EP2984344B1 - Système et procédé pour comprimer du dioxyde de carbone - Google Patents

Système et procédé pour comprimer du dioxyde de carbone Download PDF

Info

Publication number
EP2984344B1
EP2984344B1 EP14782970.9A EP14782970A EP2984344B1 EP 2984344 B1 EP2984344 B1 EP 2984344B1 EP 14782970 A EP14782970 A EP 14782970A EP 2984344 B1 EP2984344 B1 EP 2984344B1
Authority
EP
European Patent Office
Prior art keywords
process fluid
stage compressor
compressor
drive shaft
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14782970.9A
Other languages
German (de)
English (en)
Other versions
EP2984344A4 (fr
EP2984344A1 (fr
Inventor
James Sorokes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Rand Co
Original Assignee
Dresser Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Rand Co filed Critical Dresser Rand Co
Publication of EP2984344A1 publication Critical patent/EP2984344A1/fr
Publication of EP2984344A4 publication Critical patent/EP2984344A4/fr
Application granted granted Critical
Publication of EP2984344B1 publication Critical patent/EP2984344B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger

Definitions

  • compact motor-compressors may often attempt to achieve the higher compression ratios by increasing the number of compression stages within the single, hermetically sealed housing. Increasing the number of compression stages, however, increases the overall number of components (e.g., impellers and/or other intricate parts) required to achieve the desired compressor throughput (e.g., mass flow) and pressure rise to achieve the higher compression ratios. Increasing the number of components required in these compact motor-compressors may often increase length requirements for the rotary shaft and/or increase distance requirements between rotary shaft bearings. The imposition of these requirements often results in larger, less compact motor-compressor arrangements as compared to previous compact motor-compressors utilizing fewer compression stages.
  • components e.g., impellers and/or other intricate parts
  • Embodiments of the disclosure may provide a compression system.
  • the compression system may include a driver having a drive shaft extending therethrough and configured to provide the drive shaft with rotational energy.
  • the compression system may also include a first single-stage compressor and a second single-stage compressor.
  • the first single-stage compressor and the second single-stage compressor may each include a rotary shaft coupled with or integral with the drive shaft of the driver.
  • the first single-stage compressor and the second single-stage compressor may be configured to compress a high molecular weight process fluid to provide a compressed process fluid having a pressure ratio of about 10:1 or greater.
  • the compressed process fluid may contain heat from the compression thereof.
  • a heat recovery system may be fluidly coupled with the first single-stage compressor and the second single-stage compressor. The heat recovery system may be configured to receive the compressed process fluid and absorb at least a portion of the heat contained in the compressed process fluid.
  • Embodiments of the disclosure may further provide another compression system.
  • the compression system may include a driver having a drive shaft extending therethrough and configured to provide the drive shaft with rotation energy.
  • the compression system may also include a first single-stage compressor having a first rotary shaft operatively coupled with a first end of the drive shaft.
  • the first single-stage compressor may have a compression ratio of at least about 3.8:1 and may be configured to compress a process fluid containing carbon dioxide to provide a first compressed process fluid.
  • the compression system may further include a second single-stage compressor having a second rotary shaft operatively coupled with a second end of the drive shaft.
  • the second single-stage compressor may have a compression ratio of at least about 2.7:1 and may be configured to compress the first compressed process fluid to provide a second compressed process fluid.
  • the second compressed process fluid may contain heat from the compression thereof and may have a pressure ratio of at least about 10:1.
  • Embodiments of the disclosure may further provide a method for compressing a process fluid.
  • the method may include driving a first single-stage compressor and a second single-stage compressor via a drive shaft.
  • the drive shaft may be operatively coupled with the first single-stage compressor and the second single-stage compressor and may be driven by a driver.
  • the method may also include compressing the process fluid via the first single-stage compressor and the second single-stage compressor to provide a compressed process fluid.
  • the compressed process fluid may contain heat from the compression thereof and may have a pressure ratio of about 10:1 or greater.
  • the method may further include directing the compressed process fluid to a heat recovery system and absorbing at least a portion of the heat contained in the compressed process fluid in the heat recovery system.
  • first and second features are formed in direct contact
  • additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact.
  • exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
  • Figure 1 illustrates a schematic of an exemplary compression system 100 for pressurizing a process fluid, the compression system 100 including a plurality of compressors 140, 150 coupled with a driver 102, according to one or more embodiments.
  • the compressors 140, 150 may be direct-inlet or axial-inlet, centrifugal compressors.
  • each of the compressors 140, 150 may be a single-stage compressor having compression ratios of at least about 2.5:1 or greater.
  • each of the compressors 140, 150 may include a rotary shaft 114, 116 coupled with a drive shaft 108 of the driver 102.
  • Each of the compressors 140, 150 may be coupled with the driver 102 at opposing ends of the drive shaft 108 in a "double-ended" configuration or arrangement.
  • a rotary shaft 114 of a first compressor 140 may extend therefrom and may be coupled with a first end 104 of the drive shaft 108
  • a rotary shaft 116 of a second compressor 150 may extend therefrom and may be coupled with a second end 106 the drive shaft 108.
  • the rotary shafts 114, 116 of the first compressor 140 and/or the second compressor 150 may be coupled with the drive shaft 108 via one or more gears (not shown).
  • the one or more gears coupling the rotary shafts 114, 116 of the first compressor 140 and/or the second compressor 150 with the drive shaft 108 may allow the rotary shafts 114, 116 to spin at a faster or slower rate than the drive shaft 108.
  • the rotary shafts 114, 116 of the first compressor 140 and/or the second compressor 150 may be integral with the drive shaft 108 of the driver 102.
  • the driver 102 may drive the first and second compressors 140, 150 by providing rotation energy to the drive shaft 108, thereby rotating the rotary shafts 114, 116 coupled therewith.
  • the drive shaft 108 may include a single segment or multiple segments (not shown) coupled with one another via one or more gears (not shown). The one or more gears coupling the multiple segments of the drive shaft 108 may allow a first segment of the drive shaft 108 to spin at a faster or slower rate than a second segment of the drive shaft 108.
  • the driver 102 may be an electric motor, such as a permanent magnet motor, and may include a stator (not shown) and a rotor (not shown). It may be appreciated, however, that other embodiments may employ other types of electric motors including, but not limited to, synchronous motors, induction motors, brushed DC motors, or the like.
  • the driver 102 may also be a hydraulic motor, an internal combustion engine, a gas turbine, or any other device capable of driving the rotary shafts 114, 116 of the first and second compressors 140, 150, either directly or through a power train.
  • the compressors 140, 150 may be overhung at opposing ends of the driver 102.
  • the first compressor 140 may be positioned or located along the rotary shaft 114 such that the first compressor 140 may not include additional bearings on the upstream ( e.g ., left, as illustrated in Figure 1 ) side of the rotary shaft 114.
  • the second compressor 150 may be positioned or located along the rotary shaft 116 such that the second compressor 150 may not include additional bearings on the downstream ( e.g ., right, as illustrated in Figure 1 ) side of the rotary shaft 116.
  • at least one of the compressors 140, 150 may be positioned about its respective rotary shaft 114, 116 between two or more bearings (not shown).
  • the compressors 140, 150 may be fluidly coupled with one another via a network of piping 130.
  • the piping 130 may be formed from a plurality of pipes, commonly referred to as lines or conduits, configured to fluidly couple the compressors 140, 150 with one another.
  • One or more process fluids may flow through the compressors 140, 150 and the piping 130 fluidly coupling the compressors 140, 150.
  • the compressors 140, 150 and the piping 130 may form, at least in part, a process fluid passageway through which the process fluids may be flowed, as further described herein.
  • the process fluid flowing through the process fluid passageway may have a measurable pressure, temperature, and/or mass flow rate.
  • the piping 130 including the lines or conduits thereof, may be configured to accommodate the process fluids and/or one or more properties (e.g ., pressure, temperature, and/or mass flow rate) of the process fluids flowing therethrough.
  • a construction and/or sizing (e.g ., diameter, thickness, composition, etc.) of the conduits may vary and may be determined, at least in part, by the process fluids and or properties thereof flowing therethrough.
  • the process fluids pressurized, circulated, contained, or otherwise utilized in the compression system 100 may be in a fluid phase, a gas phase, a supercritical state, a subcritical state, or any combination thereof.
  • the compression system 100 may be utilized to compress various process fluids including high molecular weight process fluids, low molecular weight process fluids, or any mixtures or combinations thereof.
  • High molecular weight process fluids may include those process fluids having a molecular weight of nitrogen or greater.
  • Illustrative high molecular weight process fluids may include, but are not limited to, hydrocarbons, such as ethane, propane, butane, pentane, and hexane.
  • High molecular weight process fluids may include, but are not limited to, carbon dioxide (CO 2 ) or mixtures containing carbon dioxide.
  • Low molecular weight process fluids may include those process fluids having a molecular weight greater than or equal to hydrogen and less than or equal to nitrogen.
  • Illustrative low molecular weight process fluids may include, but are not limited to hydrogen or mixtures containing hydrogen.
  • Utilizing carbon dioxide as the process fluid or as part of a mixture of the process fluid in the compression system 100 may provide one or more advantages over other compounds that may be utilized as the process fluid.
  • carbon dioxide may provide a readily available, inexpensive, non-toxic, and non-flammable process fluid. Due in part to a relatively high working pressure of carbon dioxide, the compression system 100 incorporating carbon dioxide, or mixtures containing carbon dioxide, may be more compact than other compression systems incorporating other process fluids.
  • the high density and high heat capacity or volumetric heat capacity of carbon dioxide with respect to other process fluids may make carbon dioxide more "energy dense," meaning that a size of the compression system 100, and/or components thereof, may be reduced without reducing performance of the compression system 100.
  • the carbon dioxide may be of any particular type, source, purity, or grade. For example, industrial grade carbon dioxide may be utilized as the process fluid without departing from the scope of the disclosure.
  • the process fluids may be a mixture or process fluid mixture.
  • the process fluid mixture may be selected for the unique attributes possessed by the mixture within the compression system 100.
  • the process fluid mixture may include a liquid absorbent and carbon dioxide, or a mixture containing carbon dioxide, enabling the mixture to be compressed to a higher pressure with less energy input than required to compress carbon dioxide, or a mixture containing carbon dioxide, alone.
  • the piping 130 may include a system inlet 132 configured to provide the process fluids to the compression system 100.
  • the process fluids provided to the system inlet 132 may be from one or more external sources (not shown).
  • the external sources may include, but are not limited to, a process fluid storage tank, a fluid fill system, a separate system, such as a heat engine system, or any combination thereof.
  • the system inlet 132 may be fluidly coupled with an axial inlet 142 of the first compressor 140 and may be configured to provide the process fluids thereto.
  • the process fluids may be compressed by the first compressor 140 and discharged via an outlet 144 of the first compressor 140.
  • the first compressor 140 may have a compression ratio of about 2.5:1 or greater.
  • the compression ratio of the first compressor 140 may be from a low of about 2.5:1, about 2.6:1, about 2.7:1, about 2.8:1, about 2.9:1, about 3.0:1, about 3.1:1, about 3.2:1, about 3.3:1, about 3.4:1, about 3.5:1, about 3.6:1, about 3.7:1, about 3.8:1, about 3.9:1, or about 4:1 to a high of about 4.1:1, about 4.2:1, about 4.3:1, about 4.4:1, about 4.5:1, about 5:1, or greater.
  • the first compressor 140 may include one or more inlet vanes (e.g ., guide vanes), impellers, diffusers (e.g ., vaned or vaneless), discharge volutes, or any combination thereof.
  • one or more inlet vanes may be movably coupled with the first compressor 140 and disposed in or about the axial inlet 142 and/or inlet passageway (not shown) of the first compressor 140.
  • the axial inlet 142 and/or the inlet passageway may be defined by a compressor chassis or body (not shown) of the first compressor 140.
  • the axial inlet 142 and/or the inlet passageway may be circular or substantially circular and the inlet vanes may be arranged about the circular cross-section of the axial inlet 142 in a spaced apart orientation.
  • the impeller may be coupled with or mounted to the rotary shaft 114 extending through the first compressor 140.
  • the impeller may be positioned or located downstream of the axial inlet 142 and/or the inlet passageway of the first compressor 140.
  • the axial inlet 142 and/or the inlet passageway may be configured to provide a straight or substantially straight flowpath to the impeller.
  • the inlet vanes may guide or direct the process fluids flowing through the axial inlet 142 and/or the inlet passageway directly to an inlet of the impeller.
  • the diffuser may be defined by the compressor chassis of the first compressor 140 and may include a diffuser passageway extending from a location downstream of the impeller.
  • the diffuser may be receive the process fluids from the impeller and may convert kinetic energy of the process fluids from the impeller into increased static pressure.
  • the diffuser may include one or more moveable vanes.
  • the diffuser may not include any moveable vanes ( e.g . vaneless).
  • the discharge volute may be positioned downstream of the diffuser and configured to collect the process fluids from the diffuser and discharge the process fluids to the outlet 144 of the first compressor 140.
  • the outlet 144 of the first compressor 140 may be fluidly coupled with an axial inlet 152 of the second compressor 150 via a first conduit 134 of the piping 130.
  • the discharged process fluid, or first compressed process fluid, from the first compressor 140 may be directed to the second compressor 150 via the first conduit 134.
  • the first compressed process fluid may be further compressed by the second compressor 150 and discharged via an outlet 154 of the second compressor 150.
  • the second compressor 150 may receive the first compressed process fluid from the first compressor 140 and may further compress the first compressed process fluid to provide a second compressed process fluid having to a pressure ratio of about 10:1 or greater. In at least one embodiment, the second compressor 150 may have a compression ratio of about 2.5 or greater.
  • the compression ratio of the second compressor 150 may be from a low of about 2.5:1, about 2.6:1, about 2.7:1, about 2.8:1, about 2.9:1, about 3.0:1, about 3.1:1, about 3.2:1, about 3.3:1, about 3.4:1, about 3.5:1, about 3.6:1, about 3.7:1, about 3.8:1, about 3.9:1, or about 4:1 to a high of about 4.1:1, about 4.2:1, about 4.3:1, about 4.4:1, about 4.5:1, about 5:1, or greater.
  • the second compressor 150 may include one or more inlet vanes (e.g ., guide vanes), impellers, diffusers ( e.g ., vaned or vaneless), discharge volutes, or any combination thereof.
  • the arrangement or configuration of the second compressor 150 may be similar to that of the first compressor 140.
  • the second compressor 150 may include one or more inlet vanes (not shown) movably coupled with the second compressor 150 and disposed in or about the axial inlet 152 and/or inlet passageway (not shown) of the second compressor 150.
  • the impeller (not shown) may be coupled with or mounted to the rotary shaft 116 extending through the second compressor 150 and may be positioned downstream of the axial inlet 152 and/or the inlet passageway of the second compressor 150.
  • the diffuser e.g ., vaned or vaneless
  • the discharge volute may be positioned downstream of the diffuser and configured to collect the process fluids from the diffuse r and discharge the process fluids to the outlet 154 of the second compressor 150.
  • the compression system 100 including the compressors 140, 150 may have a compression ratio of at least about 10:1 or greater.
  • the compression system 100 may compress the process fluid to a pressure ratio from a low of about 10:1, about 10.1:1, about 10.2:1, about 10.3:1, about 10.4:1, about 10.5:1, about 10.6:1, about 10.7:1, about 10.8:1, about 10.9:1, or about 11:1 to a high of about 11.2:1, about 11.3:1, about 11.4:1, about 11.5:1, about 12:1, about 12.5:1, or greater.
  • the first compressor 140 may compress the process fluid to provide the first compressed process fluid at a desired pressure ratio
  • the second compressor 150 may further compress the first compressed process fluid to provide a second compressed process fluid at a pressure ratio of at least about 10:1 or greater.
  • the second compressor 150 may have a compression ratio sufficient to provide the second compressed process fluid at the pressure ratio of at least about 10:1 or greater.
  • the first compressor 140 may have a compression ratio of at least about 3.8:1 and may compress the process fluid to provide the first compressed process fluid at a pressure ratio of at least about 3.8:1.
  • the second compressor 150 may have a compression ratio of at least about 2.7:1 and may further compress the first compressed process fluid to provide the second compressed process fluid at a pressure ratio of at least about 10:1 or greater.
  • the outlet 154 of the second compressor 150 may be fluidly coupled with an inlet 162 of a heat recovery system 160 via a second conduit 136 of the piping 130.
  • the discharged process fluid, or second compressed process fluid, from the second compressor 150 may be directed to the heat recovery system 160 via the second conduit 136.
  • the second compressed process fluid may contain thermal energy or heat generated from the compression of the process fluid in the first and second compressors 140, 150.
  • the heat contained in the second compressed process fluid may be transferred to or captured by the heat recovery system 160, thereby cooling the second compressed process fluid and providing a cooled, compressed process fluid.
  • the cooled process fluid from the heat recovery system 160 may be discharged via an outlet 164 of the heat recovery system 160.
  • the outlet 164 of the heat recovery system 160 may be fluidly coupled with one or more downstream processing systems and/or components (not shown) via a third conduit 138 of the piping 130.
  • the one or more downstream processing systems and/or components may be configured to further process the cooled process fluid.
  • the heat recovery system 160 may be any system known in the art capable of capturing and/or recycling heat (e.g ., heat of compression) generated from the compression system 100.
  • the heat recovery system 160 may include one or more components and/or heat recovery sections (not shown) capable of absorbing and/or transferring heat from the second compressed process fluid.
  • Illustrative components and/or heat recovery sections of the heat recovery system 160 may include, but are not limited to, one or more recuperators, heat exchangers, heat recovery steam generators, or any combination thereof.
  • the captured or absorbed heat from the heat recovery system 160 may be directed to one or more downstream processes and/or components via conduit 166 of the piping 130.
  • the captured heat may be utilized in various processes known in the art.
  • the captured heat may be provided as a waste heat stream in a heat engine system.
  • the captured heat may be converted into useful energy by a variety of turbine generators or heat engine systems that may employ thermodynamic methods, such as Rankine cycles. Rankine cycles and similar thermodynamic methods may include steam-based processes that recover and utilize waste heat to generate steam to drive turbines, turbos, or other expanders coupled with electric generators, pumps, or other devices.
  • FIG. 2 illustrates a flowchart of a method 200 for compressing a process fluid, accordingly to one or more embodiments.
  • the method 200 may include driving a first single-stage compressor and a second single-stage compressor via a drive shaft operatively coupled with the first single-stage compressor and the second single-stage compressor, the drive shaft driven by a driver, as shown at 202.
  • the method 200 may also include compressing the process fluid via the first single-stage compressor and second single-stage compressor to provide a compressed process fluid containing heat from the compression thereof and having a pressure ratio of about 10:1 or greater, as shown at 204.
  • the method may further include directing the compressed process fluid to a heat recovery system, as shown at 206.
  • the method may also include absorbing at least a portion of the heat contained in the compressed process fluid in the heat recovery system, as shown at 208.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (13)

  1. Un système de compression, comprenant :
    un dispositif d'entraînement (102) comprenant un arbre d'entraînement (108) s'étendant à travers celui-ci, le dispositif d'entraînement (102) configuré pour fournir à l'arbre d'entraînement (108) une énergie de rotation ;
    un premier compresseur à un étage (140) et un deuxième compresseur à un étage (150), chacun comprenant un arbre rotatif (114, 116) couplé ou intégré à l'arbre d'entraînement (108), caractérisé en ce que le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) sont configurés pour comprimer un fluide de traitement de poids moléculaire élevé et pour fournir un fluide de traitement comprimé ayant un rapport de pression d'environ 10:1 ou plus, le fluide de traitement comprimé contenant de la chaleur à partir de la compression de celui-ci ; et en ce qu'un système de récupération de chaleur (160) est couplé fluidiquement au premier compresseur à un étage (140) et au deuxième compresseur à un étage (150) et configuré pour recevoir le fluide de traitement comprimé à partir de celui-ci et absorber au moins une partie de la chaleur contenue dans le fluide de traitement comprimé, et dans lequel le premier compresseur à un étage (140) a un rapport de compression d'au moins environ 3,8:1 et est couplé de manière opérationnelle à une première extrémité (104) de l'arbre d'entraînement (108) et configuré pour comprimer le fluide de traitement de poids moléculaire élevé pour fournir un premier fluide de traitement comprimé.
  2. Le système de compression selon la revendication 1, dans lequel le deuxième compresseur à un étage (150) a un rapport de compression d'au moins environ 2,7:1 et est couplé de manière opérationnelle à une deuxième extrémité (106) de l'arbre d'entraînement (108) et configuré pour comprimer le premier fluide de traitement comprimé à partir du premier compresseur à un étage (140) pour fournir le fluide de traitement comprimé.
  3. Le système de compression selon la revendication 1, dans lequel le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) sont suspendus au-dessus au niveau des extrémités opposées de l'arbre d'entraînement (108) dans une configuration à double extrémité.
  4. Le système de compression selon la revendication 1, dans lequel une entrée (142) du premier compresseur à un étage (140) est couplée fluidiquement à une entrée du système (132), l'entrée du système (132) configurée pour fournir le fluide de traitement de poids moléculaire élevé au premier compresseur à un étage (140) à partir d'une source externe.
  5. Le système de compression selon la revendication 1, dans lequel le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) sont des compresseurs centrifuges à entrée axiale.
  6. Le système de compression selon la revendication 1, dans lequel chacun des premier compresseur à un étage (140) et deuxième compresseur à un étage (150) comprend en outre :
    une entrée axiale (142, 152) configurée pour recevoir le fluide de traitement ;
    un impulseur couplé de manière opérationnelle à l'arbre d'entraînement (108) et positionné en aval de l'entrée axiale (142, 152) ;
    une aube d'entrée couplée de manière mobile à l'entrée axiale (142, 152) et configurée pour guider le fluide de traitement vers l'impulseur ;
    un diffuseur positionné en aval de l'impulseur et configuré pour recevoir le fluide de traitement à partir de l'impulseur ; et
    une volute de décharge positionnée en aval du diffuseur et configurée pour collecter le fluide de traitement à partir du diffuseur et décharger le fluide de traitement via une sortie (144, 154).
  7. Le système de compression selon la revendication 7, dans lequel le diffuseur comprend une aube mobile.
  8. Un procédé de compression d'un fluide de traitement, comprenant :
    l'entraînement d'un premier compresseur à un étage (140) et d'un deuxième compresseur à un étage (150) via un arbre d'entraînement (108) couplé de manière opérationnelle au premier compresseur à un étage (140) et au deuxième compresseur à un étage (150), l'arbre d'entraînement (108) entraîné par un dispositif d'entraînement (102) ;
    la compression du fluide de traitement via le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) pour fournir un fluide de traitement comprimé contenant de la chaleur à partir de la compression de celui-ci et ayant un rapport de pression d'environ 10:1 ou plus ;
    la direction du fluide de traitement comprimé vers un système de récupération de chaleur (160) ;
    l'absorption d'au moins une partie de la chaleur contenue dans le fluide de traitement comprimé dans le système de récupération de chaleur (160) ; et la compression du fluide de traitement via le premier compresseur à un étage (140) pour fournir un premier fluide de traitement comprimé ayant un rapport de pression d'au moins environ 3,8:1.
  9. Le procédé selon la revendication 8, comprenant en outre l'alimentation du premier compresseur à un étage (140) en fluide de traitement à partir d'une source externe.
  10. Le procédé selon la revendication 8, comprenant en outre :
    la direction du premier fluide de traitement comprimé à partir du premier compresseur à un étage (140) vers le deuxième compresseur à un étage (150) via de la tuyauterie (130) ; et
    la compression du premier fluide de traitement comprimé via le deuxième compresseur à un étage (150) pour fournir le fluide de traitement comprimé ayant un rapport de pression d'environ 10:1 ou plus.
  11. Le procédé selon la revendication 8, dans lequel le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) sont suspendus au-dessus au niveau des extrémités opposées de l'arbre d'entraînement (108) dans une configuration à double extrémité.
  12. Le procédé selon la revendication 8, dans lequel le premier compresseur à un étage (140) et le deuxième compresseur à un étage (150) sont des compresseurs centrifuges à entrée axiale.
  13. Le procédé selon la revendication 8, dans lequel chacun des premier compresseur à un étage (140) et deuxième compresseur à un étage (150) comprend :
    une entrée axiale (142, 152) configurée pour recevoir le fluide de traitement ;
    un arbre rotatif (114, 116) couplé ou intégré à l'arbre d'entraînement (108) ;
    un impulseur couplé à l'arbre rotatif (114, 116) et positionné en aval de l'entrée axiale (142, 152) ;
    une aube d'entrée couplée de manière mobile à l'entrée axiale (142, 152) et configurée pour guider le fluide de traitement vers l'impulseur ;
    un diffuseur positionné en aval de l'impulseur et configuré pour recevoir le fluide de traitement à partir de l'impulseur ; et
    une volute de décharge positionnée en aval du diffuseur et configurée pour collecter le fluide de traitement à partir du diffuseur et décharger le fluide de traitement via une sortie (144, 154).
EP14782970.9A 2013-04-08 2014-04-07 Système et procédé pour comprimer du dioxyde de carbone Active EP2984344B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361809503P 2013-04-08 2013-04-08
PCT/US2014/033130 WO2014168855A1 (fr) 2013-04-08 2014-04-07 Système et procédé pour comprimer du dioxyde de carbone

Publications (3)

Publication Number Publication Date
EP2984344A1 EP2984344A1 (fr) 2016-02-17
EP2984344A4 EP2984344A4 (fr) 2017-01-11
EP2984344B1 true EP2984344B1 (fr) 2020-03-25

Family

ID=51689939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14782970.9A Active EP2984344B1 (fr) 2013-04-08 2014-04-07 Système et procédé pour comprimer du dioxyde de carbone

Country Status (2)

Country Link
EP (1) EP2984344B1 (fr)
WO (1) WO2014168855A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201813819D0 (en) 2018-08-24 2018-10-10 Rolls Royce Plc Turbomachinery
GB2576565B (en) 2018-08-24 2021-07-14 Rolls Royce Plc Supercritical carbon dioxide compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553835B1 (fr) * 1983-10-25 1986-02-28 Bertin & Cie Machine de compression d'un fluide, a plusieurs etages de compression en serie
IL109967A (en) * 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
KR20020024933A (ko) * 2000-09-27 2002-04-03 구자홍 임펠러가 사용되는 터빈 압축기 구조
US20040247461A1 (en) * 2001-11-08 2004-12-09 Frank Pflueger Two stage electrically powered compressor
JP2004301075A (ja) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd 半密閉型多段圧縮機
WO2007095537A1 (fr) * 2006-02-13 2007-08-23 Ingersoll-Rand Company Systeme de compression a plusieurs etages et son procede d'actionnement
CH697852B1 (fr) * 2007-10-17 2009-02-27 Eneftech Innovation Sa Dispositif à spirale de compression ou d'expansion.
EP2547873B1 (fr) * 2010-03-17 2019-01-16 Amber Power Pty Ltd Compresseur centrifuge
US9062690B2 (en) * 2010-11-30 2015-06-23 General Electric Company Carbon dioxide compression systems
JP2012251529A (ja) 2011-06-07 2012-12-20 Daikin Industries Ltd 遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014168855A1 (fr) 2014-10-16
EP2984344A4 (fr) 2017-01-11
EP2984344A1 (fr) 2016-02-17

Similar Documents

Publication Publication Date Title
US10240613B2 (en) Supersonic compressor with structural arrangement to increase pressure energy in a discharge process fluid received from a centrifugal impeller
EP2295811B1 (fr) Unité de compression à haute pression pour un fluide de process dans une installation industrielle et méthode de fonctionnement de cette installation
JP5883800B2 (ja) 一体式コンプレッサ・エキスパンダ
US10584709B2 (en) Electrically heated balance piston seal
EP2147194B1 (fr) Système générateur transportable
EP2893617B1 (fr) Refroidissement de rotor de moteur et d'entrefer à air
JP2016528426A (ja) 軸流圧縮機及び軸流圧縮機の使用
JP2022191411A (ja) 1つの遠心圧縮機を含む圧縮トレインおよびlngプラント
RU2493505C2 (ru) Способ преобразования тепловой энергии при низкой температуре в тепловую энергию при относительно высокой температуре при помощи механической энергии и наоборот
EP2865896A2 (fr) Turbocompresseur et appareil à cycle de réfrigération
Saghlatoun et al. Review of expander selection for small-scale organic Rankine cycle
JP2014527598A (ja) ターボ圧縮機および使用
EP2984344B1 (fr) Système et procédé pour comprimer du dioxyde de carbone
US20120011871A1 (en) Compressor waste heat driven cooling system
Kus et al. Oil free turbo-compressors for CO2 refrigeration applications
WO2016160494A1 (fr) Enveloppe de roue
CN101018928A (zh) 热力发动机
US20170002825A1 (en) Balance piston with a sealing member
EP3274588B1 (fr) Bouclier thermique pour boîtier de pression
EP3274591B1 (fr) Compresseur avec un systéme de centrage d'un joint de piston d'équilibrage
Larralde et al. Selection of gas compressors: part 6
CN210423159U (zh) 一种透平压缩机结构
WO2014196497A1 (fr) Turboréfrigérateur
WO2016160472A1 (fr) Ensemble de montage pour un faisceau d'un compresseur
Lindberg Jr et al. Novel Compressor using woven/wound composite impeller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DRESSER-RAND COMPANY

A4 Supplementary search report drawn up and despatched

Effective date: 20161209

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 17/12 20060101ALI20161205BHEP

Ipc: F04B 41/06 20060101AFI20161205BHEP

Ipc: F04D 25/06 20060101ALI20161205BHEP

Ipc: F04D 25/16 20060101ALI20161205BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014062861

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04B0015080000

Ipc: F04B0041060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 17/12 20060101ALI20191203BHEP

Ipc: F04D 25/16 20060101ALI20191203BHEP

Ipc: F04D 25/06 20060101ALI20191203BHEP

Ipc: F04B 41/06 20060101AFI20191203BHEP

Ipc: F04D 29/58 20060101ALI20191203BHEP

INTG Intention to grant announced

Effective date: 20200102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014062861

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1248855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014062861

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

26N No opposition filed

Effective date: 20210112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014062861

Country of ref document: DE

Representative=s name: ROTH, THOMAS, DIPL.-PHYS. DR., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230419

Year of fee payment: 10

Ref country code: IT

Payment date: 20230421

Year of fee payment: 10

Ref country code: FR

Payment date: 20230421

Year of fee payment: 10

Ref country code: DE

Payment date: 20220617

Year of fee payment: 10

Ref country code: CH

Payment date: 20230502

Year of fee payment: 10

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: SIEMENS ENERGY, US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014062861

Country of ref document: DE

Owner name: SIEMENS ENERGY, INC., ORLANDO, US

Free format text: FORMER OWNER: DRESSER-RAND COMPANY, OLEAN, N.Y., US