EP2982036B1 - Device for controlling a polyphase inverter - Google Patents

Device for controlling a polyphase inverter Download PDF

Info

Publication number
EP2982036B1
EP2982036B1 EP14721916.6A EP14721916A EP2982036B1 EP 2982036 B1 EP2982036 B1 EP 2982036B1 EP 14721916 A EP14721916 A EP 14721916A EP 2982036 B1 EP2982036 B1 EP 2982036B1
Authority
EP
European Patent Office
Prior art keywords
machine
phase
strategy
pulse width
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14721916.6A
Other languages
German (de)
French (fr)
Other versions
EP2982036A1 (en
Inventor
Jean-François DUGUEY
Gilbert Konan
François-Xavier Bernard
Daniel Pereira
Laurent DOMENGER
Abdelaziz AZIZI SAMIR
Son Ha TRAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP2982036A1 publication Critical patent/EP2982036A1/en
Application granted granted Critical
Publication of EP2982036B1 publication Critical patent/EP2982036B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/076Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein both supplies are made via converters: especially doubly-fed induction machines; e.g. for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation

Definitions

  • the present invention relates to a device for controlling a polyphase inverter intended to supply from a direct current source a three-phase double rotary electrical machine, that is to say a machine comprising a stator with two three-phase windings offset angularly relative to each other.
  • the invention also relates to a three-phase double rotary electrical machine comprising an integrated inverter provided with this device, in particular for applications in motor vehicles.
  • An inverter enables the polyphase currents necessary for the operation of a polyphase rotary electrical machine to be generated from a direct current source.
  • an inverter comprises switching elements forming several power arms, each comprising two switching elements in a conventional two-level bridge architecture.
  • the midpoint of a pair of switching elements of the same power arm is connected to a phase winding of the stator of the rotating electric machine.
  • PWM pulse width modulation methods
  • vector pulse width modulation process (vector MLI or SVM in English terminology, acronym for "Space Vector Modulation”) is widely used and allows a gain of 15% compared to the conventional sinusoidal PWM process.
  • This piloting process in turn blocks one of the power arms over an electrical period.
  • the losses in the inverter are compared for the two processes SVM and GDPWM as a function of the operating points of an alternator-starter.
  • EMC electromagnetic compatibility
  • the current source generally comprises a decoupling capacitor which makes it possible to filter the input current of the inverter which undergoes strong discontinuities due to the chopping effected by the elements. of commutation.
  • French patent application FR2895598 by VALEO EQUIPEMENTS ELECTRIQUES MOTEUR describes a specific PWM control method for a polyphase inverter which allows both a reduction of switching losses and a reduction of an effective current in the decoupling capacitor so as to reduce the undulations of the supply voltage.
  • the aim of the present invention is therefore the optimization of a PWM control device.
  • the invention therefore relates to a device for controlling a polyphase inverter intended to supply a three-phase rotating electrical machine from a direct current source, the device being of the type comprising those of means for generating switching signals driving switching elements so as to obtain a reduction in losses in the switching elements and a reduction in an effective current in a source decoupling capacitor, the three-phase double rotary electric machine comprising three first and three second phase windings forming a first three-phase system and a second three-phase system with separate neutral points angularly offset by a predetermined offset angle, and the first and second phase windings being connected respectively to three first and three second power arms formed by the switching elements d '' a polyphase inverter.
  • a first strategy among the set of control strategies advantageously consists in applying to the first three-phase system a first modulation of centered vector pulse width offset by a common delay of a second modulation of centered vector pulse width of the same period applied to the second three-phase system.
  • a second strategy among the set of control strategies preferably consists in applying to the first three-phase system a first modulation of vector pulse width offset by a common delay of a second modulation of vector pulse width d 'a same period applied to the second three-phase system and to block one of the first three arms and / or one of the three second arms.
  • a third strategy among the set of control strategies preferably consists in applying to the first three-phase system a first generalized discontinuous pulse width modulation offset by a common delay of a second pulse width modulation generalized discontinuous of the same period applied to the second three-phase system.
  • the second strategy is applied if a speed of rotation of the machine is less than a first predetermined representative speed. end of a machine start-up or if this speed of rotation is between this first predetermined speed and a second predetermined speed, representative of an end of constant torque operation of the machine, greater than the first predetermined speed and if a power factor of the machine is less than or equal to a predetermined coefficient.
  • the third strategy is applied if a speed of rotation of the machine is between a first predetermined speed representative of an end of a starting of the machine and a second predetermined speed, representative of an end a constant torque operation of the machine, greater than this first predetermined speed and if a power factor of the machine is greater than a predetermined coefficient, or if this speed of rotation is between this second predetermined speed and a third speed predetermined, representative of a constant power operation of the machine, greater than this second predetermined speed.
  • the invention also relates to a three-phase double rotary electrical machine comprising an integrated inverter provided with the control device according to the invention as briefly described above.
  • the stator 1 of the three-phase double rotary electrical machine comprises a first three-phase star system consisting of three first phase windings 2, 3, 4 and a second three-phase star system consisting of three second phase windings 5, 6, 7 offset from each other by an offset angle ⁇ of 30 °.
  • the first phase windings 2, 3, 4 each have a first end connected to each of the first midpoints of first power arms 8 formed by switching elements 9 of a first power module 10 and another first common end 11 .
  • the second phase windings 5, 6, 7 each have a second end connected to each of the second midpoints of second power arms 12 formed by other switching elements 13 of a second power module 14 and another second common end 15.
  • the first and second common ends 11, 15 are the neutral points of the first and second three-phase systems and are isolated from each other.
  • the first and second power arms 8, 12 of the first and second power modules 10, 14 are connected in parallel to a DC direct current source, which includes a decoupling capacitor 16.
  • the switching elements 9, 13 are controlled by a control device 17 so as to switch first phase currents R, S, T flowing in the first phase windings 2, 3, 4 and second phase currents U, V , W circulating in the second phase windings 5, 6, 7 according to control strategies implemented in the invention, making it possible to operate the first and second power modules in a hexaphase inverter 10, 14 operating as first and second three-phase inverters OND1, OND2.
  • each of these first and second inverters it is possible to block or not a power arm 8, 12. It is also possible to shift the PWMs relative to each other.
  • the inventive entity has determined that these control strategies make it possible both to reduce the switching losses in the switching elements 9, 13, most often consisting of MOS type transistors, while reducing an effective current which must be absorbed by the decoupling capacitor 16 at the input of the inverter 10, 14.
  • This first strategy consists in applying two vectorial PWMs without blocking a power arm 8, 12.
  • a vector centered MLI (SVM) is applied to each of the two three-phase systems.
  • MLI has the same period. They are separated by a common delay Td, constant or variable.
  • This second strategy consists in applying two vector PWM with blocking of one or two power arms 8, 12.
  • Vectorial PWM with a shift of the potentials of the neutral points 11, 15 makes it possible to block one or two of the six power arms 8, 12 of the inverter 10, 14.
  • MLI has the same period. They are separated by a common delay Td, constant or variable.
  • This third strategy consists in applying two generalized discontinuous PWM (GDPWM).
  • MLI has the same period. They are separated by a common delay Td, constant or variable.
  • This strategy consists in applying two centered vectorial PWM (SVM) to offset PWM and power arms 8, 12 blocked.
  • SVM centered vectorial PWM
  • MLI has the same period.
  • control strategies described above lead to a reduction in losses in the switching elements 9 and a reduction in the effective current in the decoupling capacitor 16.
  • This first zone A corresponds to the starting of the three-phase double machine 1 operating at constant motor torque ⁇ 0 from stopping (speed of rotation ⁇ zero) to a first speed of rotation ⁇ 1.
  • this first zone A typically corresponds to the MOTOR mode of a STOP / START function.
  • the speed of rotation ⁇ and the phase voltage of machine 1 are low.
  • This second zone B corresponds to a mode of operation of the machine 1 in which the speed of rotation ⁇ is comprised between the first speed of rotation ⁇ 1 and a second speed of rotation ⁇ 2 which marks the end of the constant torque operation 18.
  • this second zone B typically corresponds to a BOOST function.
  • the speed of rotation ⁇ and the phase voltage of machine 1 remain low, but the power factor cos ⁇ of machine 1 may be low for a speed of rotation ⁇ close to the first speed of rotation ⁇ 1 or close to unit for a speed of rotation ⁇ close to the second speed of rotation ⁇ 2.
  • This third zone C corresponds to an operating mode of the machine 1 in which the speed of rotation ⁇ is between the second speed of rotation ⁇ 2 and a third speed of rotation ⁇ 3 which is representative of operation at constant power 19.
  • this third zone C typically corresponds to a BOOST function.
  • the speed of rotation ⁇ and the phase voltage of machine 1 are high, the power factor cos ⁇ of machine 1 is close to unity.
  • This fourth zone D corresponds to an operating mode of the machine 1 in which the speed of rotation ⁇ is greater than the third speed of rotation ⁇ 3.
  • this fourth zone D typically corresponds to a BOOST function.
  • the speed of rotation ⁇ of machine 1 is very high and the phase voltage is high, the power factor cos ⁇ of machine 1 is close to unity.
  • This fourth zone D therefore does not constitute a criterion for selecting a current strategy from among the control strategies according to the invention.
  • the Figure 4 shows the tree for selecting control strategies according to zones A, B, C or D.
  • the second strategy 21 is selected by a first test 22 as long as the operating points of the machine 1 belong to the first zone A.
  • the advantage of this second strategy 21 is to reduce both the effective current in the decoupling capacity 16 and the losses in the switching elements 9, 13. The switching losses are optimized.
  • the choice 25 between the second strategy 21 and the third strategy 24 depends on the power factor cos ⁇ of the machine 1 with respect to a predetermined coefficient, preferably equal to 0.7.
  • the second strategy 21 is selected if the power factor cos ⁇ is less than or equal to 0.7, while the third strategy 24 is selected if the power factor cos ⁇ is greater than 0.7.
  • the reduction in the effective current in the decoupling capacitor 16 is not optimized in this second zone B, but it is important for all the operating points. Switching losses are reduced.
  • the switching losses are optimized for all the operating points.
  • this first example is advantageously implemented in the third zone C, which typically corresponds to the BOOST function.
  • GDPWM generalized discontinuous PWM
  • the control device 17 advantageously comprises a microcontroller 29 from the company Freescale of the MPC5643L type comprising six PWM registers which are independently programmable, and which therefore allow easy implementation of the control strategies described above.
  • the preferred embodiments of the invention relate to a three-phase double machine having an offset angle ⁇ equal to 30 °.
  • the same analysis could be carried out for three-phase rotary electric machines having different offset angles ⁇ .
  • control device uses micro-programmed logic 29 or alternatively to wired logic or a programmed, even analog system.

Description

DOMAINE TECHNIQUE DE L'INVENTION.TECHNICAL FIELD OF THE INVENTION.

La présente invention concerne un dispositif de commande d'un onduleur polyphasé destiné à alimenter à partir d'une source de courant continu une machine électrique tournante double triphasée, c'est-à-dire une machine comportant un stator avec deux enroulements triphasés décalés angulairement l'un par rapport à l'autre.The present invention relates to a device for controlling a polyphase inverter intended to supply from a direct current source a three-phase double rotary electrical machine, that is to say a machine comprising a stator with two three-phase windings offset angularly relative to each other.

L'invention concerne également une machine électrique tournante double triphasée comportant un onduleur intégré muni de ce dispositif, notamment pour des applications dans des véhicules automobiles.The invention also relates to a three-phase double rotary electrical machine comprising an integrated inverter provided with this device, in particular for applications in motor vehicles.

ARRIERE PLAN TECHNOLOGIQUE DE L'INVENTION.TECHNOLOGICAL BACKGROUND OF THE INVENTION.

Un onduleur permet de générer à partir d'une source de courant continu les courants polyphasés nécessaires au fonctionnement d'une machine électrique tournante polyphasée.An inverter enables the polyphase currents necessary for the operation of a polyphase rotary electrical machine to be generated from a direct current source.

Généralement un onduleur comprend des éléments de commutation formant plusieurs bras de puissance, comportant chacun deux éléments de commutation dans une architecture classique de pont à deux niveaux.Generally, an inverter comprises switching elements forming several power arms, each comprising two switching elements in a conventional two-level bridge architecture.

Le point milieu d'un couple d'éléments de commutation d'un même bras de puissance est relié à un enroulement de phase du stator de la machine électrique tournante.The midpoint of a pair of switching elements of the same power arm is connected to a phase winding of the stator of the rotating electric machine.

Les éléments de commutation sont pilotés le plus souvent par des procédés de modulation de largeur d'impulsion dits MLI (ou PWM en anglais, acronyme de "Pulse Width Modulation") permettant d'appliquer à la machine électrique tournante des tensions entre phases de forme sinusoïdale.The switching elements are most often controlled by pulse width modulation methods called PWM (or PWM in English, acronym for "Pulse Width Modulation") making it possible to apply voltages between shape phases to the rotary electric machine. sinusoidal.

Le procédé de modulation de largeur d'impulsion vectorielle (MLI vectorielle ou SVM en terminologie anglaise, acronyme de "Space Vector Modulation") est très employé et permet un gain de 15% par rapport au procédé MLI sinusoïdal conventionnel.The vector pulse width modulation process (vector MLI or SVM in English terminology, acronym for "Space Vector Modulation") is widely used and allows a gain of 15% compared to the conventional sinusoidal PWM process.

Dans l'état de la technique, on connaît d'autres types de procédés de pilotage d'un onduleur polyphasé, notamment un procédé de modulation de largeur d'impulsion discontinue généralisée (MLI discontinue généralisée ou GDPWM en terminologie anglaise, acronyme de "Generalized Discontinuous Pulse Width Modulation"), décrit par exemple dans l'article " A High-Performance Discontinuous PWM Algorithm", A.M. Hava et al., IEEE Trans. on Industry Applications, vol. 34, n° 5, septembre/ octobre 1998, p. 1059 - 1071 .In the state of the art, other types of control methods for a polyphase inverter are known, in particular a generalized discontinuous pulse width modulation method (generalized discontinuous PWM or GDPWM in English terminology, acronym for "Generalized Discontinuous Pulse Width Modulation "), described for example in the article" A High-Performance Discontinuous PWM Algorithm ", AM Hava et al., IEEE Trans. On Industry Applications, vol. 34, n ° 5, September / October 1998, p. 1059 - 1071 .

Ce procédé de pilotage bloque tour à tour un des bras de puissance sur une période électrique.This piloting process in turn blocks one of the power arms over an electrical period.

La comparaison entre les différents procédés de MLI en termes de rendement a donné lieu à une littérature technique abondante.The comparison between the different PWM processes in terms of yield has given rise to an abundant technical literature.

Parmi les études orientées vers les applications dans les véhicules automobiles, on peut citer l'article " A Comparaison between Pulse Width Modulation Stratégies in terms of Power Losses in a Three-Phased Inverter-Application to a Starter Generator", J. Hobraiche, J.P Vilain, M. Chemin, Congrès European Power Electronics - Power Electronics and Motion Control, Riga, Lettonie, septembre 2004 .Among the studies oriented towards applications in motor vehicles, we can cite the article " A Comparison between Pulse Width Modulation Strategies in terms of Power Losses in a Three-Phased Inverter-Application to a Starter Generator ", J. Hobraiche, JP Vilain, M. Chemin, Congrès European Power Electronics - Power Electronics and Motion Control, Riga, Latvia, September 2004 .

Les pertes dans l'onduleur sont comparées pour les deux procédés SVM et GDPWM en fonction des points de fonctionnement d'un alterno-démarreur.The losses in the inverter are compared for the two processes SVM and GDPWM as a function of the operating points of an alternator-starter.

Par ailleurs, l'augmentation de puissance des équipements embarqués dans les véhicules pose de nouveaux problèmes de compatibilité électromagnétique (CEM), notamment ceux relatifs aux perturbations conduites.In addition, the increase in the power of on-board equipment in vehicles poses new electromagnetic compatibility (EMC) problems, in particular those relating to conducted disturbances.

Pour stabiliser une tension d'alimentation en amont de l'onduleur, la source de courant comporte généralement un condensateur de découplage qui permet de filtrer le courant d'entrée de l'onduleur qui subit de fortes discontinuités du fait du hachage opéré par les éléments de commutation.To stabilize a supply voltage upstream of the inverter, the current source generally comprises a decoupling capacitor which makes it possible to filter the input current of the inverter which undergoes strong discontinuities due to the chopping effected by the elements. of commutation.

La demande de brevet français FR2895598 par la société VALEO EQUIPEMENTS ELECTRIQUES MOTEUR décrit un procédé spécifique de commande MLI d'un onduleur polyphasé qui permet à la fois une réduction des pertes par commutation et une diminution d'un courant efficace dans le condensateur de découplage de manière à diminuer les ondulations de la tension d'alimentation.French patent application FR2895598 by VALEO EQUIPEMENTS ELECTRIQUES MOTEUR describes a specific PWM control method for a polyphase inverter which allows both a reduction of switching losses and a reduction of an effective current in the decoupling capacitor so as to reduce the undulations of the supply voltage.

Le procédé de commande MLI décrit dans cette demande s'applique à des charges électriques polyphasées en général, alors que la plupart des études, ainsi que les articles cités ci-dessus, se limitent à des machines électriques triphasées.The PWM control method described in this application applies to polyphase electric charges in general, while most of the studies, as well as the articles cited above, are limited to three-phase electric machines.

Il est connu que les machines électriques tournantes polyphasées présentent des avantages sur les machines triphasées en termes de réduction des oscillations du couple en mode moteur, ou de facilité d'élimination des harmoniques en mode générateur.It is known that polyphase rotary electrical machines have advantages over three-phase machines in terms of reduction of torque oscillations in motor mode, or of ease of elimination of harmonics in generator mode.

Il existe donc un besoin pour des études portant sur des commande MLI, en termes de réduction des pertes par commutation et de diminution des perturbations conduites pour des machines polyphasées.There is therefore a need for studies on PWM controls, in terms of reduction of switching losses and reduction of disturbances conducted for polyphase machines.

Cependant, l'augmentation du nombre de phases entraîne une augmentation de la complexité d'un dispositif de pilotage de la machine et l'entité inventive a porté son attention sur des machines double triphasées, qui permettent une simplification du dispositif de commande par rapport à des machines hexaphasées en général, et qui autorisent une extrapolation des résultats des études menées sur les machines triphasées, tels que ceux publiés par J. Hobraiche et al. dans l'article cité ci-dessus.However, the increase in the number of phases leads to an increase in the complexity of a device for controlling the machine and the inventive unit has drawn its attention to double three-phase machines, which allow a simplification of the control device compared to hexaphasic machines in general, and which allow an extrapolation of the results of studies carried out on three-phase machines, such as those published by J. Hobraiche et al. in the article cited above.

DESCRIPTION GENERALE DE L'INVENTION.GENERAL DESCRIPTION OF THE INVENTION.

En vue d'applications dans le domaine très concurrentiel de l'automobile, le but de la présente invention est par conséquent l'optimisation d'un dispositif de commande MLI.With a view to applications in the highly competitive automotive field, the aim of the present invention is therefore the optimization of a PWM control device.

L'invention concerne donc un dispositif de commande d'un onduleur polyphasé destiné à alimenter à partir d'une source de courant continu une machine électrique tournante double triphasée, le dispositif étant du type de ceux comprenant des moyens de génération de signaux de commutation pilotant des éléments de commutation de manière à obtenir une réduction des pertes dans les éléments de commutation et une diminution d'un courant efficace dans un condensateur de découplage de la source, la machine électrique tournante double triphasée comportant trois premiers et trois seconds enroulements de phase formant un premier système triphasé et un second système triphasé à points neutres distincts décalés angulairement d'un angle de décalage prédéterminé, et les premiers et seconds enroulements de phase étant reliés respectivement à trois premiers et trois seconds bras de puissance formés par les éléments de commutation d'un onduleur polyphasé.The invention therefore relates to a device for controlling a polyphase inverter intended to supply a three-phase rotating electrical machine from a direct current source, the device being of the type comprising those of means for generating switching signals driving switching elements so as to obtain a reduction in losses in the switching elements and a reduction in an effective current in a source decoupling capacitor, the three-phase double rotary electric machine comprising three first and three second phase windings forming a first three-phase system and a second three-phase system with separate neutral points angularly offset by a predetermined offset angle, and the first and second phase windings being connected respectively to three first and three second power arms formed by the switching elements d '' a polyphase inverter.

Conformément à l'invention, le dispositif comprend également :

  • des moyens de mémorisation d'un ensemble d'au moins deux stratégies de commandes déterminant les signaux de commutation ;
  • des moyens d'acquisition d'une vitesse de rotation et d'un facteur de puissance de la machine ; et
  • des moyens de sélection d'une stratégie courante parmi l'ensemble de stratégies de commandes en fonction de la vitesse de rotation et du facteur de puissance.
According to the invention, the device also includes:
  • means for memorizing a set of at least two control strategies determining the switching signals;
  • means for acquiring a speed of rotation and a power factor of the machine; and
  • means for selecting a current strategy from among the set of control strategies as a function of the rotation speed and the power factor.

Une première stratégie parmi l'ensemble de stratégies de commandes consiste avantageusement à appliquer sur le premier système triphasé une première modulation de largeur d'impulsion vectorielle centrée décalée d'un délai commun d'une seconde modulation de largeur d'impulsion vectorielle centrée d'une même période appliquée sur le second système triphasé.A first strategy among the set of control strategies advantageously consists in applying to the first three-phase system a first modulation of centered vector pulse width offset by a common delay of a second modulation of centered vector pulse width of the same period applied to the second three-phase system.

Alternativement, une deuxième stratégie parmi l'ensemble de stratégies de commandes consiste de préférence à appliquer sur le premier système triphasé une première modulation de largeur d'impulsion vectorielle décalée d'un délai commun d'une seconde modulation de largeur d'impulsion vectorielle d'une même période appliquée sur le second système triphasé et à bloquer l'un des trois premiers bras et/ ou l'un des trois seconds bras.Alternatively, a second strategy among the set of control strategies preferably consists in applying to the first three-phase system a first modulation of vector pulse width offset by a common delay of a second modulation of vector pulse width d 'a same period applied to the second three-phase system and to block one of the first three arms and / or one of the three second arms.

Alternativement encore, une troisième stratégie parmi l'ensemble de stratégies de commandes consiste de préférence à appliquer sur le premier système triphasé une première modulation de largeur d'impulsion discontinue généralisée décalée d'un délai commun d'une seconde modulation de largeur d'impulsion discontinue généralisée d'une même période appliquée sur le second système triphasé.Alternatively still, a third strategy among the set of control strategies preferably consists in applying to the first three-phase system a first generalized discontinuous pulse width modulation offset by a common delay of a second pulse width modulation generalized discontinuous of the same period applied to the second three-phase system.

Dans une autre alternative, une quatrième stratégie parmi l'ensemble de stratégies de commandes consiste avantageusement à:

  • appliquer sur le premier système triphasé une première modulation de largeur d'impulsion vectorielle centrée et sur le second système triphasé une seconde modulation de largeur d'impulsion vectorielle centrée d'une même période et d'une même origine temporelle;
  • à bloquer l'un des trois premiers bras et l'un des trois seconds bras;
  • à décaler de premier, deuxième et troisième délais par rapport à cette origine temporelle des fronts de commutation de trois des trois premiers bras et des trois seconds bras non bloqués.
In another alternative, a fourth strategy among the set of control strategies advantageously consists of:
  • applying to the first three-phase system a first modulation of centered vector pulse width and to the second three-phase system a second modulation of centered vector pulse width of the same period and of the same time origin;
  • blocking one of the first three arms and one of the three second arms;
  • to shift the first, second and third delays relative to this time origin of the switching edges of three of the first three arms and of the three second unblocked arms.

Dans le dispositif selon l'invention, on tire bénéfice du fait que l'on utilise une stratégie courante sélectionnée parmi cet ensemble de stratégies de commandes en fonction d'un point de fonctionnement de la machine polyphasée.In the device according to the invention, advantage is taken of the fact that a current strategy selected from this set of control strategies is used as a function of an operating point of the multi-phase machine.

De préférence, la deuxième stratégie est appliquée si une vitesse de rotation de la machine est inférieure à une première vitesse prédéterminée représentative d'une fin d'un démarrage de la machine ou si cette vitesse de rotation est comprise entre cette première vitesse prédéterminée et une deuxième vitesse prédéterminée, représentative d'une fin d'un fonctionnement à couple constant de la machine, supérieure à la première vitesse prédéterminée et si un facteur de puissance de la machine est inférieur ou égal à un coefficient prédéterminé.Preferably, the second strategy is applied if a speed of rotation of the machine is less than a first predetermined representative speed. end of a machine start-up or if this speed of rotation is between this first predetermined speed and a second predetermined speed, representative of an end of constant torque operation of the machine, greater than the first predetermined speed and if a power factor of the machine is less than or equal to a predetermined coefficient.

De préférence également, et alternativement, la troisième stratégie est appliquée si une vitesse de rotation de la machine est comprise entre une première vitesse prédéterminée représentative d'une fin d'un démarrage de la machine et une deuxième vitesse prédéterminée, représentative d'une fin d'un fonctionnement à couple constant de la machine, supérieure à cette première vitesse prédéterminée et si un facteur de puissance de la machine est supérieur à un coefficient prédéterminé, ou si cette vitesse de rotation est comprise entre cette deuxième vitesse prédéterminée et une troisième vitesse prédéterminée, représentative d'un fonctionnement à puissance constante de la machine, supérieure à cette deuxième vitesse prédéterminée.Preferably also, and alternatively, the third strategy is applied if a speed of rotation of the machine is between a first predetermined speed representative of an end of a starting of the machine and a second predetermined speed, representative of an end a constant torque operation of the machine, greater than this first predetermined speed and if a power factor of the machine is greater than a predetermined coefficient, or if this speed of rotation is between this second predetermined speed and a third speed predetermined, representative of a constant power operation of the machine, greater than this second predetermined speed.

L'invention concerne également une machine électrique tournante double triphasée comportant un onduleur intégré muni du dispositif de commande selon l'invention tel que décrit brièvement ci-dessus.The invention also relates to a three-phase double rotary electrical machine comprising an integrated inverter provided with the control device according to the invention as briefly described above.

Ces quelques spécifications essentielles auront rendu évidents pour l'homme de métier les avantages apportés par le dispositif de commande d'un onduleur polyphasé selon l'invention, ainsi que par la machine électrique correspondante, par rapport à l'état de la technique antérieur.These few essential specifications will have made obvious to those skilled in the art the advantages provided by the control device of a polyphase inverter according to the invention, as well as by the corresponding electric machine, compared with the state of the prior art.

Les spécifications détaillées de l'invention sont données dans la description qui suit en liaison avec les dessins ci-annexés. Il est à noter que ces dessins n'ont d'autre but que d'illustrer le texte de la description et ne constituent en aucune sorte une limitation de la portée de l'invention.The detailed specifications of the invention are given in the description which follows in conjunction with the attached drawings. It should be noted that these drawings have no other purpose than to illustrate the text of the description and do not in any way constitute a limitation of the scope of the invention.

BREVE DESCRIPTION DES DESSINS.BRIEF DESCRIPTION OF THE DRAWINGS.

  • La Figure 1 représente schématiquement une machine électrique tournante double triphasée et un onduleur muni de son dispositif de commande selon l'invention.The Figure 1 schematically represents a three-phase double rotary electrical machine and an inverter provided with its control device according to the invention.
  • Les Figures 2a, 2b, 2c et 2d représentent des chronogrammes de la modulation de largeur d'impulsion appliquée sur la machine double triphasée, résultant respectivement d'une première, deuxième, troisième et quatrième stratégies de commandes.The Figures 2a, 2b, 2c and 2d represent timing diagrams of the pulse width modulation applied to the three-phase double machine, resulting respectively from a first, second, third and fourth control strategies.
  • La Figure 3 montre les points de fonctionnement de la machine double triphasée montrée sur la Figure 1 pour la sélection des stratégies de commandes montrées sur les Figures 2a, 2b, 2c et 2d . The Figure 3 shows the operating points of the three-phase double machine shown on the Figure 1 for the selection of the control strategies shown on the Figures 2a, 2b, 2c and 2d .
  • La Figure 4 représente un arbre de sélection des stratégies de commandes montrées sur les Figures 2a, 2b, 2c et 2d en fonction des points de fonctionnement montrés sur la Figure 3 . The Figure 4 represents a tree for selecting the control strategies shown on the Figures 2a, 2b, 2c and 2d according to the operating points shown on the Figure 3 .
DESCRIPTION DES MODES DE REALISATION PREFERES DE L'INVENTION.DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION.

Comme le montre bien la représentation schématique de la Figure 1 , dans un mode de réalisation préféré de l'invention, le stator 1 de la machine électrique tournante double triphasée comprend un premier système triphasé en étoile constitué de trois premiers enroulements de phase 2, 3, 4 et un second système triphasé en étoile constitué de trois seconds enroulements de phase 5, 6, 7 décalé l'un par rapport à l'autre d'un angle de décalage θ de 30°.As the schematic representation of the Figure 1 , in a preferred embodiment of the invention, the stator 1 of the three-phase double rotary electrical machine comprises a first three-phase star system consisting of three first phase windings 2, 3, 4 and a second three-phase star system consisting of three second phase windings 5, 6, 7 offset from each other by an offset angle θ of 30 °.

Les premiers enroulements de phase 2, 3, 4 ont chacun une première extrémité reliée à chacun des premiers points milieu de premiers bras de puissance 8 formés par des éléments de commutation 9 d'un premier module de puissance 10 et une autre première extrémité commune 11.The first phase windings 2, 3, 4 each have a first end connected to each of the first midpoints of first power arms 8 formed by switching elements 9 of a first power module 10 and another first common end 11 .

De la même manière, les seconds enroulements de phase 5, 6, 7 ont chacun une seconde extrémité reliée à chacun des seconds points milieu de seconds bras de puissance 12 formés par d'autres éléments de commutation 13 d'un second module de puissance 14 et une autre seconde extrémité commune 15.In the same way, the second phase windings 5, 6, 7 each have a second end connected to each of the second midpoints of second power arms 12 formed by other switching elements 13 of a second power module 14 and another second common end 15.

Les première et seconde extrémités communes 11, 15 sont les points neutres des premier et second systèmes triphasés et sont isolés l'un de l'autre.The first and second common ends 11, 15 are the neutral points of the first and second three-phase systems and are isolated from each other.

Les premiers et seconds bras de puissance 8, 12 des premier et second modules de puissance 10, 14 sont connectés en parallèle sur une source de courant continu CC, qui comporte un condensateur de découplage 16.The first and second power arms 8, 12 of the first and second power modules 10, 14 are connected in parallel to a DC direct current source, which includes a decoupling capacitor 16.

Les éléments de commutation 9, 13 sont pilotés par un dispositif de commande 17 de manière à commuter des premiers courants de phase R, S, T circulant dans les premiers enroulements de phase 2, 3, 4 et des seconds courants de phase U, V, W circulant dans les seconds enroulements de phase 5, 6, 7 selon des stratégies de commandes implémentées dans l'invention, permettant de faire fonctionner en onduleur hexaphasé les premier et second modules de puissance 10, 14 fonctionnant comme un premier et un second onduleurs triphasés OND1, OND2.The switching elements 9, 13 are controlled by a control device 17 so as to switch first phase currents R, S, T flowing in the first phase windings 2, 3, 4 and second phase currents U, V , W circulating in the second phase windings 5, 6, 7 according to control strategies implemented in the invention, making it possible to operate the first and second power modules in a hexaphase inverter 10, 14 operating as first and second three-phase inverters OND1, OND2.

Dans chacun de ces premier et second onduleurs, il est possible de bloquer ou non un bras de puissance 8, 12. Il est également possible de décaler les MLI les unes par rapport aux autres.In each of these first and second inverters, it is possible to block or not a power arm 8, 12. It is also possible to shift the PWMs relative to each other.

L'entité inventive a déterminé que ces stratégies de commandes permettent à la fois de réduire les pertes par commutation dans les éléments de commutation 9, 13, constitués le plus souvent de transistors de type MOS, tout en diminuant un courant efficace que doit absorber le condensateur de découplage 16 en entrée de l'onduleur 10, 14.The inventive entity has determined that these control strategies make it possible both to reduce the switching losses in the switching elements 9, 13, most often consisting of MOS type transistors, while reducing an effective current which must be absorbed by the decoupling capacitor 16 at the input of the inverter 10, 14.

Quatre stratégies de commandes étudiées par l'entité inventive au moyen de simulations sur ordinateur, basées sur des travaux effectués pour des machines triphasées sont décrites en détail ci-après en liaison avec les Figures 2a, 2b, 2c et 2d . Four control strategies studied by the inventive entity by means of computer simulations, based on work carried out for three-phase machines are described in detail below in conjunction with the Figures 2a, 2b, 2c and 2d .

Stratégie IStrategy I

Cette première stratégie consiste à appliquer deux MLI vectorielles sans blocage d'un bras de puissance 8, 12.This first strategy consists in applying two vectorial PWMs without blocking a power arm 8, 12.

Les chronogrammes des premiers courants de phase R, S, T générés par le premier onduleur triphasé OND1 et des seconds courants de phase U, V, W générés par le second onduleur triphasé OND2 dans cette première stratégie sont montrés sur la Figure 2a . The timing diagrams of the first phase currents R, S, T generated by the first three-phase inverter OND1 and of the second phase currents U, V, W generated by the second three-phase inverter OND2 in this first strategy are shown on the Figure 2a .

Une MLI vectorielle centrée (SVM) est appliquée sur chacun des deux systèmes triphasés.A vector centered MLI (SVM) is applied to each of the two three-phase systems.

Les MLI présentent une même période. Elles sont séparées par un délai commun Td, constant ou variable.MLI has the same period. They are separated by a common delay Td, constant or variable.

Stratégie IIStrategy II

Cette deuxième stratégie consiste à appliquer deux MLI vectorielles avec blocage d'un ou deux bras de puissance 8, 12.This second strategy consists in applying two vector PWM with blocking of one or two power arms 8, 12.

Les chronogrammes des premiers courants de phase R, S, T générés par le premier onduleur triphasé OND1 et des seconds courants de phase U, V, W générés par le second onduleur triphasé OND2 dans cette deuxième stratégie sont montrés sur la Figure 2b . The timing diagrams of the first phase currents R, S, T generated by the first three-phase inverter OND1 and of the second phase currents U, V, W generated by the second three-phase inverter OND2 in this second strategy are shown on the Figure 2b .

Les MLI vectorielles avec un décalage des potentiels des points neutres 11, 15 permettent de bloquer un ou deux des six bras de puissance 8, 12 de l'onduleur 10, 14.Vectorial PWM with a shift of the potentials of the neutral points 11, 15 makes it possible to block one or two of the six power arms 8, 12 of the inverter 10, 14.

Les MLI présentent une même période. Elles sont séparées par un délai commun Td, constant ou variable.MLI has the same period. They are separated by a common delay Td, constant or variable.

Les simulations ont montré que le courant efficace dans le condensateur de découplage 16 est fortement baissé quand ce délai commun Td vaut 25% de la période de la MLI.The simulations have shown that the effective current in the decoupling capacitor 16 is greatly lowered when this common delay Td is 25% of the PWM period.

Stratégie IIIStrategy III

Cette troisième stratégie consiste à appliquer deux MLI discontinues généralisées (GDPWM).This third strategy consists in applying two generalized discontinuous PWM (GDPWM).

Les chronogrammes des premiers courants de phase R, S, T générés par le premier onduleur triphasé OND1 et des seconds courants de phase U, V, W générés par le second onduleur triphasé OND2 dans cette troisième stratégie sont montrés sur la Figure 2c . The timing diagrams of the first phase currents R, S, T generated by the first three-phase inverter OND1 and of the second phase currents U, V, W generated by the second three-phase inverter OND2 in this third strategy are shown on the Figure 2c .

Les deux GDPWM sont appliquées sur chacun des deux systèmes triphasés, c'est-à-dire que:

  • blocage dans chacun des deux onduleurs triphasés OND1, OND2 du bras de puissance 8, 12 ayant un courant maximum et pouvant être bloqué;
  • deux des MLI restantes sont décalées.
The two GDPWM are applied to each of the two three-phase systems, that is to say:
  • blocking in each of the two three-phase inverters OND1, OND2 of the power arm 8, 12 having a maximum current and which can be blocked;
  • two of the remaining PWMs are offset.

Les MLI présentent une même période. Elles sont séparées par un délai commun Td, constant ou variable.MLI has the same period. They are separated by a common delay Td, constant or variable.

Les simulations ont montré que le courant dans le condensateur de découplage 16 est fortement baissé quand ce délai commun Td vaut 30% de la période de la MLI.The simulations have shown that the current in the decoupling capacitor 16 is greatly lowered when this common delay Td is 30% of the PWM period.

Stratégie IVStrategy IV

Cette stratégie consiste à appliquer deux MLI vectorielles centrées (SVM) à MLI décalées et bras de puissance 8, 12 bloqué.This strategy consists in applying two centered vectorial PWM (SVM) to offset PWM and power arms 8, 12 blocked.

Les chronogrammes des premiers courants de phase R, S, T générés par le premier onduleur triphasé OND1 et des seconds courants de phase U, V, W générés par le second onduleur triphasé OND2 dans cette quatrième stratégie sont montrés sur la Figure 2d . The timing diagrams of the first phase currents R, S, T generated by the first three-phase inverter OND1 and of the second phase currents U, V, W generated by the second three-phase inverter OND2 in this fourth strategy are shown on the Figure 2d .

Les MLI présentent une même période.MLI has the same period.

Deux des six bras de puissance 8, 12 sont bloqués. Puis trois des quatre MLI sont décalées par des premier, deuxième et troisième délais Td1, Td2, Td3 dont des valeurs sont incluses dans l'intervalle [- 50%, + 50%] de la période de MLI.Two of the six power arms 8, 12 are blocked. Then three of the four PWMs are shifted by first, second and third delays Td1, Td2, Td3 whose values are included in the interval [- 50%, + 50%] of the PWM period.

Ces décalages sont plus généraux que pour des MLI vectorielles centrées (pour lesquelles les délais sont nuls) et que le GDPWM (pour lesquelles les délais valent 50°).These shifts are more general than for centered vector MLI (for which the deadlines are zero) and than the GDPWM (for which the deadlines are worth 50 °).

Conformément au but de l'invention, les stratégies de commandes décrites ci-dessus conduisent à une réduction des pertes dans les éléments de commutation 9 et une diminution du courant efficace dans le condensateur de découplage 16.In accordance with the aim of the invention, the control strategies described above lead to a reduction in losses in the switching elements 9 and a reduction in the effective current in the decoupling capacitor 16.

L'entité inventive ayant remarqué que les pertes dans ce condensateur de découplage 16 dépendant du déphasage ϕ entre un courant de phase R, S, T; U, V, W et une tension de phase, ainsi que du coefficient de modulation m (défini comme le rapport d'une tension de phase de crête sur la moitié d'une tension d'alimentation de l'onduleur), il existait une voie supplémentaire d'optimisation en sélectionnant dynamiquement une stratégie courante parmi l'ensemble des stratégies de commandes en fonction d'un point de fonctionnement de la machine polyphasée.The inventive entity having noticed that the losses in this decoupling capacitor 16 depending on the phase shift ϕ between a phase current R, S, T; U, V, W and a phase voltage, as well as the modulation coefficient m (defined as the ratio of a peak phase voltage to half of a supply voltage to the inverter), there was a additional optimization path by dynamically selecting a current strategy from among all of the control strategies according to an operating point of the multi-phase machine.

La typologie des différents points de fonctionnement (Couple moteur Γ, Vitesse de rotation Ω) prise en compte pour la sélection des stratégies de commandes est indiquée sur la Figure 3 : The typology of the different operating points (Motor torque Γ, Rotation speed Ω) taken into account for the selection of control strategies is indicated on the Figure 3 :

Zone AZone A

Cette première zone A correspond au démarrage de la machine double triphasée 1 fonctionnant à couple moteur constant Γ0 à partir de l'arrêt (vitesse de rotation Ω nulle) jusqu'à une première vitesse de rotation Ω1.This first zone A corresponds to the starting of the three-phase double machine 1 operating at constant motor torque Γ0 from stopping (speed of rotation Ω zero) to a first speed of rotation Ω1.

Dans une application de la machine double triphasée 1 considérée comme alterno-démarreur dans un véhicule automobile, cette première zone A correspond typiquement au mode MOTEUR d'une fonction STOP/ START.In an application of the three-phase double machine 1 considered as an alternator-starter in a motor vehicle, this first zone A typically corresponds to the MOTOR mode of a STOP / START function.

La vitesse de rotation Ω et la tension de phase de la machine 1 sont faibles.The speed of rotation Ω and the phase voltage of machine 1 are low.

Zone BZone B

Cette deuxième zone B correspond à un mode de fonctionnement de la machine 1 dans lequel la vitesse de rotation Ω est comprise entre la première vitesse de rotation Ω1 et une deuxième vitesse de rotation Ω2 qui marque la fin du fonctionnement à couple constant 18.This second zone B corresponds to a mode of operation of the machine 1 in which the speed of rotation Ω is comprised between the first speed of rotation Ω1 and a second speed of rotation Ω2 which marks the end of the constant torque operation 18.

Dans une application de la machine double triphasée 1 considérée comme aide à l'accélération dans un véhicule hydride, cette deuxième zone B correspond typiquement à une fonction BOOST.In an application of the three-phase double machine 1 considered as an acceleration aid in a hydride vehicle, this second zone B typically corresponds to a BOOST function.

La vitesse de rotation Ω et la tension de phase de la machine 1 restent faibles, mais le facteur de puissance cos ϕ de la machine 1 peut être faible pour une vitesse de rotation Ω proche de la première vitesse de rotation Ω1 ou voisin de l'unité pour une vitesse de rotation Ω proche de la deuxième vitesse de rotation Ω2.The speed of rotation Ω and the phase voltage of machine 1 remain low, but the power factor cos ϕ of machine 1 may be low for a speed of rotation Ω close to the first speed of rotation Ω1 or close to unit for a speed of rotation Ω close to the second speed of rotation Ω2.

Zone CZone C

Cette troisième zone C correspond à un mode de fonctionnement de la machine 1 dans lequel la vitesse de rotation Ω est comprise entre la deuxième vitesse de rotation Ω2 et une troisième vitesse de rotation Ω3 qui est représentative d'un fonctionnement à puissance constante 19.This third zone C corresponds to an operating mode of the machine 1 in which the speed of rotation Ω is between the second speed of rotation Ω2 and a third speed of rotation Ω3 which is representative of operation at constant power 19.

Dans une application de la machine double triphasée 1 considérée comme aide à l'accélération dans un véhicule hydride, cette troisième zone C correspond typiquement à une fonction BOOST.In an application of the three-phase double machine 1 considered as an acceleration aid in a hydride vehicle, this third zone C typically corresponds to a BOOST function.

La vitesse de rotation Ω et la tension de phase de la machine 1 sont élevées, le facteur de puissance cos ϕ de la machine 1 est voisin de l'unité.The speed of rotation Ω and the phase voltage of machine 1 are high, the power factor cos ϕ of machine 1 is close to unity.

Zone DZone D

Cette quatrième zone D correspond à un mode de fonctionnement de la machine 1 dans lequel la vitesse de rotation Ω est supérieure à la troisième vitesse de rotation Ω3.This fourth zone D corresponds to an operating mode of the machine 1 in which the speed of rotation Ω is greater than the third speed of rotation Ω3.

Dans une application de la machine double triphasée 1 considérée comme aide à l'accélération dans un véhicule hydride, cette quatrième zone D correspond typiquement à une fonction BOOST.In an application of the three-phase double machine 1 considered as an acceleration aid in a hydride vehicle, this fourth zone D typically corresponds to a BOOST function.

La vitesse de rotation Ω de la machine 1 est très élevée et la tension de phase est forte, le facteur de puissance cos ϕ de la machine 1 est voisin de l'unité.The speed of rotation Ω of machine 1 is very high and the phase voltage is high, the power factor cos ϕ of machine 1 is close to unity.

La vitesse de rotation Ω de la machine 1 étant très élevée dans cette quatrième zone D, on remplace une stratégie courante de type MLI par une commande pleine onde.The speed of rotation Ω of the machine 1 being very high in this fourth zone D, a current strategy of the PWM type is replaced by a full wave command.

Cette quatrième zone D ne constitue donc pas un critère de sélection d'une stratégie courante parmi les stratégies de commandes selon l'invention.This fourth zone D therefore does not constitute a criterion for selecting a current strategy from among the control strategies according to the invention.

La Figure 4 montre l'arbre de sélection des stratégies de commandes en fonction zones A, B, C ou D.The Figure 4 shows the tree for selecting control strategies according to zones A, B, C or D.

Au démarrage de la machine 1, à partir de l'arrêt 20, la deuxième stratégie 21 est sélectionnée par un premier test 22 tant que les points de fonctionnement de la machine 1 appartiennent à la première zone A.When the machine 1 starts, from stop 20, the second strategy 21 is selected by a first test 22 as long as the operating points of the machine 1 belong to the first zone A.

Dans cette première zone A, l'avantage de cette deuxième stratégie 21 est de faire baisser à la fois le courant efficace dans la capacité de découplage 16 et les pertes dans les éléments de commutations 9, 13. Les pertes par commutation sont optimisées.In this first zone A, the advantage of this second strategy 21 is to reduce both the effective current in the decoupling capacity 16 and the losses in the switching elements 9, 13. The switching losses are optimized.

Quand un deuxième test 23 montre que les points de fonctionnement de la machine 1 appartiennent à la deuxième zone B, la deuxième 21 ou la troisième 24 stratégies sont sélectionnées.When a second test 23 shows that the operating points of the machine 1 belong to the second zone B, the second 21 or the third 24 strategies are selected.

Le choix 25 entre la deuxième stratégie 21 et la troisième stratégie 24 dépend du facteur de puissance cos ϕ de la machine 1 par rapport à un coefficient prédéterminé, de préférence égale à 0,7.The choice 25 between the second strategy 21 and the third strategy 24 depends on the power factor cos ϕ of the machine 1 with respect to a predetermined coefficient, preferably equal to 0.7.

Dans cette deuxième zone B, la deuxième stratégie 21 est sélectionnée si le facteur de puissance cos ϕ est inférieur ou égal à 0,7, tandis que la troisième stratégie 24 est sélectionnée si le facteur de puissance cos ϕ est supérieur à 0,7.In this second zone B, the second strategy 21 is selected if the power factor cos ϕ is less than or equal to 0.7, while the third strategy 24 is selected if the power factor cos ϕ is greater than 0.7.

La diminution du courant efficace dans le condensateur de découplage 16 n'est pas optimisée dans cette deuxième zone B, mais elle est importante pour tous les points de fonctionnement. Les pertes par commutation sont réduites.The reduction in the effective current in the decoupling capacitor 16 is not optimized in this second zone B, but it is important for all the operating points. Switching losses are reduced.

Quand un troisième test 26 montre que les points de fonctionnement de la machine 1 appartiennent à la troisième zone C, la troisième stratégie 24 est sélectionnée.When a third test 26 shows that the operating points of the machine 1 belong to the third zone C, the third strategy 24 is selected.

Dans cette troisième zone C, La diminution du courant efficace dans le condensateur de découplage 16 est proche de l'optimum. Les pertes par commutation sont également optimisées.In this third zone C, the decrease in the effective current in the decoupling capacitor 16 is close to the optimum. Switching losses are also optimized.

Quand un quatrième test 27 montre que les points de fonctionnement de la machine 1 appartiennent à la quatrième zone D, aucune des stratégies de commandes selon l'invention n'est sélectionnée. Ainsi que cela a déjà été indiqué, une commande pleine onde 28 est utilisée.When a fourth test 27 shows that the operating points of the machine 1 belong to the fourth zone D, none of the control strategies according to the invention are selected. As already indicated, a full wave command 28 is used.

Comme il va de soi, l'invention ne se limite pas aux seuls modes de réalisation préférentiels décrits ci-dessus.It goes without saying that the invention is not limited to the preferred embodiments described above.

Une infinité de stratégies de commandes est possible. L'entité inventive a mis au jour durant les simulations sur ordinateur deux exemples supplémentaires de MLI vectorielles dont les paramétrages dépendent des points de fonctionnement de la machine:An infinity of ordering strategies is possible. The inventive entity has revealed two additional examples during the computer simulations vectorial PWM whose settings depend on the machine operating points:

Exemple 1Example 1

On applique deux MLI vectorielles utilisant la quatrième stratégie décrite ci-dessus ( Figure 2d ):
- blocage dans chacun des deux onduleurs triphasés OND1, OND2 du bras de puissance 8, 12 dans lequel le courant est maximum (en valeur absolue) et pouvant être bloqué;
- trois des quatre MLI restantes sont décalées suivant un premier et un second jeux Jeu1, Jeu2 de valeurs des premier, deuxième et troisième délais Td1, Td2, Td3 indiqués dans la Table I suivante en pourcentage de la période des MLI;
- le premier jeu Jeu1 est choisi si le déphasage ϕ est compris entre 0 et π/6 (modulo π/3), sinon le second jeu Jeu2 est choisi. Table I Délais Td1 Td2 Td3 Jeu1 40% 20% 40% Jeu2 40% 30% 30%
We apply two vector MLI using the fourth strategy described above ( Figure 2d ):
- blocking in each of the two three-phase inverters OND1, OND2 of the power arm 8, 12 in which the current is maximum (in absolute value) and can be blocked;
- three of the four remaining PWMs are shifted according to a first and a second set Game1, Set2 of values of the first, second and third time periods Td1, Td2, Td3 indicated in the following Table I as a percentage of the period of PWM;
- the first game Jeu1 is chosen if the phase shift ϕ is between 0 and π / 6 (modulo π / 3), otherwise the second game Jeu2 is chosen. <b><u> Table I </u></b> Deadlines Td1 Td2 Td3 Thu1 40% 20% 40% Thu2 40% 30% 30%

Dans ce premier exemple, la diminution du courant efficace dans le condensateur de découplage 16 est optimale pour les points de fonctionnement de la machine 1 où le facteur de puissance est voisin de l'unité (cos ϕ = +/-1) et où le coefficient de modulation m est supérieur à 0,8. Pour les autres points de fonctionnement, la diminution est faible.In this first example, the reduction in the effective current in the decoupling capacitor 16 is optimal for the operating points of the machine 1 where the power factor is close to the unit (cos ϕ = +/- 1) and where the modulation coefficient m is greater than 0.8. For the other operating points, the decrease is small.

Dans ce premier exemple, les pertes par commutation sont quant à elles optimisées pour tous les points de fonctionnement.In this first example, the switching losses are optimized for all the operating points.

Dans une application de la machine double triphasée 1 dans un véhicule hydride, ce premier exemple est avantageusement mis en œuvre dans la troisième zone C, qui correspond typiquement à la fonction BOOST.In an application of the three-phase double machine 1 in a hydride vehicle, this first example is advantageously implemented in the third zone C, which typically corresponds to the BOOST function.

Exemple 2Example 2

On applique deux MLI discontinues généralisées (GDPWM) de manière similaire à la troisième stratégie décrite ci-dessus ( Figure 2c ) avec un délai commun Td entre les premier et second onduleurs OND1, OND2 dépendant du déphasage ϕ et du coefficient de modulation m. Une cartographie de ce délai commun Td est donnée dans la Table II ci-dessous (en pourcentage de la période des MLI): Table II 30° 36° 45° 60° 75° 90° 1 20% 20% 25% 50% 50% 0 0 0,88 25% 10% 10% 0 0 0 0 0,7 40% 0 0 0 40% 0 0 0,5 40% 20% 20% 20% 25% 0 0 0,2 25% 25% 25% 25% 25% 0 0 Two generalized discontinuous PWM (GDPWM) are applied in a similar manner to the third strategy described above ( Figure 2c ) with a common delay Td between the first and second inverters OND1, OND2 depending on the phase shift ϕ and the modulation coefficient m. A map of this common delay Td is given in Table II below (as a percentage of the PWM period): <b><u> Table II </u></b> 0 ° 30 ° 36 ° 45 ° 60 ° 75 ° 90 ° 1 20% 20% 25% 50% 50% 0 0 0.88 25% 10% 10% 0 0 0 0 0.7 40% 0 0 0 40% 0 0 0.5 40% 20% 20% 20% 25% 0 0 0.2 25% 25% 25% 25% 25% 0 0

Dans ce second exemple, la diminution du courant efficace dans le condensateur de découplage 16 est importante pour les points de fonctionnement de la machine 1 où le facteur de puissance est voisin de l'unité (cos ϕ = +/-1) et où le coefficient de modulation m est proche de 1 (m=1).In this second example, the reduction in the effective current in the decoupling capacitor 16 is important for the operating points of the machine 1 where the power factor is close to the unit (cos ϕ = +/- 1) and where the modulation coefficient m is close to 1 (m = 1).

Le dispositif de commande 17 selon l'invention comprend avantageusement un microcontrôleur 29 de la société Freescale de type MPC5643L comportant six registres MLI qui sont programmables indépendamment, et qui permettent donc une implémentation aisée des stratégies de commandes décrites ci-dessus.The control device 17 according to the invention advantageously comprises a microcontroller 29 from the company Freescale of the MPC5643L type comprising six PWM registers which are independently programmable, and which therefore allow easy implementation of the control strategies described above.

Les tests effectués par l'entité inventive montrent que le dispositif de commande selon l'invention, avec les sstratégies de commandes mises en oeuvre, conduit à une réduction du courant efficace dans le condensateur de découplage 16 atteignant 63% par rapport à une MLI de base sur une machine simple triphasée.The tests carried out by the inventive entity show that the control device according to the invention, with the control strategies implemented, leads to a reduction of the effective current in the decoupling capacitor 16 reaching 63% compared to a PWM of based on a simple three-phase machine.

Les modes de réalisation préférés de l'invention concernent une machine double triphasée présentant un angle de décalage θ égal à 30°. La même analyse pourrait être effectuée pour des machine électriques tournantes double triphasées présentant des angles de décalage θ différents.The preferred embodiments of the invention relate to a three-phase double machine having an offset angle θ equal to 30 °. The same analysis could be carried out for three-phase rotary electric machines having different offset angles θ.

Le dispositif de commande selon l'invention fait appel à une logique micro-programmée 29 ou alternativement à une logique câblée ou un système programmé, voire analogique.The control device according to the invention uses micro-programmed logic 29 or alternatively to wired logic or a programmed, even analog system.

L'invention est définie par les revendications ci-après. The invention is defined by the claims below.

Claims (8)

  1. Device (17) for controlling a polyphase inverter (10, 14, 17) intended to supply power from a direct current source (CC) to a double three-phase rotating electrical machine (1), said device being of the type comprising means (29) for generating switching signals controlling switching elements (9, 13) so as to obtain a reduction of losses in said switching elements (9, 13) and a reduction in an rms current in a decoupling capacitor (16) of said source (CC), said double three-phase rotating electrical machine (1) including three first phase windings (2, 3, 4) and three second phase windings (5, 6, 7) forming a first three-phase system (2, 3, 4) and a second three-phase system (5, 6, 7) with separate neutral points (11, 15) offset angularly by a predetermined offset angle (θ), and said first and second phase windings (2, 3, 4; 5, 6, 7) being connected to three first and three second power arms (8, 12), respectively, formed by said switching elements (9, 13) of said one polyphase inverter (10, 14, 17), characterized in that it includes:
    - means (29) for storing a set of at least two control strategies (21, 24) determining said switching signals;
    - means for acquiring a rotation speed (Ω) and a power factor (cos ϕ) of said machine (1);
    - means for selecting a current strategy from said set of control strategies (21, 24) as a function of said rotation speed (Ω) and said power factor (cos ϕ).
  2. Device according to Claim 1 for controlling a polyphase inverter (10, 14, 17), characterized in that said set of control strategies includes a strategy consisting in applying to said first three-phase system (2, 3, 4) a first centered vectorial pulse width modulation offset by a common delay (Td) from a second centered vectorial pulse width modulation with the same period applied to said second three-phase system (5, 6, 7) .
  3. Device according to Claim 1 for controlling a polyphase inverter (10, 14, 17), characterized in that said set of control strategies includes a strategy (21) consisting in applying to said first three-phase system (2, 3, 4) a first vectorial pulse width modulation offset by a common delay (Td) from a second vectorial pulse width modulation with the same period applied to said second three-phase system (5, 6, 7) and blocking one of said three first arms (8) and/or one of said three second arms (12), said common delay (Td) preferably being substantially equal to 25% of said period.
  4. Device according to Claim 1 for controlling a polyphase inverter (10, 14, 17), characterized in that said set of control strategies includes a strategy (24) consisting in applying to said first three-phase system (2, 3, 4) a first generalized discontinuous pulse width modulation offset by a common delay (Td) from a second generalized discontinuous pulse width modulation with the same period applied to said second three-phase system (5, 6, 7), said common delay (Td) preferably being substantially equal to 30% of said period.
  5. Device according to Claim 1 for controlling a polyphase inverter (10, 14, 17), characterized in that said set of control strategies includes a strategy consisting in:
    - applying to said first three-phase system (2, 3, 4) a first centered vectorial pulse width modulation and to said second three-phase system (5, 6, 7) a second centered vectorial pulse width modulation with the same period and the same time origin;
    - blocking one of said three first arms (8) and one of said three second arms (12);
    - offsetting the first, second and third delays (Td1, Td2, Td3) relative to said time origin of the switching fronts of three of said three first arms (8) and said three second arms (12) that are not blocked.
  6. Device according to Claim 3 for controlling a polyphase inverter (10, 14, 17), characterized in that said strategy (21) is applied if a rotation speed (Ω) of said machine (1) is less than a first predetermined speed (Ω1) representative of an end (A) of starting of said machine (1) or if said rotation speed (Ω) is between said first predetermined speed (Ω1) and a second predetermined speed (Ω2), representative of an end (B) of functioning at constant torque of said machine (1), greater than said first predetermined speed (Ω1) and if a power factor (cos ϕ) of said machine (1) is less than or equal to a predetermined coefficient, preferably substantially equal to 0.7.
  7. Device according to Claim 4 for controlling a polyphase inverter (10, 14, 17), characterized in that said strategy (24) is applied if a rotation speed (Ω) of said machine (1) is between a first predetermined speed (Ω1) representative of an end (A) of starting of said machine (1) and a second predetermined speed (Ω2), representative of an end (B) of functioning at constant torque of said machine (1), greater than said first predetermined speed (Ω1) and if a power factor (cos ϕ) of said machine (1) is greater than a predetermined coefficient, preferably substantially equal to 0.7, or if said rotation speed (Ω) is between said second predetermined speed (Ω2) and a third predetermined speed (Ω3), representative of operation (C) at constant power of said machine, greater than said second predetermined speed (Ω2).
  8. Double three-phase rotating electrical machine (1), characterized in that it includes an integrated inverter (10, 14, 17) provided with the control device (17) according to any one of Claims 1 to 7.
EP14721916.6A 2013-04-05 2014-04-03 Device for controlling a polyphase inverter Active EP2982036B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353099A FR3004299B1 (en) 2013-04-05 2013-04-05 METHOD AND DEVICE FOR CONTROLLING A POLYPHASE INVERTER
PCT/FR2014/050800 WO2014162101A1 (en) 2013-04-05 2014-04-03 Device for controlling a polyphase inverter

Publications (2)

Publication Number Publication Date
EP2982036A1 EP2982036A1 (en) 2016-02-10
EP2982036B1 true EP2982036B1 (en) 2020-05-06

Family

ID=49111319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14721916.6A Active EP2982036B1 (en) 2013-04-05 2014-04-03 Device for controlling a polyphase inverter

Country Status (7)

Country Link
US (1) US9647600B2 (en)
EP (1) EP2982036B1 (en)
JP (1) JP2016514945A (en)
KR (1) KR20150140741A (en)
CN (1) CN105264763A (en)
FR (1) FR3004299B1 (en)
WO (1) WO2014162101A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023997B1 (en) * 2014-07-21 2018-03-02 Valeo Equipements Electriques Moteur ARCHITECTURE OF INTERCONNECTED ELECTRONIC POWER MODULES FOR A HEXAPHASED ROTATING ELECTRIC MACHINE AND HEXAPHASED ROTARY ELECTRIC MACHINE COMPRISING SUCH AN ARCHITECTURE
US10773922B2 (en) * 2015-02-05 2020-09-15 Otis Elevator Company Drive and control for six-phase electrical machines with negligible common-mode voltage
FR3034923B1 (en) * 2015-04-08 2017-05-05 Valeo Equip Electr Moteur INVERTER CONTROL DEVICE AND ASSOCIATED METHOD
CN105048888A (en) * 2015-08-18 2015-11-11 重庆大学 Switching device of permanent magnet synchronous motor windings
US10727774B2 (en) * 2016-03-11 2020-07-28 General Atomics Multi-level high-speed adjustable speed drive
DE102016211508A1 (en) * 2016-06-27 2017-12-28 Zf Friedrichshafen Ag Method for controlling an electrical machine, control unit and control system for controlling an electrical machine
DE102016217493A1 (en) * 2016-09-14 2018-03-15 Continental Automotive Gmbh Method for changing the direction of a DC voltage for generating pulse width modulated signals in a vehicle electrical system
DE102016118634A1 (en) 2016-09-30 2018-04-05 Volabo Gmbh Circuitry and electrical machine
JP6282331B1 (en) * 2016-10-31 2018-02-21 三菱電機株式会社 Power converter
FR3062003B1 (en) * 2017-01-16 2020-01-03 Valeo Equipements Electriques Moteur CONTROL SYSTEM FOR A ROTATING ELECTRIC MACHINE
DE102017210739A1 (en) * 2017-06-27 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Drive train and method for operating a drive train
US10608565B2 (en) * 2017-12-07 2020-03-31 General Electric Company Systems and methods for rotating a crankshaft to start an engine
FR3076124B1 (en) * 2017-12-22 2019-11-22 Valeo Equipements Electriques Moteur ELECTRICAL SYSTEM COMPRISING A STATORIC INVERTER AND AN AUXILIARY ELECTRICAL DEVICE, FOR CONNECTION TO A VOLTAGE SOURCE
CN108390533A (en) * 2018-03-29 2018-08-10 宁波诺丁汉大学 A kind of high-speed permanent magnetic synchronous motor system
KR20220016179A (en) * 2019-05-31 2022-02-08 제너럴 일렉트릭 캄파니 switching circuit
DE102019208559A1 (en) * 2019-06-12 2020-12-17 Vitesco Technologies GmbH Operation of switching elements of an inverter
DE102019132509A1 (en) * 2019-11-29 2021-06-02 Valeo Siemens Eautomotive Germany Gmbh Control device, inverter, arrangement with an inverter and an electrical machine, method for operating an inverter and computer program

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954333B2 (en) * 1990-11-28 1999-09-27 株式会社日立製作所 AC motor variable speed system
JP2001197779A (en) * 2000-01-12 2001-07-19 Nissan Motor Co Ltd Motor drive apparatus
FR2895598B1 (en) 2005-12-22 2008-09-05 Valeo Equip Electr Moteur METHOD FOR CONTROLLING A POLYPHASE VOLTAGE ONDULATOR
JP2008092739A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Power conversion device and control method therefor
US8269434B2 (en) * 2008-09-23 2012-09-18 GM Global Technology Operations LLC Electrical system using phase-shifted carrier signals and related operating methods
US8115433B2 (en) * 2008-09-23 2012-02-14 GM Global Technology Operations LLC Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods
JP2010115086A (en) * 2008-11-10 2010-05-20 Toshiba Corp Motor system and energization method of permanent magnet motor
US8278850B2 (en) * 2010-03-09 2012-10-02 GM Global Technology Operations LLC Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine
US8446117B2 (en) * 2011-01-03 2013-05-21 GM Global Technology Operations LLC Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms
CN202798567U (en) * 2012-08-18 2013-03-13 天津市松正电动汽车技术股份有限公司 Single power six-phase motor drive system
CN102969860B (en) * 2012-10-26 2015-01-28 华中科技大学 Frequency converting control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105264763A (en) 2016-01-20
EP2982036A1 (en) 2016-02-10
US20160141997A1 (en) 2016-05-19
FR3004299A1 (en) 2014-10-10
US9647600B2 (en) 2017-05-09
JP2016514945A (en) 2016-05-23
FR3004299B1 (en) 2016-10-28
KR20150140741A (en) 2015-12-16
WO2014162101A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
EP2982036B1 (en) Device for controlling a polyphase inverter
EP2142397B1 (en) Device and method for controlling a power shunt circuit, hybrid vehicle having same
EP1964257B1 (en) Polyphase voltage converter control method
JP6308180B2 (en) Control device for rotating electrical machine
WO2012143643A1 (en) Method of controlling an electric motor and corresponding electric device
JP4697603B2 (en) Electric vehicle control device
FR2921211A1 (en) Polyphase alternating current active rectifier system for converting polyphase alternating current to direct current, has neutral direct current level between positive and negative levels that are on positive and negative lines
EP2823562B1 (en) Method for controlling a power bridge, and corresponding control device, power bridge and rotary electric machine
FR2956537A1 (en) METHOD FOR CONTROLLING A MATRIX CONVERTER AND MATRIX CONVERTER CAPABLE OF IMPLEMENTING THE METHOD
EP3095171B1 (en) Method to control an electronic power module operable as a synchronous rectifier, corresponding control module and rotating electrical machine of an electrical vehicle comprising said control module
EP3298687B1 (en) Method and device for controlling a rotating electrical machine by pwm signals, and corresponding electrical machine of a motor vehicle
EP3195466B1 (en) Inverter control method and associated apparatus
FR3073993B1 (en) METHOD FOR CONTROLLING A THREE PHASE INVERTER
EP2852050B1 (en) Method and device for generating n (n &gt;= 3) control signals for controlling an inverter with n phases
EP2787632B1 (en) Method and device for controlling a three-phase double rotary electric machine and corresponding rotary electric machine
FR3055480A1 (en) DEVICE AND METHOD FOR POWER CONVERSION ASSOCIATING MULTIPLE PARALLEL CONVERTERS
FR3034923A1 (en) INVERTER CONTROL DEVICE AND ASSOCIATED METHOD
EP4128521A2 (en) Method for controlling a rectifier connected to a permanent-magnet synchronous electric generator to provide a direct voltage, corresponding device and computer program
FR3073691A1 (en) METHOD FOR CONTROLLING A SYNCHRONOUS ELECTRIC MACHINE
FR2513039A1 (en) METHOD AND DEVICE FOR ADJUSTING THE NUMBER OF TURNS OF THREE-PHASE CURRENT MACHINES BY MEANS OF AN INTERMEDIATE CONVERTER INTO A STAR CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1268450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014064929

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1268450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014064929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210403

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 10

Ref country code: DE

Payment date: 20230412

Year of fee payment: 10