EP2982809A1 - Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach - Google Patents
Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach Download PDFInfo
- Publication number
- EP2982809A1 EP2982809A1 EP14002728.5A EP14002728A EP2982809A1 EP 2982809 A1 EP2982809 A1 EP 2982809A1 EP 14002728 A EP14002728 A EP 14002728A EP 2982809 A1 EP2982809 A1 EP 2982809A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- roof
- omega
- insulating
- panels
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009423 ventilation Methods 0.000 title claims abstract description 51
- 238000009413 insulation Methods 0.000 title claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 58
- 239000010410 layer Substances 0.000 claims description 44
- 239000011810 insulating material Substances 0.000 claims description 24
- 239000004814 polyurethane Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 229920002635 polyurethane Polymers 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000011120 plywood Substances 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 4
- 238000004078 waterproofing Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 239000011253 protective coating Substances 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 210000002268 wool Anatomy 0.000 claims description 3
- 239000010751 BS 2869 Class A2 Substances 0.000 claims description 2
- 239000002346 layers by function Substances 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims 4
- 238000010521 absorption reaction Methods 0.000 claims 1
- 239000000565 sealant Substances 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229920000582 polyisocyanurate Polymers 0.000 description 6
- 239000011495 polyisocyanurate Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 210000002105 tongue Anatomy 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 240000008213 Brosimum alicastrum Species 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006757 chemical reactions by type Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000005828 ramon Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/35—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
- E04D3/351—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
- E04D3/352—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material at least one insulating layer being located between non-insulating layers, e.g. double skin slabs or sheets
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/16—Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/16—Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
- E04D13/1606—Insulation of the roof covering characterised by its integration in the roof structure
- E04D13/1612—Insulation of the roof covering characterised by its integration in the roof structure the roof structure comprising a supporting framework of roof purlins or rafters
- E04D13/1618—Insulation of the roof covering characterised by its integration in the roof structure the roof structure comprising a supporting framework of roof purlins or rafters with means for fixing the insulating material between the roof covering and the upper surface of the roof purlins or rafters
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/17—Ventilation of roof coverings not otherwise provided for
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D13/00—Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
- E04D13/17—Ventilation of roof coverings not otherwise provided for
- E04D13/172—Roof insulating material with provisions for or being arranged for permitting ventilation of the roof covering
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/36—Connecting; Fastening
- E04D3/366—Connecting; Fastening by closing the space between the slabs or sheets by gutters, bulges, or bridging elements, e.g. strips
Definitions
- the present invention relates to an integrated system of insulation, ventilation and fixing for a roof; furthermore, the present invention also relates to a building roof comprising said system.
- the invention finds specific application in the field of production of semi-finished components for building.
- the invention relates to the multi-layer and multifunction package, which is mounted between the load-bearing structure of the roof and the waterproofing roof covering, for thermal insulation, ventilation and support.
- a specific solution for a slanting roof is described which comprises laterally rabbeted insulating panels on which a double crossed framework of omega-shaped metal sections is integrated, said solution also being suitable for vertical walls of the ventilated type.
- insulation is essential to make a roofing that reduces heat loss, produces significant operational saving, obtains considerable advantages in terms of living comfort and also performs a valid function of protection of the load-bearing structure.
- insulation one means a layer of material having the main function of thermal insulation; often, in addition to this function there is also the noise reduction function for the purpose of obtaining an insulation of the thermal-acoustic type.
- the effectiveness of such insulation depends mainly on the characteristics of the material used, on the thicknesses used and also on the specific configuration of realization of the roof package.
- hot roof in the field of insulated roofings the solutions of the unventilated type, otherwise called hot roof, or the more modern solutions comprising a ventilation chamber, also called ventilated roof, are traditionally widely used.
- Said hot roof solutions substantially provide a layer of insulating material directly mounted on the load-bearing structure, for example the wooden beams of a slanting roof, then placing on it a waterproofing sheath which will thus be placed under the roofing, in direct contact. It has been widely demonstrated that such solutions of the unventilated type, although varying in the type of materials and in the thicknesses, can cause problems of the thermo-hygrometric type not ensuring the necessary migration of humidity outwards through said roof package.
- a ventilated roof provides a space for air that flows from the bottom upwards on the whole pitch, between the insulating layer and the boarding that supports the roofing, being suitably sized according to the flow provided; said air space, also called ventilation chamber, therefore has suitable openings both on the lower level, corresponding to the gutter, and on the upper level, corresponding to the ridge, in such a way as to allow the advantageous crossing of the ascending air motion.
- thermo-hygrometric comfort in the houses and towards new insulation solutions have led to an evolution in construction systems, which has also been favoured by the new building regulations.
- the firms operating in the building sector have proposed innovative roof stratigraphies with increasingly growing thicknesses; for example, solutions of high thermo-hygrometric performance ventilated roofs are known that provide stratigraphies comprising a thermal-insulating layer with a thickness up to 20 cm, the insulating material having a thermal conductivity of 0.032 W/mK, and a ventilation chamber having a thickness of at least 6 cm.
- ventilation chambers which are made with small wooden splines fixed in a parallel way on the insulating layer, in the direction of maximum inclination, in adherence, in the form of spacers; generally, on such small splines a boarding is made for supporting the roofing or one fixes orthogonally on said splines a second framework of small wooden splines having a distance between centres selected according to the shingles, or tiles, to be supported.
- the most used insulating materials are, nowadays, the foamed polymers having a high thermal resistance, in a rigid form in the shape of plates of different thicknesses also coupled on both faces with a protection layer; for example, one should remember the panels of foamed polystyrene or of polyurethane foam coupled on the upper part and/or on the lower part with aluminium sheets, particular membranes or additional layers.
- insulating materials of natural origin are available, such as cork or mineral wools.
- D1 describes a ventilation system for tilted roofs with metal stanchions fixed to the load-bearing structure between one panel and the other, of the omega-shaped type with the hollow facing downwards, being protruding from the thickness of the panels in such a way as to space out the roofing and also being provided with holes to facilitate the crossing of air.
- D2 preposes an anchorage system of the insulating panels made up of a "U"-shaped element with the two ends embedded in the thickness, joined to the load-bearing structure with fastening elements that cross the entire thickness of the insulating material, and intended to support the sections that support the roofing.
- D3 describes insulating panels with the edge inserted in particular sections with a central hollow to integrate fixing brackets, being provided with lower anchorage tongues to be anchored in said hollow between two coupled profiles, in correspondence of the connection between adjacent panels, and also provided with an upper tongue for supporting the perforated omega-shaped sections of support and ventilation of the roof covering.
- D4 proposes an integrated solution of insulation and ventilation for external vertical walls, marketed by the Italian company Brianza Plastica Spa Carate Brianza (MB) (www.brianzaplastica.it) under the name X-wallTM, which provides shaped interlocking panels also with a metal guide embedded in the thickness of each panel, in the shape of a track, for the purpose of fixing in a sliding way, by means of hammer head screws, a plurality of supporting squares for the "T"-shaped vertical metal stanchions on which the external coating is fixed, acting as spacers.
- MB Brianza Plastica Spa Carate Brianza
- X-wallTM which provides shaped interlocking panels also with a metal guide embedded in the thickness of each panel, in the shape of a track, for the purpose of fixing in a sliding way, by means of hammer head screws, a plurality of supporting squares for the "T"-shaped vertical metal stanchions on which the external coating is fixed, acting as spacers.
- D5 describes insulating panels with the edge rabbeted in a complementary way on the two opposite sides and provided with a thin groove in such a way as to house an element that is fixed in adherence, with screws, to the load-bearing structure; said element enables the interlocking and the reciprocal connection of two adjacent panels without heat bridges, having an overall thickness smaller than the thickness of the panel to be covered by the protruding part of the rabbeting of said adjacent panel that is mounted as an interlocking after said fixing.
- said panels On the upper extrados said panels have continuous elements embedded in the thickness and arranged in a zigzag manner for the purpose of fixing in the most appropriate position the perforated sections of support and ventilation of the roof covering.
- D6 and D7 propose an integrated system of insulation, ventilation and fixing for ventilated walls of the continuous façade type, comprising rabbeted insulating panels with a double framework of metal sections; the panels provide an interlocking rabbeting of the complementary type on the two opposite sides, where on one side the edge has the thickness depressed to house the wing of a continuous "Z"-shaped element of fixing with screws to the load-bearing structure through the remaining thickness of the panel, and wherein on the other side the rabbeting protrudes realizing the overlapping once drawn near.
- said "Z"-shaped profile is increased to vertically come out of the connection between the panels, spacing the omega-shaped sections that are fixed to it vertically, and to support the external coating such as a corrugated sheet; in D7 said "Z"-shaped profile does not exit the extrados of the panels, remaining coplanar once adjacent, being horizontally mounted to support and fix vertically the omega-shaped supporting sections of the external coating.
- the known solutions with high insulating power for fixing in an effective way to the load-bearing beams generally provide the use of screws having such a length and diameter as to yield the load-bearing element, being even more serious in the frequent case of wooden beams.
- the known construction systems are not suffciently effective in the case of limited weights and thicknesses; for example, they do not allow to comply with the current regulations with respect to thermal insulation in the various Italian climatic zones, adopting a package having a weight equal or lower than 40 Kg/m 2 and a thickness equal or lower than 18 cm, between the boardings above the load-bearing structure and under the roof covering.
- the first framework is of the discontinuous type and also that in D6 the second framework is horizontal and does not realize a real ventilation chamber but only an air space, the ventilation function being performed by the first framework that exits the extrados of the panels.
- An aim of the present invention is also to avoid the above-mentioned drawbacks.
- a first aim consists in reducing the overall weight and thickness of said roof insulation and ventilation package, the thermal insulating panels and the relative fixing system being included inside a stratigraphy made up of multiple elements which synergically contribute to obtaining a highly performing integrated system with respect to the reaction to fire, to thermal insulation both in winter and in summer and to sound-proofing, and also with respect to seismic resistance.
- a second aim consists in fixing in an effective way insulating panels having a great thickness to the load-bearing beams, using screws of reduced length and diameter so as not to yield the load-bearing element, said aim being particularly important in the case of wooden beams.
- a third aim consists in solving the known executive problems connected with the complexity and the time necessary for the assembly of the whole insulation and ventilation package; in particular, one aims at considerably facilitating the laying operations providing a limited number of operations and also using elements of the symmetrical type, such as the metal sections of the first and second panels or the insulating panels with symmetrical rabbeting without interlocking, which can be positioned rapidly in an intuitive way.
- a fourth aim consists in reducing the overall costs, also reducing the height of the sheet metal elements, as well as from the internal side and particularly for the use of plasterboard panels, to provide a valuable aspect equal to a finishing.
- a fifth aim consists in reducing the impact of the heat and sound bridges, with particular reference to the openings of the roof such as windows and chimneys.
- the integrated system (10) of insulation, ventilation and fixing for a roof (20) mainly provides that, between the load-bearing structure (200) and the roof covering (210), a homogenous layer of panels of insulating material (110) of great thickness is fixed in an effective way to the load-bearing beams through a hollow created laterally and symmetrically on each panel, in the form of an "L"-shaped rabbeting, using screws of limited length and diameter so as not to yield the load-bearing element.
- the placing side-by-side of two adjacent panels forms a "U"-shaped groove, in the form of an upwardly opened channel, which allows to integrate in the thickness and without heat bridges a first metal element (120) having an omega-shaped section with the head facing downwards.
- Said framework is substantially inserted in the thickness of the panel by the extrados (115), except for the tongues of said metal element (120) that press in adherence from the extrados and act as a wide and continuous support for a second metal framework that is fixed on the upper part to form an effective ventilation chamber (144).
- said metal elements (120) are filled from above with insulating elements (130) in the whole free volume for the purpose of ensuring substantially homogenous thermal and hygrometric performances on the whole surface of the roof.
- said metal element is sealed with butylic tape (131) in such a way that the extrados surface (115) becomes completely waterproof.
- further second metal elements (140) having an omega-shaped section with the head facing upwards, are orthogonally fixed in adherence, on said first metal elements (120) in the direction of maximum inclination of the roof or according to the ventilation flow (145) towards the ridge.
- the roof covering (210) which acts as a roof waterproofing and which, preferably but not exclusively, is of the thin multilayer and continuous type with Canadian tiles ( Fig. 2.3 ).
- each insulating panel (110) has at the extrados (115), symmetrically in correspondence of two opposite longitudinal edges (113), a rabbeting (112) in the form of an "L"-shaped hollow that locally reduces the thickness of the panel in such a way as to obtain, once the panels have been drawn near in adherence on the edge of contact (113), that is to say, in correspondence of the plane of connection (114), a rectilinear and continuous groove having a "U" section open upwards, in the form of a channel; said "U” groove, being therefore formed by said "L"-shaped rabbetings (112) which are frontally opposite and symmetrically mirrored with respect to the plane of connection (114).
- Such a solution allows to house in said groove an omega-shaped metal element (120) having sizes substantially corresponding to said hollow, in such a way as to adhere to said rabbetings (112) with the head (121) on the bottom of the hollow and the wings (122) that press on the extrados (115) of the panel (110) from outside, for a distributed fixing along the whole edge of the element (120-2) and at the same time on the double row of adjacent panels (110) ( Fig.1 ).
- the system made up of the rabbeted insulating panel and of the omega-shaped metal element is then fixed on the load-bearing beam (200) by means of threaded screws (123) of limited length, being limited between the inside the head (121) of the omega and the load-bearing beam, holing the edge of connection (113) in correspondence of the "L"-shaped lateral rabbeting (112) and passing through the base layer (100), if present.
- insulating panels (110) made of a rigid foam of a highly thermal-insulating material, being for example of the Polyurethane type, also known by the English acronym PUR, or of the Polyisocyanurate type, also known as PIR or POLYISO, preferably coupled on both faces by a special superficial coating (111) of the protective type, conventionally called facer in the English language, which enables to further reduce thermal conductivity with respect to the traditional insulating materials and which is also impermeable to gases; said coating (111), being preferably an aluminium sheet or, as an alternative, a synthetic membrane.
- TV Venest Spa Ramon of Loria
- AVF the closed-cell rigid foam POLYISO
- the invention provides that in correspondence of the edge of connection (113) between adjacent panels there is a thickness of the insulating material comprised between 2 cm and 6 cm.
- the invention provides an insulating panel (110) of PUR or PIR having a thickness of 10 cm, being it in fact sufficient to comply with the current legislative restrictions concerning thermal insulation in all the Italian climatic zones.
- such a panel has said rabbeting (112) having a depth of 6 cm in such a way as to insert in it an omega-shaped metal element (120) having a height of 6 cm, excluding the wings (122); such a configuration therefore provides, under said rabbeting, a remaining thickness of the panel of 4 cm which allows to significantly reduce the sizes of the through-screws (123) of fixing to the load-bearing structure (200), for example the wooden truss of a slanting roof, with also lower bending moment efforts, although maintaining a sufficient insulating layer below said metal sections (120), in correspondence of the edge of connection (113) ( Fig. 1 ).
- said screws (123) are sized to pass through 4 cm of insulating material (123), under the rabbeting (112), and through the base panel (100) up to the load-bearing beam (200) and bear the efforts connected to the operation of the whole roof; the diameter and the length of these screws (123) are therefore particularly limited with respect to the conventional solutions because the roof provided by the invention is of the light type and also because the thickness of the insulating material is limited, as described above.
- screws (123) are sufficient having a length of about 120 mm with a diameter of 6.5 mm; in particular, we remind that in the construction systems of the conventional type and with equal insulating effectiveness there is a length which is at least double of said screws, for the purpose of crossing insulating panels having a thickness of at least 20 cm and with diameters consequently suitable for the efforts.
- this invention provides that, in the case of concrete load-bearing beams, said screws are of a length of about 100 mm with a diameter of 7.5 mm; in the case of a metal load-bearing structure, on the other hand, it is sufficient to have screws of a length of about 80 mm with a diameter of 6.3 mm.
- the invention (10, 20), in the preferred embodiment configuration ( Fig. 1-2 ), provides that said omega-shaped metal elements (120) constituting the first framework are placed and fixed with the through-screws (123), in correspondence of the plane of connection (124) between one panel and the other, having a distance between centres of 120 cm.
- said omega-shaped sections (120) having the hollow facing upwards are filled with a filling element (130) of insulating material, for the purpose of closing all their free volume and ensure a homogenous thermal insulation on the whole surface of the roof; said filling element, being of a thermal-insulating material equivalent to the panels (110), such as said PUR or PIR, in the form of countershaped splines or foam ( Fig. 1-2 ).
- said insulated omega-shaped sections (120, 130) are sealed with a special butylic tape (131) in such a way that the extrados surface (115) of the whole insulating layer, which is formed by said superficial coating (111) of the type called facer of aluminium, with said butylic tape (131) applied in correspondence of each metal element of the first framework, form a completely waterproof layer and is also homogenous in the shape and in the behaviour; it is observed that advantageously said extrados is substantially coplanar, with only the wings (122) of each metal element (120) of the first framework that protrude from their thickness to facilitate the fixing of the successively superimposed framework.
- said second omega-shaped metal elements (140) are fixed in an orthogonal direction with respect to them and directed towards the opposite side, or with the respective wings (122, 142) in adherence to facilitate the support and the fixing with mechanical elements (143), preferably forming a ventilation chamber (144) having a height of 6 cm.
- the upper closing layer (150) for example a supporting boarding for a roof covering (210) made up of Canadian tiles.
- said first omega-shaped metal elements (120) are made of galvanized sheet having a thickness of 6/10 mm and a height of 6 cm, while said second omega-shaped metal elements (140) are of a section having a thickness of 10/10 mm and a height of 6 cm.
- Particularly suitable for the invention is a closing layer (150) made of wooden panels with oriented scales of the type called Plywood Osb, the English acronym for oriented strand board, said scales being glued with synthetic resin and pressed in various layers also with crossed orientation for greater resistance; preferably, one uses panels having a thickness of 15 mm and also impregnated with a polyurethane additive having a protective and fire-retardant function.
- a closing layer made of wooden panels with oriented scales of the type called Plywood Osb, the English acronym for oriented strand board, said scales being glued with synthetic resin and pressed in various layers also with crossed orientation for greater resistance; preferably, one uses panels having a thickness of 15 mm and also impregnated with a polyurethane additive having a protective and fire-retardant function.
- said package obtains an average value of soundproofing of 41 dB, and also obtains a fire reaction class of B - s1 - d0 from the internal side and of B - roof - t1 from the external side.
- the solution as in Example 1 can have the plasterboard panel (100) that is of the type in class A2 of reaction to fire, of the single layer type or even double layer type, for a thickness of at least 15 mm.
- said Plywood panel (150), of the Osb type is impregnated with a polyurethane additive having a protective and fire-retardant function in such a way as to allow to resist to flame resistance tests for at least 5 minutes.
- a polyurethane additive having a protective and fire-retardant function in such a way as to allow to resist to flame resistance tests for at least 5 minutes.
- said plasterboard panel (100) of class A1 is coupled to the insulating panel (110) through the use of a polyurethane glue, for example of the type marketed by the Italian company Collanti Concorde S.r.l. Vittorio Veneto (TV) (www.collanticoncorde.it) under the name of Protopur AE100, alternatively by means of the use of a vinylic glue, for example of the type marketed by the company Pigal S.p.A. Crespellano (BO) (www.pigal.it) under the name of VINIL 303.
- a polyurethane glue for example of the type marketed by the Italian company Collanti Concorde S.r.l. Vittorio Veneto (TV) (www.collanticoncorde.it) under the name of Protopur AE100
- a vinylic glue for example of the type marketed by the company Pigal S.p.A. Crespellano (BO) (www.pigal.it) under the name of VINIL
- said plasterboard panel (100) of class A1 is installed in place in a double layer, in such a way that said soundproofing power in place increases by two more decibels.
- said integrated system (10) can include a base layer (100) made up of decorative panels, such as a wooden boarding of machined plates or matchboards with the aesthetically valuable exposed face (101), instead of said plasterboard panels; with respect to said first example, the values obtained in the thermo-hygrometric tests remain equivalent.
- said integrated system (10) can be without said first base layer (100).
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Building Environments (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14002728.5A EP2982809B1 (de) | 2014-08-05 | 2014-08-05 | Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14002728.5A EP2982809B1 (de) | 2014-08-05 | 2014-08-05 | Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2982809A1 true EP2982809A1 (de) | 2016-02-10 |
EP2982809B1 EP2982809B1 (de) | 2017-02-01 |
Family
ID=51564404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14002728.5A Not-in-force EP2982809B1 (de) | 2014-08-05 | 2014-08-05 | Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2982809B1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3467230A1 (de) * | 2017-10-06 | 2019-04-10 | HILTI Aktiengesellschaft | Baugruppe mit profilblech und brandschutz- und oder schallschutzelement sowie brandschutz- und /oder schallschutzelement zur bildung einer baugruppe |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3667180A (en) | 1970-11-03 | 1972-06-06 | Robertson Co H H | Fastening means for double-skin foam core building construction panel |
FR2571764A1 (fr) | 1984-10-11 | 1986-04-18 | Isobox | Perfectionnements apportes aux systemes isolants supports de couvertures |
DE3622648A1 (de) | 1986-07-05 | 1988-01-21 | Maerkische Bauelemente Gmbh | Plattenfoermiges verbundelement fuer bauzwecke |
DE3634521A1 (de) * | 1986-10-10 | 1988-04-14 | Guenter Spiekermann | Fassaden- und/oder dacheindeckungselement in schichtbauweise |
EP0653528A1 (de) | 1993-11-11 | 1995-05-17 | Andreas Decker | Unterdachkonstruktion |
EP0685612A1 (de) | 1994-05-30 | 1995-12-06 | Gerthold Dipl.-Ing. Pröckl | Unterkonstruktion für zweischalige Dachsysteme |
JPH09170317A (ja) | 1995-12-20 | 1997-06-30 | Watanabe Kogyo Kk | システム屋根構造 |
EP0953693A1 (de) | 1998-04-16 | 1999-11-03 | Vanni Padovan | Universelles System zur Isolierung von Dächern und/oder Wänden |
DE29902930U1 (de) | 1999-02-19 | 1999-11-18 | Deutsche Pittsburgh Corning GmbH, 44135 Dortmund | Vorrichtung zur Befestigung von Metallscharen-Blechen auf Dachflächen, insbesondere Wärmedämmschichten |
EP0959189A2 (de) | 1998-05-20 | 1999-11-24 | Puren-Schaumstoff Gmbh | Wärmedämmplatte |
DE20216879U1 (de) | 2002-11-02 | 2003-01-02 | ThyssenKrupp Stahl AG, 47166 Duisburg | Sandwichelement zur Erstellung von vorzugsweise Dächern |
NL1039070C2 (nl) * | 2011-09-26 | 2013-03-28 | Petri Beheer B V | Samenstel voor het vormen van een dak alsmede dakelement voor een dergelijk samenstel, werkwijze voor het vervaardigen van een dak en werkwijze voor het bewerken van een dak. |
US8621810B2 (en) | 2011-02-28 | 2014-01-07 | Kingspan Insulated Panels, Inc. (USA) | Building wall system |
WO2014055725A1 (en) | 2012-10-03 | 2014-04-10 | Kingspan Insulated Panels, Inc. (USA) | Building wall panel |
US8769894B2 (en) | 2011-05-12 | 2014-07-08 | Powerhouse Building Solutions (2009) Inc. | Insulation and ventilation systems for building structures |
-
2014
- 2014-08-05 EP EP14002728.5A patent/EP2982809B1/de not_active Not-in-force
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3667180A (en) | 1970-11-03 | 1972-06-06 | Robertson Co H H | Fastening means for double-skin foam core building construction panel |
FR2571764A1 (fr) | 1984-10-11 | 1986-04-18 | Isobox | Perfectionnements apportes aux systemes isolants supports de couvertures |
DE3622648A1 (de) | 1986-07-05 | 1988-01-21 | Maerkische Bauelemente Gmbh | Plattenfoermiges verbundelement fuer bauzwecke |
DE3634521A1 (de) * | 1986-10-10 | 1988-04-14 | Guenter Spiekermann | Fassaden- und/oder dacheindeckungselement in schichtbauweise |
EP0653528A1 (de) | 1993-11-11 | 1995-05-17 | Andreas Decker | Unterdachkonstruktion |
EP0685612A1 (de) | 1994-05-30 | 1995-12-06 | Gerthold Dipl.-Ing. Pröckl | Unterkonstruktion für zweischalige Dachsysteme |
JPH09170317A (ja) | 1995-12-20 | 1997-06-30 | Watanabe Kogyo Kk | システム屋根構造 |
EP0953693A1 (de) | 1998-04-16 | 1999-11-03 | Vanni Padovan | Universelles System zur Isolierung von Dächern und/oder Wänden |
EP0959189A2 (de) | 1998-05-20 | 1999-11-24 | Puren-Schaumstoff Gmbh | Wärmedämmplatte |
DE29902930U1 (de) | 1999-02-19 | 1999-11-18 | Deutsche Pittsburgh Corning GmbH, 44135 Dortmund | Vorrichtung zur Befestigung von Metallscharen-Blechen auf Dachflächen, insbesondere Wärmedämmschichten |
DE20216879U1 (de) | 2002-11-02 | 2003-01-02 | ThyssenKrupp Stahl AG, 47166 Duisburg | Sandwichelement zur Erstellung von vorzugsweise Dächern |
US8621810B2 (en) | 2011-02-28 | 2014-01-07 | Kingspan Insulated Panels, Inc. (USA) | Building wall system |
US8769894B2 (en) | 2011-05-12 | 2014-07-08 | Powerhouse Building Solutions (2009) Inc. | Insulation and ventilation systems for building structures |
NL1039070C2 (nl) * | 2011-09-26 | 2013-03-28 | Petri Beheer B V | Samenstel voor het vormen van een dak alsmede dakelement voor een dergelijk samenstel, werkwijze voor het vervaardigen van een dak en werkwijze voor het bewerken van een dak. |
WO2014055725A1 (en) | 2012-10-03 | 2014-04-10 | Kingspan Insulated Panels, Inc. (USA) | Building wall panel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3467230A1 (de) * | 2017-10-06 | 2019-04-10 | HILTI Aktiengesellschaft | Baugruppe mit profilblech und brandschutz- und oder schallschutzelement sowie brandschutz- und /oder schallschutzelement zur bildung einer baugruppe |
Also Published As
Publication number | Publication date |
---|---|
EP2982809B1 (de) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10982442B2 (en) | Insulated roof diaphragms and methods | |
US8534018B2 (en) | Ventilated structural panels and method of construction with ventilated structural panels | |
US7735282B2 (en) | Fully insulated frame building panel system | |
US8490355B2 (en) | Ventilated structural panels and method of construction with ventilated structural panels | |
US4478018A (en) | Thermal break exterior insulated wall framing system | |
US6363674B1 (en) | Premanufactured structural building panels | |
US7765756B2 (en) | Low noise roof deck system | |
US6125608A (en) | Composite insulated framing members and envelope extension system for buildings | |
US6085479A (en) | Premanufactured structural building panels | |
US20090165410A1 (en) | Insulation system comprising interconnected insulations panels disposed against a wall | |
RU2010117519A (ru) | Составной элемент, содержащий целлюлозу | |
DK201570297A1 (da) | Modulsystem til efterisolering af en væg i en bygning og/eller facaderenovering | |
US20210207362A1 (en) | Ventilated structural panels and method of construction with ventilated structural panels | |
EP0852275A2 (de) | Aus mehreren Schichten bestehende Decke | |
IE20090638A1 (en) | A timber frame building system | |
US8122657B2 (en) | Metal “log” buildings with rigid insulation | |
EP2256265A2 (de) | Isolierte mehrschichtige Sandwichplatte | |
US20220162860A1 (en) | Wall cladding planks, clips, systems, and methods of installation and use | |
EP2982809B1 (de) | Integriertes System für Isolierung, Belüftung und Befestigung für ein Dach | |
EP2130990A1 (de) | System zur Herstellung von belüfteten Wänden und Dächern mit vormontierten Isolierstützplatten | |
CA2792344A1 (en) | Ventilated structural panels and method of construction with ventilated structural panels | |
US20230399841A1 (en) | Wall cladding panels, systems, and methods of installation and use | |
WO2017146615A1 (ru) | Стеновая панель | |
RU167020U1 (ru) | Устройство металлической кровли | |
GB2486276A (en) | Building with insulated roof panels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20160706 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04D 13/17 20060101ALI20160728BHEP Ipc: E04D 3/35 20060101AFI20160728BHEP Ipc: E04D 13/16 20060101ALI20160728BHEP Ipc: E04D 3/366 20060101ALI20160728BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160811 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 865742 Country of ref document: AT Kind code of ref document: T Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014006427 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 865742 Country of ref document: AT Kind code of ref document: T Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170501 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170501 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014006427 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014006427 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170805 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170805 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210812 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220805 |