formschiene zeichnet sich dadurch aus, dass sie die benötigten Umlenkungen in das Verarbeitungsgut während des Förderns durch die Formschienenanordnung einbringt. Dafür müssen sich vertikale Erhebungen der Formschiene von der Mäanderform entlang der Schiene zum Falzbogen bzw. zur Falzbahn vergrößern und die Höhe der Schiene verkleinern, so dass die Umformung ohne ungewollte mechanische Beeinträchtigung des Verarbeitungsgutes erfolgen kann. Vertikale Vertiefungen der Formschiene, welche entlang der Formschiene zunehmen, stellen den für die Umformung benötigten Raum bereit.
  • Weiter vorteilhaft können zum Fördern des Verarbeitungsgutes und zur Umformung der Umlenkungen zu scharf ausgebildeten Falzlinien Zugwalzenpaare Anwendung finden.
  • Weiter vorteilhaft können zur Reduzierung der benötigten Förderkräfte einzelne Formschienen relativ zu den restlichen bewegt werden. Ebenso kann durch Zuführen von Druckluft ein Umströmen der Formschienen mit Luft und somit eine Reduzierung der Förderkräfte erreicht werden. Es können aber auch andere Gleitmittel Anwendung finden.
  • Die Erfindung wird nachstehend an Hand von Ausführungsbeispielen näher erläutert werden. In den dazugehörigen schematischen Darstellungen zeigen:
  • Fig. 1
    einen möglichen Verfahrensablauf,
    Fig. 2
    eine dreidimensionale Sicht auf einen Ausschnitt eines herkömmlichen Hexagonalwabenkerns,
    Fig. 3
    eine Draufsicht auf eine Zelle eines herkömmlichen Hexagonalwabenkerns,
    Fig. 4
    eine dreidimensionale Sicht auf einen Ausschnitt der 3-d-Expansionswabe,
    Fig. 5
    eine Draufsicht auf eine Zelle der 3-d-Expansionswabe,
    Fig. 6
    eine dreidimensionale Sicht auf einen Ausschnitt auf das Ergebnis des ersten Umformvorganges, eine Mäanderform,
    Fig. 7
    eine dreidimensionale Sicht auf einen Ausschnitt des zweiten Umformvorganges, welcher die Mäanderform in einen Falzbogen bzw. eine Falzbahn überführt,
    Fig. 8
    eine dreidimensionale Sicht auf einen Ausschnitt des Ergebnisses des zweiten Umformvorganges, welches den Ausgangszustand für mehrere Möglichkeiten der Weiterverarbeitung zur 3-d-Expansionswabe darstellt,
    Fig. 9
    eine dreidimensionale Sicht auf einen Ausschnitt des Ergebnisses eines leicht abgewandelten ersten Umformvorganges, mit veränderter Mäanderform,
    Fig. 10
    eine Seitenansicht einer möglichen Weiterverarbeitung, bei der der Falzbogen bzw. die Falzbahn wechselnd von oben und unten eingeschnitten und danach zur 3-d-Expansionswabe umgeformt wird,
    Fig. 11
    eine dreidimensionale Sicht auf eine mögliche Weiterverarbeitung bei der der Falzbogen bzw. die Falzbahn in Abschnitte geteilt wird, welche wiederum entsprechend mit Klebstoff beaufschlagt werden und entsprechend angeordnet die 3-d-Expansionswabe bilden,
    Fig. 12
    eine dreidimensionale Sicht auf eine mögliche Weiterverarbeitung bei der der Falzbogen bzw. die Falzbahn, mehrfach mittels Klebstoff zusammengefügt wird, in Abschnitte getrennt wird und diese abschließend mit Klebstoff zur 3-d-Expansionswabe zusammen gefügt werden,
    Fig. 13
    eine dreidimensionale Sicht auf eine mögliche Weiterverarbeitung bei der der Falzbogen bzw. die Falzbahn, vielfach mittels Klebstoff zu einem Block zusammengefügt werden, von dem die 3D-Expansionswabe in gewünschter Kernhöhe abgetrennt wird.
  • Die jeweiligen Förder- bzw. Maschinenlaufrichtungen des Verfahrens sind mit Pfeilen gekennzeichnet.
  • Ein grundlegender Verfahrensablauf des erfindungsgemäßen Verfahrens ist in der Fig.1 dargestellt.
  • Im ersten Schritt wird ein flach vorliegendes, bogen- bzw. bahnförmiges Verarbeitungsgut in, bzw. durch eine Matrize gefördert. Die so entstehende Form besteht aus wechselnd vertikal und horizontal zusammenhängenden Flächen. Quer zur Maschinenlaufrichtung Y entsteht so eine Mäanderform, im Beispiel Fig. 6 eine Zinnenfries-Form. Resultat dieses ersten Teilvorganges kann aber auch ein von der Zinnenfries-Form leicht abgewandelter Querschnitt sein. So können die Umlenkungen zwischen vertikalen 5 und horizontalen Flächen 4 auch mit einem größeren Radius ausgeführt werden. Im Extremfall bis zur völligen Wölbung der horizontalen Flächen, Fig. 9.
  • Durch diesen ersten Teilschritt wird die für die weitere Verarbeitung benötigte Bahn- bzw. Bogenbreitenreduktion und somit eine gezielte Konzentration des Verarbeitungsguts erreicht. Im Verfahrensablauf Fig. 1 wird das Ergebnis dieser ersten Umformung links vom Schnitt 1.1 gezeigt.
  • Im darauffolgenden Schritt, zwischen Schnitt 1.1 und 1.2 wird die bestehende Mäanderform durch Längsfalzen weiter zum Falzbogen bzw. zur Falzbahn umgeformt. Für diesen Umformschritt sind spezielle Werkzeuge, Formschienen notwendig, welche durch ein mehrfaches, paralleles Längsfalzen alle benötigten Falzlinien beim Fördern des Verarbeitungsguts einbringen. Bei der Umformung werden die horizontalen Flächen 4, Fig.7, um einen Teil der vorher vertikalen Flächen 5a erweitert. Die übrige Fläche wird im Zickzack-Muster 5b, c, d umgeformt. Einen Ausschnitt des Verarbeitungsgutes während der Umformung stellt Fig. 7 dar. Es ist nicht zwingend notwendig, dass die Biegelinien mit scharfkantigen Werkzeugen eingebracht werden. Die Werkzeuge können beispielsweise auch so ausgeführt sein, dass die für die Umformung benötigten Kanten mit einem entlang des Werkzeugs sich verkleinernden Radius 5r ausgeführt sind.
  • Nach der Umformung wird das so entstandene Faltmuster mit Hilfe geeigneter Hilfsmittel, wie beispielsweise einem Walzenpaar, komprimiert, wodurch an den Umlenkungen die Falzlinien endgültig ausgebildet werden, Fig. 8. Im Verfahrensablauf, Fig. 1, besteht diese Form zwischen Schnitt 1.2 und 1.3. Die eingebrachten Falzlinien wirken im späteren Wabenkern wie Scharniere zwischen den Flächen. Die vergrößerten horizontalen Flächen 4+5a, Fig.8 bilden im expandierten Zustand der 3-d-Expansionswabe die Doppelstege b1, Fig.4 und die zickzackförmig gefalzten Flächen 5b, c, d, Fig.8 die Einfachstege b2.1, b2.2, b2.3, Fig.4. Als Ergebnis entsteht im Querschnitt zur MLR betrachtet eine Art stetig wechselndes Ornament aus einer langen und drei kürzeren Linien. Verbunden sind die Linien über Umlenkungen, in den Raum übertragen sind dies die Falzlinien. Vertikal lässt sich das Muster jeweils um die Hälfte der langen Linien spiegeln, wie es beispielhaft in Fig. 8 mit der Spiegelbildebene 5s und den Abschnitten a und a' veranschaulicht ist.
  • Für die weitere Verarbeitung des Falzbogens bzw. der Falzbahn zur 3-d-Expansionswabe bestehen mehrere Ausführungsmöglichkeiten. Eine ist in Fig.1 beispielhaft mit dargestellt. Eine Seitenansicht dieses Vorganges wird in Fig. 10 gezeigt. Es wird das gefalzte Verarbeitungsgut im Bereich der späteren Doppelstege zunächst einseitig mit Klebstoff beaufschlagt. Dies erfolgt zwischen Schnitt 1.2 und 1.3. Weiter wird das Faltmuster bis auf die letzte Lage des Verarbeitungsgutes eingeschnitten und um 180° scharnierartig umgeschlagen. Die zuvor aufgebrachte Klebstoffschicht auf den Doppelstegen bewirkt die stoffliche Verbindung der einzelnen bis dahin nur scharnierartig zusammenhängenden Abschnitte zur 3-d-Expansionswabe.
  • Eine weitere Möglichkeit, aus dem Falzbogen bzw. der Falzbahn die 3d-Expansionswabe herzustellen, besteht darin Streifen vom Faltmuster abzutrennen, diese vor bzw. nach dem Trennen mit Klebstoff zu beaufschlagen und die einzelnen Faltmuster-Streifen so zu handhaben, dass sie entsprechend verklebt und verpresst die 3-d-Expansionswabe bilden, Fig. 11. Dabei kann das Faltmuster zuvor auch bereits in mehrfacher Ausführung miteinander verklebt werden Fig. 12.
  • Ebenfalls besteht die Möglichkeit, eine Vielzahl von Falzbögen, bzw. Falzbahnen miteinander zu verkleben, zu Verpressen und abschließend die 3-d-Expansionswaben von dem so entstandenen Block in gewünschter Kernhöhe abzutrennen, Fig. 13.
  • Der unexpandierte Wabenkern ist abschließend noch zur 3-d-Expansionswabe in zwei Richtungen zu expandieren. Um Lager-, als auch Transportkosten zu senken, kann die Expansion zeitlich und räumlich versetzt, ähnlich der Expansion von herkömmlichen Hexagonalwabenkernen, erst beim Anwender durchgeführt werden.
  • Eine weitere Möglichkeit, die 3-d-Expansionswabe kostengünstig zu transportieren und zu lagern, besteht darin, die 3-d-Expansionswabe bereits im Herstellungsprozess vollständig zu expandieren und in nur einer Dimension, der Maschinenlaufrichtung wieder zu stauchen. In dieser Form wird die 3D-Expansionswabe platzsparend und kostengünstig transportiert und gelagert. Der Vorteil dieser Ausführung ist, dass Expandierer für herkömmliche Wabenkerne auch zur Expansion der 3D-Expansionswabe Verwendung finden können und so der Anwender keine neue Maschinentechnik bereitstellen braucht.
  • Je nach Ausführung kann das vorgestellte Verfahren zur Herstellung der 3d-Expansionswabe kontinuierlich oder diskontinuierlich arbeiten. Je nach Arbeitsweise können Bögen bzw. Bahnen verarbeitet werden.

Claims (7)

  1. Verfahren zur Herstellung von formbaren Wabenkernen durch
    1.1 Formen eines flach vorliegenden, bogen- bzw. bahnförmigen Verarbeitungsgutes zu einem mäanderförmigen Gebilde mit im Wesentlichen horizontal (4) und vertikal (5) verlaufenden Flächen,
    1.2 Weiterverarbeiten zur 3-d-Expansionswabe, gekennzeichnet durch die folgenden weiteren Schritte:
    1.3 Einbringen eines Faltmusters in die vertikalen Flächen (5) des mäanderförmigen Gebildes durch Längsfalzen entlang der Maschinenlaufrichtung, wobei die horizontalen Flächen (4) um einen Teil (5a) der zuvor vertikalen Flächen (5) vergrößert werden und die restlichen vorherigen vertikalen Flächen (5) in einem Zickzack-Muster (5b,c,d) umgeformt werden,
    1.4 Scharfkantiges Ausbilden der Falzlinien zum Falzbogen bzw. zur Falzbahn.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Falzbogen bzw. die Falzbahn abwechselnd von oben und unten im Abstand der späteren Kernhöhe bis auf Verbleib nur einer Papierdicke quer zur Maschinenlaufrichtung eingeschnitten wird, die gebildeten zusammenhängenden Blöcke durch Umlegen um das verbleibende Verarbeitungsgut aufgestellt und zur 3-d-Expansionswabe verpresst werden, wobei der Zusammenhalt durch einen vor bzw. nach dem Trennen beaufschlagten Klebstoff hergestellt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass von dem Falzbogen bzw. der Falzbahn quer zur Maschinenlaufrichtung Steglagen/ gefalzte Papierstreifen abgetrennt werden und durch entsprechendes Drehen um die Längsachse lagerichtig zur Bildung doppelter Stege (b1) der 3-d-Expansionswabe aneinandergereiht und verpresst werden, wobei das Beaufschlagen mit Klebstoff vor oder nach dem Abtrennen erfolgen kann.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass von mehreren miteinander verklebten Falzbögen bzw. Falzbahnen quer zur Maschinenlaufrichtung Steglagen/gefalzte Papierstreifen abgetrennt, diese vor oder nach dem Trennen mit Klebstoff beaufschlagt und anschließend lagerichtig zur Bildung doppelter Stege (b1) zur 3-d-Expansionswabe gefügt werden.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Vielzahl von Falzbögen bzw. Falzbahnen in lagerichtiger Zuordnung zur Bildung von doppelten Stegen (b1) verklebt werden und von dem entstandenen Block die 3-d-Expansionswabe abgetrennt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mäanderförmige Gebilde mit im Wesentlichen horizontal (4) und vertikal (5) verlaufenden Flächen in einer ausgeprägten Zinnenfriesform oder mit einer Wölbung im horizontalen Abschnitt ausgebildet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Einbringen des Faltmusters in die Flächen des mäanderförmigen Gebildes durch das Einwirken von entsprechenden Bahnleitelementen beim Vorschub des Bogens bzw. der Bahn erfolgt.
EP14731138.5A 2013-05-03 2014-04-30 Verfahren zur herstellung von formbaren wabenkernen Not-in-force EP2991822B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013008026.6A DE102013008026A1 (de) 2013-05-03 2013-05-03 Verfahren zur Herstellung von formbaren Wabenkernen
PCT/DE2014/000226 WO2014177132A1 (de) 2013-05-03 2014-04-30 Verfahren zur herstellung von formbaren wabenkernen

Publications (2)

Publication Number Publication Date
EP2991822A1 EP2991822A1 (de) 2016-03-09
EP2991822B1 true EP2991822B1 (de) 2017-07-12

Family

ID=50976429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14731138.5A Not-in-force EP2991822B1 (de) 2013-05-03 2014-04-30 Verfahren zur herstellung von formbaren wabenkernen

Country Status (3)

Country Link
EP (1) EP2991822B1 (de)
DE (1) DE102013008026A1 (de)
WO (1) WO2014177132A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019113067B3 (de) * 2019-05-17 2020-10-22 Technische Universität Dresden Verfahren zur Herstellung eines flexibel formbaren Wabenkerns, Verwendung des Wabenkerns sowie Vorrichtung zur Durchführung des Verfahrens

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539737B2 (en) 2008-09-19 2013-09-24 Ford Global Technologies, Llc Twelve-cornered strengthening member
US10704638B2 (en) 2016-04-26 2020-07-07 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10393315B2 (en) 2016-04-26 2019-08-27 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10279842B2 (en) 2016-08-30 2019-05-07 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10429006B2 (en) * 2016-10-12 2019-10-01 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US11292522B2 (en) 2019-12-04 2022-04-05 Ford Global Technologies, Llc Splayed front horns for vehicle frames
USD1004290S1 (en) 2020-07-29 2023-11-14 3M Innovative Properties Company Sheet with slits
USD1016497S1 (en) 2020-07-29 2024-03-05 3M Innovative Properties Company Expanded sheet
USD946907S1 (en) 2020-07-29 2022-03-29 3M Innovative Properties Company Sheet with slits
USD971019S1 (en) 2020-07-29 2022-11-29 3M Innovative Properties Company Extended sheet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE133165C (de)
NL102542C (de) * 1958-02-25 1900-01-01
US3218217A (en) * 1962-10-15 1965-11-16 Robert C Geschwender Apparatus for making cellular material
GB1390968A (en) * 1971-07-28 1975-04-16 Nissan Motor Honeycomb structures
US4428993A (en) * 1982-05-11 1984-01-31 Baltek Corporation Structural laminate with expanded wood core
US5064493A (en) * 1990-10-09 1991-11-12 Lansing Overhaul And Repair, Inc. Method of producing curved honeycomb core material having crimps in one edge
US5200013A (en) * 1990-12-18 1993-04-06 Dividella Ag Method and device for corrugated deformation of a flat material sheet
DE9215985U1 (de) * 1992-11-20 1994-03-24 Edm. Romberg & Sohn (GmbH & Co) KG, 25479 Ellerau Mehrschichtiger Wellpappekörper
US5431980A (en) * 1993-02-01 1995-07-11 Mccarthy; Daniel J. Formable cellular material with synclastic behavior
US6003283A (en) 1998-05-07 1999-12-21 Hexcel Corporation Vented flexible honeycomb
CA2248525A1 (en) * 1998-09-30 2000-03-30 Chih-Shiu Hung Method for making pads having honeycomb structure
DE102009005869A1 (de) 2009-01-15 2010-07-22 Technische Universität Dresden Expandierbarer Wabenkern und Verfahren zur Herstellung
US8303744B2 (en) * 2011-02-10 2012-11-06 Bradford Company Method of making multilayer product having honeycomb core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019113067B3 (de) * 2019-05-17 2020-10-22 Technische Universität Dresden Verfahren zur Herstellung eines flexibel formbaren Wabenkerns, Verwendung des Wabenkerns sowie Vorrichtung zur Durchführung des Verfahrens
WO2020234083A1 (de) 2019-05-17 2020-11-26 Technische Universität Dresden Verfahren zur herstellung eines flexibel formbaren wabenkerns, verwendung des wabenkerns sowie vorrichtung zur durchführung des verfahrens

Also Published As

Publication number Publication date
EP2991822A1 (de) 2016-03-09
DE102013008026A1 (de) 2014-11-06
WO2014177132A1 (de) 2014-11-06

Similar Documents

Publication Publication Date Title
EP2991822B1 (de) Verfahren zur herstellung von formbaren wabenkernen
EP1603740B1 (de) Verfahren und vorrichtung zur herstellung einer kernstruktur für einen kernverbund
EP1165310B1 (de) Faltwabe aus wellpappe, verfahren und vorrichtung zu deren herstellung
EP1606113B1 (de) Verfahren und vorrichtung zur herstellung einer leichtbauplatte
DE112012000761T5 (de) Verfahren zum Herstellen eines mehrschichtigen Produkts mit einem Wabenkern
DE212014000231U1 (de) Sandwich-Struktur
EP3194681B1 (de) Wabe, insbesondere verformbare wabe, für leichtbauteile sowie wabenblock zur herstellung der wabe und entsprechendes herstellungsverfahren
DE112012001685T5 (de) Verfahren zum Herstellen eines mehrschichtigen Produkts mit einem Wabenkern mit verbesserter Festigkeit
DE1114374B (de) Materialstapel fuer einen Zellenkoerper aus Folienbaendern von Papier, Metall, Kunststoffen od. dgl. sowie Verfahren zum Herstellen desselben
DE102008022805A1 (de) Wellfurnierplatte und daraus aufgebaute Leichtbauplatte sowie Verfahren zu deren Herstellung
DE4431755A1 (de) Sandwichplatte aus Stärkeschaum
EP2531348B1 (de) Expandierbarer wabenkern, verfahren zu dessen kontinuierlicher herstellung sowie sandwichverbund
DE3935120A1 (de) Verfahren zur herstellung von metallverbundplatten
DE102008022806A1 (de) Leichtbauplatte sowie Verfahren zu deren Herstellung
DE102009005869A1 (de) Expandierbarer Wabenkern und Verfahren zur Herstellung
DE102008062678B4 (de) Verbundbauteil mit einer Wabenstruktur
DE102013000149A1 (de) Verfahren zur Herstellung eines Kerns für ein sandwichähnliches Produkt ausgehend von einem extrudierten Profil
EP3995304A1 (de) Formteil, polstermittel, kernschicht und verfahren zur herstellung eines formteils
DE69717749T2 (de) Verfahren zur Herstellung von verstärkten Holzverbundplatten und eine dadurch erhaltene Platte
EP3831592A1 (de) Verfahren zur herstellung einer zellstruktur, zellstruktur und verwendung
EP2065186A1 (de) Verfahren zur Herstellung einer Leichtbauplatte und Vorrichtung zur Durchführung des Verfahrens
AT208047B (de) Netzartige Zellenanordnung und Verfahren zur Herstellung derselben
DE102020120558A1 (de) Verfahren zur Herstellung eines Wellstegwabenkerns, Wellstegwabenkern, Verwendung und Bauteil
DE102022102916A1 (de) Zellstruktur, Verfahren zur Herstellung einer Zellstruktur und Zellstützkern
DE102016106631A1 (de) Halbzeug und Bauteil aus einem Holz- oder Faserwerkstoff sowie Verfahren zur Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEROLD, JAN, HENDRIK

Inventor name: BRITZKE, MAX

Inventor name: HERZBERG, MARCUS

Inventor name: KORN, CHRISTIAN

Inventor name: LIPPITSCH, STEFAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170214

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KORN, CHRISTIAN

Inventor name: BRITZKE, MAX

Inventor name: HEROLD, JAN, HENDRIK

Inventor name: HERZBERG, MARCUS

Inventor name: LIPPITSCH, STEFAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907940

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004585

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170712

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

26N No opposition filed

Effective date: 20180413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190225

Year of fee payment: 6

Ref country code: FR

Payment date: 20190319

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 6

Ref country code: DE

Payment date: 20190226

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140430

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 907940

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014004585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430