EP2975682A1 - Cable-type battery and manufacturing process for a cable-type battery - Google Patents
Cable-type battery and manufacturing process for a cable-type battery Download PDFInfo
- Publication number
- EP2975682A1 EP2975682A1 EP15176323.2A EP15176323A EP2975682A1 EP 2975682 A1 EP2975682 A1 EP 2975682A1 EP 15176323 A EP15176323 A EP 15176323A EP 2975682 A1 EP2975682 A1 EP 2975682A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- spacer
- wired
- battery according
- polarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title description 3
- 125000006850 spacer group Chemical group 0.000 claims abstract description 101
- 239000003792 electrolyte Substances 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 48
- 239000007772 electrode material Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- -1 polyethylene terephthalate Polymers 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 150000002500 ions Chemical group 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 159000000000 sodium salts Chemical class 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910000601 superalloy Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000005279 LLTO - Lithium Lanthanum Titanium Oxide Substances 0.000 claims description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000011262 electrochemically active material Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000012768 molten material Substances 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910012305 LiPON Inorganic materials 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims 1
- 239000002861 polymer material Substances 0.000 claims 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 63
- 238000005342 ion exchange Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000010405 anode material Substances 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910010908 LiM Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229910018584 Mn 2-x O 4 Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- RPXKKUZDTAOVEQ-UHFFFAOYSA-N boric acid;oxalic acid Chemical compound OB(O)O.OC(=O)C(O)=O.OC(=O)C(O)=O RPXKKUZDTAOVEQ-UHFFFAOYSA-N 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- ZRXGCJAFQUBZCG-UHFFFAOYSA-N carbonic acid;4-methyl-1,3-dioxolan-2-one Chemical compound OC(O)=O.CC1COC(=O)O1 ZRXGCJAFQUBZCG-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/75—Wires, rods or strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
- H01M50/469—Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a wired battery and its method of production.
- the first is a coaxial architecture as shown in the documents WO 03/023880 and US 2014/0011065 .
- the architecture is organized around a central current collector on which are deposited different successive layers to form the battery: a first electrode made from a first material, an electrolyte, a second electrode developed from a second material, a second current collector.
- the wired battery has several collectors internal current 410 in the form of wire, each inner collector being covered by an electrode material 420.
- the electrodes thus obtained are arranged parallel to each other and then included in a so-called separation layer 430. This layer avoids the short circuits between the electrodes.
- Another layer of electrode material 440 is deposited on the outer surface of the separation layer 430.
- an external current collector 450 is deposited on the assembly.
- the internal electrodes can also be wound in the form of spirals ( "Cable-type Flexible Lithium Ion Battery Based Hollow Multi-Helix Electrodes", Adv. Mater. 2012, 24, 5192-5197 ).
- the spiral has an empty space in the middle, which improves the flexibility of the whole.
- the empty space can be filled by the electrolyte.
- FIG. 2 Another type of architecture, without external electrode, is described in the document US 2012/0009331 , and is represented at figure 2 .
- the anode 111 and cathode 121 materials are deposited on separate metal wires 120 and 110 to form electrodes.
- the electrodes are then embedded in the electrolyte sheath.
- the electrodes of the same polarity are covered, in addition, individually with an electrolyte layer 131. This ensures both the electrical insulation and the the ionic conductivity between the electrode materials. All the wires are then enclosed in the same electrolyte sheath 132 to form the final wired battery.
- the object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a wired battery having better resistance to mechanical stresses, mainly in compression and bending, while protecting itself from short circuits.
- the first wired strand is coated with at least one spacer, the spacer being electrically insulating, the spacer being configured to avoid direct contact between the first strand and the second strand wire of opposite polarity.
- the mechanical strength of the material forming the spacer is greater than the mechanical strength of the material forming the electrolyte layer.
- the first wired strand is coated with at least one spacer, the spacer being electrically insulating, the spacer being configured to avoid any direct electrical contact between the first strand wire and the second wire strand.
- the mechanical strength of the material forming the spacer is greater than the mechanical strength of the material forming the electrolyte layer.
- the first strand 2 of the wired battery 1, according to the invention is, in addition, coated with at least one spacer 5.
- the spacer 5 is configured to avoid direct contact between the first strand 2 and the second strand 3.
- the spacer 5 makes it possible to maintain a minimum spacing between the first strand 2 and the second strand 3.
- the spacer 5 has a thickness of between 10 nm and 10 ⁇ m .
- the spacer 5 is electrically insulating to prevent any electrical contact between the first strand 2 and the second strand 3, of opposite polarities, so as to avoid short circuits between the two strands.
- the spacer 5 is ionically conductive, which increases the ion exchange between the first strand 2 and the second strand and thus improve the performance of the battery.
- the spacer 5 makes it possible to avoid direct contact between the first strand 2 and the second strand 3 while allowing ionic conduction between these strands.
- the material forming the spacer 5 is different from that forming the electrolyte layer 4.
- the spacer 5 is ceramic.
- the material forming the spacer 5 is preferably selected from Li x Al y Ge z (PO 4) 3 (LAGP), Li x Al y Ti z (PO 4) 3 (PAL), Li x La y TiO z ( LLTO), Li 3 PO 4 , lithium and phosphorus oxynitride (LiPON), Al 2 O 3 in nanometric form for example.
- the spacer 5 is made of polymer.
- the polymeric material forming the spacer 5 is chosen from polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polycarbonate (PC), or polymethyl methacrylate ( PMMA).
- PS polystyrene
- PET polyethylene terephthalate
- PVC polyvinyl chloride
- PTFE polytetrafluoroethylene
- PC polycarbonate
- PMMA polymethyl methacrylate
- the mechanical strength of the material forming the spacer 5 is greater than that of the material forming the electrolyte layer 4.
- mechanical strength is meant the resistance of the material to deformation induced by mechanical stress.
- the mechanical strength of a material can be characterized by the Young's modulus of said material.
- spacers having a Young's modulus that is greater than or even greater than that of the electrolyte By superior is meant that the Young's modulus of the spacer is at least 100 times greater than the Young's modulus of the electrolyte layer.
- far superior is meant that the Young's modulus of the spacer is at least 1000 times higher than the Young's modulus of the electrolyte layer.
- the wired battery could be made with a LiPON spacer, having a Young's modulus of 80GPa, and the electrolyte could be made using an inorganic ionogel matrix based on silicate, having a module of Young less than 0.001 GPa.
- the spacer could be Al 2 O 3 alumina, having a Young's modulus of between 380 and 490GPa, and the electrolyte could be produced using a polyethylene type polymer matrix having a Young's modulus included in 0.2 and 0.7GPa.
- the hardness of the material forming the spacer 5 is greater than the hardness of the material forming the electrolyte layer 4.
- higher hardness is meant that the spacer 5 is harder: it opposes the penetration of the other strand to avoid a short circuit.
- it is more resistant to torsion and shear stresses.
- the spacer 5 has a good mechanical strength when it is stressed in torsion and / or in compression for example.
- the spacer 5 has a very low mechanical deformation under stress: a large pressure can be exerted during the assembly of the strands.
- the elastic range of the spacer 5 is greater than the applied stress, that is to say that the material forming the spacer 5 remains in its elastic range during the stress.
- the material forming the spacer 5 has a yield strength greater than a stress applied thereto.
- this type of architecture can better withstand mechanical stresses, including compression and / or bending.
- the strands can be tight together, without the risk of deforming, deteriorating the spacer.
- the spacer 5 remains in its range of elasticity. Compact structures are thus obtained while considerably limiting the risk of short circuit.
- the ionically conductive and electrically insulating spacer is a continuous film, completely covering the surface of the first strand 2.
- the spacer 5 allows the ion exchange between the first strand 2 and the electrolyte layer 4.
- the thin film covering the first strand 2 is provided with at least one through opening 6, especially when it is not an ionic conductor, to allow contact of the electrolytic layer with the first strand 2 and the ion exchange between strands of opposite polarity.
- the thin film is provided with a plurality of through openings 6 and / or the film has discontinuities.
- the first strand 2 is coated with a plurality of spacers 5 so as to form a layer of spacers 5.
- the spacers 5 are advantageously arranged on the whole of the first strand 2, ie over the entire length and over the entire circumference of the outer surface of the first strand 2, which makes it possible to maintain a minimum spacing between the first strand 2 and the second 3 at every point of the first strand 2.
- the spacer layer 5 is provided with at least one through opening 6, leaving at least a portion of the outer surface of the first strand 2 accessible.
- the opening 6 is advantageously filled by the electrolyte.
- the first strand 2 is in direct contact with the electrolyte layer 4 and the spacer 5.
- the through hole allows a direct contact the first strand 2 and the electrolyte, which improves the performance of the battery.
- the spacer layer 5 has several through openings 6, both on the perimeter and along the length of the first strand 2.
- the openings 6 are advantageously distributed homogeneously over the entire surface of the first strand 2 to allow ion exchange over the entire length of the strand.
- the spacer layer 5 is a layer of particles, the particles being spaced from each other so as to form openings 6.
- the particles are mechanically dissociated from each other.
- the particles form the spacers 5.
- the spaces between the particles form the through openings 6 of the spacer layer.
- the particle diameter can vary from 10 nm to 10 ⁇ m, depending on the final desired spacing between the opposite polarity strands.
- the spacer layer 5 is formed of a plurality of islands, also called pads, spaced from each other by the openings 6, so as to leave accessible by the electrolyte a portion of the outer surface of the first strand 2
- the islands of thin film material form the spacers 5.
- the spaces between the islands form the through openings 6 of the spacer layer.
- the spaces between the pads or between the particles are filled by the electrolyte layer 4 to improve the ion exchange and thus the performance of the battery.
- the electrolyte layer 4 is arranged to separate the first strand from the second strand: it is disposed between the two strands.
- the first strand 2 is ionically connected to the second strand 3, via the electrically ionic electrolyte layer 4.
- the electrolyte layer 4 coats the first strand 2 and the second strand 3: the first strand and the second strand are advantageously embedded in the electrolyte layer 4.
- the electrolyte layer 4 forms a strand of electrolyte around both strands. It forms a holster protecting both the strands and, at the same time, ensuring the ionic conduction between the strands.
- the strands are positioned within the wired battery.
- the material of the electrolyte layer 4 must be electronic insulator and ionic conductor. It must have, advantageously, good flexibility properties to impart good mechanical properties to the wired battery.
- the electrolyte layer 4 is in contact with at least a portion of the outer surface of each strand to form the ionic junction between said strands.
- the electrolyte 4 is advantageously a solid electrolyte.
- the electrolyte 4 is an electrolyte of the polymer type, for example of the gel or inorganic type.
- the electrolyte 4 is, for example, formed by a polymer or inorganic matrix, said matrix comprising pores filled with a solution comprising at least one lithium or sodium salt, depending on the type of battery desired.
- the matrix gives the mechanical properties to the system, and the solution gives the electrochemical properties to the system.
- the matrix may, by way of example, be a polymer of the polyethylene oxide (PEO), bisphenol A ethoxylate dimethacrylate (BEMA), polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN), polyfluoride type hexafluoropropylene vinylidene (PVDF-HFP), or an inorganic, silica-based material formed from tetraethyl orthosilicate (TEOS), methyltrimethoxysilane (MTMS), tetramethylorthosilicate (TMOS), triethoxyvinylsilane (TEVOS) or a mixture of these silicon alkoxides.
- PEO polyethylene oxide
- BEMA bisphenol A ethoxylate dimethacrylate
- PVDF polyvinylidene fluoride
- PMMA polymethyl methacrylate
- PAN polyacrylonitrile
- PVDF-HFP polyfluoride type
- An inorganic matrix is advantageously obtained by a sol-gel method.
- the liquid may be a conventional solvent such as carbonate propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), or an ionic liquid of the anion family piperidinium, imidazolium, pyrrolidinium, pyridinium or ammonium, associated with type cation bis (trifluoromethanesulfonyl) imide TFSI -, bis (fluorosulfonyl) imide FSI -, acetate CH 3 COO -, bis (oxalate) borate B (O 4 C 2) 2 -, bromide Br -, Cl chloride - , iodide I - , tetrachloroaluminate Cl - : AlCl 2 , hexafluorophosphate PF 6 - , tetrafluoroborate BF 4 - , dicyanamide N (CN) 2 - , ethy
- the conductive electrolyte contains at least one lithium salt to form Li + ions.
- the lithium salt may be chosen from LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiFSI, LiTFSI and the like. or be a mixture of these salts.
- the conductive electrolyte contains at least one sodium salt to form Na + ions.
- At least the first strand 2 or the second strand 3 is formed of a wire, covered with an electrode material.
- the wire is configured to form a current collector.
- the electrode material advantageously covers the outer surface of the wire over the entire length of the wire.
- the two strands 2, 3 are formed of a metal wire covered with an electrode material.
- the first strand 2 is formed of a first current collector 7 covered with a first electrode material 8.
- the second strand 3 is formed of a second current collector 9 covered with a second electrode material 10.
- the current collectors 7, 9 are, preferably, Cu, Ni, Ti, Al, Au, Ag, Ta, Ba, Cr, W or a mixture of at least two of these metals.
- the current collectors can still be made of stainless steel. It can also be a superalloy. For example, it may be a superalloy containing a large amount of nickel and / or chrome brand Inconel ® or a similar type.
- the wire, forming the current collector has a diameter that can vary from micrometer to millimeter.
- the current collectors 7, 9 may also be metallized insulating type wires, i.e. an insulating core covered by a metal sheath.
- a layer of electrode material may surround the current collector.
- the metal layer does not exhibit mechanical fragility: there is no appearance of cracking or delamination during bending and / or twisting of the wired battery.
- the first strand and / or the second strand is a current collector, formed by at least one metal wire.
- the current collector can play both the role of current collector and the role of electrode. A layer of additional electrode material is not necessary.
- the current collectors 7, 9 are in the form of son and have a circular section. According to other alternatives, the current collectors 7, 9 may have sections of variable geometry, so a cubic or hexagonal section may be considered.
- the outer surface of the current collector 7, 9 can be modified to improve the adhesion of the electrode material 8, 10 to the current collector 7, 9.
- it can be made rougher or more smooth, or it can be functionalized for example through the deposition of a tie layer.
- the electrode material 8, 10 is advantageously an electrochemically active material vis-à-vis the ions exchanged between the first strand 2 and the second strand 3.
- the ions exchanged between the first strand 2 and the second strand 3 are lithium or sodium ions.
- the electrode material is advantageously electrochemically active with respect to lithium or sodium ions.
- LiCoO 2 , LiFeO 2 , LiNiO 2 , LiMn 2 O 4 , LiM x Mn 2-x O 4 with 0 ⁇ x ⁇ 0.5 and M Ni, Co, Fe, Ti, etc., Li
- the electrode materials 8, 10 are chosen so as to give the first electrode material 8 a first type of polarity, and the second electrode material 10 a second type of polarity. Inverted polarities, also called opposite polarities, make it possible to form anode material and a cathode material.
- the first strand material 2 may be anode material and the second strand material 3 may be a cathode material. According to another embodiment, the material of the first strand 2 may be a cathode material and the material of the second strand 3 may be an anode material.
- the electrode material 8, 10 has a thickness of between 100 nm and 100 ⁇ m .
- the thickness of the material, coupled with the length of the wire of the current collector 7, 9, makes it possible to determine the capacity of the battery.
- strands 2, 3 are formed solely of an electronically conductive material. This material plays both the role of current collector and electrode material.
- At least the first strand or second strand is lithium.
- a lithium wire or strand can be used directly as anode in mounting a lithium wired battery, for example.
- at least the first strand 2 or the second strand 3 is sodium.
- the first strand 2 or the second strand 3 is formed of a current collector covered with an electrode material and the other strand is formed solely of an electronically conductive material playing both the role of current collector and electrode material.
- the wired battery 1 comprises a plurality of strands of each polarity. The number of these strands depends in particular on the size of the battery and its capacity
- the number of strands of first polarity and the number of strands of second polarity is equal, which makes it possible to form pairs of anode / cathode strands, or different depending on the desired anode / cathode equilibrium.
- the spacers 5 are advantageously arranged on at least all the strands of the same type of polarity.
- the first strand 2 and the second strand 3 are each coated with at least one spacer. As shown on the figure 6 the spacers are arranged on at least a portion of the strands of opposite polarity. Part of the surface of the first 2 and second 3 strands is covered with a layer of spacers so that the strands of opposite polarity are not directly in contact.
- the spacers can also be arranged on all strands regardless of their polarity.
- the spacers 5, preferably in the form of particles, can also be disseminated throughout the electrolyte 4, to confer particular properties on the battery (mechanical, electrochemical, etc.).
- the Figures 6 to 8 represent different possible architectures for a wired battery 1 having several strands of opposite polarities: a first group of strands of a first type of polarity and a second group of strands a second type of polarity, the second type of polarity being opposed to the first type of polarity.
- strands of the same polarity may be arranged side by side to form a first strand plane of the first type of polarity.
- Strands of opposite polarity are also arranged side by side to form a second plane of strands of the second type of polarity.
- the first plan and the second plan are then stacked.
- Other planes can be added by alternating planes of opposite polarity.
- each strand of one type of polarity is surrounded by four strands of opposite polarity to form a grid of strands.
- the strands of the first type of polarity are surrounded by 6 strands of the second type of polarity.
- the 6 strands of the second type of polarity form a hexagon around the strand of the first type of polarity.
- This architecture makes it possible to modify and optimize the arrangement and the number of strands of the wired battery in order to improve the performances of the battery while keeping small dimensions of battery.
- the first wired strand 2 is coated with at least one spacer 5, the spacer 5 being electrically insulating, the spacer 5 being configured to avoid direct electrical contact between the first strand wire 2 and the second wired strand 3.
- the mechanical strength of the material forming the spacer 5 is greater than the mechanical strength of the material forming the electrolyte layer 4.
- the electrode material 8, 10 can be deposited on the current collector 7, 9 by conventional thin-film deposition techniques.
- This may be, for example, vacuum deposition techniques such as physical vapor deposition "PVD”, chemical vapor deposition “CVD”, low pressure chemical vapor deposition “LPCVD”, plasma-assisted chemical vapor deposition “PECVD” thermal evaporation.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- LPCVD low pressure chemical vapor deposition
- PECVD plasma-assisted chemical vapor deposition
- thermal evaporation thermal evaporation.
- wet deposition techniques such as dip-coating or dipping, coating, spray techniques, electro-spray, electrodeposition, electrodeposition in hydrothermal conditions. , or electrophoresis.
- the spacer 5 is then deposited at least on the strands of the same polarity.
- the strands of the same polarity are covered by a plurality of spacers 5, so as to form a layer of spacers 5 on said strands, the spacers 5 being advantageously in the form of islands or particles.
- the spacer layer 5 is produced by depositing a solution comprising particles on the first strand 2.
- the spacer layer 5 is made from a liquid solution comprising the particles to be deposited in suspension in a solvent. After deposition, or advantageously during the deposition, the solvent is evaporated and only the particles persist on the surface of the electrode material.
- the deposition can then be carried out by conventional wet deposition techniques such as electrophoresis, dip-shrink deposit, coating, etc.
- the thin film is, for example, formed by chemical vapor deposition (CVD).
- CVD chemical vapor deposition
- the deposit is advantageously followed by a thermal melting treatment on said layer.
- droplets form and coalesce and solidify, forming islands of materials.
- ambient temperature is meant a temperature of the order of 20-25 ° C.
- a discontinuous layer is then obtained: it is, in this embodiment, a thin film provided with openings 6 through.
- the strands 2, 3 of each polarity, with and without spacer layer 5, are then assembled to form the wired battery 1. It may be a strand-strand assembly, ie an assembly comprising only one strand of each polarity, or a multi-strand assembly where the strand number of each polarity is optimized.
- the assembly comprises a group of first strands 2 of the first type of polarity and a group of second strands 3 of the second type of polarity.
- the first strands 2 and the second strands 3 are assembled in the form of a braid or a twist of son.
- the presence of the spacer layer 5 makes it possible to apply a considerable tension and / or flexion when assembling strands between them and to master the spacings between the strands to avoid short circuits.
- the electrolyte which is initially a more or less viscous liquid, can be deposited by dipping techniques, or spray, for example.
- the polymerization, or solidification can be either self-induced, for example by contact with the humidity of the air, or initiated by a heat treatment or ultraviolet insolation in particular.
- Additives may be added to accelerate or initiate the polymerization process. In the case of UV curing, a photoinitiator may be used.
- the electrolyte sheath can then be covered by other elements.
- a protective layer may be added, or any other suitable element and chosen by the skilled person.
- the wired battery 1 will now be described by means of the following example, given by way of illustration and not limitation.
- the battery comprises several strands 2 of the first type of polarity and several strands 3 of the second type of polarity.
- the current collectors 7 have a diameter of 50 ⁇ m . It may, for example, be titanium or stainless steel.
- the electrode material 8 of the strands 2 of the first type of polarity is in the form of a LiCoO 2 layer 15 ⁇ m thick deposited on the current collectors. This electrode material 8 has a theoretical capacity of 69 ⁇ Ah / cm 2 / ⁇ m. 500nm nanoparticles are arranged around these strands in order to form the spacer layer 5.
- the strands 3 of the second type of polarity ie the strands of inverse polarity, are metallic lithium wires of 80 ⁇ m diameter.
- a strand of a first polarity and a strand of a second polarity are associated.
- This type of wired battery has a very small diameter, approximately 160 ⁇ m, and can have up to 20 ⁇ Ah / linear cm of battery.
- the diameter of the wired battery is 1mm.
- about 60 pairs of anode / cathode strands can be associated, which represents a capacity of the order of 1.2 mAh / linear cm of battery.
- the architecture makes it possible to strongly tighten the strands between them without the risk of generating short circuits.
- the layer of spacers provides electrical insulation between the strands even under heavy mechanical stresses necessary for the realization of the wired battery (braiding, twisting, etc.).
- the density of strands and the balancing of the electrode materials can be easily optimized to achieve very large linear capabilities.
- the electrolyte thickness is advantageously kept constant throughout the battery, which promotes homogeneous electrochemical operation of the electrode materials.
- wired batteries are very compact and may have relatively small wire diameters, of the order of 100 ⁇ m .
- Wired batteries are also very flexible, which allows to consider the integration of these batteries in smart textiles: wired batteries can be woven or knitted to produce functionalized textiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Batterie filaire (1) comprenant : ¢ au moins un premier brin filaire (2) d'un premier type de polarité, comprenant un premier collecteur de courant, ¢ au moins un deuxième brin filaire (3) d'un deuxième type de polarité, comprenant un deuxième collecteur de courant, le deuxième type de polarité étant opposé au premier type de polarité, ¢ une couche d'électrolyte (4) dans laquelle sont disposés le premier brin (2) et le deuxième brin (3), la couche d'électrolyte (4) étant ioniquement conductrice et électriquement isolante, le premier brin (2) étant connecté ioniquement au deuxième brin (3). Le premier brin (2) est revêtu d'un espaceur (5) électriquement isolant et configuré pour éviter un contact direct entre le premier brin (2) et le deuxième brin (3). La résistance mécanique du matériau formant l'espaceur (5) est supérieure à la résistance mécanique du matériau formant la couche d'électrolyte (4). Il en résulte une augmentation la résistance de la batterie filaire aux contraintes mécaniques (moins de risques de court-circuits entre les deux brins) tout en conservant la flexibilité propre au matériau formant la couche d'électrolyte.Wired battery (1) comprising: €¢ at least a first wired strand (2) of a first type of polarity, comprising a first current collector, €¢ at least one second wired strand (3) of a second type of polarity, comprising a second current collector, the second type of polarity being opposite to the first type of polarity, €¢ an electrolyte layer (4) in which the first strand (2) and the second strand (3) are arranged, the electrolyte layer (4) being ionically conductive and electrically insulating, the first strand (2) being ionically connected to the second strand (3). The first strand (2) is coated with an electrically insulating spacer (5) and configured to avoid direct contact between the first strand (2) and the second strand (3). The mechanical strength of the material forming the spacer (5) is greater than the mechanical strength of the material forming the electrolyte layer (4). This results in an increase in the resistance of the wired battery to mechanical stresses (less risk of short-circuits between the two strands) while retaining the flexibility specific to the material forming the electrolyte layer.
Description
L'invention est relative à une batterie filaire et à son procédé de réalisation.The invention relates to a wired battery and its method of production.
Depuis quelques années, les besoins en énergie se sont multipliés et de nombreuses recherches sont menées pour, non seulement, améliorer les performances des batteries mais aussi pour optimiser leur architecture, et en particulier pour les miniaturiser. La miniaturisation des batteries représente un enjeu majeur, notamment pour des applications dans l'électronique dite grand public comme le marché des téléphones portables, des tablettes, etc. Récemment, une nouvelle famille de batterie est apparue : les batteries sous forme de fils, aussi appelées batteries filaires. Ce nouveau type de batterie devrait permettre de répondre aux besoins croissants de miniaturisation et de flexibilité.In recent years, the energy needs have multiplied and many researches are conducted to not only improve the performance of batteries but also to optimize their architecture, especially for miniaturize. The miniaturization of batteries represents a major challenge, especially for applications in so-called consumer electronics such as the market for mobile phones, tablets, etc. Recently, a new battery family has emerged: batteries in the form of wires, also called wired batteries. This new type of battery should meet the growing needs for miniaturization and flexibility.
Différentes architectures ont été proposées. La première est une architecture coaxiale comme présentée dans les documents
Un autre type d'architecture est décrit dans le document
Alternativement, les électrodes internes peuvent aussi être enroulées sous la forme de spirales (
Cependant, ces architectures, avec des électrodes externes, ne permettent pas d'obtenir une grande liberté sur l'équilibrage entre les deux matériaux d'électrode.However, these architectures, with external electrodes, do not allow to obtain a great freedom on the balancing between the two electrode materials.
Un autre type d'architecture, sans électrode externe, est décrit dans le document
Afin d'assurer l'isolation électrique entre les fils, les électrodes d'une même polarité sont recouvertes, en plus, individuellement d'une couche d'électrolyte 131. Celle-ci permet d'assurer à la fois l'isolation électrique et la conductivité ionique entre les matériaux d'électrode. Tous les fils sont ensuite englobés dans une même gaine d'électrolyte 132 pour former la batterie filaire finale.In order to ensure the electrical insulation between the wires, the electrodes of the same polarity are covered, in addition, individually with an
Même si une telle structure permet d'améliorer l'équilibrage entre les matériaux d'électrode, la structure ne permet pas d'assurer l'absence de courts-circuits lors de l'assemblage des fils. Ceux-ci ne peuvent donc pas être serrés de façon importante. Cette structure n'est de ce fait pas encore suffisamment compacte pour obtenir, à la fois, une bonne miniaturisation et, en même temps, une forte capacité.Even if such a structure makes it possible to improve the balancing between the electrode materials, the structure does not make it possible to ensure the absence of short circuits during the assembly of the wires. These can not be tightened significantly. This structure is not yet sufficiently compact to obtain, at the same time, a good miniaturization and, at the same time, a strong capacity.
L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer une batterie filaire présentant une meilleure tenue aux contraintes mécaniques, principalement en compression et en flexion, en se préservant des courts-circuits.The object of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a wired battery having better resistance to mechanical stresses, mainly in compression and bending, while protecting itself from short circuits.
Cet objet est atteint par une batterie filaire comprenant :
- au moins un premier brin filaire d'un premier type de polarité, comprenant un premier collecteur de courant,
- au moins un deuxième brin filaire d'un deuxième type de polarité, comprenant un deuxième collecteur de courant, le deuxième type de polarité étant opposé au premier type de polarité,
- une couche d'électrolyte dans laquelle sont disposés le premier brin filaire et le deuxième brin filaire, la couche d'électrolyte étant ioniquement conductrice et électriquement isolante, de sorte que le premier brin filaire soit connecté ioniquement au deuxième brin filaire.
- at least a first wired strand of a first type of polarity, comprising a first current collector,
- at least one second wired strand of a second polarity type, comprising a second current collector, the second polarity type being opposite to the first polarity type,
- an electrolyte layer in which the first wired strand and the second wired strand are arranged, the electrolyte layer being ionically conductive and electrically insulating, so that the first wired strand is ionically connected to the second wired strand.
Le premier brin filaire est revêtu d'au moins un espaceur, l'espaceur étant électriquement isolant, l'espaceur étant configuré pour éviter un contact direct entre le premier brin filaire et le deuxième brin filaire de polarité opposée.The first wired strand is coated with at least one spacer, the spacer being electrically insulating, the spacer being configured to avoid direct contact between the first strand and the second strand wire of opposite polarity.
La résistance mécanique du matériau formant l'espaceur est supérieure à la résistance mécanique du matériau formant la couche d'électrolyte.The mechanical strength of the material forming the spacer is greater than the mechanical strength of the material forming the electrolyte layer.
Cet objet est également atteint par un procédé de réalisation d'une batterie filaire comprenant les étapes successives suivantes :
- fournir au moins un premier brin filaire d'un premier type de polarité, et au moins un deuxième brin filaire d'un deuxième type de polarité, le deuxième type de polarité étant opposé au premier type de polarité,
- disposer le premier brin filaire et le deuxième brin filaire, dans une couche d'électrolyte, ioniquement conductrice et électriquement isolante, le premier brin filaire étant connecté ioniquement au deuxième brin filaire.
- providing at least a first wired strand of a first type of polarity, and at least a second wired strand of a second type of polarity, the second type of polarity being opposite to the first type of polarity,
- disposing the first wired strand and the second wired strand in an electrically ionically conductive and electrically insulating layer, the first wired strand being ionically connected to the second wired strand.
Le premier brin filaire est revêtu d'au moins un espaceur, l'espaceur étant électriquement isolant, l'espaceur étant configuré pour éviter tout contact électrique direct entre le premier brin filaire et le deuxième brin filaire.The first wired strand is coated with at least one spacer, the spacer being electrically insulating, the spacer being configured to avoid any direct electrical contact between the first strand wire and the second wire strand.
La résistance mécanique du matériau formant l'espaceur est supérieure à la résistance mécanique du matériau formant la couche d'électrolyte.The mechanical strength of the material forming the spacer is greater than the mechanical strength of the material forming the electrolyte layer.
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- les
figures 1 et 2 représentent, de manière schématique, en coupe, des batteries filaires selon l'art antérieur, - les
figures 3 à 9 représentent, de manière schématique, en coupe, des batteries filaires selon différents modes de réalisation de l'invention.
- the
Figures 1 and 2 represent, in schematic form, in section, wired batteries according to the prior art, - the
Figures 3 to 9 represent schematically, in section, wired batteries according to various embodiments of the invention.
La batterie sous forme de fil, ou batterie filaire 1, comprend :
- au moins un premier brin filaire 2 d'un premier type de polarité, comprenant un premier collecteur de courant,
- au moins un deuxième brin filaire 3 d'un deuxième type de polarité comprenant un deuxième collecteur de courant, le deuxième type de polarité étant opposé au premier type de polarité,
- une gaine ou couche d'électrolyte 4 dans laquelle sont disposés le premier brin filaire 2 et le deuxième brin filaire 3, ladite couche d'électrolyte étant conductrice des ions et électriquement isolante, de sorte que le premier brin filaire 2 soit connecté ioniquement au deuxième brin filaire 3.
- at least a first wired
strand 2 of a first polarity type, comprising a first current collector, - at least one second
wired strand 3 of a second polarity type comprising a second current collector, the second type of polarity being opposite to the first polarity type, - a sheath or layer of
electrolyte 4 in which the firstwired strand 2 and the secondwired strand 3 are arranged, said electrolyte layer being ion-conducting and electrically insulating, so that the firstwired strand 2 is ionically connected to the secondwired strand 3.
Comme illustré à la
L'espaceur 5 est configuré pour éviter un contact direct entre le premier brin 2 et le deuxième brin 3.
L'espaceur 5 permet de maintenir un espacement minimal entre le premier brin 2 et le deuxième brin 3.
Préférentiellement, l'espaceur 5 a une épaisseur comprise entre 10nm et 10µm.The
The
Preferably, the
L'espaceur 5 est électriquement isolant pour éviter tout contact électrique entre le premier brin 2 et le deuxième brin 3, de polarités opposées, de manière à éviter les court-circuits entre les deux brins.The
Préférentiellement, l'espaceur 5 est ioniquement conducteur, ce qui permet d'accroître les échanges ioniques entre le premier brin 2 et le deuxième brin et donc d'améliorer les performances de la batterie.
L'espaceur 5 permet d'éviter un contact direct entre le premier brin 2 et le deuxième brin 3 tout en permettant une conduction ionique entre ces brins.Preferably, the
The
Le matériau formant l'espaceur 5 est différent de celui formant la couche d'électrolyte 4.The material forming the
Préférentiellement, l'espaceur 5 est en céramique.
Le matériau formant l'espaceur 5 est, préférentiellement, choisi parmi LixAlyGez(PO4)3 (LAGP), LixAlyTiz(PO4)3 (LATP), LixLayTiOz (LLTO), Li3PO4, oxynitrure de lithium et de phosphore (LiPON), Al2O3 sous forme nanométrique par exemple.Preferably, the
The material forming the
Selon un autre mode de réalisation, l'espaceur 5 est en en polymère.According to another embodiment, the
Le matériau polymère formant l'espaceur 5 est choisi parmi le polystyrène (PS), le polyéthylène téréphtalate (PET), le polychlorure de vinyle (PVC), le polytétrafluoroéthylène (PTFE), le polycarbonate (PC), ou le polyméthacrylate de méthyl (PMMA).The polymeric material forming the
Préférentiellement, la résistance mécanique du matériau formant l'espaceur 5 est supérieure à celle du matériau formant la couche d'électrolyte 4.
Par résistance mécanique, on entend la résistance du matériau à une déformation induite par une contrainte mécanique.
La résistance mécanique d'un matériau peut être caractérisée par le module d'Young dudit matériau.
Pour résister aux contraintes mécaniques, on choisit, avantageusement, des espaceurs ayant un module d'Young supérieur voire très supérieur à celui de l'électrolyte.
Par supérieur, on entend que le module d'Young de l'espaceur est au moins 100 fois supérieur au module d'Young de la couche d'électrolyte.
Par très supérieur, on entend que le module d'Young de l'espaceur est au moins 1000 fois supérieur au module d'Young de la couche d'électrolyte.Preferably, the mechanical strength of the material forming the
By mechanical strength is meant the resistance of the material to deformation induced by mechanical stress.
The mechanical strength of a material can be characterized by the Young's modulus of said material.
In order to withstand the mechanical stresses, it is advantageous to choose spacers having a Young's modulus that is greater than or even greater than that of the electrolyte.
By superior is meant that the Young's modulus of the spacer is at least 100 times greater than the Young's modulus of the electrolyte layer.
By far superior is meant that the Young's modulus of the spacer is at least 1000 times higher than the Young's modulus of the electrolyte layer.
Ainsi, la batterie filaire pourrait être réalisée avec un espaceur en LiPON, présentant un module d'Young de 80GPa, et l'électrolyte pourrait être réalisé à l'aide d'une matrice inorganique de type ionogel à base de silicate, présentant un module d'Young inférieur à 0.001 GPa.Thus, the wired battery could be made with a LiPON spacer, having a Young's modulus of 80GPa, and the electrolyte could be made using an inorganic ionogel matrix based on silicate, having a module of Young less than 0.001 GPa.
Dans un autre exemple, l'espaceur pourrait être en alumine Al2O3, présentant un module d'Young compris entre 380 et 490GPa, et l'électrolyte pourrait être réalisé à l'aide d'une matrice polymère de type polyéthylène ayant un module d'Young compris en 0.2 et 0.7GPa.In another example, the spacer could be Al 2 O 3 alumina, having a Young's modulus of between 380 and 490GPa, and the electrolyte could be produced using a polyethylene type polymer matrix having a Young's modulus included in 0.2 and 0.7GPa.
Avantageusement la dureté du matériau formant l'espaceur 5 est supérieure à la dureté du matériau formant la couche d'électrolyte 4.
Par dureté supérieure, on entend que l'espaceur 5 est plus dur : il s'oppose à la pénétration de l'autre brin pour éviter un court-circuit. Avantageusement, il résiste mieux aux contraintes de torsion, de cisaillement. L'espaceur 5 présente une bonne tenue mécanique lorsqu'il est sollicité en torsion et/ou en compression par exemple.Advantageously, the hardness of the material forming the
By higher hardness is meant that the
L'espaceur 5 présente une très faible déformation mécanique sous la contrainte : une pression importante peut être exercée lors de l'assemblage des brins.
Le domaine d'élasticité de l'espaceur 5 est supérieur à la contrainte appliquée, c'est-à-dire que le matériau formant l'espaceur 5 reste dans son domaine d'élasticité lors de la sollicitation. Le matériau formant l'espaceur 5 présente une limite d'élasticité supérieure à une contrainte appliquée sur celui-ci. Contrairement à une structure classique comprenant des brins recouverts uniquement d'une couche d'électrolyte pour assurer l'isolation électrique, ce type d'architecture permet de mieux résister aux contraintes mécaniques, notamment en compression et/ou en flexion. Les brins peuvent être serrés fortement entre eux, sans risque de déformer, de détériorer l'espaceur. L'espaceur 5 reste dans son domaine d'élasticité. Des structures compactes sont ainsi obtenues tout en limitant considérablement le risque de court-circuit.The
The elastic range of the
Selon un mode de réalisation préférentiel, l'espaceur 5 ioniquement conducteur et électriquement isolant est un film continu, recouvrant totalement la surface du premier brin 2. L'espaceur 5 permet les échanges ioniques entre le premier brin 2 et la couche d'électrolyte 4.According to a preferred embodiment, the ionically conductive and electrically insulating spacer is a continuous film, completely covering the surface of the
Préférentiellement, le film mince recouvrant le premier brin 2 est muni au moins d'une ouverture 6 traversante, notamment lorsqu'il n'est pas conducteur ionique, pour permettre le contact de la couche électrolytique avec le premier brin 2 et les échanges ioniques entre les brins de polarité opposée. Préférentiellement, le film mince est pourvu d'une pluralité d'ouvertures 6 traversantes et/ou le film présente des discontinuités.Preferably, the thin film covering the
Selon un mode de réalisation préférentiel, le premier brin 2 est revêtu d'une pluralité d'espaceurs 5 de manière à former une couche d'espaceurs 5.According to a preferred embodiment, the
Les espaceurs 5 sont, avantageusement, disposés sur l'ensemble du premier brin 2, i.e. sur toute la longueur et sur toute la circonférence de la surface extérieure du premier brin 2, ce qui permet de maintenir un espacement minimal entre le premier brin 2 et le deuxième 3 en tout point du premier brin 2.The
Préférentiellement, la couche d'espaceurs 5 est munie au moins d'une ouverture 6 traversante, laissant accessible au moins une partie de la surface extérieure du premier brin 2. L'ouverture 6 est, avantageusement, remplie par l'électrolyte. Le premier brin 2 est en contact direct avec la couche d'électrolyte 4 et l'espaceur 5.
Le trou traversant permet un contact direct le premier brin 2 et l'électrolyte, ce qui améliore les performances de la batterie.Preferably, the
The through hole allows a direct contact the
Préférentiellement, la couche d'espaceurs 5 présente plusieurs ouvertures 6 traversantes, à la fois sur le périmètre et sur la longueur du premier brin 2.
Les ouvertures 6 sont, avantageusement, réparties de manière homogène sur l'ensemble de la surface du premier brin 2 pour permettre les échanges ioniques sur l'ensemble de la longueur du brin.Preferably, the
The
Selon un mode de réalisation préférentiel, représenté sur la
Les particules forment les espaceurs 5.
Les espaces entre les particules forment les ouvertures 6 traversantes de la couche d'espaceurs.
Préférentiellement, le diamètre des particules peut varier de 10nm à 10µm, selon l'espacement final souhaité entre les brins de polarité opposée.According to a preferred embodiment, represented on the
The particles form the
The spaces between the particles form the through
Preferably, the particle diameter can vary from 10 nm to 10 μ m, depending on the final desired spacing between the opposite polarity strands.
Selon un autre mode de réalisation, et comme représenté sur la
Les espaces entre les ilots forment les ouvertures 6 traversantes de la couche d'espaceurs.According to another embodiment, and as shown on the
The spaces between the islands form the through
L'utilisation d'une couche d'espaceurs 5 discontinue, et formée par une pluralité de plots ou de particules distincts, permet d'améliorer les caractéristiques de flexion du brin, de manière à limiter les risques de délamination de la couche d'espaceurs 5 par rapport au brin 2 risquant d'induire des courts-circuits.The use of a layer of discontinuous spacers, and formed by a plurality of separate pads or particles, makes it possible to improve the bending characteristics of the strand, so as to limit the risks of delamination of the layer of spacers. 5 relative to the
Les espaces entre les plots ou entre les particules sont remplis par la couche d'électrolyte 4 pour améliorer les échanges ioniques et donc les performances de la batterie.The spaces between the pads or between the particles are filled by the
La couche d'électrolyte 4 est disposée de façon à séparer le premier brin du deuxième brin : elle est disposée entre les deux brins. Le premier brin 2 est connecté ioniquement au deuxième brin 3, via la couche d'électrolyte 4 ioniquement conductrice.
Préférentiellement, la couche d'électrolyte 4 enrobe le premier brin 2 et le deuxième brin 3 : le premier brin et le deuxième brin sont, avantageusement, noyés dans la couche d'électrolyte 4. La couche d'électrolyte 4 forme une gaine d'électrolyte autour des deux brins. Elle forme un étui protégeant, à la fois, les brins et, en même temps, assurant la conduction ionique entre les brins.
Les brins sont positionnés au sein de la batterie filaire.The
Preferably, the
The strands are positioned within the wired battery.
Le matériau de la couche d'électrolyte 4 doit être isolant électronique et conducteur ionique.
Il doit présenter, avantageusement, de bonnes propriétés de flexibilité pour conférer de bonnes propriétés mécaniques à la batterie filaire. Avantageusement, la couche d'électrolyte 4 est en contact avec au moins une partie de la surface extérieure de chaque brin afin de former la jonction ionique entre lesdits brins.The material of the
It must have, advantageously, good flexibility properties to impart good mechanical properties to the wired battery. Advantageously, the
L'électrolyte 4 est, avantageusement, un électrolyte solide.
Avantageusement, l'électrolyte 4 est un électrolyte de type polymère, par exemple de type gel, ou inorganique.
L'électrolyte 4 est, par exemple, formé par une matrice polymère ou inorganique, ladite matrice comportant des pores remplis d'une solution comprenant au moins un sel de lithium ou de sodium, selon le type de batterie désirée.
La matrice donne les propriétés mécaniques au système, et la solution, donne les propriétés électrochimiques au système.The
Advantageously, the
The
The matrix gives the mechanical properties to the system, and the solution gives the electrochemical properties to the system.
La matrice peut, à titre d'exemple, être un polymère de type oxyde de polyéthylène (PEO), bisphénol A éthoxylate diméthacrylate (BEMA), polyfluorure de vinylidène (PVDF), polyméthacrylate de méthyle (PMMA), polyacrylonitrile (PAN), polyfluorure de vinylidène hexafluoropropylène (PVDF-HFP), ou un matériau inorganique, à base de silice, formé à partir de tétraéthyle orthosilicate (TEOS), de méthyltriméthoxysilane (MTMS), de tétraméthylorthosilicate (TMOS), de triéthoxyvinylsilane (TEVOS) ou d'un mélange de ces alcoxydes de silicium.The matrix may, by way of example, be a polymer of the polyethylene oxide (PEO), bisphenol A ethoxylate dimethacrylate (BEMA), polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polyacrylonitrile (PAN), polyfluoride type hexafluoropropylene vinylidene (PVDF-HFP), or an inorganic, silica-based material formed from tetraethyl orthosilicate (TEOS), methyltrimethoxysilane (MTMS), tetramethylorthosilicate (TMOS), triethoxyvinylsilane (TEVOS) or a mixture of these silicon alkoxides.
Une matrice inorganique est, avantageusement, obtenue par une méthode sol-gel.An inorganic matrix is advantageously obtained by a sol-gel method.
Le liquide peut être un solvant classique type carbonate propylène carbonate (PC), diméthyl carbonate (DMC), diéthylcarbonate (DEC), éthylène carbonate(EC), ou encore un liquide ionique de la famille des anions piperidinium, imidazolium, pyrrolidinium, pyridinium ou ammonium, associés aux cations de type bis(trifluoromethanesulfonyl)imide TFSI-, bis(fluorosulfonyl)imide FSI-, acétate CH3COO-, bis(oxalate)borate B(O4C2)2 -, bromure Br-, chlorure Cl-, iodure I-, tetrachloroaluminate Cl- :AlCl2, hexafluorophosphate PF6 -, tetrafluoroborate BF4 -, dicyanamide N(CN)2 -, éthylphosphonate (C2H5O)(H)PO2 -, methylphosphonate (CH3O)(H)PO2 -, sulfate d'hydrogène HSO4 -, methanesulfonate CH3SO3 -, trifluoromethanesulfonate CF3SO3 -.
Il peut aussi s'agir d'un mélange de solvants, d'un mélange de liquides ioniques ou d'un mélange de solvants et liquides ioniques.The liquid may be a conventional solvent such as carbonate propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), or an ionic liquid of the anion family piperidinium, imidazolium, pyrrolidinium, pyridinium or ammonium, associated with type cation bis (trifluoromethanesulfonyl) imide TFSI -, bis (fluorosulfonyl) imide FSI -, acetate CH 3 COO -, bis (oxalate) borate B (O 4 C 2) 2 -, bromide Br -, Cl chloride - , iodide I - , tetrachloroaluminate Cl - : AlCl 2 , hexafluorophosphate PF 6 - , tetrafluoroborate BF 4 - , dicyanamide N (CN) 2 - , ethylphosphonate (C 2 H 5 O) (H) PO 2 - , methylphosphonate (CH 3 O) (H) PO 2 - , hydrogen sulfate HSO 4 - , methanesulfonate CH 3 SO 3 - , trifluoromethanesulfonate CF 3 SO 3 - .
It can also be a mixture of solvents, a mixture of ionic liquids or a mixture of solvents and ionic liquids.
Dans le cas d'une batterie au lithium, l'électrolyte conducteur contient au moins un sel de lithium pour former des ions Li+.
Le sel de lithium peut être choisi parmi le groupe LiCl, LiBr, Lil, LiClO4, LiBF4, LiPF6, LiAsF6, LiFSI, LiTFSI, etc. ou être un mélange de ces sels.In the case of a lithium battery, the conductive electrolyte contains at least one lithium salt to form Li + ions.
The lithium salt may be chosen from LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiFSI, LiTFSI and the like. or be a mixture of these salts.
Dans le cas d'une batterie au sodium, l'électrolyte conducteur contient au moins un sel de sodium pour former des ions Na+.In the case of a sodium battery, the conductive electrolyte contains at least one sodium salt to form Na + ions.
Selon un mode de réalisation préférentiel, au moins le premier brin 2 ou le deuxième brin 3 est formé d'un fil métallique, recouvert d'un matériau d'électrode. Le fil métallique est configuré pour former un collecteur de courant. Le matériau d'électrode recouvre, avantageusement, la surface extérieure du fil métallique, sur toute la longueur du fil métallique.According to a preferred embodiment, at least the
Selon un autre mode de réalisation préférentiel, les deux brins 2, 3 sont formés d'un fil métallique recouvert d'un matériau d'électrode.
Le premier brin 2 est formé d'un premier collecteur de courant 7 recouvert d'un premier matériau d'électrode 8.
Le deuxième brin 3 est formé d'un deuxième collecteur de courant 9 recouvert d'un deuxième matériau d'électrode 10.According to another preferred embodiment, the two
The
The
Les collecteurs de courant 7, 9 sont, préférentiellement, en Cu, Ni, Ti, Al, Au, Ag, Ta, Ba, Cr, W ou un mélange d'au moins deux de ces métaux. Les collecteurs de courant peuvent encore être en acier inoxydable.
Il peut aussi s'agir d'un super-alliage. Par exemple, il peut s'agir d'un super-alliage contenant une grande quantité de nickel et/ou de chrome de la marque Inconel ® ou d'un type similaire.
Le fil métallique, formant le collecteur de courant, a un diamètre pouvant varier du micromètre au millimètre.The
It can also be a superalloy. For example, it may be a superalloy containing a large amount of nickel and / or chrome brand Inconel ® or a similar type.
The wire, forming the current collector, has a diameter that can vary from micrometer to millimeter.
Les collecteurs de courant 7, 9 peuvent aussi être des fils de type isolant métallisés, i.e. un coeur isolant recouvert par une gaine métallique. Une couche de matériau d'électrode peut entourer le collecteur de courant. Avantageusement, la couche métallique ne présente pas de fragilité mécanique : il n'y a pas d'apparition de fissure ou de délaminage lors de la flexion et/ou de la torsion de la batterie filaire.The
Selon un autre mode de réalisation, le premier brin et/ou le second brin est un collecteur de courant, formé par au moins un fil métallique.According to another embodiment, the first strand and / or the second strand is a current collector, formed by at least one metal wire.
Le collecteur de courant peut jouer à la fois le rôle de collecteur de courant et le rôle d'électrode. Une couche de matériau d'électrode additionnel n'est pas nécessaire.The current collector can play both the role of current collector and the role of electrode. A layer of additional electrode material is not necessary.
Préférentiellement, les collecteurs de courant 7, 9 sont sous la forme de fils et présentent une section circulaire. Selon d'autres alternatives, les collecteurs de courant 7, 9 peuvent présenter des sections de géométrie variable, ainsi une section cubique ou hexagonale peut être envisagée.Preferably, the
De même, la surface extérieure du collecteur de courant 7, 9 peut être modifiée afin d'améliorer l'adhésion du matériau d'électrode 8, 10 sur le collecteur de courant 7, 9. Ainsi, elle peut être rendue plus rugueuse ou plus lisse, ou encore, elle peut être fonctionnalisée par exemple grâce au dépôt d'une couche d'accroche.Similarly, the outer surface of the
Le matériau d'électrode 8, 10 est, avantageusement, un matériau électrochimiquement actif vis-à-vis des ions échangés entre le premier brin 2 et le deuxième brin 3.
Préférentiellement, les ions échangés entre le premier brin 2 et le deuxième 3 sont des ions lithium ou sodium.
Le matériau d'électrode est, avantageusement, électrochimiquement actif vis-à-vis des ions lithium ou sodium.The
Preferably, the ions exchanged between the
The electrode material is advantageously electrochemically active with respect to lithium or sodium ions.
Les matériaux envisagés, dans le cas du lithium, sont les matériaux classiquement utilisés pour les batteries lithium tels que des matériaux d'intercalation du lithium du groupe LiMO tels que LiCoO2, LiFeO2, LiNiO2, LiMn2O4, LiMxMn2-xO4 avec 0≤x≤0.5 et M=Ni, Co, Fe, Ti, etc., LiCoPO4, LiFePO4, Li4Ti5O12, ou encore S, des métaux tels que Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, Fe, Bi, Sb, Co, ainsi que des alliages, des oxydes MexOy, des sulfures MexSy ou des complexes de ces métaux tels que MF, MF2 etc.The materials envisaged, in the case of lithium, are the materials conventionally used for lithium batteries such as lithium intercalation materials of the LiMO group such as LiCoO 2 , LiFeO 2 , LiNiO 2 , LiMn 2 O 4 , LiM x Mn 2-x O 4 with 0≤x≤0.5 and M = Ni, Co, Fe, Ti, etc., LiCoPO 4 , LiFePO 4 , Li 4 Ti 5 O 12 , or S, metals such as Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, Fe, Bi, Sb, Co, as well as alloys, Me x O y oxides, Me x S y sulfides or complexes of these metals such as MF, MF 2 etc.
Les matériaux d'électrode 8, 10 sont choisis de façon à conférer au premier matériau d'électrode 8 un premier type de polarité, et au deuxième matériau d'électrode 10 un deuxième type de polarité. Les polarités inversées, aussi appelées polarités opposées, permettent de former un matériau d'anode et un matériau de cathode.
Le matériau du premier brin 2 peut être un matériau d'anode et le matériau du deuxième brin 3 peut être un matériau de cathode.
Selon un autre mode de réalisation, le matériau du premier brin 2 peut être un matériau de cathode et le matériau du deuxième brin 3 peut être un matériau d'anode.The
The
According to another embodiment, the material of the
Le matériau d'électrode 8, 10 a une épaisseur comprise entre 100nm et 100µm. L'épaisseur du matériau, couplée à la longueur du fil du collecteur de courant 7, 9, permet de déterminer la capacité de la batterie.The
Selon un autre mode de réalisation préférentiel, et comme représenté à la
Selon un mode de réalisation préférentiel, au moins le premier brin ou le deuxième brin est en lithium. Un fil ou brin en lithium peut être directement utilisé comme anode dans le montage d'une batterie filaire au lithium, par exemple.
Selon un autre mode de réalisation, dans le cas d'une batterie au sodium, au moins le premier brin 2 ou le deuxième brin 3 est en sodium.According to a preferred embodiment, at least the first strand or second strand is lithium. A lithium wire or strand can be used directly as anode in mounting a lithium wired battery, for example.
According to another embodiment, in the case of a sodium battery, at least the
Selon un autre mode de réalisation, le premier brin 2 ou le deuxième brin 3 est formé d'un collecteur de courant recouvert d'un matériau d'électrode et l'autre brin est formé uniquement d'un matériau conducteur électronique jouant à la fois le rôle de collecteur de courant et de matériau d'électrode. Avantageusement, la batterie filaire 1 comporte une pluralité de brins de chaque polarité. Le nombre de ces brins dépend notamment de la taille de la batterie et de sa capacitéAccording to another embodiment, the
Le nombre de brins de première polarité et le nombre de brins de deuxième polarité est soit égal, ce qui permet de former des paires de brins anode/cathode, soit différent en fonction de l'équilibrage anode/cathode souhaité.The number of strands of first polarity and the number of strands of second polarity is equal, which makes it possible to form pairs of anode / cathode strands, or different depending on the desired anode / cathode equilibrium.
Les espaceurs 5 sont, avantageusement, disposés sur au moins l'ensemble des brins d'un même type de polarité.The
Selon un autre mode de réalisation, le premier brin 2 et le deuxième brin 3 sont chacun revêtus d'au moins un espaceur.
Comme représenté sur la
As shown on the
Les espaceurs peuvent également être disposés sur tous les brins quelle que soit leur polarité.The spacers can also be arranged on all strands regardless of their polarity.
Selon un autre mode de réalisation particulier, les espaceurs 5, préférentiellement sous forme de particules, peuvent aussi être disséminés dans l'ensemble de l'électrolyte 4, pour conférer des propriétés particulières à la batterie (mécaniques, électrochimiques, etc.).According to another particular embodiment, the
Les
Comme représenté sur la
Le premier plan et le deuxième plan sont ensuite empilés. D'autres plans peuvent être ajoutés en alternant les plans de polarité opposée.As shown on the
The first plan and the second plan are then stacked. Other planes can be added by alternating planes of opposite polarity.
Selon un autre mode de réalisation, comme représenté sur la
Selon un autre mode de réalisation, comme représenté sur la
Cette architecture permet de modifier et d'optimiser l'agencement et le nombre de brins de la batterie filaire afin d'améliorer les performances de la batterie tout en conservant de faibles dimensions de batterie.This architecture makes it possible to modify and optimize the arrangement and the number of strands of the wired battery in order to improve the performances of the battery while keeping small dimensions of battery.
La batterie filaire 1 peut être réalisée selon le procédé de réalisation suivant :
- fournir au moins un premier brin filaire 2 d'un premier type de polarité, et au moins un deuxième brin filaire 3 d'un deuxième type de polarité, le deuxième type de polarité étant opposé au premier type de polarité,
- enrober le premier brin filaire 2 et le deuxième brin filaire 3, dans une couche d'électrolyte 4, ioniquement conductrice et électriquement isolante, le premier brin filaire 2 étant connecté ioniquement au deuxième brin filaire 3, via la couche d'électrolyte 4.
- providing at least a first
wired strand 2 of a first type of polarity, and at least a secondwired strand 3 of a second type of polarity, the second type of polarity being opposite to the first type of polarity, - coating the first
wired strand 2 and the secondwired strand 3 in an electrically insulating and electricallyinsulating electrolyte layer 4, the firstwired strand 2 being ionically connected to the secondwired strand 3, via theelectrolyte layer 4.
Le premier brin filaire 2 est revêtu d'au moins un espaceur 5, l'espaceur 5 étant électriquement isolant, l'espaceur 5 étant configuré pour éviter un contact électrique direct entre le premier brin filaire 2 et le deuxième brin filaire 3.
La résistance mécanique du matériau formant l'espaceur 5 est supérieure à la résistance mécanique du matériau formant la couche d'électrolyte 4.The first
The mechanical strength of the material forming the
Pour former les brins 2, 3, le matériau d'électrode 8, 10 peut être déposé sur le collecteur de courant 7, 9 par des techniques classiques de dépôt de couches minces. Il peut s'agir, par exemple, de techniques de dépôts sous vide comme le dépôt physique en phase vapeur « PVD », le dépôt chimique en phase vapeur « CVD », le dépôt chimique en phase vapeur à basse pression « LPCVD », le dépôt chimique en phase vapeur assisté par plasma « PECVD » l'évaporation thermique. Il peut encore s'agir de techniques de dépôt en voie humide comme le trempage-retrait ou « dip-coating », l'enduction, les techniques de spray, l'électro-spray, l'électrodépôt, l'électrodépôt en conditions hydrothermales, ou l'électrophorèse.To form the
L'espaceur 5 est ensuite déposé au moins sur les brins de même polarité. Préférentiellement, les brins de même polarité sont recouverts par une pluralité d'espaceurs 5, de manière à former une couche d'espaceurs 5 sur lesdits brins, les espaceurs 5 étant, avantageusement, sous la forme d'ilots ou de particules.The
Dans le cas d'une couche de particules en surface du premier brin 2, la couche d'espaceurs 5 est réalisée par dépôt d'une solution comportant des particules sur le premier brin 2.
En particulier, la couche d'espaceurs 5 est réalisée à partir d'une solution liquide comportant les particules à déposer en suspension dans un solvant. Après dépôt, ou avantageusement au cours du dépôt, le solvant est évaporé et seules les particules persistent à la surface du matériau d'électrode.In the case of a layer of particles on the surface of the
In particular, the
Le dépôt peut alors être réalisé par des techniques classiques de dépôt en voie humide telles que l'électrophorèse, le dépôt par trempage-retrait, l'enduction, etc.The deposition can then be carried out by conventional wet deposition techniques such as electrophoresis, dip-shrink deposit, coating, etc.
Dans le cas d'une couche d'ilots de matériau, le dépôt de la couche d'espaceurs 5 comporte les étapes successives suivantes :
- déposer un film mince sur le
premier brin 2, - réaliser un traitement thermique de manière à faire fondre le matériau formant le film mince,
- faire refroidir le matériau en fusion, le refroidissement permettant de faire coalescer et solidifier des ilots de matériau.
- deposit a thin film on the
first strand 2, - effecting a heat treatment so as to melt the material forming the thin film,
- cool the molten material, cooling to coalesce and solidify islands of material.
Le film mince est, par exemple, formé par dépôt chimique en phase vapeur (CVD).
Le dépôt est, avantageusement, suivi d'un traitement thermique de fusion sur ladite couche.
Lors du retour à température ambiante, il se forme ainsi des gouttelettes qui coalescent et se solidifient, formant ainsi des ilots de matériaux.
Par température ambiante, on entend une température de l'ordre de 20-25°C. Une couche discontinue est alors obtenue : il s'agit, dans ce mode de réalisation, d'un film mince muni d'ouvertures 6 traversantes.The thin film is, for example, formed by chemical vapor deposition (CVD).
The deposit is advantageously followed by a thermal melting treatment on said layer.
When returning to room temperature, droplets form and coalesce and solidify, forming islands of materials.
By ambient temperature is meant a temperature of the order of 20-25 ° C. A discontinuous layer is then obtained: it is, in this embodiment, a thin film provided with
Les brins 2, 3 de chaque polarité, avec et sans couche d'espaceurs 5, sont ensuite assemblés pour former la batterie filaire 1.
Il peut s'agir d'un assemblage brin-brin, i.e. d'un assemblage comportant uniquement un brin de chaque polarité, ou encore d'un assemblage multibrins où le nombre de brin de chaque polarité est optimisé. L'assemblage comprend un groupe de premiers brins 2 du premier type de polarité et un groupe de deuxièmes brins 3 du deuxième type de polarité.
Préférentiellement, les premiers brins 2 et les deuxièmes brins 3 sont assemblés sous la forme d'une tresse ou d'une torsade de fils. La présence de la couche d'espaceurs 5 permet d'appliquer une tension et/ou flexion importante lors de l'assemblage de brins entre eux et de maitriser les espacements entre les brins pour éviter les court-circuits.The
It may be a strand-strand assembly, ie an assembly comprising only one strand of each polarity, or a multi-strand assembly where the strand number of each polarity is optimized. The assembly comprises a group of
Preferably, the
L'ensemble des brins est ensuite enrobé dans une couche d'électrolyte. L'électrolyte, qui est au départ un liquide plus ou moins visqueux, peut être déposé par des techniques de trempage, ou de spray, par exemple.
Selon les composants utilisés, la polymérisation, ou solidification, peut être soit auto-induite, par contact avec l'humidité de l'air par exemple, soit initiée, par un traitement thermique ou par une insolation ultra-violet notamment.
Des additifs peuvent être ajoutés afin d'accélérer ou d'initier le processus de polymérisation. Dans le cas de la polymérisation sous UV, un photo-initiateur peut être utilisé.All the strands are then embedded in an electrolyte layer. The electrolyte, which is initially a more or less viscous liquid, can be deposited by dipping techniques, or spray, for example.
Depending on the components used, the polymerization, or solidification, can be either self-induced, for example by contact with the humidity of the air, or initiated by a heat treatment or ultraviolet insolation in particular.
Additives may be added to accelerate or initiate the polymerization process. In the case of UV curing, a photoinitiator may be used.
La gaine d'électrolyte peut ensuite être recouverte par d'autres éléments. Une couche de protection peut être ajoutée, ou tout autre élément adapté et choisi par l'homme du métier.
Avantageusement, il est possible de traiter thermiquement les matériaux déposés sur la couche d'électrolyte.The electrolyte sheath can then be covered by other elements. A protective layer may be added, or any other suitable element and chosen by the skilled person.
Advantageously, it is possible to heat treat the materials deposited on the electrolyte layer.
La batterie filaire 1 va maintenant être décrite au moyen de l'exemple suivant, donné à titre illustratif et non limitatif. La batterie comporte plusieurs brins 2 du premier type de polarité et plusieurs brins 3 du deuxième type de polarité.The
Les collecteurs de courant 7 ont un diamètre de 50µm. Il peut, à titre d'exemple, s'agir de titane ou d'acier inoxydable.
Le matériau d'électrode 8 des brins 2 du premier type de polarité est sous la forme d'une couche LiCoO2 de 15µm d'épaisseur déposée sur les collecteurs de courant. Ce matériau d'électrode 8 présente une capacité théorique de 69µAh/cm2/µm.
Des nanoparticules de 500nm sont disposées autour de ces brins afin de former la couche d'espaceurs 5.The
The
500nm nanoparticles are arranged around these strands in order to form the
Les brins 3 du deuxième type de polarité, i.e. les brins de polarité inverse, sont des fils de lithium métallique de 80µm de diamètre.The
Dans un premier exemple d'architecture, un brin d'une première polarité et un brin d'une seconde polarité sont associés. Ce type de batterie filaire présente un très faible diamètre, environ 160µm, et peut présenter jusqu'à 20µAh/cm linéaire de batterie.
Dans un second exemple, le diamètre de la batterie filaire est de 1mm. Dans cette configuration, environ 60 paires de brins anode/cathode peuvent être associés, ce qui représente une capacité de l'ordre de 1.2mAh/cm linéaire de batterie.In a first example of architecture, a strand of a first polarity and a strand of a second polarity are associated. This type of wired battery has a very small diameter, approximately 160 μ m, and can have up to 20 μ Ah / linear cm of battery.
In a second example, the diameter of the wired battery is 1mm. In this configuration, about 60 pairs of anode / cathode strands can be associated, which represents a capacity of the order of 1.2 mAh / linear cm of battery.
L'architecture permet de serrer fortement les brins entre eux sans risque de générer des courts-circuits. La couche d'espaceurs assure l'isolation électrique entre les brins même sous de fortes contraintes mécaniques nécessaires à la réalisation de la batterie filaire (tressage, torsade, etc.).
La densité de brins et l'équilibrage des matériaux d'électrodes peuvent être facilement optimisés, pour atteindre des capacités linéaires très importantes.The architecture makes it possible to strongly tighten the strands between them without the risk of generating short circuits. The layer of spacers provides electrical insulation between the strands even under heavy mechanical stresses necessary for the realization of the wired battery (braiding, twisting, etc.).
The density of strands and the balancing of the electrode materials can be easily optimized to achieve very large linear capabilities.
D'autre part, l'épaisseur d'électrolyte est, avantageusement, maintenue constante dans l'ensemble de la batterie ce qui favorise un fonctionnement électrochimique homogène des matériaux d'électrode.On the other hand, the electrolyte thickness is advantageously kept constant throughout the battery, which promotes homogeneous electrochemical operation of the electrode materials.
Les batteries filaires sont très compactes et peuvent présenter des diamètres de fils relativement petits, de l'ordre de 100µm. Les batteries filaires sont en plus très flexibles, ce qui permet d'envisager l'intégration de ces batteries dans des textiles intelligents : les batteries filaires peuvent être tissées ou tricotées pour réaliser des textiles fonctionnalisés.The wired batteries are very compact and may have relatively small wire diameters, of the order of 100 μm . Wired batteries are also very flexible, which allows to consider the integration of these batteries in smart textiles: wired batteries can be woven or knitted to produce functionalized textiles.
Claims (28)
caractérisée en ce que le premier brin filaire (2) est revêtu au moins d'un espaceur (5), l'espaceur (5) étant électriquement isolant, l'espaceur (5) étant configuré pour éviter un contact direct entre le premier brin filaire (2) et le deuxième brin filaire (3),
et caractérisée en ce que la résistance mécanique du matériau formant l'espaceur (5) est supérieure à celle du matériau formant la couche d'électrolyte (4).
characterized in that the first strand wire (2) is coated at least with a spacer (5), the spacer (5) being electrically insulating, the spacer (5) being configured to avoid direct contact between the first strand wired wire (2) and the second wired wire (3),
and characterized in that the mechanical strength of the material forming the spacer (5) is greater than that of the material forming the electrolyte layer (4).
procédé caractérisé en ce que le premier brin filaire (2) est revêtu d'au moins un espaceur (5), l'espaceur (5) étant électriquement isolant, l'espaceur (5) étant configuré pour éviter un contact direct entre le premier brin filaire (2) et le deuxième brin filaire (3), et en ce que la résistance mécanique du matériau formant l'espaceur (5) est supérieure à celle du matériau formant la couche d'électrolyte (4).
characterized in that the first strand wire (2) is coated with at least one spacer (5), the spacer (5) being electrically insulating, the spacer (5) being configured to avoid direct contact between the first wired strand (2) and the second wired strand (3), and in that the mechanical strength of the material forming the spacer (5) is greater than that of the material forming the electrolyte layer (4).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1401588A FR3023980A1 (en) | 2014-07-16 | 2014-07-16 | WIRED BATTERY AND METHOD FOR PRODUCING A WIRED BATTERY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2975682A1 true EP2975682A1 (en) | 2016-01-20 |
EP2975682B1 EP2975682B1 (en) | 2017-06-21 |
Family
ID=52016619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15176323.2A Not-in-force EP2975682B1 (en) | 2014-07-16 | 2015-07-10 | Cable-type battery and manufacturing process for a cable-type battery |
Country Status (4)
Country | Link |
---|---|
US (1) | US9882232B2 (en) |
EP (1) | EP2975682B1 (en) |
CN (1) | CN105280865B (en) |
FR (1) | FR3023980A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3512029B1 (en) * | 2016-12-09 | 2024-03-06 | LG Energy Solution, Ltd. | Flexible secondary battery |
CN108713273B (en) * | 2016-12-14 | 2021-07-13 | 株式会社Lg化学 | Cable type secondary battery |
US11557986B1 (en) * | 2022-06-06 | 2023-01-17 | Juan Jose Ugartemendia | Passive electric generator system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003023880A2 (en) | 2001-09-12 | 2003-03-20 | Itn Energy Systems, Inc. | Thin-film electrochemical devices on fibrous or ribbon-like substrates and method for their manufacture and design |
KR20070075928A (en) * | 2006-01-17 | 2007-07-24 | 주식회사 엘지화학 | Electrode assembly of novel structure and secondary battery comprising the same |
US20120009331A1 (en) | 2010-02-02 | 2012-01-12 | Lg Chem, Ltd. | Method For Manufacturing Cable-Type Secondary Battery |
US20120015239A1 (en) * | 2010-02-01 | 2012-01-19 | Lg Chem, Ltd. | Cable-Type Secondary Battery |
US20140011065A1 (en) | 2011-10-25 | 2014-01-09 | Lg Chem, Ltd. | Cable-type secondary battery |
US20140170456A1 (en) * | 2011-10-25 | 2014-06-19 | Lg Chem, Ltd. | Cable-type secondary battery |
KR20140076516A (en) * | 2012-12-12 | 2014-06-20 | 주식회사 엘지화학 | Electrode for a secondary battery, secondary battery and cable-type secondary battery including the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110127972A (en) * | 2010-05-20 | 2011-11-28 | 주식회사 엘지화학 | Cable type secondary battery having metal coated polymer collector |
-
2014
- 2014-07-16 FR FR1401588A patent/FR3023980A1/en active Pending
-
2015
- 2015-07-10 EP EP15176323.2A patent/EP2975682B1/en not_active Not-in-force
- 2015-07-13 US US14/797,578 patent/US9882232B2/en active Active
- 2015-07-16 CN CN201510418650.2A patent/CN105280865B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003023880A2 (en) | 2001-09-12 | 2003-03-20 | Itn Energy Systems, Inc. | Thin-film electrochemical devices on fibrous or ribbon-like substrates and method for their manufacture and design |
KR20070075928A (en) * | 2006-01-17 | 2007-07-24 | 주식회사 엘지화학 | Electrode assembly of novel structure and secondary battery comprising the same |
US20120015239A1 (en) * | 2010-02-01 | 2012-01-19 | Lg Chem, Ltd. | Cable-Type Secondary Battery |
US20120009331A1 (en) | 2010-02-02 | 2012-01-12 | Lg Chem, Ltd. | Method For Manufacturing Cable-Type Secondary Battery |
US20140011065A1 (en) | 2011-10-25 | 2014-01-09 | Lg Chem, Ltd. | Cable-type secondary battery |
US20140170456A1 (en) * | 2011-10-25 | 2014-06-19 | Lg Chem, Ltd. | Cable-type secondary battery |
KR20140076516A (en) * | 2012-12-12 | 2014-06-20 | 주식회사 엘지화학 | Electrode for a secondary battery, secondary battery and cable-type secondary battery including the same |
EP2770559A1 (en) * | 2012-12-12 | 2014-08-27 | LG Chem, Ltd. | Electrode for secondary battery, secondary battery comprising same, and cable-type secondary battery |
Non-Patent Citations (1)
Title |
---|
"Cable-type Flexible Lithium ion Battery Based on Hollow multi-Helix Electrodes", ADV. MATER., vol. 24, 2012, pages 5192 - 5197 |
Also Published As
Publication number | Publication date |
---|---|
CN105280865A (en) | 2016-01-27 |
CN105280865B (en) | 2019-06-25 |
US9882232B2 (en) | 2018-01-30 |
US20160020483A1 (en) | 2016-01-21 |
FR3023980A1 (en) | 2016-01-22 |
EP2975682B1 (en) | 2017-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3164904B1 (en) | All-solid battery including a solid electrolyte and a layer of polymer material | |
EP3164903B1 (en) | Solid-state battery including an electrolyte made of a cross-linked solid polymer material | |
EP1936722B1 (en) | Lithium accumulator comprising a current collector-electrode assembly with expansion cavities and method of manufacturing same | |
Farbod et al. | Anodes for sodium ion batteries based on tin–germanium–antimony alloys | |
EP3164900B1 (en) | All-solid battery including a lithium phosphate solid electrolyte which is stable when in contact with the anode | |
EP2543095B1 (en) | Microbattery and method for manufacturing same | |
Jin et al. | Self-healing wide and thin Li metal anodes prepared using calendared Li metal powder for improving cycle life and rate capability | |
FR3002695A1 (en) | PROCESS FOR PRODUCING A COMPLETELY SOLID MONOLITHIC BATTERY | |
EP3084866B1 (en) | Anode compartment having an amorphous-alloy collector | |
EP3596765B1 (en) | Deformable accumulator | |
CA2723608A1 (en) | Iron-air accumulator with lithium mediator | |
EP2975682B1 (en) | Cable-type battery and manufacturing process for a cable-type battery | |
Liu et al. | Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries | |
Choi et al. | Surface reinforcing balloon trick-inspired separator/Li metal integrated assembly to improve the electrochemical performance of Li metal batteries | |
EP3095147B1 (en) | Electrochemical accumulator with housing and terminal made of aluminum alloy | |
FR3071360B1 (en) | SOLID POLYMER ELECTROLYTE COMPRISING SOLVATOR POLYMER, LITHIUM SALT AND SELECTED HALOGEN POLYMER AND BATTERY COMPRISING SAME | |
Serikkazyyeva et al. | Novel Li/LixSny thin film designed as an anode for lithium-ion microbatteries | |
EP3516726B1 (en) | Manufacturing method of an electrochemical device and electrochemical device | |
FR3054727A1 (en) | ELECTROCHEMICAL DEVICE, SUCH AS A MICROBATTERY OR ELECTROCHROME DEVICE, AND METHOD FOR PRODUCING THE SAME | |
Balsara | Development of lithium ion conducting interface between lithium metal and a lithium ion conducting ceramic using block polymers | |
CA3232453A1 (en) | Method of operating a lithium battery | |
Frenck | Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous Lithium-air battery | |
WO2018051048A1 (en) | Method for the production of an electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160719 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 2/18 20060101ALI20170109BHEP Ipc: H01M 10/058 20100101ALI20170109BHEP Ipc: H01M 2/16 20060101ALI20170109BHEP Ipc: H01M 10/0562 20100101ALN20170109BHEP Ipc: H01M 10/05 20100101ALI20170109BHEP Ipc: H01M 4/66 20060101ALN20170109BHEP Ipc: H01M 4/75 20060101AFI20170109BHEP Ipc: H01M 10/0565 20100101ALI20170109BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 10/058 20100101ALI20170126BHEP Ipc: H01M 2/18 20060101ALI20170126BHEP Ipc: H01M 10/0562 20100101ALN20170126BHEP Ipc: H01M 2/16 20060101ALI20170126BHEP Ipc: H01M 4/66 20060101ALN20170126BHEP Ipc: H01M 10/0565 20100101ALI20170126BHEP Ipc: H01M 10/05 20100101ALI20170126BHEP Ipc: H01M 4/75 20060101AFI20170126BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 903678 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015003173 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170922 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170921 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 903678 Country of ref document: AT Kind code of ref document: T Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170921 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171021 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015003173 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170731 |
|
26N | No opposition filed |
Effective date: 20180322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210729 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210720 Year of fee payment: 7 Ref country code: DE Payment date: 20210712 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015003173 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 |