EP2973754A1 - Dispositif monolithique emetteur de lumiere - Google Patents

Dispositif monolithique emetteur de lumiere

Info

Publication number
EP2973754A1
EP2973754A1 EP14709339.7A EP14709339A EP2973754A1 EP 2973754 A1 EP2973754 A1 EP 2973754A1 EP 14709339 A EP14709339 A EP 14709339A EP 2973754 A1 EP2973754 A1 EP 2973754A1
Authority
EP
European Patent Office
Prior art keywords
stack
quantum
iii
matrix
planes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14709339.7A
Other languages
German (de)
English (en)
Inventor
Benjamin Damilano
Hyonju KIM-CHAUVEAU
Eric Frayssinet
Julien Brault
Philippe DE MIERRY
Sébastien CHENOT
Jean Massies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2973754A1 publication Critical patent/EP2973754A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction

Definitions

  • the invention relates to a light-emitting device, more particularly to a light-emitting diode and in particular to a white light-emitting diode.
  • the device of the invention comprises in particular a monolithic matrix, preferably made by epitaxial growth, in nitrides of elements III, for example using alloys (Al, Ga, In) N.
  • the invention also relates to a method of manufacturing such a device.
  • Monolithic white diodes known from the prior art comprise a plurality of electroluminescent regions, formed by quantum wells or III element nitride quantum dot planes, emitting at different wavelengths that combine to give light. white. See, for example, US 6,445,009.
  • the luminous efficiency of these devices is limited by that of electroluminescent regions with lower efficiency, especially those emitting in the yellow.
  • the distribution of electrons and holes in the quantum boxes or quantum wells is changed depending on the voltage applied to the diode. The color of the light emitted may therefore vary with the intensity of the electric current.
  • the diodes of this type are not monolithic: for example, in the case of document US2006 / 0124917, the fluorescent region consists of a quantum well stack in semiconductors 11-VI, reported on a blue light-emitting diode in semi -Conductors III-V.
  • US 2003/006430 discloses a monolithic white light-emitting diode comprising a light-emitting region and a fluorescent region consisting of layers of GaN doped Si or Se, exhibiting an emission in the yolk caused by deep energy levels that originate from crystalline defects.
  • the fluorescent emission thus obtained has a limited quantum efficiency, and its wavelength can not be adjusted to obtain a light having a desired tone.
  • the documents US 2004/0227144 and WO 2007/104884 describe monolithic white diodes comprising an active portion (a light-emitting diode), which can be traversed by an electric current, and a passive portion (wavelength converter) which, because of from its position, can not be traversed by an electric current.
  • the active portion comprises a first stack of quantum wells (or quantum dot planes) in semiconductors III-V, emitting blue radiation by electric injection by said electric current, while the passive portion comprises a second quantum well stack ( or quantum dot planes) in semiconductors III-V, emitting yellow, or green and red radiation, by optical pumping by the radiation emitted by the first stack.
  • the passive portion in order not to be traversed by the electric current flowing through the active portion, the passive portion must be carried out first, by epitaxial deposition on a suitable substrate. The active portion must be performed in a second time, above said passive portion.
  • the quantum well or quantum dot plane stack of the passive portion in order to be able to function correctly as a wavelength converter, the quantum well or quantum dot plane stack of the passive portion must have a high indium (In) content - typically greater than 20% - this which makes it unstable when heated above a temperature above about 1050 ° C.
  • Document DE 10 2004 052 245 describes a light-emitting diode comprising an active portion (electroluminescent) and a passive portion (wavelength converter) made above the active portion.
  • This "inverted" structure makes it possible to carry out the passive portion after the active portion, and thus to avoid any risk of thermal degradation.
  • this implies a passage of the electric current through the passive portion, which is not usual and could, in principle, degrade the electrical characteristics of the device, or even induce undesired electroluminescence of the wavelength converter.
  • the invention aims to overcome the aforementioned drawbacks of the prior art, and in particular to provide a monolithic semiconductor device light emitter having a high efficiency, a stable emission spectrum over time, good electrical properties and can be manufactured by standard industrial processes.
  • An object of the invention making it possible to achieve such a goal, consists of a device according to claim 1.
  • Another object of the invention is a method according to claim 6, allowing the manufacture of such a device
  • FIG. 1 the structure of a monolithic white electroluminescent diode in nitride elements III known from the prior art
  • FIG. 8 the structure of a white light-emitting diode according to one embodiment of the invention
  • FIG. 9 the emission spectrum of a monolithic white electroluminescent diode in nitrides of elements III of the type of FIG. 5, acquired on the front face (that is to say opposite the substrate) and on the back side (that is, through the substrate);
  • FIG. 10 the voltage-current characteristic of said monolithic white light-emitting diode made of III element nitrides, compared to that of a conventional blue diode;
  • FIG. 11 the standardized photoluminescence spectra of three wavelength converters that can be used, separately or jointly, in a monolithic white nitride light emitting diode of elements III according to one embodiment of the invention.
  • FIG. 1 illustrates the structure of a monolithic white diode known from the prior art, and particularly from the aforementioned document WO 2007/104884.
  • a diode comprises, from bottom to top:
  • a light-transparent substrate 7 to be emitted by the device for example sapphire, SiC, ZnO or GaN;
  • Superior p-type AIGaInN, typically having a thickness of the order of 200 nm (the p-type AIGaInN being very resistive, it seeks to minimize its thickness).
  • the regions 1, 2, 30, 40, 5 and 6 form a monolithic matrix of element III nitride semiconductor, generally manufactured by epitaxial deposition on the substrate 7. Within this matrix, the regions 1 , 2 and 30 form a light-emitting diode.
  • a "stair step” etching makes it possible to disengage a region of the upper surface of the region 30 to deposit an electrode 9 therein.
  • Another electrode 8 is deposited on the upper layer 1 (its surface must be higher than that of the electrode 9 because of the less favorable electrical properties of the p-type semiconductor
  • the electrode 8 must preferably cover the entire surface of the light-emitting diode so as to ensure homogeneous injection of the current).
  • the electrodes 8 and 9 make it possible to pass an electric current through the diode 1-2-30; we therefore speak of "active portion" of the matrix. On the other hand, it is understood that no current can pass through the layers 40, 5 and 6 ("passive portion"), because of the presence of the "separation" layer 30, undoped and having a relatively large thickness.
  • the deposition of such a layer 3 must be at a high temperature (above 1000 ° C), which may damage the converter 40.
  • FIG. 2 represents a light-emitting diode which does not fall within the scope of the invention, in which an electric current passes through both the "active" portion and the "passive" portion (wavelength converter) of the matrix.
  • the same reference numerals represent the same elements as in Figure 1. With respect to the device of FIG. 1, the following differences can be observed:
  • the electrode 9 is formed on the rear face of the substrate, which must be conductive (reference 71): a device with a vertical structure is thus produced and the step of "staircase” etching is avoided; the counterpart is that the electric current passes through the whole device, including the converter; this electrode may be transparent, semi-transparent or grid-shaped to allow photon extraction, while it is preferable that the electrode 8, on the "p" side of the device, be a thick metal layer to ensure better electrical contact and also behave like a light reflector;
  • the converter - identified by the reference 4 - differs from the converter 40 of Figure 1 in that it is doped "n" to have a sufficient conductivity (a "p” doping is possible in theory, but less advantageous);
  • the separation region - identified by the reference 3 - may have a much smaller thickness, for example of the order of a few hundred nanometers, or even only 100 nm or less. Indeed, it must no longer ensure the isolation of the converter, which is in any case crossed by the electric current.
  • the converter 4 being doped can provide the electron injection function in the "active" stack 2.
  • Such a thin layer 3 can be carried out by organometallic vapor deposition at a temperature of less than 1000 ° C., for example about 950 ° C. or less, which avoids any risk of damaging the converter 4. .
  • FIG. 3 illustrates a light-emitting diode which does not fall within the scope of the invention, in which an electric current passes through both the "active" portion and the "passive” portion (wavelength converter) of the matrix.
  • This diode also has a vertical structure, but it is performed by flip chip.
  • the epitaxial matrix is separated from its substrate, inverted and deposited on another substrate, 70, which is not necessarily transparent.
  • Reference 80 identifies a solder metal layer, also serving as an electrode.
  • the other The electrode, 90 is deposited on the n-type layer 50 (which corresponds to the "lower” layer 5 of FIGS. 1 and 2, but is now “at the top” of the device).
  • the surface of said layer 50 may be textured to facilitate the extraction of photons.
  • FIGS. 4, 5 and 6 relate to three electroluminescent diodes which do not fall within the scope of the invention, in which an electric current passes through both the "active" portion and the "passive” portion (wavelength converter) of the matrix. These diodes, have a structure closer to that of Figure 1. The only differences concern the thickness of the separation region 3, which is reduced (as in the case of FIGS. 2 and 3), and the fact that the converter 4 has a doping, preferably n-type. Due to the small thickness of the separation layer 3, electrical current lines pass through at least the upper part of the converter 4.
  • the electrical contact 9 is formed on a side portion of the converter. In that of FIG. 5, said contact is made on a lateral portion of the separation region 3. And in the case of FIG. 6 this contact is made on a lateral portion of the lower layer 5.
  • FIG. 7 illustrates the structure of another light-emitting diode which proceeds from a principle different from that at the base of the diodes described above.
  • the key to avoid thermal damage to the converter 4 is not so much in the production of a thin separation layer 3, but in the adoption of an inverted structure, in which said converter is after the "active" stack 2. As in the other examples, this implies the need to allow the passage of an electric current through said converter.
  • the device of FIG. 7 comprises, from bottom to top: an electrode 8 (the structure is of vertical type); a conductive substrate 71, of the p type;
  • an electrode 9 which can be deposited directly above the converter 4, or via an n-type contact layer (not shown).
  • the electrode 9 may be transparent, semi-transparent or grid-shaped to allow extraction of the generated radiation.
  • the advantage of this device is that the converter 4 is made last; it can not be damaged even if other layers are deposited (previously) at high temperature.
  • the main disadvantage of this device lies in the fact that the current must pass through a large thickness of p-type semiconductor (substrate 71, layers 6 and 1 1), which has a high resistivity; in addition, the contact 8 is taken on a p-type region (the substrate 71), which further increases the resistance seen by the current. To reduce this resistance one could achieve an engraving staircase to make contact directly on a portion of the layer 1 January. However, because of the resistivity of said layer, this would lead to a distribution of inhomogeneous current; in addition, the etching operation would be likely to degrade the conductivity of the layers p, while this problem does not arise for n-type layers.
  • FIG. 8 which illustrates an embodiment of the invention, overcomes these disadvantages.
  • the p-type layer 1 1 is replaced by a n-resistive n-type layer 51.
  • the opposite side of the active stack 2 must be provided a layer 3A of type p.
  • a tunnel junction 3B having its p ++ side on the side of the layer 3A and its n ++ side on the side of the converter 4, which has a doping, is introduced. of type n.
  • the tunnel junction 3B has a very small thickness, of the order of a few nanometers, whereas the p-type layer 3A typically has a thickness of the order of 100 nm.
  • devices according to the invention may have a more complex structure, comprising additional layers or by replacing "simple" layers by multilayer structures.
  • the same device may comprise several converters emitting at different wavelengths.
  • the device of Figure 8 is intended for the emission of white light, but this is not an essential feature of the invention.
  • the device of FIG. 8 comprises a conductive substrate 71 (n-type, just like the buffer layer 6), and an electrode 8 deposited on the rear face (opposite to that carrying the matrix) of this substrate.
  • the substrate could be insulating and the electrode 8 could be made in direct contact with the layer 51 by means of staircase etching (see FIG.
  • the matrix could be detached from the substrate, and the electrode 8 could be deposited directly on the rear face of the layer 51.
  • the inventors had to overcome a technical bias. Indeed, it was believed before that the passage of a current Electrical power through the converter 4 would have firstly disturbed the fluorescent emission of said converter, on the other hand degraded the electrical properties of the device in an unacceptable manner. Surprisingly, the present inventors have realized that this is not the case.
  • the matrix of this prototype was entirely realized by EPVOM. It comprises the following stack of layers, starting from the substrate 7 sapphire: a lower layer 5 of thickness of 4.5 ⁇ Si-doped GaN, a converter 4 formed of 20 quantum wells ln 0 , 25Ga 0 , 75N ( 1.2 nm) / GaN: Si (20 nm), a separation layer 3 of GaN: Si (20 nm), an electroluminescent stack 2 formed of 5 quantum wells lno , -iGa 0, .9 N (1 .2 nm) / GaN (10 nm), an upper layer (in fact, a multilayer structure) 1 comprising AI 20 nm thick i-0. 4 Ga 0 .86N: Mg and 235 nm of GaN: Mg.
  • the Si doped layers have n-type conductivity and the Mg-doped layers have a p-type conductivity.
  • Figure 9 shows the emission spectra of this prototype, powered by a current of 20 mA at room temperature.
  • Two spectra were acquired, one "front face” and the other "back face", that is to say through the substrate.
  • a first peak at 380 nm (violet) corresponding to the emission of the active stack 2 and a second peak at 480 nm (yellow) corresponding to the fluorescence of the converter 4 can be noted.
  • the two spectra have been standardized in such a way that that the intensity of the peak at 380 nm is worth 1.
  • the peak at 480 nm is more intense on the rear face than on the front. This is normal because the emission on the front panel also includes the 380 nm photons that have not passed through the converter.
  • Figure 10 compares the current-voltage characteristic of the prototype with that of a conventional violet light-emitting diode (LED), achieved under comparable growth conditions. It comprises the following stack of layers, starting from the substrate 7 in sapphire: a lower layer 5 of 4.5 ⁇ thick Si-doped GaN, an electroluminescent stack 2 formed of 5 quantum wells ln 0 , iGa 0 ,. 9 N (1.2 nm) / GaN (10 nm), an upper layer (in fact, a multilayer structure) 1 comprising 20 nm in thickness of Al 0. 4 Ga 0 .86N: Mg and 235 nm of GaN: mg. It is noted that the current-voltage characteristic of the prototype is not degraded. Surprisingly, this characteristic is even better than that of the reference LED. This indicates that the converter does not add significant resistance to current flow.
  • a conventional violet light-emitting diode LED
  • the thickness and the composition of the quantum wells of the converter 4 (respectively: the composition and the size of the quantum boxes) one can obtain a fluorescent emission covering the whole visible spectrum: blue (470 nm), green (530 nm) , orange (590 nm) and red (650 nm). This is illustrated in Figure 1 1.
  • the combination of these colors makes it possible in principle to obtain all pure or mixed colors such as white.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Dispositif émetteur de lumière comprenant une matrice monolithique de nitrures d'éléments III, ladite matrice comportant au moins un premier empilement (2) de puits quantiques ou de plans de boîtes quantiques apte à émettre des photons à au moins une première longueur d'onde par injection électrique, un deuxième empilement (4) de puits quantiques ou de plans de boîtes quantiques apte à émettre des photons à au moins une seconde longueur d'onde par pompage optique par lesdits photons émis par ledit premier empilement, et une région (3) séparant les deux dits empilements, ainsi qu'une première (8) et une deuxième (9) électrode agencées pour permettre le passage d'un courant électrique à travers lesdits empilements, ledit deuxième empilement (4) présente un dopage de type n, ladite région de séparation (3) comprend une jonction tunnel (3B) ayant une région dopée n++ agencé du côté dudit deuxième empilement (4) et une région dopée p++ (3A) agencée du côté opposé, et ledit premier empilement (2) est agencé entra ladite région de séparation (3) et au moins une couche (51) présentant un dopage de type n. Procédé de fabrication d'un tel dispositif.

Description

DISPOSITIF MONOLITHIQUE EMETTEUR DE LUMIERE
L'invention porte sur un dispositif émetteur de lumière, plus particulièrement sur une diode électroluminescente et notamment sur une diode électroluminescente blanche. Le dispositif de l'invention comprend en particulier une matrice monolithique, réalisée de préférence par croissance épitaxiale, en nitrures d'éléments III, par exemple en utilisant des alliages (AI,Ga,ln)N.
L'invention porte également sur un procédé de fabrication d'un tel dispositif.
Des diodes blanches monolithiques connues de l'art antérieur comprennent une pluralité de régions électroluminescentes, formées par des puits quantiques ou des plans de boîtes quantiques en nitrures d'éléments III, émettant à des longueurs d'ondes différentes qui se combinent pour donner une lumière blanche. Voir par exemple le document US 6,445,009.
Toutefois, le rendement lumineux de ces dispositifs est limité par celui des régions électroluminescentes à plus faible efficacité, notamment celles émettant dans le jaune. En outre, la répartition des électrons et des trous dans les boîtes quantiques ou les puits quantiques est modifiée en fonction de la tension appliquée à la diode. La couleur de la lumière émise peut donc varier avec l'intensité du courant électrique.
Pour éviter ces inconvénients, il est connu de réaliser des diodes électroluminescentes blanches comprenant une région électroluminescente, émettant une lumière bleue ou ultraviolette, et une région fluorescente, pompée par ladite lumière bleue ou ultraviolette et réémettant un rayonnement à plus grande longueur d'onde. Conventionnellement, les diodes de ce type ne sont pas monolithiques : par exemple, dans le cas du document US2006/0124917 la région fluorescente est constituée par un empilement de puits quantiques en semi-conducteurs ll-VI, rapportée sur une diode électroluminescente bleue en semi-conducteurs lll-V. La réalisation séparée de la diode électroluminescente bleue et de la région fluorescente, puis leur assemblage, rendent la fabrication d'un tel dispositif complexe et coûteuse.
Le document US 2003/006430 décrit une diode électroluminescente blanche monolithique comprenant une région électroluminescente et une région fluorescente constituée par des couches de GaN dopées Si ou Se, présentant une émission dans le jaune provoquée par des niveaux énergétiques profonds qui proviennent de défauts cristallins. L'émission fluorescente ainsi obtenue présente une efficacité quantique limitée, et sa longueur d'onde ne peut pas être ajustée pour obtenir une lumière présentant une tonalité voulue.
Les documents US 2004/0227144 et WO 2007/104884 décrivent des diodes blanches monolithiques comprenant une portion active (une diode électroluminescente), pouvant être parcourue par un courant électrique, et une portion passive (convertisseur de longueur d'onde) qui, en raison de sa position, ne peut pas être parcourue par un courant électrique. La portion active comprend un premier empilement de puits quantiques (ou plans de boîtes quantiques) en semi-conducteurs lll-V, émettant un rayonnement bleu par injection électrique par ledit courant électrique, tandis que la portion passive comprend un deuxième empilement de puits quantiques (ou plans de boîtes quantiques) en semi-conducteurs lll-V, émettant un rayonnement jaune, ou vert et rouge, par pompage optique par le rayonnement émis par le premier empilement.
Une telle structure est attrayante, mais difficile à réaliser. En effet, afin de ne pas être parcourue par le courant électrique qui traverse la portion active, la portion passive doit être réalisée la première, par dépôt épitaxial sur un substrat adapté. La portion active doit être réalisée en un deuxième temps, au-dessus de ladite portion passive. Or, pour pouvoir fonctionner correctement en tant que convertisseur de longueur d'onde, l'empilement de puits quantiques ou de plans de boîtes quantiques de la portion passive doit présenter une teneur en Indium (In) élevée - typiquement supérieure à 20% - ce qui la rend instable en cas de chauffage au-delà d'une température supérieure à 1050 ° C environ. Cela sigrifie que la croissance de la portion active doit être réalisée à « basse » température (moins de 1000 ° C, de préférence 950 °C ou moins), ce qui exclut le recouis aux techniques d'épitaxie en phase vapeur aux organométallique (EPVOM, ou MOCVD de l'anglais
« Métal Organic Chemical Vapor Déposition »), qui sont les plus couramment employées dans l'industrie. Il est intéressant de noter que le document US 2004/0227144 précité décrit un procédé de fabrication comprenant une étape de croissance de la portion active effectuée à une température de 1020 - 1040 °C ce qui, compte tenu du temps nécessaire pour sa réalisation, conduirait nécessairement à une altération (et notamment à un noircissement) du convertisseur dans la portion passive.
Le document DE 10 2004 052 245 décrit une diode électroluminescente comprenant une portion active (électroluminescente) et une portion passive (convertisseur de longueur d'onde) réalisée au-dessus de la portion active. Cette structure « inversée » permet de réaliser la portion passive après la portion active, et donc d'éviter tout risque de dégradation thermique. Toutefois, cela implique un passage du courant électrique à travers la portion passive, ce qui n'est pas usuel et pourrait, en principe, dégrader les caractéristiques électriques du dispositif, voire induire une électroluminescence non souhaitée du convertisseur de longueur d'onde.
L'invention vise à pallier les inconvénients précités de l'art antérieur, et notamment à procurer un dispositif semi-conducteur monolithique émetteur de lumière présentant un rendement élevé, un spectre d'émission stable dans le temps, de bonnes propriétés électriques et pouvant être fabriqué par des procédés industriels standard.
Un objet de l'invention, permettant d'atteindre un tel but, est constitué par un dispositif selon la revendication 1 .
Un autre objet de l'invention est un procédé selon la revendication 6, permettant la fabrication d'un tel dispositif,
Les revendications dépendantes portent sur des modes de réalisation avantageux d'un tel dispositif et d'un tel procédé.
D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
La figure 1 , la structure d'une diode électroluminescente blanche monolithique en nitrures d'éléments III connue de l'art antérieur ;
- les figures 2 à 7, des structures de diodes électroluminescentes blanches données à titre d'exemple et ne relevant pas de l'invention ; - la figure 8 la structure d'une diode électroluminescente blanche selon un mode de réalisation de l'invention
- La figure 9, le spectre d'émission d'une diode électroluminescente blanche monolithique en nitrures d'éléments III du type de la figure 5, acquis en face avant (c'est-à-dire à l'opposé du substrat) et en face arrière (c'est-à-dire à travers le substrat) ;
La figure 10, la caractéristique tension-courant de ladite diode électroluminescente blanche monolithique en nitrures d'éléments III, comparée à celle d'une diode bleu conventionnelle ; et
- La figure 1 1 , les spectres de photoluminescence normalisés de trois convertisseurs de longueur d'onde pouvant être utilisés, séparément ou conjointement, dans une diode électroluminescente blanche monolithique en nitrures d'éléments III selon un mode de réalisation de l'invention.
La figure 1 illustre la structure d'une diode blanche monolithique connue de l'art antérieure, et particulièrement du document WO 2007/104884 précité. Une telle diode comprend, du bas vers le haut :
un substrat 7 transparent à la lumière qui doit être émise par le dispositif, par exemple en saphir, , SiC, ZnO ou GaN ;
une ou plusieurs couches tampons 6 en AIGalnN intrinsèque ou, plus précisément non intentionnellement dopée (n.i.d.) ; « AIGalnN » est ici une formule générale qui signifie AlxGaylnzN, avec x+y+z=1 et où un ou deux des coefficients stœchiométriques x, y ,z peuvent également être nuls ;
une couche 5 dite « inférieure » en AIGalnN de type n.i.d. - un « convertisseur » formé par un empilement 40 de puits quantiques ou plans de boîtes quantiques en lnxGa-i-xN / GaN susceptibles d'absorber un rayonnement à une première longueur d'onde (typiquement dans le bleu) et de réémettre un rayonnement à une deuxième longueur d'onde, plus élevée (typiquement dans le jaune) ; le coefficient stœchiométrique x est généralement supérieur ou égal à 0,2 ;
une région (couche ou structure multicouche) 30, dite « de séparation », en AIGalnN de type n, présentant typiquement une épaisseur de l'ordre de 2 μιη ; un empilement 2 de puits quantiques ou plans de boîtes quantiques en lnxGa-i-xN / GaN (avec typiquement x<0,2), susceptible d'émettre un rayonnement à ladite première longueur d'onde par injection électronique ; et
- une région (couche ou structure multicouche) 1 , dite
« supérieure », en AIGaInN de type p, présentant typiquement une épaisseur de l'ordre de 200 nm (la AIGaInN de type p étant très résistif, on cherche à minimiser son épaisseur).
Les régions 1 , 2, 30, 40, 5 et 6 forment une matrice monolithique en semi-conducteur de type nitrure d'éléments III, fabriquée généralement par dépôt épitaxial sur le substrat 7. A l'intérieur de cette matrice, les régions 1 , 2 et 30 forment une diode électroluminescente.
Une gravure en « marche d'escalier » permet de dégager une région de la surface supérieure de la région 30 pour y déposer une électrode 9. Une autre électrode 8 est déposée sur la couche supérieure 1 (sa surface doit être plus élevée que celle de l'électrode 9 en raison des propriétés électriques moins favorables du semi-conducteur de type p. L'électrode 8 doit recouvrir de préférence toute la surface de la diode électroluminescente afin d'assurer une injection homogène du courant). Les électrodes 8 et 9 permettent de faire passer un courant électrique à travers la diode 1 -2-30 ; on parle donc de « portion active » de la matrice. Par contre, on comprend qu'aucun courant ne peut traverser les couches 40, 5 et 6 (« portion passive »), en raison de la présence de la couche « de séparation » 30, non dopée et présentant une épaisseur relativement importante.
Comme mentionné plus haut, le dépôt d'une telle couche 3 doit se faire à une température élevée (supérieure à 1000 ° C), ce qui risque d'endommager le convertisseur 40.
La figure 2 représente une diode électroluminescente ne relevant pas de l'invention, dans laquelle un courant électrique traverse aussi bien la portion « active » que la portion « passive » (convertisseur de longueur d'onde) de la matrice. Les mêmes chiffres de référence représentent les mêmes éléments que sur la figure 1 . Par rapport au dispositif de la figure 1 on peut remarquer les différences suivantes :
l'électrode 9 est réalisée sur la face arrière du substrat, qui doit être conducteur (référence 71 ) : on réalise ainsi un dispositif à structure verticale et on évite l'étape de gravure « en marche d'escalier » ; la contrepartie est que le courant électrique traverse tout le dispositif, y compris le convertisseur ; cette électrode peut être transparente, semi-transparente ou en forme de grille pour permettre l'extraction des photon, alors qu'il est préférable que l'électrode 8, du côte « p » du dispositif, soit une couche métallique épaisse pour assurer un meilleur contact électrique et se comporter également comme un réflecteur de lumière;
le convertisseur - identifié par la référence 4 - se différencie du convertisseur 40 de la figure 1 en ce qu'il est dopé « n » afin de présenter une conductivité suffisante (un dopage « p » est possible en théorie, mais moins avantageux) ;
la région de séparation - identifiée par la référence 3 - peut présenter une épaisseur beaucoup plus faible, par exemple de l'ordre de quelques centaines de nanomètres, voire seulement de 100 nm ou moins. En effet, elle ne doit plus assurer l'isolement du convertisseur, qui est en tout cas traversé par le courant électrique. En outre, le convertisseur 4, étant dopé, peut assurer la fonction d'injection d'électrons dans l'empilement « actif » 2.
La croissance d'une couche 3 aussi mince peut s'effectuer par dépôt en phase vapeur aux organométalliques à une température inférieure à 1000 °C, par exemple d'environ 950 °C ou moins, cequi évite tout risque d'endommagement du convertisseur 4.
La figure 3 illustre une diode électroluminescente ne relevant pas de l'invention, dans laquelle un courant électrique traverse aussi bien la portion « active » que la portion « passive » (convertisseur de longueur d'onde) de la matrice. Cette diode présente également une structure verticale, mais elle est réalisée par retournement de puce (« flip chip »). Autrement dit, la matrice épitaxiale est séparée de son substrat, retournée et déposée sur un autre substrat, 70, qui n'est pas nécessairement transparent. La référence 80 identifie une couche métallique de brasure, servant également d'électrode. L'autre électrode, 90, est déposée sur la couche de type n 50 (qui correspond à la couche « inférieure » 5 des figures 1 et 2, mais se trouve maintenant « en haut » du dispositif). La surface de ladite couche 50 peut être texturée pour faciliter l'extraction des photons.
Les figures 4, 5 et 6 se rapportent à trois diodes électroluminescente ne relevant pas de l'invention, dans lesquelles un courant électrique traverse aussi bien la portion « active » que la portion « passive » (convertisseur de longueur d'onde) de la matrice. Ces diodes., présentent une structure plus proche de celle de la figure 1 . Les seules différences concernent l'épaisseur de la région de séparation 3, qui est réduite (comme dans le cas des figures 2 et 3), et le fait que le convertisseur 4 présente un dopage, préférentiellement de type n. En raison de la faible épaisseur de la couche de séparation 3, des lignes de courant électrique traversent au moins la partie supérieure du convertisseur 4.
Dans le cas de la figure 4, le contact électrique 9 est réalisé sur une portion latérale du convertisseur. Dans celui de la figure 5, ledit contact est réalisé sur une portion latérale de la région de séparation 3. Et dans le cas de la figure 6 ce contact est réalisé sur une portion latérale de la couche inférieure 5. Ces trois variantes sont sensiblement équivalentes ; on remarquera seulement que, pour pouvoir réaliser le contact sur la région de séparation 3, il faut contrôler très précisément la gravure « en marche d'escalier » en raison de la faible épaisseur de cette couche.
La figure 7 illustre la structure d'une autre diode électroluminescente qui procède d'un principe différent de celui à la base des diodes décrites ci-dessus. En effet, dans ce cas, la clé pour éviter l'endommagement thermique du convertisseur 4 ne réside pas tant dans la réalisation d'une couche de séparation 3 mince, quant dans l'adoption d'une structure inversée, dans laquelle ledit convertisseur est réalisé après l'empilement « actif » 2. Comme dans les autres exemples, cela implique la nécessité d'autoriser le passage d'un courant électrique à travers ledit convertisseur.
Ainsi le dispositif de la figure 7 comprend, du bas vers le haut : une électrode 8 (la structure est de type vertical) ; un substrat conducteur 71 , de type p ;
une couche tampon 6 en AIGalnN de type p. ;
une couche 1 1 en AIGalnN de type p ;
un empilement électroluminescent 2 de puits quantiques ou plans de boîtes quantiques de semi-conducteur lll-V ;
une région de séparation 3, de type n ou n.i.d., dont l'épaisseur n'est pas critique ;
un convertisseur 4, présentant un dopage de type n ;
une électrode 9 qui peut être déposée directement au- dessus du convertisseur 4, ou par l'intermédiaire d'une couche de contact de type n (non représentée). De préférence l'électrode 9 peut être transparente, semi-transparente ou en forme de grille pour permettre l'extraction du rayonnement généré.
L'avantage de ce dispositif est que le convertisseur 4 est réalisé en dernier ; il ne peut donc pas être endommagé même si d'autres couches sont déposées (préalablement) à haute température.
Le principal inconvénient de ce dispositif réside dans le fait que le courant doit traverser une épaisseur importante de semi-conducteur de type p (substrat 71 , couches 6 et 1 1 ), qui présente une résistivité élevée ; en outre, le contact 8 est pris sur une région de type p (le substrat 71 ), ce qui accroît encore la résistance vue par le courant. Pour réduire cette résistance on pourrait réaliser une gravure en marche d'escalier afin de prendre un contact directement sur une portion de la couche 1 1 . Cependant, en raison de la résistivité de ladite couche, cela conduirait à une répartition du courant peu homogène ; en outre, l'opération de gravure serait susceptible de dégrader la conductivité des des couches p, alors que ce problème ne se pose pas pour des couches de type n.
Des problèmes semblables se posent dans le cas du dispositif illustré par la figure 2 du document DE 10 2004 052 245 précité.
La structure de la figure 8, qui illustre un mode de réalisation de l'invention, permet de remédier à ces inconvénients. Dans ce dispositif, la couche 1 1 de type p est remplacée par une couche 51 de type n, moins résistive. En contrepartie, du côté opposé de l'empilement actif 2 il faut prévoir une couche 3A de type p. Mais comme, en général, on ne souhaite pas réaliser un convertisseur 4 avec dopage de type p, on introduit une jonction tunnel 3B ayant son côté p++ du côté de la couche 3A et son côté n++ du côté du convertisseur 4, qui a un dopage de type n. La jonction tunnel 3B présente une épaisseur très faible, de l'ordre de quelques nanomètres, tandis que la couche 3A, de type p, présente typiquement une épaisseur de l'ordre de 100 nm.
Seuls des dispositifs comportant un convertisseur 4 avec dopage n ont été décrits en détail. Si le dopage du convertisseur était de type p, celui des autres couches de la matrice devrait changer en conséquence. Toutefois, il est connu que les convertisseurs de type p sont moins efficaces que ceux de type n.
Un seul mode de réalisation de l'invention a été décrit ; plusieurs autres variantes sont cependant possibles. En particulier, des dispositifs selon l'invention peuvent présenter une structure plus complexe, comprenant des couches additionnelles ou en remplaçant des couches « simples » par des structures multicouches. En particulier, un même dispositif peut comprendre plusieurs convertisseurs émettant à différentes longueurs d'onde.
Le dispositif de la figure 8 est destiné à l'émission d'une lumière blanche, mais il ne s'agit pas là d'une caractéristique essentielle de l'invention.
Le dispositif de la figure 8 comprend un substrat 71 conducteur (de type n, tout comme la couche tampon 6), et une électrode 8 déposée sur la face arrière (opposée à celle portant la matrice) de ce substrat. En variante, le substrat pourrait être isolant et l'électrode 8 être réalisée en contact direct avec la couche 51 grâce à une gravure en marche d'escalier (cf. la figure 6). Selon une autre variante, la matrice pourrait être détachée du substrat, et l'électrode 8 être déposée directement sur la face arrière de la couche 51 . Ces exemples ne sont pas limitatifs. Dans tous les cas, grâce à l'utilisation de la jonction tunnel 3B on parvient à minimiser l'épaisseur des régions dopées p traversées par le courant et à assurer que les contacts électriques soient pris sur des régions dopées n.
Pour parvenir à l'invention, les inventeurs on dû surmonter un préjugé technique. En effet, il était cru auparavant que le passage d'un courant électrique à travers du convertisseur 4 aurait d'une part perturbé l'émission fluorescente dudit convertisseur, d'autre part dégradé les propriétés électriques du dispositif d'une manière inacceptable. De manière inattendue, les présents inventeurs se sont rendu compte que ce n'est pas le cas.
Cela a été démontré expérimentalement en réalisant un prototype présentant la structure de la figure 5. La matrice de ce prototype a été entièrement réalisée par EPVOM. Elle comprend l'empilement de couches suivant, en partant du substrat 7 en saphir : une couche inférieure 5 de 4,5 μιτι d'épaisseur en GaN dopé Si, un convertisseur 4 formé de 20 puits quantiques ln0,25Ga0,75N (1 .2 nm) / GaN : Si (20 nm), une couche de séparation 3 de GaN : Si (20 nm), un empilement électroluminescent 2 formé de 5 puits quantiques lno,-iGa0,.9N (1 .2 nm) / GaN (10 nm), une couche supérieure (en fait, une structure multicouches) 1 comprenant 20 nm d'épaisseur de AI0.-i4Ga0.86N : Mg et 235 nm de GaN : Mg. Les couches dopées Si présentent une conductivité de type n et les couches dopées Mg une conductivité de type p.
La figure 9 montre les spectres d'émission de ce prototype, alimenté par un courant de 20 mA à température ambiante. Deux spectres ont été acquis, l'un « face avant » et l'autre « face arrière », c'est-à-dire à travers le substrat. On peut noter un premier pic à 380 nm (violet) correspondant à l'émission de l'empilement actif 2 et un deuxième pic à 480 nm (jaune) correspondant à la fluorescence du convertisseur 4. Les deux spectres ont été normalisés de telle sorte que l'intensité du pic à 380 nm vaille 1 . On peut remarquer que le pic à 480 nm est plus intense en face arrière qu'en face avant. Cela est normal car l'émission en face avant comprend aussi les photons à 380 nm qui n'ont pas traversé le convertisseur.
La figure 10 permet de comparer la caractéristique courant- tension du prototype avec celle d'une diode électroluminescente (DEL) violette conventionnelle, réalisée dans des conditions de croissance comparables. Elle comprend l'empilement de couches suivant, en partant du substrat 7 en saphir : une couche inférieure 5 de 4,5 μιτι d'épaisseur en GaN dopé Si, un empilement électroluminescent 2 formé de 5 puits quantiques ln0,iGa0,.9N (1 .2 nm) / GaN (10 nm), une couche supérieure (en fait, une structure multicouches) 1 comprenant 20 nm d'épaisseur de AI0. 4Ga0.86N : Mg et 235 nm de GaN : Mg. On constate que la caractéristique courant-tension du prototype n'est pas dégradée. De manière surprenante, cette caractéristique est même meilleure que celle de la DEL de référence. Ceci indique que le convertisseur n'ajoute pas une résistance significative au passage du courant.
Les résultats expérimentaux des figures 9 et 10 concernent des dispositifs qui ne relèvent pas de l'invention ; toutefois, ils peuvent être extrapolés au cas d'un dispositif selon l'invention, du type illustré sur la figure 8.
En faisant varier l'épaisseur et la composition des puits quantiques du convertisseur 4 (respectivement : la composition et la taille des boîtes quantiques) on peut obtenir une émission fluorescente couvrant tout le spectre visible : bleu (470 nm), vert (530 nm), orange (590 nm) et rouge (650 nm). Cela est illustré sur la figure 1 1 . La combinaison de ces couleurs permet en principe d'obtenir toutes les couleurs pures ou mélangées comme le blanc.

Claims

REVENDICATIONS
1 . Dispositif émetteur de lumière comprenant une matrice monolithique de nitrures l l l-V, ladite matrice comportant au moins un premier empilement (2) de puits quantiques ou de plans de boîtes quantiques de nitrures d'éléments III, un deuxième empilement (4) de puits quantiques ou de plans de boîtes quantiques de nitrures lll-V, et une région (3) dite de séparation, séparant les deux dits empilements de puits quantiques ou de plans de boîtes quantiques, ainsi qu'une première (8) et une deuxième (9) électrode agencées pour permettre le passage d'un courant électrique à travers ledit premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrures d'éléments III et également à travers au moins une partie dudit deuxième empilement de puits quantiques ou de pians de boîtes quantiques de nitrures d'éléments III,, dans lequel ledit premier empilement de puits quantiques ou de pians de boîtes quantiques de nitrures d'éléments III est apte à émettre des photons à au moins une première longueur d'onde par injection électrique par ledit courant électrique et ledit deuxième empilement de puits quantiques ou de plans de boîtes quantiques de nitrures d'éléments III est apte à émettre des photons à au moins une seconde longueur d'onde par pompage optique par lesdits photons émis par ledit premier empilement, ladite matrice étant réalisée par dépôt épitaxial, caractérisé en ce que ledit deuxième empilement (4) de puits quantiques ou de plans de boîtes quantiques de nitrures lll-V présente un dopage de type n, en ce que ladite région de séparation (3) comprend une jonction tunnel (3B) ayant une région dopée n++ agencé du côté dudit deuxième empilement (4) et une région dopée p++ agencée du côté opposé, ainsi qu'au moins une couche dopée p (3A) agencée du côté de la région de séparation opposée audit deuxième empilement, et en ce que ledit premier empilement (2) de puits quantiques ou de plans de boîtes quantiques de nitrures d'éléments III est agencé entre ladite région de séparation (3) et au moins une couche (51 ) présentant un dopage de type n.
2. Dispositif selon la revendication 1 dans lequel ladite région de séparation (3) présente une épaisseur inférieure ou égale à 1 000 nm et de préférence inférieure ou égale à 500 nm.
3. Dispositif selon l'une des revendications précédentes, dans lequel ladite première et la deuxième électrode sont agencées de part et d'autre de ladite matrice monolithique de nitrures d'éléments III, moyennant quoi ledit courant électrique circule dans une direction sensiblement perpendiculaire auxdits puits quantiques ou plans de boîtes quantiques.
4. Dispositif selon l'une des revendications précédentes dans lequel lesdites première et deuxième longueurs d'onde sont choisies de telle sorte que leur combinaison donne une lumière blanche.
5. Dispositif selon l'une des revendications précédentes dans lequel ladite matrice est déposée sur un substrat (7) conducteur ledit deuxième empilement (4) étant agencé du côté de ladite matrice opposé audit substrat et ledit premier empilement (2) étant agencé entre ledit substrat et ledit deuxième empilement,
6. Procédé de fabrication d'un dispositif selon l'une des revendications précédentes comportant la réalisation de ladite matrice monolithique de nitrures d'éléments III par croissance épitaxiale.
7. Procédé selon la revendication 6 dans lequel ladite croissance épitaxiale est entièrement réalisée en phase vapeur aux organométalliques.
EP14709339.7A 2013-03-14 2014-03-12 Dispositif monolithique emetteur de lumiere Withdrawn EP2973754A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352303A FR3003402B1 (fr) 2013-03-14 2013-03-14 Dispositif monolithique emetteur de lumiere.
PCT/EP2014/054873 WO2014140118A1 (fr) 2013-03-14 2014-03-12 Dispositif monolithique emetteur de lumiere

Publications (1)

Publication Number Publication Date
EP2973754A1 true EP2973754A1 (fr) 2016-01-20

Family

ID=48570327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14709339.7A Withdrawn EP2973754A1 (fr) 2013-03-14 2014-03-12 Dispositif monolithique emetteur de lumiere

Country Status (6)

Country Link
US (1) US20160043272A1 (fr)
EP (1) EP2973754A1 (fr)
JP (1) JP2016513878A (fr)
CN (1) CN105122475B (fr)
FR (1) FR3003402B1 (fr)
WO (1) WO2014140118A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019380B1 (fr) * 2014-04-01 2017-09-01 Centre Nat Rech Scient Pixel semiconducteur, matrice de tels pixels, structure semiconductrice pour la realisation de tels pixels et leurs procedes de fabrication
US9590140B2 (en) * 2014-07-03 2017-03-07 Sergey Suchalkin Bi-directional dual-color light emitting device and systems for use thereof
JP2017220586A (ja) * 2016-06-08 2017-12-14 国立大学法人 東京大学 半導体発光素子
FR3066045A1 (fr) * 2017-05-02 2018-11-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Diode electroluminescente comprenant des couches de conversion en longueur d'onde
FR3089065A1 (fr) * 2018-11-22 2020-05-29 Aledia Diode électroluminescente et procédé de fabrication d’une diode électroluminescente
GB202009952D0 (en) * 2020-06-30 2020-08-12 Ams Int Ag Light source
US20230282766A1 (en) * 2022-03-03 2023-09-07 Seoul Viosys Co., Ltd Monolithic di-chromatic device and light emitting module having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750307A2 (fr) * 2005-08-04 2007-02-07 Avago Technologies ECBU IP (Singapore) Pte. Ltd. Source lumineuse à diodes électroluminiscentes LED à émission latérale
JP2008078297A (ja) * 2006-09-20 2008-04-03 Mitsubishi Cable Ind Ltd GaN系半導体発光素子
JP2008270669A (ja) * 2007-04-24 2008-11-06 El-Seed Corp 発光素子

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445009B1 (en) 2000-08-08 2002-09-03 Centre National De La Recherche Scientifique Stacking of GaN or GaInN quantum dots on a silicon substrate, their preparation procedure electroluminescent device and lighting device comprising these stackings
KR100422944B1 (ko) * 2001-05-31 2004-03-12 삼성전기주식회사 반도체 엘이디(led) 소자
JP3791765B2 (ja) 2001-06-08 2006-06-28 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
US7119271B2 (en) * 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
TW546852B (en) * 2002-04-15 2003-08-11 Epistar Corp Mixed-light type LED and the manufacturing method thereof
TW586246B (en) 2002-10-28 2004-05-01 Super Nova Optoelectronics Cor Manufacturing method of white light LED and the light-emitting device thereof
US7170097B2 (en) * 2003-02-14 2007-01-30 Cree, Inc. Inverted light emitting diode on conductive substrate
KR100542720B1 (ko) * 2003-06-03 2006-01-11 삼성전기주식회사 GaN계 접합 구조
DE102004004765A1 (de) * 2004-01-29 2005-09-01 Rwe Space Solar Power Gmbh Aktive Zonen aufweisende Halbleiterstruktur
DE102004052245A1 (de) * 2004-06-30 2006-02-02 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip und strahlungsemittierendes Halbleiterbauelement mit einem derartigen Halbleiterchip
US7095052B2 (en) * 2004-10-22 2006-08-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and structure for improved LED light output
US7402831B2 (en) 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
CN100470864C (zh) * 2005-03-14 2009-03-18 株式会社东芝 具有荧光物质的led
JP4653671B2 (ja) * 2005-03-14 2011-03-16 株式会社東芝 発光装置
FR2898434B1 (fr) 2006-03-13 2008-05-23 Centre Nat Rech Scient Diode electroluminescente blanche monolithique
EP2074666B1 (fr) * 2006-09-08 2012-11-14 Agency for Science, Technology and Research Diode électroluminescente à longueur d'onde accordable
US8058663B2 (en) * 2007-09-26 2011-11-15 Iii-N Technology, Inc. Micro-emitter array based full-color micro-display
WO2009039815A1 (fr) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Corps semi-conducteur émettant un rayonnement
TWI416757B (zh) * 2008-10-13 2013-11-21 Advanced Optoelectronic Tech 多波長發光二極體及其製造方法
US7851242B2 (en) * 2008-12-17 2010-12-14 Palo Alto Research Center Incorporated Monolithic white and full-color light emitting diodes using optically pumped multiple quantum wells
US20110204376A1 (en) * 2010-02-23 2011-08-25 Applied Materials, Inc. Growth of multi-junction led film stacks with multi-chambered epitaxy system
DE102010002966B4 (de) * 2010-03-17 2020-07-30 Osram Opto Semiconductors Gmbh Laserdiodenanordnung und Verfahren zum Herstellen einer Laserdiodenanordnung
KR20130126897A (ko) * 2010-09-21 2013-11-21 퀀텀 일렉트로 아프투 시스템즈 에스디엔.비에이치디. 발광 및 레이징 반도체 소자 및 방법
CN102097553A (zh) * 2010-12-03 2011-06-15 北京工业大学 一种基于蓝宝石衬底的单芯片白光发光二极管
US8653550B2 (en) * 2010-12-17 2014-02-18 The United States Of America, As Represented By The Secretary Of The Navy Inverted light emitting diode having plasmonically enhanced emission
US8927958B2 (en) * 2011-07-12 2015-01-06 Epistar Corporation Light-emitting element with multiple light-emitting stacked layers
US9130107B2 (en) * 2011-08-31 2015-09-08 Epistar Corporation Light emitting device
TWI466343B (zh) * 2012-01-06 2014-12-21 Phostek Inc 發光二極體裝置
TWI502765B (zh) * 2012-02-24 2015-10-01 Phostek Inc 發光二極體裝置
TW201338200A (zh) * 2012-03-02 2013-09-16 Phostek Inc 發光二極體裝置
US20130270514A1 (en) * 2012-04-16 2013-10-17 Adam William Saxler Low resistance bidirectional junctions in wide bandgap semiconductor materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750307A2 (fr) * 2005-08-04 2007-02-07 Avago Technologies ECBU IP (Singapore) Pte. Ltd. Source lumineuse à diodes électroluminiscentes LED à émission latérale
JP2008078297A (ja) * 2006-09-20 2008-04-03 Mitsubishi Cable Ind Ltd GaN系半導体発光素子
JP2008270669A (ja) * 2007-04-24 2008-11-06 El-Seed Corp 発光素子

Also Published As

Publication number Publication date
WO2014140118A1 (fr) 2014-09-18
CN105122475B (zh) 2018-03-02
FR3003402B1 (fr) 2016-11-04
US20160043272A1 (en) 2016-02-11
JP2016513878A (ja) 2016-05-16
CN105122475A (zh) 2015-12-02
FR3003402A1 (fr) 2014-09-19

Similar Documents

Publication Publication Date Title
EP2973754A1 (fr) Dispositif monolithique emetteur de lumiere
EP2710634B1 (fr) Connexion electrique en serie de nanofils emetteurs de lumiere
Liao et al. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer
EP2786414B1 (fr) Dispositif optoélectronique comprenant des nanofils de structure c ur/coquille
EP2979307B1 (fr) Diode electroluminescente a multiples puits quantiques et jonction p-n asymetrique
FR3019380A1 (fr) Pixel semiconducteur, matrice de tels pixels, structure semiconductrice pour la realisation de tels pixels et leurs procedes de fabrication
Chang et al. Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact
US20100025673A1 (en) Light Emitting Diode and Method for Manufacturing the Same
US20130221320A1 (en) Led with embedded doped current blocking layer
FR3044167A1 (fr) Dispositif optoelectronique a diodes electroluminescentes comportant au moins une diode zener
EP3024037A1 (fr) Diode électroluminescente à puits quantiques dopés et procédé de fabrication associé
EP1994571A1 (fr) Diode electroluminescente blanche monolithique
FR2926677A1 (fr) Diode et procede de realisation d&#39;une diode electroluminescente organique a microcavite incluant des couches organiques dopees
FR2964498A1 (fr) Empilement de led de couleur
US20140346552A1 (en) Three-Terminal Light Emitting Device (LED)
Kao et al. Localized surface plasmon-enhanced nitride-based light-emitting diode with Ag nanotriangle array by nanosphere lithography
CA2405517C (fr) Couche mince semi-conductrice de gainn, son procede de preparation, diode electroluminescente comprenant cette couche et dispositif d&#39;eclairage
EP4046207B1 (fr) Diode électroluminescente comprenant un semi-conducteur à base d&#39;aln dopé p par des atomes de magnésium et une couche de diamant dopé
Chen et al. Low Specific Contact Resistance of Gallium Zinc Oxide Prepared by Atomic Layer Deposition Contact on ${\rm p}^{+}\hbox {-}{\rm GaAs} $ for High-Speed Near-Infrared Light-Emitting Diode Applications
Lam et al. GaN-based LEDs with hot/cold factor improved by the electron blocking layer
EP2827390B1 (fr) Structure émissive à injection latérale de porteurs
EP4327369A1 (fr) Dispositif optoélectronique comportant un empilement à puits quantiques multiples
EP2747155A1 (fr) Procédé de fabrication d&#39;une structure, notamment de type MIS, en particulier pour diode électroluminescente
FR3144412A1 (fr) PROCEDE DE FABRICATION DE MICRO-LEDs
Tsai et al. Improvement in the light output power of GaN-based light emitting diodes by one-step current blocking design

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201001