EP2989342B1 - System und verfahren zum aktualisieren von füllparametern in nasskupplungen durch cross-learning - Google Patents

System und verfahren zum aktualisieren von füllparametern in nasskupplungen durch cross-learning Download PDF

Info

Publication number
EP2989342B1
EP2989342B1 EP14722584.1A EP14722584A EP2989342B1 EP 2989342 B1 EP2989342 B1 EP 2989342B1 EP 14722584 A EP14722584 A EP 14722584A EP 2989342 B1 EP2989342 B1 EP 2989342B1
Authority
EP
European Patent Office
Prior art keywords
filling parameters
fill
wet clutch
clutch system
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14722584.1A
Other languages
English (en)
French (fr)
Other versions
EP2989342A1 (de
Inventor
Mark R. J. Versteyhe
Arnout R. L. DE MARÉ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dana Belgium NV
Original Assignee
Dana Belgium NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Belgium NV filed Critical Dana Belgium NV
Publication of EP2989342A1 publication Critical patent/EP2989342A1/de
Application granted granted Critical
Publication of EP2989342B1 publication Critical patent/EP2989342B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0269Single valve for switching between fluid supply to actuation cylinder or draining to the sump

Definitions

  • the present invention relates to the operation of hydraulic clutches and more specifically to an apparatus and method for updating filling parameters for wet plate clutches.
  • a performance of a wet plate clutch may be affected by the operating conditions the clutch is operated in.
  • certain operational parameters of the wet plate clutch may also be affected by the current and past operating conditions. Such uncertainty of performance or operational parameters may be a result of production tolerances of the wet plate clutch, temperature effects on the wet plate clutch, and wear of the components of the wet plate clutch.
  • a first clutch is released (also known as an off-going clutch) by decreasing an oil pressure on a first clutch piston.
  • a second clutch is closed (also known as an on-coming clutch) by increasing an oil pressure on a second clutch piston.
  • overlap shift or a "powershift.”
  • the above described process happens simultaneously in a coordinated manner.
  • the second clutch piston is positioned adjacent a set of friction plates of the second clutch by regulating the oil pressure on the second clutch piston.
  • the positioning of the second clutch piston is performed by sending out a pulse width modulated (also known as PWM) signal with a controller to an electroproportional valve.
  • a pulse width modulated signal also known as PWM
  • the electroproportional valve is at least partially opened, allowing a piston chamber of the second clutch to become pressurized.
  • a position of the second clutch piston can be controlled.
  • a goal is to move the second clutch piston as fast as possible towards the set of friction plates of the second clutch, while still being able to smoothly engage the second clutch.
  • An engagement profile (for applying the pressure) associated with a clutch which is used to apply a desired movement of the clutch piston, is partially dependent on a plurality of mechanical characteristics of the clutch itself, but also other parameters such as a temperature of an automatic transmission fluid used in the clutch and an amount of air in a plurality of conduits used with the clutch. Generally, such variables are taken into account by scheduling the two parameters with which the engagement profile is parameterized.
  • calculating a correct value for each of these parameters has proven to be difficult.
  • the correct value should be specific for a given transmission or a given clutch.
  • values used for each of these parameters are calculated using a calibration process. The calibration process is typically performed shortly after manufacturing of the vehicle is complete and at predetermined intervals based on a number of operating hours of the vehicle.
  • the calibration process is performed in a single, fixed operating condition and may be summarized as a plurality of individual steps.
  • a transmission controller indicates that the recalibration process is advised.
  • the transmission controller operates the electro-proportional valve with a plurality of engagement profiles, each having a different set of fill parameters.
  • the transmission controller continues this process until it is detected that the clutch has been filled in a satisfactory manner,
  • the controller determines if the clutch has been filled in the satisfactory manner by monitoring a timing of a drop in a torque converter speed ratio.
  • the drop in the torque converter speed ratio indicates a torque transfer has occurred through the clutch, which is indicative of a piston of the clutch contacting the set of friction plates of the clutch.
  • the calibration process is then repeated for each of the remaining clutches of the transmission.
  • a filling quality of the clutch can also be assessed during normal usage of the system, as opposed to during a specific calibration procedure.
  • a signal from a pressure sensor or a signal from a speed sensor may be used to assess the filling quality of the clutch.
  • At least one feature is defined in the signal which is indicative of an error in the filling process. It is understood that a plurality of features may be defined in the signal or that a combination of features present in the signal may be indicative of an error in the filling process.
  • a process of filling of a clutch is commonly characterized by two main parameters, a fill time and a kiss pressure. These parameters are shown on an exemplary pressure profile, which is illustrated in FIG. 1 .
  • a reference of "T_fill” in FIG. 1 indicates the fill time of the exemplary pressure profile, and a reference of "P_kiss” indicates the kiss pressure of the exemplary pressure profile. It should be noted that an apparatus and a method described herein is also applicable when more parameters than a fill time and a kiss pressure are analyzed.
  • the fill time indicates a length in time of a pressure profile required to fill a piston chamber with hydraulic oil and to position a piston against a set of friction plates of the clutch.
  • the kiss pressure is a pressure following the fill time for a pressure profile profile.
  • the kiss pressure indicates a hydraulic force necessary to counteract a spring force once the piston is placed against the set of friction plates. While the kiss pressure changes slowly over time as a plurality of mechanical characteristics of a clutch system including the clutch change, the fill time is dependent on other factors.
  • the fill time is function of a temperature and a quality of a transmission oil used with the clutch, a pressure signal used with the clutch system, and an amount of time between shifts.
  • the controller saves the parameters in a multidimensional matrix as a function of a plurality of variables.
  • the variables may be the temperature of the automatic transmission fluid and the time between shifts of the transmission. Further, it is understood that for a given evaluated shift, the given evaluated shift likely did not occur under the exact conditions described on the grid points of the multidimensional matrix. In learning the parameters, the controller also decides how much is learned for the given points forming the grid of the multidimensional matrix.
  • the system and method for updating the set of fill parameters for the wet plate clutch which uses cross learning described herein solves the problems described hereinabove by proposing a structured way to update points of the multidimensional matrix in conditions that deviate from the conditions in which a given parameter was learned.
  • US6328674B1 relates to a method of controlling a clutch pressure of a transmission which can be applied to a clutch of a large capacity piston volume, which has a short time lag for engaging the clutch, a uniform clutch engaging time and is inexpensive, and a control apparatus therefor.
  • a clutch pressure control apparatus of a transmission including a pressure control valve which supplies a discharge oil in a hydraulic pump to a clutch chamber at a time of engaging a clutch, whereby the clutch chamber is full of the discharge oil, gradually increases a hydraulic pressure in the clutch chamber after being filled so as to engage the clutch, and drains the oil in the clutch chamber to a tank at a time of disengaging the clutch
  • the apparatus is provided with a supply bypass valve which directly supplies the discharge oil of the hydraulic pump to the clutch chamber with bypassing the pressure control valve at a time of engaging the clutch, and a discharge bypass valve which directly drains the oil in the clutch chamber to the tank by bypassing the pressure control valve at a time of disengaging the clutch.
  • USH2031H1 relates to a system and a method for controlling the timing of the filling of a fluid actuated clutch.
  • the system includes, a fluid actuated clutch, an electronic controller adapted to detect an end-of-fill point for the fluid actuated clutch, compare the end-of-fill point with a desired end-of-fill point and adjust at least one of a plurality of clutch fill parameters in response to the comparison in order to control the timing of the filling of the clutch, and a control valve that is activated by the electronic controller.
  • the present invention is directed to a method for updating a set of filling parameters for a wet clutch system according to claim 1.
  • the present invention is directed to a system for updating a set of filling parameters for a wet clutch system according to claim 12.
  • a system and method for updating a set of fill parameters for a wet plate clutch which uses cross learning is described herein.
  • the system and method improves and accelerates a learning process by using a learned information to update the parameters for other operating points of the wet plate clutch, in addition to a tested operating point. While the system and method is applied herein for use with the wet plate clutch for use with an off-highway stepped ratio transmission, it is understood that the system and method may be adapted for use with any system that includes a wet plate clutch.
  • FIG. 2 illustrates a clutch system 10 that may be used with the transmission.
  • the clutch system 10 is an electrohydraulically actuated wet multi-plate clutch system.
  • the clutch system 10 is an electrohydraulically actuated wet plate clutch system.
  • the clutch system 10 comprises a sump 12, a high pressure pump 14, an electroproportional valve 16, an accumulator 18, a piston assembly 20, a clutch assembly 22, a controller 24, and a plurality of fluid conduits 26.
  • the high pressure pump 14 is in fluid communication with the sump 12 and the electroproportional valve 16.
  • the piston assembly 20 is in fluid communication with the electroproportional valve 16 and the accumulator 18.
  • the clutch assembly 22 is disposed adjacent to and may be placed in contact with a portion of the piston assembly 20.
  • the controller 24 is in communication with the electroproportional valve 16.
  • a signal from a pressure sensor (not shown) in communication with the controller 24, which may be integrated into the electroproportional valve 16 or a signal from a speed sensor (not shown) in communication with the controller 24, which may form a portion of the clutch assembly 22 is used to assess the filling quality of the clutch system 10.
  • the speed sensor is configured to measure rotational speeds of an input and an output associated with the clutch assembly 22. Further, it is understood that a torque sensor (not shown) or an accelerometer (not shown) in communication with the controller 24 may form a portion of the clutch system 10.
  • the sump 12 is a container in which a hydraulic fluid is stored.
  • the sump 12 is in fluid communication with the high pressure pump 14.
  • One of the fluid conduits 26 affords fluid communication between the sump 12 and the high pressure pump 14.
  • a filter 28 forms a portion of the fluid conduit 26 between the sump 12 and the high pressure pump 14.
  • the sump 12 includes a breather 30, to facilitate fluid communication between an ambient environment of the clutch system 10 and an interior of the sump 12.
  • the high pressure pump 14 is a fixed displacement hydraulic pump.
  • the high pressure pump 14 is in fluid communication with the sump 12 and the electroproportional valve 16.
  • the high pressure pump 14 may generate a pressure of about 20 bar.
  • One of the fluid conduits 26 affords fluid communication between the high pressure pump 14 and the electroproportional valve 16.
  • a filter 32 forms a portion of the fluid conduit 26 between the high pressure pump 14 and the electroproportional valve 16.
  • a pressure relief valve 33 is present to limit a pressure difference across the filter 32 created by the high pressure pump 14, such as if the filter 32 becomes obstructed.
  • the high pressure pump 14 may also be in fluid communication with a pressure limiting valve (not shown). The pressure limiting valve limits a pressure within the fluid conduit 26 between the high pressure pump 14 and the electroproportional valve 16.
  • the electroproportional valve 16 is a hydraulic valve in fluid communication with the high pressure pump 14, the piston assembly 20, and the accumulator 18.
  • the electroproportional valve 16 is in electrical communication with the controller 24.
  • the electroproportional valve 16 is supplied with a pulse width modulated signal to apply a current to a solenoid 34 forming a portion of the electroproportional valve 16.
  • the electroproportional valve 16 may be placed in at least a partially open position. In the open position, the electroproportional valve 16 afford fluid communication between the fluid conduit 26 between the high pressure pump 14 and the electroproportional valve 16 and a fluid conduit 26 between the electroproportional valve 16, the piston assembly 20, and the accumulator 18.
  • the controller 24 may adjust the pulse width modulated signal to adjust a pressure within the fluid conduit 26 between the electroproportional valve 16, the piston assembly 20, and the accumulator 18 by placing the electroproportional valve 16 in at least the partially open position.
  • the electroproportional valve 16 includes a draining orifice 36. A flow of hydraulic fluid through the draining orifice 36 is dependent on a pressure within the electroproportional valve 16, but also a viscosity of the hydraulic fluid and a temperature of the hydraulic fluid.
  • the accumulator 18 is a hydraulic device that dampens rapid changes in pressure (such as pressure drops or pressure peaks) within the fluid conduit 26 between the electroproportional valve 16 and the piston assembly 20.
  • the accumulator 18 facilitates smooth operation of the clutch assembly 22.
  • the accumulator 18 is in fluid communication with the piston assembly 20 and the electroproportional valve 16.
  • the accumulator 18 includes a draining orifice 38. A flow of hydraulic fluid through the draining orifice 38 is dependent on a pressure within the fluid conduit 26 between the electroproportional valve 16 and the piston assembly 20, but also a viscosity of the hydraulic fluid and a temperature of the hydraulic fluid.
  • the piston assembly 20 comprises a housing 40, a piston 42, a piston rod 44, and at least one return spring 46.
  • the housing 40 is a hollow, cylindrical member in fluid communication with the electroproportional valve 16 through the fluid conduit 26 between the electroproportional valve 16, the piston assembly 20, and the accumulator 18.
  • the piston 42 is a cylindrical member sealingly and slidingly disposed within the housing 40.
  • the piston rod 44 is an elongate member in driving engagement with the piston 42.
  • the piston rod 44 is sealingly and slidingly disposed through the housing 40.
  • the at least one return spring 46 is a biasing member disposed between the piston 42 and the housing 40.
  • the housing 40 When pressure at or above an engagement threshold is applied to the housing 40 by the electroproportional valve 16, the pressure within the housing 40 urges the piston 42 and the piston rod 44 towards the clutch assembly 22, while also compressing the at least one return spring 46. When pressure at or below a disengagement threshold is present within the housing 40, the at least one return spring 46 urges the piston 42 and the piston rod 44 into a starting position. As shown in FIG. 2 , the housing 40 includes a draining orifice 48. A flow of hydraulic fluid through the draining orifice 48 is dependent on a pressure within the housing 40, a portion of which may be generated by centripetal forces, but also a viscosity of the hydraulic fluid and a temperature of the hydraulic fluid.
  • the clutch assembly 22 comprises a housing 50, a first plurality of plates 52, a second plurality of plates 54, and a pressure plate 56.
  • the housing 50 is a hollow member into which a transmission fluid is disposed.
  • the first plurality of plates 52 and the second plurality of plates 54 are rotatingly disposed within the housing 50.
  • the pressure plate 56 is disposed adjacent the first plurality of plates 52 and the second plurality of plates 54 and may be urged towards the first plurality of plates 52 and the second plurality of plates 54 by the piston rod 44.
  • the first plurality of plates 52 is interleaved with the second plurality of plates 54.
  • an input member (not shown) is drivingly engaged with one of the first plurality of plates 52 and the second plurality of plates 54 and an output member (not shown) is drivingly engaged with a remaining one of the first plurality of plates 52 and the second plurality of plates 54.
  • a pressure in which the piston rod 44 contacts the pressure plate 56 and where additional pressure would result in at least variable driving engagement between the first plurality of plates 52 and the second plurality of plates 54 is known as a kiss pressure. At pressures greater than the kiss pressure, torque is able to be transferred from the first plurality of plates 52 to the second plurality of plates 54 or from the second plurality of plates 54 to the first plurality of plates, depending on a configuration of the clutch assembly 22.
  • the pressure within the housing 40 urges the piston 42 and the piston rod 44 towards the clutch assembly 22, applying a pressure to the first plurality of plates 52 and the second plurality of plates 54 through the pressure plate 56.
  • the first plurality of plates 52 becomes at least variably drivingly engaged with the second plurality of plates 54, causing the input member to be at least variably drivingly engaged with the output member.
  • FIG. 2 is merely exemplary in nature, and that the invention may be adapted for use with any wet plate clutch system.
  • the method for updating a set of filling parameters for the clutch system comprises several steps to update the set of filling parameters, which are detailed hereinbelow.
  • pivot element Given a pivot element and a newly calculated update for the pivot element, it is desired to apply a new calculated correction to the multidimensional matrix where the elements of the multidimensional matrix (which have a greater density of update) are closer to the pivot element. It should be noted that the pivot element may not correspond to one of the grid points of the multidimensional matrix.
  • the correction factor may be an additive correction factor or a multiplicative correction factor.
  • the correction factor is the additive correction factor
  • the previous value of the fill parameter in the considered conditions is augmented with the correction factor or the correction factor is subtracted from the previous value of the fill parameter value.
  • the correction factor is the multiplicative correction
  • the previous value of the fill parameter is multiplied with the correction factor.
  • An absolute correction is needed to distribute the update to the other points in the multidimensional matrix.
  • the absolute correction is the correction factor itself.
  • the multiplicative correction factor the absolute correction is the correction factor multiplied with the fill parameter the correction factor has been calculated for.
  • the fill parameter may be available from a high level controller, or it is interpolated from a fill parameter matrix for the relevant conditions.
  • the fill error can then be distributed using a multivariate Gaussian plane method, a surface gradient method, and a matrix revision method.
  • an error on a given parameter can be distributed to a surrounding plurality of points in the multidimensional matrix.
  • a Gaussian possibility distribution is created, which is centered on an interpolated point in a fill parameter matrix.
  • a variance on the Gaussian possibility distribution indicates how large of a region in the multidimensional matrix around the interpolation points will be updated.
  • the variance can be tuned in response to a given application.
  • the variance can also be adjusted online, as a function of a confidence level of the calculated correction.
  • FIGS. 3A and 3B illustrate an updated parameter plane and an original parameter plane.
  • FIG. 3A illustrates an updated parameter plane and an original parameter plane of the multidimensional matrix; the graph illustrating the effect of updating the multidimensional matrix.
  • FIG. 3B is a graph which illustrates a section through the parameter plane and the original parameter plane shown in FIG. 3A ; the graph illustrating the effect of updating the multidimensional matrix.
  • the updated parameter plane is pulled upwards at the interpolation point for a region surrounding the interpolation point.
  • a distribution profile can be made asymmetric, in order to learn more in a certain direction.
  • the effect of the distribution profile which is asymmetric can be seen in FIGS. 4A and 4B , which shows an updated region of the multidimensional matrix.
  • FIG. 4A is a graph which illustrates an updated section having a first asymmetric distribution profile.
  • FIG. 4B is a graph which illustrates an updated section having a second asymmetric distribution profile.
  • the distribution profile which is asymmetric may be preferred in a given situation, for example, when the behavior of the system is more linearly coherent in function of temperature than as a function of time between shifts.
  • a surface is fitted through the interpolation point and the points in the matrix.
  • the points in the matrix are then updated within a certain distance (which may be asymmetric).
  • the points also take into account a gradient of the original surface.
  • the gradient of the original surface is large, there is a strong change in the fill parameter.
  • the gradient of the original surface is large, there is a presumption that a relationship with the interpolation point is less strong. As such, points having a large gradient and points beyond that in the same direction will be less adapted.
  • the interpolation point where a shift is performed can be added to the multidimensional matrix.
  • a resolution of the fill parameter matrix will become denser in such a region.
  • the advantage of such a revision strategy is that only a portion of the multidimensional matrix has to have the same fine grid and that the nominal operating region is learned rather than predefined.
  • a number of grid points of the matrix are also limited. As new points are added to the multidimensional matrix, points of the matrix that are determined to be irrelevant or that were never used can be forgotten. Such a process increases an efficiency of the multidimensional matrix.
  • the matrix revision method may be advantageous when extrapolation is needed, as extrapolation is needed to obtain parameters from outside of boundaries of the multidimensional matrix. If a following shift occurs in similar conditions outside of the multidimensional matrix, extrapolation might not be necessary or at least the quality of the extrapolation result may be improved.
  • a distance measure in which the points are updated can be asymmetric; however, it may also be quantified in different ways.
  • the distance measure may be based on a fixed distance in terms of time between shifts or temperature. Alternately, the distance measure may be specified as a number of points on the axes of the multidimensional matrix. In a first example, as interpolation points are added to the multidimensional matrix, more points will be updated, but within the same region. In a second example, a number of updated points will not increase, but in denser regions, a smaller part of the multidimensional matrix will be updated. In the second example, such a result is acceptable as it is presumed that the data in such areas is fairly accurate. Conversely, however, it is understood that in less dense regions a larger part of the matrix is updated.
  • the system and method for updating the set of fill parameters for the wet plate clutch greatly improves a filling of wet plate clutches through an online learning of a plurality of fill parameters.
  • the system and method facilitates learning of the plurality of fill parameters for other conditions than the conditions in which a previous shift was evaluated. As a result, a convergence to optimized fill parameters occurs at a faster rate and a higher consistency between shifts is achieved. Further, a plurality of known characteristics of the system can be taken into account to further speed up the process and make the process more robust.
  • a finer grid can be constructed in a region of the nominal working regime, which results in improved accuracy under such conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Claims (15)

  1. Verfahren zur Aktualisierung eines Füllparametersatzes für ein Nasskupplungssystem (10), wobei das Verfahren folgende Schritte umfasst:
    Bereitstellung des Nasskupplungssystems (10), wobei das Nasskupplungssystem (10) umfasst:
    einen beweglich in einem Gehäuse angeordneten Kolben (42), wobei der Kolben (42) durch eine vorgespannte Feder (46) in eine vorgeschobene Position und durch Beaufschlagen mit einem Betätigungsdruck auf den Kolben (42) durch eine Hydraulikflüssigkeit in eine zurückgezogene Position bewegbar ist, wobei in der zurückgezogenen Position ein Drehmoment über eine Kupplung übertragbar ist,
    ein Proportionalventil (16), das dafür ausgelegt ist, einen Druck der Hydraulikflüssigkeit im Gehäuse zu regeln,
    eine Steuervorrichtung (24), die das Proportionalventil (16) steuert,
    einen Sensor zur Messung einer Antwort des Nasskupplungssystems (10);
    Bereitstellung des Füllparametersatzes für das Nasskupplungssystem (10), wobei der Füllparametersatz eine Füllzeit einschließt, die eine Zeitdauer angibt, die erforderlich ist, um das Gehäuse mit der Hydraulikflüssigkeit zu füllen und den Kolben (42) gegen einen Reibscheibensatz (52, 54) des Nasskupplungssystems (10) zu positionieren, und wobei der Füllparametersatz einen Anpressdruck einschließt, der eine Hydraulikkraft angibt, die erforderlich ist, um einer Federkraft entgegenzuwirken, wenn der Kolben (42) am Reibscheibensatz (52, 54) anliegt;
    Betätigung des Nasskupplungssystems (10), indem das Gehäuse des Nasskupplungssystems (10) auf Grundlage des Füllparametersatzes, der die Füllzeit und den Anpressdruck einschließt, mit einer Hydraulikflüssigkeit gefüllt wird;
    Erfassung einer Antwort des Nasskupplungssystems (10) im Zuge der Betätigung des Nasskupplungssystems (10);
    Abgleich festgestellter Füllparameter mit dem Füllparametersatz, der die Füllzeit und den Anpressdruck einschließt;
    Berechnung eines Füllfehlers zwischen den festgestellten Füllparametern und dem Füllparametersatz, der die Füllzeit und den Anpressdruck einschließt; und
    Anpassung mehrerer Füllparameter des Satzes, der die Füllzeit und den Anpressdruck einschließt, auf Grundlage des Füllfehlers.
  2. Verfahren nach Anspruch 1, wobei der Füllparametersatz für das Nasskupplungssystem (10) eine multidimensionale Matrix umfasst.
  3. Verfahren nach Anspruch 1, weiterhin den Schritt der Berechnung eines Korrekturfaktors auf Grundlage des Füllfehlers umfassend.
  4. Verfahren nach Anspruch 3, wobei der Schritt einer Anpassung mehrerer Füllparameter des Satzes auf dem Korrekturfaktor beruht; und/oder wobei der Korrekturfaktor entweder ein additiver Korrekturfaktor oder ein multiplikativer Korrekturfaktor ist.
  5. Verfahren nach Anspruch 1, wobei der Schritt einer Anpassung mehrerer Füllparameter des Satzes auf Grundlage des Füllfehlers über ein Verfahren der Gauß'schen Zahlenebene oder ein Oberflächengradientverfahren oder ein Matrixinversionsverfahren verteilt wird.
  6. Verfahren nach Anspruch 5, wobei der Schritt der Anpassung mehrerer Füllparameter des Satzes auf Grundlage des Füllfehlers nach einer Varianz unter Verwendung des Verfahrens der Gauß'schen Zahlenebene verteilt wird.
  7. Verfahren nach Anspruch 6, wobei die Varianz entweder in Reaktion auf eine gegebene Anwendung oder als Funktion eines Konfidenzniveaus des Füllfehlers angepasst wird.
  8. Verfahren nach Anspruch 5,
    wobei der Schritt einer Anpassung mehrerer Füllparameter des Satzes auf Grundlage des Füllfehlers unter Verwendung des Verfahrens der Gauß'schen Zahlenebene asymmetrisch verteilt wird; und/oder
    wobei der Schritt einer Anpassung mehrerer Füllparameter des Satzes auf Grundlage des Füllfehlers verteilt wird, indem eine Oberfläche durch einen Interpolationspunkt, der auf dem Füllfehler basiert, und mehrere Punkte, die durch die Füllparameter definiert sind, unter Verwendung des Oberflächengradientverfahrens platziert wird; und/oder
    wobei der Schritt einer Anpassung mehrerer Füllparameter des Satzes auf Grundlage des Füllfehlers verteilt wird, indem ein Interpolationspunkt, der auf dem Füllfehler basiert, mehreren Punkten, die durch die Füllparameter definiert sind, unter Verwendung des Matrixinversionsverfahrens hinzugefügt wird.
  9. Verfahren nach Anspruch 8, wobei durch das Hinzufügen, unter Verwendung des Matrixinversionsverfahrens, eines Interpolationspunktes, der auf dem Füllfehler basiert, zu mehreren Punkten, die durch die Füllparameter definiert sind, eine durch den Füllparametersatz definierte multidimensionale Matrix dichter wird.
  10. Verfahren nach Anspruch 9, wobei, wenn die durch den Füllparametersatz definierte multidimensionale Matrix dichter wird, irrelevante Informationen aus der multidimensionalen Matrix entfernt werden können.
  11. Verfahren nach Anspruch 8, wobei das Matrixinversionsverfahren verwendet wird, um einen Extrapolationspunkt, der auf dem Füllfehler basiert, mehreren Punkten, die durch die Füllparameter definiert sind, hinzuzufügen, wobei der Extrapolationspunkt außerhalb der Grenzen der mehreren Punkte, die durch die Füllparameter definiert sind, liegt.
  12. System zur Aktualisierung eines Füllparametersatzes für ein Nasskupplungssystem (10), wobei das System umfasst:
    das Nasskupplungssystem (10), wobei das Nasskupplungssystem (10) umfasst:
    einen beweglich in einem Gehäuse angeordneten Kolben (42), wobei der Kolben (42) durch eine vorgespannte Feder (46) in eine vorgeschobene Position und durch Beaufschlagen mit einem Betätigungsdruck auf den Kolben (42) durch eine Hydraulikflüssigkeit in eine zurückgezogene Position bewegbar ist, wobei in der zurückgezogenen Position ein Drehmoment über eine Kupplung übertragbar ist,
    ein Proportionalventil (16) zur Regelung eines Drucks der Hydraulikflüssigkeit im Gehäuse;
    eine Steuervorrichtung (24), die dafür ausgelegt ist, das Proportionalventil (16) zu steuern, und
    einen Sensor zur Messung einer Antwort des Nasskupplungssystems (10), wobei der Sensor mit der Steuervorrichtung kommuniziert und die Steuervorrichtung dafür ausgelegt ist, das Nasskupplungssystem (10) zu betätigen, indem das Gehäuse des Nasskupplungssystems (10) auf Grundlage mindestens eines Füllparameters des Satzes gefüllt wird, wobei der Füllparametersatz eine Füllzeit einschließt, die eine Zeitdauer angibt, die erforderlich ist, um das Gehäuse mit der Hydraulikflüssigkeit zu füllen und den Kolben (42) gegen einen Reibscheibensatz (52, 54) des Nasskupplungssystems (10) zu positionieren, dadurch gekennzeichnet, dass
    der Füllparametersatz zudem einen Anpressdruck einschließt, der eine Hydraulikkraft angibt, die erforderlich ist, um einer Federkraft entgegenzuwirken, wenn der Kolben (42) am Reibscheibensatz (52, 54) anliegt; die Antwort des Nasskupplungssystems im Zuge der Betätigung des Nasskupplungssystems sensorisch erfasst wird, wobei die Steuervorrichtung dafür ausgelegt ist, die festgestellten Füllparameter mit dem Füllparametersatz, der die Füllzeit und den Anpressdruck einschließt, abzugleichen und einen Füllfehler zwischen den festgestellten Füllparametern und dem Füllparametersatz, der die Füllzeit und den Anpressdruck einschließt, zu berechnen, und dafür ausgelegt ist, mehrere Füllparameter des Satzes, der die Füllzeit und den Anpressdruck einschließt, auf Grundlage des Füllfehlers anzupassen.
  13. System nach Anspruch 12, wobei der Füllparametersatz für das Nasskupplungssystem (10) eine multidimensionale Matrix umfasst.
  14. System nach Anspruch 12, wobei ein Korrekturfaktor auf Grundlage des Füllfehlers berechnet wird, und wobei mehrere Füllparameter des Satzes auf Grundlage des Korrekturfaktors angepasst werden.
  15. System nach Anspruch 12, wobei ein Korrekturfaktor auf Grundlage des Füllfehlers berechnet wird, und wobei der Korrekturfaktor entweder ein additiver Korrekturfaktor oder ein multiplikativer Korrekturfaktor ist.
EP14722584.1A 2013-04-22 2014-04-22 System und verfahren zum aktualisieren von füllparametern in nasskupplungen durch cross-learning Active EP2989342B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361814395P 2013-04-22 2013-04-22
PCT/EP2014/058133 WO2014173893A1 (en) 2013-04-22 2014-04-22 System and method for the update of fill parameters in wet clutches through cross learning

Publications (2)

Publication Number Publication Date
EP2989342A1 EP2989342A1 (de) 2016-03-02
EP2989342B1 true EP2989342B1 (de) 2021-06-02

Family

ID=50685876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14722584.1A Active EP2989342B1 (de) 2013-04-22 2014-04-22 System und verfahren zum aktualisieren von füllparametern in nasskupplungen durch cross-learning

Country Status (5)

Country Link
US (1) US9657788B2 (de)
EP (1) EP2989342B1 (de)
CN (1) CN105308346B (de)
BR (1) BR112015026606A2 (de)
WO (1) WO2014173893A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644499B2 (ja) 2015-08-25 2020-02-12 Ntn株式会社 自動クラッチ装置
EP3252477A1 (de) * 2016-05-30 2017-12-06 Dana Belgium N.V. Verfahren zum nachweis einer veränderung bei der rotationsrichtung einer rotierenden achse
EP3252336A1 (de) * 2016-05-30 2017-12-06 Dana Belgium N.V. Füllparametererlernung für nassplattenkupplungen auf basis einer ausgabe eines drehmomentwandlers
CN109667852A (zh) * 2017-10-12 2019-04-23 雷沃重工股份有限公司 一种离合器液压控制系统、方法以及收获机械
US10859160B2 (en) * 2018-04-11 2020-12-08 Transmission Cvtcorp Inc. Calibration method for a slip control arrangement of a driveline including a continuously variable transmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH331H (en) * 1985-07-01 1987-09-01 The United States Of America As Represented By The Secretary Of The Army Large memory acousto-optically addressed pattern recognition
USH2031H1 (en) * 1998-12-21 2002-06-04 Caterpillar Inc. Apparatus and method for controlling the end of fill of a fluid actuated clutch
JP4172672B2 (ja) * 1999-03-17 2008-10-29 株式会社小松製作所 変速機のクラッチ圧制御装置
DE10143833B4 (de) * 2001-09-07 2013-06-06 Zf Friedrichshafen Ag Kupplungssystem in einem Antriebsstrang zwischen einer Antriebseinheit und einem Getriebe
US6915890B1 (en) * 2003-12-18 2005-07-12 General Motors Corporation Learning method for oncoming clutch fill level and volume
DE102008023360A1 (de) * 2007-05-31 2008-12-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Plausibilisieren der Stellung des Kupplungsaktors einer Kupplung, Verfahren zum Bestimmen des Tastpunktes einer Kupplung sowie Vorrichtung zum Durchführen der Verfahren
DE102009006445B3 (de) * 2009-01-28 2010-07-15 Hydac Fluidtechnik Gmbh Proportional-Druckregelventil
EP2520787B1 (de) * 2010-02-23 2014-10-08 Honda Motor Co., Ltd. Startkupplungsregler
DE102010009655A1 (de) 2010-02-27 2011-09-01 Robert Bosch Gmbh Nebenantriebsvorrichtung eines mobilen Arbeitsgeräts
CN102537134A (zh) * 2012-01-16 2012-07-04 天津同步动力科技有限公司 一种离合器控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105308346B (zh) 2017-10-31
EP2989342A1 (de) 2016-03-02
WO2014173893A1 (en) 2014-10-30
US20160040732A1 (en) 2016-02-11
CN105308346A (zh) 2016-02-03
BR112015026606A2 (pt) 2017-07-25
US9657788B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
EP2971835B1 (de) Vorrichtung und verfahren zum lernen einer parameterausfüllung für eine kupplung
EP2989342B1 (de) System und verfahren zum aktualisieren von füllparametern in nasskupplungen durch cross-learning
EP2233766B1 (de) Vorrichtung zur Steuerung des Kupplungsdrucks
US8965652B2 (en) Adaptive control of a flow control solenoid
US20160047714A1 (en) Method of calibrating a clutch
CN102563054B (zh) 经由选择性使用闭环压力反馈控制的改进的自动变速器换档质量
EP3042095B1 (de) System und verfahren zur voraussage der restlebensdauer einer kupplung durch schätzung des reibungskoeffizienten
US9829411B2 (en) Method of calibrating a wet clutch for generating transfer functions on a test bench
US9109645B2 (en) Method and apparatus for prefill of wet clutches
US20150233469A1 (en) Adaptive control of a flow control solenoid valve
US9316271B2 (en) Adaptive control of a linear actuator
EP3464925B1 (de) Füllparametererlernung für nassplattenkupplungen auf basis einer ausgabe eines drehmomentwandlers
US9933069B2 (en) Dynamic compensation for clutch control during shift
US9014928B2 (en) Transmission gearshift control
US8788159B1 (en) Transmission gear shift control
EP2642148A2 (de) Verfahren zum hydraulischen Füllen einer Kupplung ohne Verwendung einer Kalibrierungsroutine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014077869

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1398732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014077869

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220422

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220422

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220422

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602