EP2971976B1 - Extractor hood - Google Patents

Extractor hood Download PDF

Info

Publication number
EP2971976B1
EP2971976B1 EP14705542.0A EP14705542A EP2971976B1 EP 2971976 B1 EP2971976 B1 EP 2971976B1 EP 14705542 A EP14705542 A EP 14705542A EP 2971976 B1 EP2971976 B1 EP 2971976B1
Authority
EP
European Patent Office
Prior art keywords
characteristic curve
speed
torque
extractor hood
torque characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14705542.0A
Other languages
German (de)
French (fr)
Other versions
EP2971976A1 (en
Inventor
Martin Graw
Rainer Lessmeier
Gert Meinhardt
Daniel Metz
Peter Schlotmann
Markus Wössner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL14705542T priority Critical patent/PL2971976T3/en
Publication of EP2971976A1 publication Critical patent/EP2971976A1/en
Application granted granted Critical
Publication of EP2971976B1 publication Critical patent/EP2971976B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed

Definitions

  • the present invention relates to an extractor hood.
  • asynchronous motors in the form of asynchronous motors were used in extractor hoods due to their inexpensive construction.
  • the asynchronous motors are usually designed as capacitors or split motors.
  • the power control takes place via winding taps or a phase control.
  • the torque-speed characteristic curve is predetermined by its design and can therefore only be changed to a limited extent.
  • Extractor hoods can be used in kitchens as exhaust air or recirculating air units.
  • the extractor hood When used as an extractor device, the extractor hood is connected to the customer's piping, which leads the filtered air from the extractor hood out of the kitchen.
  • the extractor hood In the recirculation mode, on the other hand, the extractor hood is directly connected to the air volume of the interior of the kitchen, without any piping.
  • there is an individual system characteristic for each extractor hood An intersection of the system characteristic with a delivery volume-pressure difference characteristic of the extractor hood results in the operating point of the extractor hood.
  • the operating point means the delivery volume and the pressure difference which is established during the operation of the extractor hood.
  • the delivery volume-pressure difference curve is in a fixed relationship with the torque-speed curve of the asynchronous motor. Since the torque-speed characteristic curve of an asynchronous motor is now specified, the delivery volume-pressure difference characteristic curve of the extractor hood is also specified accordingly.
  • WO 2005/108874 A1 describes a kitchen ventilation system with a fan that has a positive pressure-to-output characteristic.
  • the fan unit has an electric motor for driving a fan wheel and a motor controller.
  • US 2011/0000652 A1 describes a ventilation device and associated electronic equipment.
  • US 2005/0224069 A1 describes a kitchen ventilation system that includes a sensor for detecting a chemical composition over an active zone of a hotplate.
  • WO 03/050453 A1 describes a work station for moving laboratory animals from one cage to another, the work station comprising an air flow controller. This document discloses all the features of the preamble of claim 1.
  • JP 2007 100574 A describes a blower that is operated with a constant air volume, wherein an electric current is supplied to an inverter and a rotational speed is detected by a detection device.
  • the blower motor is thus designed as an electronically commutated synchronous motor which is operated with direct current.
  • Other names for such motors are BLDC (brushless DC motor) or EC motor (electronically commutated motor).
  • the present blower motor has a high degree of flexibility with regard to its control options.
  • the torque-speed characteristic and thus also the delivery volume-pressure difference characteristic - within certain limits - can be freely selected and adapted.
  • the control device can have software that the first and second torque-speed characteristic Are defined.
  • the torque-speed characteristic curves can be stored in a memory of the control device.
  • the torque-speed characteristic curves can be stored in the form of value tables.
  • the control device can be provided, for example, in the form of a computer device, in particular as a microprocessor.
  • the torque-speed characteristic curves have at least one common point, it is meant that the torque-speed count characteristic curves in a first area (in at least one point) an identical torque-speed value pair or an identical curve and in a second Range have a different torque-speed value pair or a different course.
  • the first torque-speed characteristic curve can, for example, be assigned to a normal mode of a first operating level of the extractor hood that can be selected by an operator.
  • the second torque-speed characteristic curve can be assigned to a power mode of the extractor hood in the first operating stage.
  • the power mode can correspond to an operation of the extractor hood in which the delivery volume is increased compared to the normal mode.
  • the extractor hood has, for example, improved extraction in each of four operating stages compared to a respective normal mode. This can be enough for the customer, who values a very quick cleaning of the kitchen air when cooking or who regularly prepares dishes that generate a lot of vapors.
  • an eco mode is shown by means of the second torque-speed characteristic curve, in which the extractor hood in for example, each of its four operating levels causes less noise than a respective normal mode.
  • a noise-sensitive customer can choose Eco mode.
  • the proposed extractor hood thus has a high degree of flexibility and, with regard to its delivery volume-pressure difference characteristic, can be individually adapted to customer requirements or other general conditions, for example a system characteristic.
  • the control device is set up to control the blower motor with a fourth torque-speed characteristic curve, the first and the fourth torque-speed characteristic curve having at least one common point.
  • the first torque-speed characteristic curve can correspond to a normal mode of a first operating stage of the extractor hood.
  • the second torque-speed characteristic curve can correspond to the mentioned power mode of the first operating stage and the fourth torque-speed characteristic curve can correspond to the mentioned eco mode of the first operating stage.
  • the control device is set up to control the blower motor with a third torque-speed characteristic.
  • the third torque-speed characteristic curve does not have a common point with the first, second and / or fourth torque-speed characteristic curve.
  • the third torque-speed characteristic curve thus corresponds, for example, to a normal mode of a second operating stage of the extractor hood.
  • the third torque-speed characteristic curve differs from the first torque-speed characteristic curve in that a different torque is made available over the entire speed range.
  • the first, second, third and / or fourth torque-speed characteristic curve has an asynchronous characteristic.
  • An asynchronous characteristic is characterized by the fact that the torque of the blower motor is reduced and the speed of the blower motor increases accordingly in the event of greater air resistance, that is to say, for example, when the piping is longer at the customer.
  • This effect has the advantage that the extractor hood becomes more stable under pressure.
  • the control device controls the blower motor in such a way that a Extractor hood and a delivery volume, which may be conveyed through a piping downstream of the extractor hood, remains the same with greater air resistance.
  • the asynchronous characteristic has a tightening torque, a saddle torque, a tipping torque and / or a nominal speed.
  • the asynchronous characteristic therefore basically corresponds to a torque-speed characteristic curve, which corresponds to the shape of a horizontal "S".
  • the asynchronous characteristic of the torque-speed characteristic curve comprises a valley, which is followed by a mountain in the direction of increasing speed. As the nominal speed increases, the torque drops asymptotically towards zero.
  • the first, second and / or fourth torque-speed characteristic curve have the same tightening torque, the same saddle torque and / or the same nominal speed and a different breakdown torque.
  • the second and fourth torque-speed characteristic curve therefore deviate, at least in sections, from the first torque-speed characteristic curve in the region of the tilting moment.
  • the first, second and fourth torque-speed characteristic curve In the working range of the blower motor, which extends from shortly before the overturning torque to the nominal speed, the first, second and fourth torque-speed characteristic curve have a different profile.
  • the first and third torque-speed characteristics differ from one another in terms of their tightening torque and / or saddle torque.
  • the first torque-speed characteristic can be assigned to a normal mode of a first operating level and the third torque-speed characteristic can be assigned to a normal mode of a second operating level of the extractor hood. It may be desirable for the customer that the blower motor in the first and second operating stages has different behavior over the entire speed range.
  • the third torque-speed characteristic curve is shifted in parallel with respect to the first torque-speed characteristic curve. This gives, for example, comparable torque-speed behavior in the first and second operating stages of the extractor hood, but with a different amount of torque.
  • a first delivery volume-pressure difference characteristic is the second torque-speed characteristic curve is assigned a second delivery volume-pressure difference characteristic curve
  • the third torque-speed characteristic curve is a third delivery volume-pressure difference characteristic curve
  • / or the fourth torque-speed characteristic curve is assigned a fourth delivery volume-pressure difference characteristic curve.
  • the delivery volume is the air volume (including any vapors) which is delivered per unit of time through the extractor hood and any piping connected to it by means of the blower motor.
  • the pressure difference means the pressure difference with which the blower motor acts on the air volume.
  • the pressure difference can be measured, for example, between an air outlet of the extractor hood and an environment of the extractor hood.
  • the pressure difference can be measured on the air outlet side as a static pressure difference in a pressure chamber.
  • the delivery volume can be measured using a Venturi nozzle downstream of the pressure chamber.
  • the first, second and / or third delivery volume-pressure difference characteristic curve has an at least sectionally convex course and the fourth delivery volume-pressure difference characteristic curve has an at least sectionally concave course.
  • the second delivery volume pressure difference characteristic curve can correspond to a power mode and the fourth delivery volume pressure difference characteristic curve can correspond to an eco mode of the extractor hood.
  • the operating point of the extractor hood changes.
  • a system characteristic of the extractor hood can optionally describe the pressure difference depending on the volume flow through the extractor hood and possibly the piping in connection with a piping.
  • This system characteristic curve can have a convex, in particular parabolic, course.
  • the pressure difference of the second delivery volume-pressure difference characteristic curve for each delivery volume is greater than or equal to the pressure difference of the first delivery volume-pressure difference characteristic curve. Additionally or alternatively, the pressure difference of the fourth delivery volume-pressure difference characteristic curve for each delivery volume is less than or equal to the pressure difference of the first delivery volume-pressure difference characteristic curve.
  • the second delivery volume-pressure difference characteristic curve is therefore particularly suitable for representing a power mode of the extractor hood and the fourth delivery volume-pressure difference characteristic curve is particularly suitable for representing an eco mode of the extractor hood.
  • the third delivery volume-pressure difference characteristic curve is shifted parallel to the first delivery volume-pressure difference characteristic curve. In this way, for example, a boost mode of the extractor hood can be provided.
  • the control device is set up to control the blower motor as a function of the first or second (or third) torque-speed characteristic as a function of a timer.
  • a temporary boost mode can be provided: For example, this means that the control device first controls the blower motor as a function of the first torque-speed characteristic. After the timer has started, in particular by user input, the control device controls the blower motor with the third (or second) torque-speed characteristic. After a period of time stored on the timer, which can be set in particular by an operator, the control device controls the blower motor again as a function of the first torque-speed characteristic.
  • the control device is set up to determine whether the extractor hood is in a circulating air or exhaust air mode when used as intended.
  • the control device is also set up, depending on the result of this determination, the blower motor with the first, second or to control the fourth torque-speed characteristic.
  • Tests in particular by connecting the extractor hood to pipes with different air resistance, can be used to assign either air recirculation or exhaust air operation to the various points on a respective torque-speed characteristic curve. This assignment can, for example, be stored in the form of a table on a memory of the control device. Since the customer knows the torque and speed at all times when using the extractor hood, it can be concluded that the recirculation or exhaust air operation is taking into account the table mentioned.
  • the control device can now also be set up in such a way that it controls the blower motor in the exhaust air mode with the second torque-speed characteristic, which corresponds, for example, to a power mode.
  • the second torque-speed characteristic which corresponds, for example, to a power mode.
  • the blower motor can be controlled using the fourth torque-speed characteristic curve, that is to say, for example, an eco mode. In recirculation mode, due to the lack of piping, only a lower delivery rate is required in order to extract the hotplate sufficiently.
  • the control device is set up to recognize, when the extractor hood is used as intended, whether a filter has become saturated or whether there is a blockage in the piping connected to the extractor hood.
  • the control device is further configured to control the blower motor with the first, second or fourth torque-speed characteristic as a function thereof.
  • the control device can be set up to recognize a change in the mentioned working point over time. As described above, the working point is fixed for a specific installation situation and extractor hood. However, this can change over time due to filter saturation or blockage, for example. This can then be recognized by the control device. If, for example, filter saturation is detected, the control device can automatically switch from the first torque-speed characteristic to the second torque-speed characteristic, that is to say, for example, the power mode, in order to compensate for the minus in delivery volume.
  • the control device is set up to control the blower motor with the first, second, third or a further one as a function of a determined system characteristic Control torque-speed characteristic. This can take into account the fact that in embodiments for different piping, a boost, eco or power mode can be designed differently.
  • the control device is set up to control the blower motor as a function of a user input with the first, second, third or fourth (or a further) torque-speed characteristic curve.
  • the extractor hood can have an input device for this purpose, in particular in the form of a touchscreen, one or more switches and / or one or more buttons.
  • the user can then select the first, second, third or fourth (or another) torque-speed characteristic as desired.
  • the user can switch between the first and fourth torque-speed characteristic curves, which correspond to a normal mode of a first or second operating stage of the extractor hood.
  • the user can select, for example, a power mode, an eco mode and / or a boost mode from the first operating stage.
  • the extractor hood can have a display device which is set up to indicate whether the control device controls the fan motor with the first, second, third or fourth (or another) torque-speed characteristic.
  • the display device can be designed as a screen, in particular a TFT screen and / or a touch screen.
  • the display device can be set up to display the current delivery volume flow, for example in the form of cubic meters per hour.
  • the control device can determine the corresponding values from the current torque and the current speed.
  • the display device can be set up to indicate to the operator whether the extractor hood is in the first, second, third or a further operating stage.
  • the display device can be set up to indicate whether the extractor hood is in the aforementioned power mode, eco mode or boost mode.
  • the second and / or third torque-speed characteristic curve is selected to avoid unwanted resonances when the extractor hood is used as intended.
  • Tests in particular by connecting the extractor hood to different pipes, can be used to determine the torque / speed value pairs for which an unwanted resonance results. If these pairs of values lie, for example, on the first torque-speed characteristic curve, the control device can automatically bypass these unwanted operating points by triggering the blower motor for a specific speed range as a function of the second or third torque-speed characteristic curve. This behavior can also be stored on a memory of the control device.
  • the extractor hood is preferably designed as a household appliance.
  • a (further) extractor hood with an electronically commutated fan motor and a control device is provided.
  • the control device is set up to control the blower motor with a first, second or third torque-speed characteristic.
  • the first and third torque-speed characteristic curve can each be selected by an operator using an input device.
  • the control device is also set up to control the blower motor based on a parameter determined by it, starting from the first or third torque-speed characteristic with the second torque-speed characteristic.
  • an operator can switch the extractor hood between a first operating level (first torque-speed characteristic curve) and a second operating level (second torque-speed characteristic curve), for example by pressing a button.
  • the control device then automatically switches over from the first torque-speed characteristic to the second torque-speed characteristic in order to take account of certain general conditions, for example a current system characteristic or an operator request for less noise or more delivery volume .
  • the framework condition or the operator's request can each form the parameter determined by the control device.
  • a boost, power or eco mode of the extractor hood can be provided.
  • the operator's request can be conveyed to the control device by an input device of the extractor hood.
  • the first and second torque-speed characteristics can have an asynchronous characteristic and / or be parallel to one another.
  • the third torque-speed characteristic can lie between the first and second torque-speed characteristics and / or be parallel to them.
  • the third torque-speed characteristic curve can have at least one point in common with the first torque-speed characteristic curve and / or an a
  • an extractor hood arrangement with piping and an extractor hood described above is provided.
  • the piping runs, for example, in or on a building.
  • the extractor hood is coupled to the piping in an air-conducting manner.
  • a method for operating an extractor hood is also provided.
  • an electronically commutated blower motor with a first or a second torque-speed characteristic curve is controlled by means of a control device, the torque-speed characteristic curves having at least one common point.
  • a (further) method for operating an extractor hood is also provided.
  • an electronically commutated blower motor with a first, second or third torque-speed characteristic curve is controlled by means of a control device.
  • the first or third torque-speed characteristic is selected by an operator using an input device.
  • the blower motor is then controlled as a function of a parameter determined by the control device, starting from the selected first or third torque-speed characteristic with the second torque-speed characteristic.
  • Figure 1 schematically shows an extractor hood arrangement 1 according to an embodiment.
  • the extractor hood arrangement 1 comprises an extractor hood 2, which is arranged above a hotplate 3 in a kitchen.
  • the extractor hood 2 can be designed, for example, as a hood or a chimney.
  • the extractor hood 2 can be fastened to a building wall 5 of the kitchen, just like piping 4.
  • the extractor hood 2 conveys vapors 6 from above the hotplate 3 via an air inlet 7 to an air outlet 11 thereof.
  • the air outlet 11 is connected via the piping 4 to the environment outside the kitchen in an air-conducting manner.
  • the extractor hood - as will be explained in more detail later - can be provided as a circulating air device, the air outlet 11 being connected to the interior 10 of the kitchen in an air-conducting manner.
  • the extractor hood 2 comprises a fan wheel 13.
  • the fan wheel 13 will be driven by an electronically commutated fan motor 14.
  • the fan wheel 13 forms, with a spiral-shaped housing 15 surrounding it, a radial blower 16 which sucks the vapors 6 through a grease filter 12 in the region of the air inlet 7 and ejects them through the air outlet 11.
  • the radial blower 16 must overcome the internal air resistance of the extractor hood 2, which arises in particular due to the radial blower 16 itself and an internal piping 17.
  • the radial fan 16 must overcome the air resistance of the piping 4 (if it is present) in order to convey the air outside the interior 10 of the kitchen.
  • the internal air resistance of the extractor hood 2 results in a system characteristic of the same in recirculation mode.
  • the sum of the internal air resistance of the extractor hood 2 and the air resistance of the piping 4 results in the system characteristic in exhaust air mode.
  • Exemplary system characteristics are in Figure 3 shown and designated there with AK1, AK2 and AK3.
  • the extractor hood 2 comprises a control device 21 which controls the blower motor 14.
  • the control device is designed, for example, as a microprocessor and comprises a memory 22.
  • the memory 22 contains software in the form of Figure 2 torque-speed characteristics shown.
  • Figure 2 shows a first torque-speed characteristic curve DK1, a second torque-speed characteristic curve DK1a, a third torque-speed characteristic curve DK1b, a fourth torque-speed characteristic curve DK2, and a fifth torque-speed characteristic curve DK3.
  • the torque M of the blower motor 14 is shown as a function of its speed n.
  • the torque-speed characteristic curves DK1 to DK3 each have an asynchronous characteristic. That means their shape corresponds to a lying "S". This also means that each of the torque-speed characteristic curves DK1 to DK3 has a tightening torque M A1 , M A2 , M A3 , a saddle torque M S1 , M S2 , M S3 , a tipping moment M K1 , M K1a , M K1b , M K2 , M K3 and a nominal speed n N comprises.
  • the torque drops to the saddle torque M S1 , M S2 , M S3 with increasing speed n and then rises again, and reaches its maximum M K1 , M K1a , M K1b , M K2 , M K3 . Thereafter, the torque M drops again and approaches the nominal speed n N asymptotically towards zero.
  • a work area in which the blower motor 14 is typically controlled by the control device 21 when the extractor hood 2 is in operation is designated by AH.
  • the torque-speed characteristic curves DK1, DK1a, DK1b have an identical section in sections.
  • the tightening and saddle torque M A1 , M S1 for the torque-speed characteristic curves DK1 to DK1b are identical. They differ only in terms of their tilting moment M K1 , M K1a and M K1b . This is the tilting moment M K1a over the overturning moment M K1 and the overturning moment M K1b under the overturning moment M K1 .
  • the torque-speed characteristic curve DK2 runs parallel to the torque-speed characteristic curve DK1 and is shifted upward with respect to this, that is to say consistently characterized by a higher torque M.
  • the overturning moment M K2 lies above M K1a , M K1 and M K1b .
  • the torque-speed characteristic curve DK3 also runs parallel to the torque-speed characteristic curve DK1 and between it and the torque-speed characteristic curve DK2.
  • the torque-speed characteristic curve DK1 is assigned, for example, to a normal mode of a first operating level of the extractor hood 2 and the torque-speed characteristic curve DK2 to a normal mode of a second operating level of the extractor hood 2.
  • Further operating stages for example a third and a fourth operating stage, which are shown in Figure 1 are shown.
  • an off-state of the extractor hood or of the blower motor 14 is also provided.
  • the extractor hood 2, as in Figure 1 shown comprise buttons 23, by means of which the off state "0" and the first to fourth operating stages "1", "2", “3", "4" can be selected.
  • the control device 21 does not control the blower motor 14 (off state) or with the first torque-speed characteristic curve DK1 (first operating stage) or the fourth torque-speed characteristic curve DK2 (second operating stage) or one another torque-speed characteristic (third and fourth operating level).
  • the buttons 23 another input device could also be provided.
  • the second torque-speed characteristic curve DK1a corresponds, for example, to a power mode and the third torque-speed characteristic curve DK1b to an eco mode, as will be explained in more detail below.
  • an operator can remove the extractor hood 2 by pressing an input device, for example in the form of a button 24 from the normal mode in accordance with the first torque-speed Switch the characteristic curve DK1 to the power mode according to the torque-speed characteristic curve DK1a or the eco mode according to the torque-speed characteristic curve DK1b.
  • a switch to power mode can take place if a higher delivery volume flow is desired.
  • Switching to Eco mode can take place if there is noise from the extractor hood 2 should be reduced or energy saved.
  • the switchover to the eco and power mode can also take place when the extractor hood 2 is operated in the normal mode of the second, third or fourth operating stage "2""3""4".
  • the torque-speed characteristic curves DK2a and DK2b exemplify the power or eco mode assigned to the second operating stage "2".
  • the tilting moment M K2a is then above the tilting moment M K2 and the tilting moment M K2b below the tilting moment M K2 .
  • the extractor hood 2 can comprise a display device, for example in the form of a TFT screen 25, on which it is displayed in which operating stage the extractor hood 2 is located.
  • the TFT screen 25 can display whether the extractor hood 2 is in the normal mode, power mode or the eco mode. Still further, the TFT screen 25 can display a delivery volume currently being conveyed by the extractor hood 2, for example in cubic meters per hour.
  • the TFT screen 25 can be controlled accordingly by the control device 21.
  • the input devices 23, 24 could also be integrated in the display device 25, for example by being designed as a touchscreen, which is also an input device for user commands.
  • Figure 3 shows the pressure difference p as a function of the delivery volume Q.
  • the pressure difference p denotes a pressure difference between the ambient pressure in the kitchen interior 10 (see Figure 1 ) and a pressure, which is measured, for example, in the air outlet 11 of the extractor hood 2.
  • the delivery volume Q means an air volume delivered per unit of time, for example in cubic meters per hour.
  • Each of the torque-speed characteristics Figure 2 is a delivery volume-pressure difference characteristic in Figure 3 assigned.
  • the torque-speed characteristic curve DK1 corresponds to the delivery volume-pressure difference characteristic curve FK1
  • the torque-speed characteristic curve DK2 corresponds to the delivery volume-pressure difference characteristic curve FK2.
  • the corresponding to the delivery volume-pressure difference characteristic curves FK3 and FK4 Torque-speed characteristics are in Figure 2 Not shown.
  • Each pair of values of a respective torque-speed characteristic curve Figure 2 has a correspondence on a respective delivery volume-pressure difference characteristic Figure 3 .
  • an operating point AP1 results at which the extractor hood 2 operates.
  • the operating point AP1 is an intersection between the delivery volume-pressure difference characteristic curve FK1 and the system characteristic curve AK1.
  • the system characteristic curve AK2 can represent piping 4 with a first length and the system characteristic curve AK3 can represent piping 4 with a second length, the second length being greater than the first length and, accordingly, the air resistance being higher.
  • the operating points AP1, AP2, AP3 and AP4 result from switching between the operating levels "1" to "4" in normal mode, see Figure 2 .
  • the delivery volume-pressure difference characteristic curves FK1 to FK4 are stored, for example in the form of a table, in the memory 22 of the control device 21. Furthermore, torque-speed value pairs M, n assigned to a respective delivery volume-pressure difference value pair p, Q can be stored.
  • the table can be stored on the memory 22, for example, in a manufacturing process of the extractor hood 2. Before this, the table is generated by using a test extractor hood with different delivery volumes Q and pressure differences p is operated. At the same time, the current torque and the current speed are written to the table. The current torque and the current speed can be read out from the control device 21, for example.
  • the control device 22 can draw from the current torque M and the current speed n to the delivery volume Q and this, as in FIG Figure 1 shown to show the operator.
  • FIG. 4 now shows a selected delivery volume-pressure difference characteristic curve FK1. It is like in Figure 3 the pressure difference p is plotted as a function of the delivery volume Q.
  • the delivery volume-pressure difference characteristic curve FK1 Figure 4 corresponds to the torque-speed characteristic curve DK1 Figure 2 .
  • a delivery volume-pressure difference characteristic curve FK1a corresponds to the torque-speed characteristic curve DK1a
  • a delivery volume-pressure difference characteristic curve FK1b corresponds to the torque-speed characteristic curve DK1b.
  • the delivery volume-pressure difference characteristic curve FK1, FK1a and FK1b each have different intersection points with the system characteristic curve AK1 shown by way of example, and accordingly accordingly different pairs of values p, Q.
  • Figure 5 shows further delivery volume-pressure difference characteristics, for example for the extractor hood 2 Figure 1 .
  • a further torque-speed characteristic curve can be stored in the memory 22 of the control device 21, which is the delivery volume-pressure difference characteristic curve Corresponds to FK1c.
  • the control device 21 can be set up to recognize whether the extractor hood 2 is used in a recirculating air or exhaust air mode. This can be accomplished, for example, by supplementing the above-mentioned table stored in the memory 22 in such a way that certain value pairs p, Q are assigned to a recirculation mode and other value pairs p, Q are assigned to an exhaust mode.
  • the value pairs p, Q can, for example, each be assigned to a value range AB corresponding to an exhaust air mode and a value range UB corresponding to a recirculation mode.
  • the control device 21 can then, for example, automatically decide that in the recirculation mode, the blower motor 14 with the torque-speed characteristic curve DK1 corresponding to the delivery volume-pressure difference characteristic curve FK1, and in the exhaust air operation the blower motor 14 with that corresponding to the delivery volume-pressure difference characteristic curve FK1c Drives torque-speed characteristic (not shown).
  • the blower motor 14 automatically provides a higher pressure difference p in the exhaust air mode, in which work is to be carried out against a higher air resistance.
  • control device 21 can make a decision if it shifts the operating points AP1 to AP4 (see Figure 3 ) determines over time that the grease filter 12 or the piping 4 is blocked. Accordingly, the control device 21 can then operate the blower motor 14 in, for example, the first operating stage "1" with the torque-speed characteristic curve corresponding to the delivery volume pressure difference characteristic curve FK1c - instead of the torque-speed characteristic curve DK1 corresponding to the delivery volume pressure difference characteristic curve FK1. control in order to keep the delivery volume Q constant despite the higher air resistance.
  • FIG. 6 now shows the case where APR resonances occur at an operating point. This can be determined, for example, by testing the extractor hood 2 in connection with, for example, different piping 4. It can now be provided that the working point APR is bypassed by changing in sections from the delivery volume-pressure difference characteristic curve FK1 to a delivery volume-pressure difference characteristic curve FK1d.
  • the control device 21 can be set up accordingly.
  • the delivery volume-pressure difference characteristic curve FK1d corresponds to a predetermined torque-speed characteristic curve, which is, however, not shown in any of the figures.
  • Fig. 7 illustrates the possibility of providing a delivery volume-pressure difference characteristic curve FK1e, which is shifted parallel to the delivery volume-pressure difference characteristic curve FK1, for example in the direction of an increasing pressure difference p and an increasing delivery volume Q.
  • the extractor hood is, for example, in the operating stage "1" (Delivery volume-pressure difference characteristic curve FK1) and the operator presses a boost button 26 of the extractor hood 2, the control device 21 controls the blower motor 14 with one of the in Figure 2 shown torque-speed characteristic curve DK3 corresponding flow volume pressure difference characteristic curve FK1e, so that depending on the system characteristic curve AK2 or AK3 there is a significantly higher pressure difference (AK2) or a significantly higher delivery volume (AK3).
  • AK2 or AK3 significantly higher pressure difference
  • AK3 significantly higher delivery volume
  • a possible boost operating point is designated AP1e.
  • the control device 21 starts the timer 27 by pressing the boost button 26. After a period of time stored in the timer 27 has elapsed, the control device 21 switches back to the delivery volume-pressure difference characteristic curve FK1.
  • the time period can be set adjustable by the operator, for example by means of the touch screen 25.
  • Fig. 8 shows delivery volume-pressure difference characteristics in particular for a boost, power and eco mode according to a further embodiment.
  • Fig. 7 shows Fig. 8 that a negative boost-delivery volume-pressure difference characteristic curve FK1g can also be provided, which is shifted in parallel with respect to the delivery volume-pressure difference characteristic curve FK1g in the direction of lower pressure difference P and lower delivery volume Q.
  • an eco or power mode can be designed differently for different pipework, ie system characteristics.
  • the delivery volume-pressure difference characteristic curves FK1f, FK1h correspond to the delivery volume-pressure difference characteristic curves FK1a, FK1b Fig. 4 in that they also have an intersection with the delivery volume-pressure difference characteristic curve FK1.
  • the delivery volume-pressure difference characteristic curve corresponding to an Eco mode is FK1h Convex and not concave like the delivery volume-pressure difference characteristic FK1b.
  • the control device 21 can be set up to operate the blower motor 14 as a function of a user input or automatically, for example as a function of a current system characteristic curve AK2, AK3 that is determined by the control device 21, with one of the delivery volume-pressure difference characteristic curves FK1, FK1e, FK1f, FK1g or FK1h to control the corresponding torque-speed characteristic.
  • the user input and / or the current system characteristic curve AK2, AK3 is provided to the control device 21 as one or more parameters.
  • the control as a function of a current system characteristic curve AK2, AK3 advantageously allows the operating points of the extractor hood 2 to be adapted to any piping 4 that may be provided.
  • the control device 21 can, when the input device 25 detects a customer request for more delivery volume Q, decide that a switchover from the normal mode (FK1) with an operating point AP1-1 to one Power mode (FK1f) with an operating point AP1f-1 produces an insufficient delivery volume Q, and therefore switch to Boost mode (FK1e) with an operating point AP1e, which has a high additional delivery volume Q.
  • FK1 normal mode
  • FK1f Power mode
  • Boost mode FK1e
  • control device 21 If, on the other hand, the control device 21 recognizes that a system characteristic curve AK2 is present, it switches from normal mode (FK1) with an operating point AP1-2 to power mode (FK1f) with an operating point when a customer requests a greater pressure difference p AP1f-2 ⁇ m, since a sufficiently high additional pressure difference p is provided here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ventilation (AREA)

Description

Die vorliegende Erfindung betrifft eine Dunstabzugshaube.The present invention relates to an extractor hood.

In Dunstabzugshauben wurden in der Vergangenheit aufgrund ihres kostengünstigen Aufbaus vorwiegend Gebläsemotoren in Form von Asynchronmotoren eingesetzt. Die Asynchronmotoren sind meist als Kondensator oder Spaltmotoren ausgeführt. Die Leistungsregelung erfolgt über Wicklungsabgriffe oder eine Phasenanschnittsteuerung. Bei solchen Asynchronmotoren ist die Drehmoment-Drehzahl-Kennlinie durch ihre Bauart vorgegeben und kann daher nur bedingt verändert werden.In the past, mainly extractor motors in the form of asynchronous motors were used in extractor hoods due to their inexpensive construction. The asynchronous motors are usually designed as capacitors or split motors. The power control takes place via winding taps or a phase control. In such asynchronous motors, the torque-speed characteristic curve is predetermined by its design and can therefore only be changed to a limited extent.

Dunstabzugshauben können in Küchen als Abluft- oder Umluftgeräte eingesetzt werden. Im Einsatz als Abluftgerät ist die Dunstabzugshaube mit einer Verrohrung beim Kunden verbunden, welche die von der Dunstabzugshaube gefilterte Luft aus der Küche heraus führt. Im Umluftbetrieb dagegen ist die Dunstabzugshaube direkt, also ohne Zwischenschaltung einer Verrohrung, mit dem Luftvolumen des Kücheninnenraums verbunden. Je nachdem, ob nun eine Verrohrung vorhanden ist bzw. wie diese ausgestaltet ist, ergibt sich für eine jeweilige Dunstabzugshaube eine individuelle Anlagen-Kennlinie. Ein Schnittpunkt der Anlagenkennlinie mit einer Fördervolumen-Druckdifferenz-Kennlinie der Dunstabzugshaube ergibt den Arbeitspunkt der Dunstabzugshaube. Der Arbeitspunkt meint dasjenige Fördervolumen und diejenige Druckdifferenz, welches bzw. welche sich im Betrieb der Dunstabzugshaube einstellt. Die Fördervolumen-Druckdifferenz-Kennlinie steht dabei in einem festen Verhältnis mit der Drehmoment-Drehzahl-Kennlinie des Asynchronmotors. Da nun die Drehmoment-Drehzahl-Kennlinie eines Asynchronmotors vorgegeben ist, so ist entsprechend auch die Fördervolumen-Druckdifferenz-Kennlinie der Dunstabzugshaube fest vorgegeben.Extractor hoods can be used in kitchens as exhaust air or recirculating air units. When used as an extractor device, the extractor hood is connected to the customer's piping, which leads the filtered air from the extractor hood out of the kitchen. In the recirculation mode, on the other hand, the extractor hood is directly connected to the air volume of the interior of the kitchen, without any piping. Depending on whether there is piping or how it is designed, there is an individual system characteristic for each extractor hood. An intersection of the system characteristic with a delivery volume-pressure difference characteristic of the extractor hood results in the operating point of the extractor hood. The operating point means the delivery volume and the pressure difference which is established during the operation of the extractor hood. The delivery volume-pressure difference curve is in a fixed relationship with the torque-speed curve of the asynchronous motor. Since the torque-speed characteristic curve of an asynchronous motor is now specified, the delivery volume-pressure difference characteristic curve of the extractor hood is also specified accordingly.

WO 2005/108874 A1 beschreibt ein Küchenventilationssystem mit einem Ventilator, der eine positive Druck-zu-Ausgabecharakteristik hat. WO 2005/108874 A1 describes a kitchen ventilation system with a fan that has a positive pressure-to-output characteristic.

DE 10 2005 045 137 A1 beschreibt eine Lüftereinheit mit einer vorgegebenen künstlichen Kennlinie und ein Verfahren zu deren Betrieb. Die Lüftereinheit weist einen Elektromotor zum Antreiben eines Lüfterrads und eine Motorsteuerung auf. DE 10 2005 045 137 A1 describes a fan unit with a predetermined artificial characteristic curve and a method for its operation. The fan unit has an electric motor for driving a fan wheel and a motor controller.

US 2011/0000652 A1 beschreibt eine Ventilationsvorrichtung und eine zugehörige elektronische Ausrüstung. US 2011/0000652 A1 describes a ventilation device and associated electronic equipment.

US 2005/0224069 A1 beschreibt ein Küchenventilationssystem, das einen Sensor zum Detektieren einer chemischen Zusammensetzung über einer aktiven Zone einer Kochstelle beinhaltet. US 2005/0224069 A1 describes a kitchen ventilation system that includes a sensor for detecting a chemical composition over an active zone of a hotplate.

WO 03/050453 A1 beschreibt einen Arbeitsplatz zum Bewegen von Labortieren von einem Käfig zu einem anderen, wobei der Arbeitsplatz eine Luftflusssteuerung umfasst. Dieses Dokument offenbart alle Merkmale des Oberbegriffes des Anspruchs 1. WO 03/050453 A1 describes a work station for moving laboratory animals from one cage to another, the work station comprising an air flow controller. This document discloses all the features of the preamble of claim 1.

JP 2007 100574 A beschreibt ein Gebläse, das mit einem konstanten Luftvolumen betrieben wird, wobei ein elektrischer Strom an einem Inverter zugeführt wird und eine Rotationsgeschwindigkeit mit einer Erfassungsvorrichtung erfasst wird. JP 2007 100574 A describes a blower that is operated with a constant air volume, wherein an electric current is supplied to an inverter and a rotational speed is detected by a detection device.

Eine Aufgabe der vorliegenden Erfindung besteht darin, eine verbesserte Dunstabzugshaube bereitzustellen.It is an object of the present invention to provide an improved extractor hood.

Diese Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche.This object is achieved by the features of the independent claims.

Der Gebläsemotor ist also als elektronisch kommutierter Synchronmotor ausgebildet, welcher mit Gleichstrom betrieben wird. Andere Bezeichnungen für solche Motoren sind BLDC (Bürstenloser Gleichstrommotor) oder EC-Motor (Elektronisch kommutierter Motor). Durch die elektronische Kommutierung weist der vorliegende Gebläsemotor eine hohe Flexibilität hinsichtlich seiner Regelungsmöglichkeiten auf. Insbesondere ist die Drehmoment-Drehzahl-Kennlinie und damit auch die Fördervolumen-Druckdifferenz-Kennlinie - innerhalb gewisser Grenzen - frei wählbar und anpassbar. Insbesondere kann die Steuereinrichtung Software aufweisen, welche die erste und zweite Drehmoment-Drehzahl-Kennlinie definiert. Die Drehmoment-Drehzahl-Kennlinien können auf einem Speicher der Steuereinrichtung abgespeichert sein. Insbesondere können die Drehmoment-Drehzahl-Kennlinien in Form von Wertetabellen abgespeichert sein. Die Steuereinrichtung kann beispielsweise in Form einer Rechnereinrichtung, insbesondere als Mikroprozessor, vorgesehen sein.The blower motor is thus designed as an electronically commutated synchronous motor which is operated with direct current. Other names for such motors are BLDC (brushless DC motor) or EC motor (electronically commutated motor). Due to the electronic commutation, the present blower motor has a high degree of flexibility with regard to its control options. In particular, the torque-speed characteristic and thus also the delivery volume-pressure difference characteristic - within certain limits - can be freely selected and adapted. In particular, the control device can have software that the first and second torque-speed characteristic Are defined. The torque-speed characteristic curves can be stored in a memory of the control device. In particular, the torque-speed characteristic curves can be stored in the form of value tables. The control device can be provided, for example, in the form of a computer device, in particular as a microprocessor.

Damit, dass die Drehmoment-Drehzahl-Kennlinien zumindest einen gemeinsamen Punkt aufweisen, ist gemeint, dass die Drehmoment-Drehzähl-Kennlinien in einem ersten Bereich (in zumindest einem Punkt) ein identisches Drehmoment-Drehzahl-Wertepaar oder einen identischen Verlauf und in einem zweiten Bereich ein unterschiedliches Drehmoment-Drehzahl-Wertepaar oder einen unterschiedlichen Verlauf aufweisen. Die erste Drehmoment-Drehzahl-Kennlinie kann beispielsweise einen Normal-Modus einer ersten von einer Bedienerperson auswählbaren Betriebsstufe der Dunstabzugshaube zugeordnet sein. Die zweite Drehmoment-Drehzahl-Kennlinie kann einem Power-Modus der Dunstabzugshaube in der ersten Betriebsstufe zugeordnet sein. Der Power-Modus kann einem Betrieb der Dunstabzugshaube entsprechen, in welchem das Fördervolumen gegenüber dem Normal-Modus erhöht ist. Schaltet die Bedienerperson beispielsweise den Power-Modus ein, so weist die Dunstabzugshaube beispielsweise in jeder von vier Betriebsstufen eine verbesserte Absaugung gegenüber einem jeweiligen Normal-Modus auf. Damit kann dem Kunden genüge getan werden, der beim Kochen auf eine sehr zügige Reinigung der Küchenluft Wert legt oder regelmäßig Gerichte zubereitet, bei welchen viel Wrasen entsteht. Oder aber es wird beispielsweise mittels der zweiten Drehmoment-Drehzahl-Kennlinie ein Eco-Modus dargestellt, bei welchem die Dunstabzugshaube in beispielsweise jeder ihrer vier Betriebsstufen gegenüber einem jeweiligen Normal-Modus weniger Geräusche verursacht. Den Eco-Modus kann beispielsweise ein geräuschempfindlicher Kunde wählen.By the fact that the torque-speed characteristic curves have at least one common point, it is meant that the torque-speed count characteristic curves in a first area (in at least one point) an identical torque-speed value pair or an identical curve and in a second Range have a different torque-speed value pair or a different course. The first torque-speed characteristic curve can, for example, be assigned to a normal mode of a first operating level of the extractor hood that can be selected by an operator. The second torque-speed characteristic curve can be assigned to a power mode of the extractor hood in the first operating stage. The power mode can correspond to an operation of the extractor hood in which the delivery volume is increased compared to the normal mode. If, for example, the operator switches on the power mode, the extractor hood has, for example, improved extraction in each of four operating stages compared to a respective normal mode. This can be enough for the customer, who values a very quick cleaning of the kitchen air when cooking or who regularly prepares dishes that generate a lot of vapors. Or, for example, an eco mode is shown by means of the second torque-speed characteristic curve, in which the extractor hood in for example, each of its four operating levels causes less noise than a respective normal mode. For example, a noise-sensitive customer can choose Eco mode.

Die vorgeschlagene Dunstabzugshaube weist somit eine hohe Flexibilität auf und lässt sich, was ihre Fördervolumen-Druckdifferenz-Kennlinie betrifft, individuell an Kundenwünsche oder sonstige Rahmenbedingungen, beispielsweise eine Anlagen-Kennlinie, anpassen.The proposed extractor hood thus has a high degree of flexibility and, with regard to its delivery volume-pressure difference characteristic, can be individually adapted to customer requirements or other general conditions, for example a system characteristic.

Gemäß einer Ausführungsform ist die Steuereinrichtung dazu eingerichtet, den Gebläsemotor mit einer vierten Drehmoment-Drehzahl-Kennlinie anzusteuern, wobei die erste und die vierte Drehmoment-Drehzahl-Kennlinie zumindest einen gemeinsamen Punkt aufweisen. Somit kann beispielsweise die erste Drehmoment-Drehzahl-Kennlinie einem Normal-Modus einer ersten Betriebsstufe der Dunstabzugshaube entsprechen. Die zweite Drehmoment-Drehzahl-Kennlinie kann dem erwähnten Power-Modus der ersten Betriebsstufe und die vierte Drehmoment-Drehzahl-Kennlinie dem erwähnten Eco-Modus der ersten Betriebsstufe entsprechen.According to one embodiment, the control device is set up to control the blower motor with a fourth torque-speed characteristic curve, the first and the fourth torque-speed characteristic curve having at least one common point. Thus, for example, the first torque-speed characteristic curve can correspond to a normal mode of a first operating stage of the extractor hood. The second torque-speed characteristic curve can correspond to the mentioned power mode of the first operating stage and the fourth torque-speed characteristic curve can correspond to the mentioned eco mode of the first operating stage.

Dabei ist die Steuereinrichtung dazu eingerichtet, den Gebläsemotor mit einer dritten Drehmoment-Drehzahl-Kennlinie anzusteuern. Die dritte Drehmoment-Drehzahl-Kennlinie weist keinen gemeinsamen Punkt mit der ersten, zweiten und/oder vierten Drehmoment-Drehzahl-Kennlinie auf. Damit entspricht die dritte Drehmoment-Drehzahl-Kennlinie beispielsweise einem Normal-Modus einer zweiten Betriebsstufe der Dunstabzugshaube. Mit anderen Worten unterscheidet sich also beispielsweise die dritte Drehmoment-Drehzahl-Kennlinie von der ersten Drehmoment-Drehzahl-Kennlinie dadurch, dass über den gesamten Drehzahlbereich ein jeweils unterschiedliches Drehmoment bereitgestellt wird.The control device is set up to control the blower motor with a third torque-speed characteristic. The third torque-speed characteristic curve does not have a common point with the first, second and / or fourth torque-speed characteristic curve. The third torque-speed characteristic curve thus corresponds, for example, to a normal mode of a second operating stage of the extractor hood. In other words, for example, the third torque-speed characteristic curve differs from the first torque-speed characteristic curve in that a different torque is made available over the entire speed range.

Gemäß einer weiteren Ausführungsform weist die erste, zweite, dritte und/oder vierte Drehmoment-Drehzahl-Kennlinie eine Asynchroncharakteristik auf. Eine Asynchroncharakteristik zeichnet sich dadurch aus, dass bei einem größeren Luftwiderstand, also beispielsweise bei einer längeren Verrohrung beim Kunden, das Drehmoment des Gebläsemotors verringert wird und sich die Drehzahl des Gebläsemotors entsprechend erhöht. Dieser Effekt hat den Vorteil, dass die Dunstabzugshaube druckstabiler wird. Mit anderen Worten steuert die Steuereinrichtung den Gebläsemotor derart an, dass ein durch die Dunstabzugshaube und ein durch eine eventuell der Dunstabzugshaube nachgeschaltete Verrohrung gefördertes Fördervolumen bei größerem Luftwiderstand gleich bleibt.According to a further embodiment, the first, second, third and / or fourth torque-speed characteristic curve has an asynchronous characteristic. An asynchronous characteristic is characterized by the fact that the torque of the blower motor is reduced and the speed of the blower motor increases accordingly in the event of greater air resistance, that is to say, for example, when the piping is longer at the customer. This effect has the advantage that the extractor hood becomes more stable under pressure. In other words, the control device controls the blower motor in such a way that a Extractor hood and a delivery volume, which may be conveyed through a piping downstream of the extractor hood, remains the same with greater air resistance.

Gemäß einer weiteren Ausführungsform weist die Asynchroncharakteristik ein Anzugsmoment, ein Sattelmoment, ein Kippmoment und/oder eine Nenn-Drehzahl auf. Die Asynchroncharakteristik entspricht also im Grundsatz einer Drehmoment-Drehzahl-Kennlinie, welche der Form eines liegenden "S" entspricht. Mit anderen Worten umfasst die Asynchroncharakteristik der Drehmoment-Drehzahl-Kennlinie ein Tal, welches in Richtung steigender Drehzahl von einem Berg gefolgt ist. Mit zunehmender Annäherung an die Nenn-Drehzahl sinkt das Drehmoment asymptotisch gegen Null ab.According to a further embodiment, the asynchronous characteristic has a tightening torque, a saddle torque, a tipping torque and / or a nominal speed. The asynchronous characteristic therefore basically corresponds to a torque-speed characteristic curve, which corresponds to the shape of a horizontal "S". In other words, the asynchronous characteristic of the torque-speed characteristic curve comprises a valley, which is followed by a mountain in the direction of increasing speed. As the nominal speed increases, the torque drops asymptotically towards zero.

Gemäß einer weiteren Ausführungsform weisen die erste, zweite und/oder vierte Drehmoment-Drehzahl-Kennlinie dasselbe Anzugsmoment, dasselbe Sattelmoment und/oder dieselbe Nenn-Drehzahl und ein unterschiedliches Kippmoment auf. Die zweite und vierte Drehmoment-Drehzahl-Kennlinie weichen also zumindest abschnittsweise von der ersten Drehmoment-Drehzahl-Kennlinie im Bereich des Kippmoments ab. Im Arbeitsbereich des Gebläsemotors, welcher sich von kurz vor dem Kippmoment bis zur Nenn-Drehzahl erstreckt, ergibt sich somit für die erste, zweite und vierte Drehmoment-Drehzahl-Kennlinie ein unterschiedlicher Verlauf.According to a further embodiment, the first, second and / or fourth torque-speed characteristic curve have the same tightening torque, the same saddle torque and / or the same nominal speed and a different breakdown torque. The second and fourth torque-speed characteristic curve therefore deviate, at least in sections, from the first torque-speed characteristic curve in the region of the tilting moment. In the working range of the blower motor, which extends from shortly before the overturning torque to the nominal speed, the first, second and fourth torque-speed characteristic curve have a different profile.

Gemäß einer weiteren Ausführungsform unterscheiden sich die erste und dritte Drehmoment-Drehzahl-Kennlinie hinsichtlich ihres Anzugsmoments und/oder Sattelmoments voneinander. Die erste Drehmoment-Drehzahl-Kennlinie kann einem Normal-Modus einer ersten Betriebsstufe und die dritte Drehmoment-Drehzahl-Kennlinie einem Normal-Modus einer zweiten Betriebsstufe der Dunstabzugshaube zugewiesen sein. Für den Kunden kann es wünschenswert sein, dass der Gebläsemotor in der ersten und zweiten Betriebsstufe ein über den gesamten Drehzahlbereich unterschiedliches Verhalten aufweist.According to a further embodiment, the first and third torque-speed characteristics differ from one another in terms of their tightening torque and / or saddle torque. The first torque-speed characteristic can be assigned to a normal mode of a first operating level and the third torque-speed characteristic can be assigned to a normal mode of a second operating level of the extractor hood. It may be desirable for the customer that the blower motor in the first and second operating stages has different behavior over the entire speed range.

Gemäß einer weiteren Ausführungsform ist die dritte Drehmoment-Drehzahl-Kennlinie gegenüber der ersten Drehmoment-Drehzahl-Kennlinie parallel verschoben. Dadurch erhält man beispielsweise in der erwähnten ersten und zweiten Betriebsstufe der Dunstabzugshaube ein vergleichbares Drehmoment-Drehzahl-Verhalten, jedoch mit einem betragsmäßig unterschiedlichen Drehmoment.According to a further embodiment, the third torque-speed characteristic curve is shifted in parallel with respect to the first torque-speed characteristic curve. This gives, for example, comparable torque-speed behavior in the first and second operating stages of the extractor hood, but with a different amount of torque.

Gemäß einer weiteren Ausführungsform ist bei bestimmungsgemäßem Einsatz der Dunstabzugshaube der ersten Drehmoment-Drehzahl-Kennlinie eine erste Fördervolumen-Druckdifferenz-Kennlinie, der zweiten Drehmoment-Drehzahl-Kennlinie eine zweite Fördervolumen-Druckdifferenz-Kennlinie, der dritten Drehmoment-Drehzahl-Kennlinie eine dritte Fördervolumen-Druckdifferenz-Kennlinie und/oder der vierten Drehmoment-Drehzahl-Kennlinie eine vierte Fördervolumen-Druckdifferenz-Kennlinie zugeordnet. Das Fördervolumen ist das Luftvolumen (inklusive eines etwaigen Wrasen), welches pro Zeiteinheit durch die Dunstabzugshaube und eine etwaige mit dieser verbundenen Verrohrung mittels des Gebläsemotors gefördert wird. Die Druckdifferenz meint vorliegend die Druckdifferenz, mit welcher der Gebläsemotor das Luftvolumen beaufschlagt. Die Druckdifferenz kann beispielsweise zwischen einem Luftauslass der Dunstabzugshaube und einer Umgebung der Dunstabzugshaube gemessen werden. Die Druckdifferenz kann luftauslassseitig als statische Druckdifferenz in einer Druckkammer gemessen werden. Das Fördervolumen kann mittels einer der Druckkammer nachgeschalteten Venturidüse gemessen werden. Wird der Gebläsemotor nur in Abhängigkeit von beispielsweise der ersten Drehmoment-Drehzahl-Kennlinie angesteuert, so stellt sich abhängig von einem internen Widerstand der Dunstabzugshaube (im Umluftbetrieb) oder zusätzlich einem Widerstand einer mit der Dunstabzugshaube verbundenen Verrohrung (im Abluftbetrieb) ein Fördervolumen sowie eine Druckdifferenz ein. Dieses Wertepaar entspricht einem vorliegend auch als Arbeitspunkt bezeichneten Betriebspunkt des Gebläsemotors. Dieser Arbeitspunkt liegt auf der ersten Fördervolumen-Druckdifferenz-Kennlinie. Diesem Arbeitspunkt entspricht auch genau ein Wertepaar der ersten Drehmoment-Drehzahl-Kennlinie.According to a further embodiment, when the extractor hood of the first torque-speed characteristic is used as intended, a first delivery volume-pressure difference characteristic is the second torque-speed characteristic curve is assigned a second delivery volume-pressure difference characteristic curve, the third torque-speed characteristic curve is a third delivery volume-pressure difference characteristic curve and / or the fourth torque-speed characteristic curve is assigned a fourth delivery volume-pressure difference characteristic curve. The delivery volume is the air volume (including any vapors) which is delivered per unit of time through the extractor hood and any piping connected to it by means of the blower motor. In the present case, the pressure difference means the pressure difference with which the blower motor acts on the air volume. The pressure difference can be measured, for example, between an air outlet of the extractor hood and an environment of the extractor hood. The pressure difference can be measured on the air outlet side as a static pressure difference in a pressure chamber. The delivery volume can be measured using a Venturi nozzle downstream of the pressure chamber. If the blower motor is only activated as a function of, for example, the first torque-speed characteristic curve, depending on an internal resistance of the extractor hood (in recirculation mode) or an additional resistance of a piping connected to the extractor hood (in extract air mode), a delivery volume and a pressure difference arise a. This pair of values corresponds to an operating point of the blower motor which is also referred to here as the operating point. This operating point lies on the first delivery volume-pressure difference characteristic. This working point also corresponds to exactly one pair of values from the first torque-speed characteristic.

Gemäß einer weiteren Ausführungsform weist die erste, zweite und/oder dritte Fördervolumen-Druckdifferenz-Kennlinie einen zumindest abschnittsweisen konvexen Verlauf und die vierte Fördervolumen-Druckdifferenz-Kennlinie einen zumindest abschnittsweise konkaven Verlauf auf. Beispielsweise kann die zweite Fördervolumen-Druckdifferenz-Kennlinie einem Power-Modus und die vierte Fördervolumen-Druckdifferenz-Kennlinie einem Eco-Modus der Dunstabzugshaube entsprechen. Durch Umschalten zwischen diesen beiden Modi, beispielsweise aufgrund einer Eingabe des Benutzers oder selbsttätig durch die Dunstabzugshaube, verändert sich der Arbeitspunkt der Dunstabzugshaube. Beispielsweise kann eine Anlagen-Kennlinie der Dunstabzugshaube gegebenenfalls in Verbindung mit einer Verrohrung die Druckdifferenz in Abhängigkeit von dem Volumenstrom durch die Dunstabzugshaube und gegebenenfalls die Verrohrung beschreiben. Diese Anlagen-Kennlinie kann einen konvexen, insbesondere parabelförmigen Verlauf aufweisen. Durch Umschalten zwischen insbesondere der zweiten und vierten Fördervolumen-Drehzahl-Kennlinie der Dunstabzugshaube wird der Arbeitspunkt entlang der Anlagen-Kennlinie verschoben. Dadurch kann beispielsweise eine Absaugleistung der Dunstabzugshaube erhöht werden (Power-Modus), oder es können ungewollte Geräusche der Dunstabzugshaube verringert werden (Eco-Modus).According to a further embodiment, the first, second and / or third delivery volume-pressure difference characteristic curve has an at least sectionally convex course and the fourth delivery volume-pressure difference characteristic curve has an at least sectionally concave course. For example, the second delivery volume pressure difference characteristic curve can correspond to a power mode and the fourth delivery volume pressure difference characteristic curve can correspond to an eco mode of the extractor hood. By switching between these two modes, for example based on input from the user or automatically through the extractor hood, the operating point of the extractor hood changes. For example, a system characteristic of the extractor hood can optionally describe the pressure difference depending on the volume flow through the extractor hood and possibly the piping in connection with a piping. This system characteristic curve can have a convex, in particular parabolic, course. By switching between, in particular, the second and fourth delivery volume / speed characteristics of the extractor hood, the working point along the system characteristic postponed. This can, for example, increase the extraction capacity of the extractor hood (power mode), or it can reduce unwanted noise from the extractor hood (eco mode).

Gemäß einer weiteren Ausführungsform ist die Druckdifferenz der zweiten Fördervolumen-Druckdifferenz-Kennlinie für jedes Fördervolumen größer oder gleich der Druckdifferenz der ersten Fördervolumen-Druckdifferenz-Kennlinie. Zusätzlich oder alternativ ist die Druckdifferenz der vierten Fördervolumen-Druckdifferenz-Kennlinie für jedes Fördervolumen kleiner oder gleich der Druckdifferenz der ersten Fördervolumen-Druckdifferenz-Kennlinie. Damit ist die zweiten Fördervolumen-Druckdifferenz-Kennlinie besonders geeignet, einen Power-Modus der Dunstabzugshaube und die vierte Fördervolumen-Druckdifferenz-Kennlinie besonders geeignet, einen Eco-Modus der Dunstabzugshaube darzustellen.According to a further embodiment, the pressure difference of the second delivery volume-pressure difference characteristic curve for each delivery volume is greater than or equal to the pressure difference of the first delivery volume-pressure difference characteristic curve. Additionally or alternatively, the pressure difference of the fourth delivery volume-pressure difference characteristic curve for each delivery volume is less than or equal to the pressure difference of the first delivery volume-pressure difference characteristic curve. The second delivery volume-pressure difference characteristic curve is therefore particularly suitable for representing a power mode of the extractor hood and the fourth delivery volume-pressure difference characteristic curve is particularly suitable for representing an eco mode of the extractor hood.

Gemäß einer weiteren Ausführungsform ist die dritte Fördervolumen-Druckdifferenz-Kennlinie gegenüber der ersten Fördervolumen-Druckdifferenz-Kennlinie parallel verschoben. Dadurch kann beispielsweise ein Boost-Modus der Dunstabzugshaube vorgesehen werden.According to a further embodiment, the third delivery volume-pressure difference characteristic curve is shifted parallel to the first delivery volume-pressure difference characteristic curve. In this way, for example, a boost mode of the extractor hood can be provided.

Gemäß einer weiteren Ausführungsform ist die Steuereinrichtung dazu eingerichtet, den Gebläsemotor in Abhängigkeit von der ersten oder zweiten (oder dritten) Drehmoment-Drehzahlkennlinie in Abhängigkeit von einem Timer (Zeitgeber) anzusteuern. Beispielsweise kann so ein temporärer Boost-Modus vorgesehen werden: Beispielsweis heißt das, dass die Steuereinrichtung zunächst den Gebläsemotor in Abhängigkeit von der ersten Drehmoment-Drehzahl-Kennlinie ansteuert. Nach Start des Timers, insbesondere durch eine Benutzereingabe, steuert die Steuereinrichtung den Gebläsemotor mit der dritten (oder zweiten) Drehmoment-Drehzahl-Kennlinie an. Nach Ablauf einer auf dem Timer hinterlegten Zeitspanne, welche insbesondere durch eine Bedienerperson eingestellt werden kann, steuert die Steuereinrichtung den Gebläsemotor wieder in Abhängigkeit von der ersten Drehmoment-Drehzahl-Kennlinie an.According to a further embodiment, the control device is set up to control the blower motor as a function of the first or second (or third) torque-speed characteristic as a function of a timer. For example, a temporary boost mode can be provided: For example, this means that the control device first controls the blower motor as a function of the first torque-speed characteristic. After the timer has started, in particular by user input, the control device controls the blower motor with the third (or second) torque-speed characteristic. After a period of time stored on the timer, which can be set in particular by an operator, the control device controls the blower motor again as a function of the first torque-speed characteristic.

Gemäß einer weiteren Ausführungsform ist die Steuereinrichtung dazu eingerichtet, zu ermitteln, ob sich die Dunstabzugshaube im bestimmungsgemäßen Einsatz in einem Umluft- oder Abluftbetrieb befindet. Die Steuereinrichtung ist weiter dazu eingerichtet, in Abhängigkeit von dem Ergebnis dieser Ermittlung den Gebläsemotor mit der ersten, zweiten oder vierten Drehmoment-Drehzahl-Kennlinie anzusteuern. Durch Tests, insbesondere durch Verbinden der Dunstabzugshaube mit Verrohrungen unterschiedlichen Luftwiderstands, können den verschiedenen Punkten auf einer jeweiligen Drehmoment-Drehzahl-Kennlinie entweder ein Umluft- oder ein Abluftbetrieb zugeordnet werden. Diese Zuordnung kann beispielsweise in Form einer Tabelle auf einem Speicher der Steuereinrichtung abgelegt sein. Da Drehmoment und Drehzahl beim Einsatz der Dunstabzugshaube beim Kunden jederzeit bekannt sind, kann hieraus insbesondere unter Berücksichtigung der erwähnten Tabelle auf einen Umluft- oder Abluftbetrieb geschlossen werden. Die Steuereinrichtung kann nun weiter so eingerichtet sein, dass sie im Abluftbetrieb den Gebläsemotor mit der zweiten Drehmoment-Drehzahl-Kennlinie ansteuert, welche beispielsweise einem Power-Modus entspricht. Da in diesem Fall, also wenn eine Verrohrung vorhanden ist, eine größere Förderleistung benötigt wird, kann dies für einen Kunden wünschenswert sein. Genauso kann dann, wenn ein Umluftbetrieb detektiert wird, also keine Verrohrung vorhanden ist, der Gebläsemotor mit der vierten Drehmoment-Drehzahl-Kennlinie, also beispielsweise einem Eco-Modus, angesteuert werden. Im Umluftbetrieb ist aufgrund der fehlenden Verrohrung eine nur geringere Förderleistung erforderlich, um die Kochstelle genügend abzusaugen.According to a further embodiment, the control device is set up to determine whether the extractor hood is in a circulating air or exhaust air mode when used as intended. The control device is also set up, depending on the result of this determination, the blower motor with the first, second or to control the fourth torque-speed characteristic. Tests, in particular by connecting the extractor hood to pipes with different air resistance, can be used to assign either air recirculation or exhaust air operation to the various points on a respective torque-speed characteristic curve. This assignment can, for example, be stored in the form of a table on a memory of the control device. Since the customer knows the torque and speed at all times when using the extractor hood, it can be concluded that the recirculation or exhaust air operation is taking into account the table mentioned. The control device can now also be set up in such a way that it controls the blower motor in the exhaust air mode with the second torque-speed characteristic, which corresponds, for example, to a power mode. In this case, since a larger delivery capacity is required, that is to say if there is a piping, this can be desirable for a customer. Likewise, if recirculation mode is detected, ie there is no piping, the blower motor can be controlled using the fourth torque-speed characteristic curve, that is to say, for example, an eco mode. In recirculation mode, due to the lack of piping, only a lower delivery rate is required in order to extract the hotplate sufficiently.

Gemäß einer weiteren Ausführungsform ist die Steuereinrichtung dazu eingerichtet, im bestimmungsgemäßen Einsatz der Dunstabzugshaube zu erkennen, ob eine Sättigung eines Filters eingetreten oder eine Verstopfung einer mit der Dunstabzugshaube verbundenen Verrohrung vorhanden ist. Die Steuereinrichtung ist weiter dazu eingerichtet, in Abhängigkeit davon den Gebläsemotor mit der ersten, zweiten oder vierten Drehmoment-Drehzahl-Kennlinie anzusteuern. Beispielsweise kann die Steuereinrichtung dazu eingerichtet sein, eine Veränderung des erwähnten Arbeitspunkts über die Zeit zu erkennen. Wie vorstehend beschrieben, ist der Arbeitspunkt für eine bestimmte Einbausituation und Dunstabzugshaube fix. Dieser kann sich jedoch beispielsweise durch eine Filtersättigung oder Verstopfung über die Zeit verändern. Dies kann dann von der Steuereinrichtung erkannt werden. Wird beispielsweise eine Filtersättigung erkannt, kann die Steuereinrichtung selbsttätig von der ersten Drehmoment-Drehzahl-Kennlinie auf die zweite Drehmoment-Drehzahl-Kennlinie, also beispielsweise den Power-Modus, umschalten, um somit das Minus an Fördervolumen auszugleichen.According to a further embodiment, the control device is set up to recognize, when the extractor hood is used as intended, whether a filter has become saturated or whether there is a blockage in the piping connected to the extractor hood. The control device is further configured to control the blower motor with the first, second or fourth torque-speed characteristic as a function thereof. For example, the control device can be set up to recognize a change in the mentioned working point over time. As described above, the working point is fixed for a specific installation situation and extractor hood. However, this can change over time due to filter saturation or blockage, for example. This can then be recognized by the control device. If, for example, filter saturation is detected, the control device can automatically switch from the first torque-speed characteristic to the second torque-speed characteristic, that is to say, for example, the power mode, in order to compensate for the minus in delivery volume.

Dabei ist die Steuereinrichtung dazu eingerichtet, den Gebläsemotor in Abhängigkeit von einer ermittelten Anlagen-Kennlinie mit der ersten, zweiten, dritten oder einer weiteren Drehmoment-Drehzahl-Kennlinie anzusteuern. Dadurch kann dem Rechnung getragen werden, dass in Ausführungsformen für unterschiedliche Verrohrungen ein Boost-, Eco- oder Power-Modus unterschiedlich ausgestaltet werden kann.The control device is set up to control the blower motor with the first, second, third or a further one as a function of a determined system characteristic Control torque-speed characteristic. This can take into account the fact that in embodiments for different piping, a boost, eco or power mode can be designed differently.

Gemäß einer weiteren Ausführungsform ist die Steuereinrichtung dazu eingerichtet, den Gebläsemotor in Abhängigkeit von einer Benutzereingabe mit der ersten, zweiten, dritten oder vierten (oder einer weiteren) Drehmoment-Drehzahl-Kennlinie anzusteuern. Beispielsweise kann die Dunstabzugshaube hierzu eine Eingabeeinrichtung, insbesondere in Form eines Touchscreens, ein oder mehrerer Schalter und/oder ein oder mehrerer Knöpfe, aufweisen. Der Benutzer kann dann nach Wunsch die erste, zweite, dritte oder vierte (oder einer weitere) Drehmoment-Drehzahl-Kennlinie anwählen. Beispielsweise kann der Benutzer zwischen der ersten und vierten Drehmoment-Drehzahl-Kennlinie umschalten, welche einem Normal-Modus einer ersten bzw. zweiten Betriebsstufe der Dunstabzugshaube entsprechen. Weiter kann der Benutzer ausgehend von dem Normal-Modus von der ersten Betriebsstufe beispielsweise einen Power-Modus, einen Eco-Modus und/oder einen Boost-Modus anwählen. Ferner kann die Dunstabzugshaube eine Anzeigeeinrichtung aufweisen, welche dazu eingerichtet ist, anzuzeigen, ob die Steuereinrichtung den Gebläsemotor mit der ersten, zweiten, dritten oder vierten (oder einer weiteren) Drehmoment-Drehzahl-Kennlinie ansteuert. Insbesondere kann die Anzeigeeinrichtung als Bildschirm, insbesondere TFT-Bildschirm und/oder Touchscreen, ausgebildet sein. Ferner kann die Anzeigeeinrichtung zur Anzeige des aktuellen Fördervolumenstroms, beispielsweise in Form von Kubikmeter pro Stunde, eingerichtet sein. Die entsprechenden Werte kann die Steuereinrichtung, wie vorstehend erwähnt, aus dem aktuellen Drehmoment und der aktuellen Drehzahl ermittelt. Ferner kann die Anzeigeeinrichtung dazu eingerichtet sein, der Bedienerperson anzuzeigen, ob sich die Dunstabzugshaube in der ersten, zweiten, dritten oder einer weiteren Betriebsstufe befindet. Zusätzlich kann die Anzeigeeinrichtung dazu eingerichtet sein, anzuzeigen, ob sich die Dunstabzugshaube in dem erwähnten Power-Modus, Eco-Modus oder Boost-Modus befindet.According to a further embodiment, the control device is set up to control the blower motor as a function of a user input with the first, second, third or fourth (or a further) torque-speed characteristic curve. For example, the extractor hood can have an input device for this purpose, in particular in the form of a touchscreen, one or more switches and / or one or more buttons. The user can then select the first, second, third or fourth (or another) torque-speed characteristic as desired. For example, the user can switch between the first and fourth torque-speed characteristic curves, which correspond to a normal mode of a first or second operating stage of the extractor hood. Furthermore, starting from the normal mode, the user can select, for example, a power mode, an eco mode and / or a boost mode from the first operating stage. Furthermore, the extractor hood can have a display device which is set up to indicate whether the control device controls the fan motor with the first, second, third or fourth (or another) torque-speed characteristic. In particular, the display device can be designed as a screen, in particular a TFT screen and / or a touch screen. Furthermore, the display device can be set up to display the current delivery volume flow, for example in the form of cubic meters per hour. As mentioned above, the control device can determine the corresponding values from the current torque and the current speed. Furthermore, the display device can be set up to indicate to the operator whether the extractor hood is in the first, second, third or a further operating stage. In addition, the display device can be set up to indicate whether the extractor hood is in the aforementioned power mode, eco mode or boost mode.

Gemäß einer weiteren Ausführungsform ist die zweite und/oder dritte Drehmoment-Drehzahl-Kennlinie zur Vermeidung von ungewollten Resonanzen bei einem bestimmungsgemäßen Einsatz der Dunstabzugshaube gewählt. Durch Tests, insbesondere durch Verbinden der Dunstabzugshaube mit unterschiedlichen Verrohrungen, kann ermittelt werden, für welche Drehmoment-Drehzahl-Wertepaare sich eine ungewollte Resonanz ergibt. Liegen diese Wertepaare beispielsweise auf der ersten Drehmoment-Drehzahl-Kennlinie, so kann die Steuereinrichtung diese ungewollten Betriebspunkte selbsttätig umgehen, indem sie für einen bestimmten Drehzahlbereich den Gebläsemotor in Abhängigkeit von der zweiten oder dritten Drehmoment-Drehzahl-Kennlinie ansteuert. Auch dieses Verhalten kann auf einem Speicher der Steuereinrichtung hinterlegt sein.According to a further embodiment, the second and / or third torque-speed characteristic curve is selected to avoid unwanted resonances when the extractor hood is used as intended. Tests, in particular by connecting the extractor hood to different pipes, can be used to determine the torque / speed value pairs for which an unwanted resonance results. If these pairs of values lie, for example, on the first torque-speed characteristic curve, the control device can automatically bypass these unwanted operating points by triggering the blower motor for a specific speed range as a function of the second or third torque-speed characteristic curve. This behavior can also be stored on a memory of the control device.

Die Dunstabzugshaube ist bevorzugt als Haushaltsgerät ausgebildet.The extractor hood is preferably designed as a household appliance.

Ferner wird eine (weitere) Dunstabzugshaube mit einem elektronisch kommutierten Gebläsemotor und einer Steuereinrichtung bereitgestellt. Die Steuereinrichtung ist dazu eingerichtet, den Gebläsemotor mit einer ersten, zweiten oder dritten Drehmoment-Drehzahl-Kennlinie anzusteuern. Die erste und dritte Drehmoment-Drehzahl-Kennlinie sind jeweils mittels einer Eingabeeinrichtung von einer Bedienerperson anwählbar. Die Steuereinrichtung ist weiter dazu eingerichtet, in Abhängigkeit von einem von dieser ermittelten Parameter den Gebläsemotor ausgehend von der ersten oder dritten Drehmoment-Drehzahl-Kennlinie mit der zweiten Drehmoment-Drehzahl-Kennlinie anzusteuern.Furthermore, a (further) extractor hood with an electronically commutated fan motor and a control device is provided. The control device is set up to control the blower motor with a first, second or third torque-speed characteristic. The first and third torque-speed characteristic curve can each be selected by an operator using an input device. The control device is also set up to control the blower motor based on a parameter determined by it, starting from the first or third torque-speed characteristic with the second torque-speed characteristic.

Mit anderen Worten kann eine Bedienerperson die Dunstabzugshaube zwischen einer ersten Betriebsstufe (erste Drehmoment-Drehzahl-Kennlinie) und einer zweiten Betriebsstufe (zweite Drehmoment-Drehzahl-Kennlinie) beispielsweise mittels Knopfdruck umschalten. Das Umschalten von der ersten Drehmoment-Drehzahl-Kennlinien auf die zweite Drehmoment-Drehzahl-Kennlinie nimmt die Steuereinrichtung dann insbesondere selbststätig vor, um bestimmten Rahmenbedingungen, beispielsweise einer aktuell vorliegenden Anlagen-Kennlinie oder einem Bedienerwunsch nach weniger Geräuschen oder mehr Fördervolumen, Rechnung zu tragen. Die Rahmenbedingung oder der Bedienerwunsch können jeweils den von der Steuereinrichtung ermittelten Parameter bilden. So kann beispielweise ein Boost-, Power- oder Eco-Modus der Dunstabzugshaube bereitgestellt werden. Der Bedienerwunsch kann der Steuereinrichtung durch eine Eingabeeinrichtung der Dunstabzugshaube vermittelt werden. Die erste und zweite Drehmoment-Drehzahl-Kennlinie können eine Asynchroncharakteristik aufweisen und/oder zueinander parallel sein. Die dritte Drehmoment-Drehzahl-Kennlinie kann zwischen der ersten und zweiten Drehmoment-Drehzahl-Kennlinie liegen und/oder parallel zu diesen sein. Alternativ kann die dritte Drehmoment-Drehzahl-Kennlinie zumindest einen gemeinsamen Punkt mit der ersten Drehmoment-Drehzahl-Kennlinie und/oder eine Asynchroncharakteristik aufweisen.In other words, an operator can switch the extractor hood between a first operating level (first torque-speed characteristic curve) and a second operating level (second torque-speed characteristic curve), for example by pressing a button. The control device then automatically switches over from the first torque-speed characteristic to the second torque-speed characteristic in order to take account of certain general conditions, for example a current system characteristic or an operator request for less noise or more delivery volume . The framework condition or the operator's request can each form the parameter determined by the control device. For example, a boost, power or eco mode of the extractor hood can be provided. The operator's request can be conveyed to the control device by an input device of the extractor hood. The first and second torque-speed characteristics can have an asynchronous characteristic and / or be parallel to one another. The third torque-speed characteristic can lie between the first and second torque-speed characteristics and / or be parallel to them. Alternatively, the third torque-speed characteristic curve can have at least one point in common with the first torque-speed characteristic curve and / or an asynchronous characteristic.

Die für die Dunstabzugshaube beschriebenen Ausführungsformen gelten für die weitere Dunstabzugshaube entsprechend, und umgekehrt.The embodiments described for the extractor hood apply accordingly to the further extractor hood, and vice versa.

Es sei angemerkt, dass vorliegend die Bezeichnungen erste, zweite usw. Drehmoment-Drehzahl-Kennlinie/ Fördervolumen-Druckdifferenz-Kennlinie usw. verwendet werden. Dies dient jedoch lediglich der besseren Unterscheidung. Eine Änderung der Bezeichnung, beispielweise "vierte" statt "zweite", ist daher bei Bedarf jederzeit möglich.It should be noted that the terms first, second, etc., torque-speed characteristic curve / delivery volume-pressure difference characteristic curve, etc. are used here. However, this is only for better distinction. It is therefore possible to change the name at any time, for example "fourth" instead of "second".

Weiterhin wird eine Dunstabzugshaubenanordnung mit einer Verrohrung und einer vorstehend beschriebenen Dunstabzugshaube bereitgestellt. Die Verrohrung verläuft beispielsweise in oder an einem Gebäude. Die Dunstabzugshaube ist mit der Verrohrung luftleitend gekoppelt.Furthermore, an extractor hood arrangement with piping and an extractor hood described above is provided. The piping runs, for example, in or on a building. The extractor hood is coupled to the piping in an air-conducting manner.

Außerdem wird ein Verfahren zum Betreiben einer Dunstabzugshaube bereitgestellt. Bei dem Verfahren wird ein elektronisch kommutierter Gebläsemotor mit einer ersten oder einer zweiten Drehmoment-Drehzahl-Kennlinie mittels einer Steuereinrichtung angesteuert, wobei die Drehmoment-Drehzahl-Kennlinien zumindest einen gemeinsamen Punkt aufweisen.A method for operating an extractor hood is also provided. In the method, an electronically commutated blower motor with a first or a second torque-speed characteristic curve is controlled by means of a control device, the torque-speed characteristic curves having at least one common point.

Ferner wird ein (weiteres) Verfahren zum Betreiben einer Dunstabzugshaube bereitgestellt. Bei dem Verfahren wird ein elektronisch kommutierter Gebläsemotor mit einer ersten, zweiten oder dritten Drehmoment-Drehzahl-Kennlinie mittels einer Steuereinrichtung angesteuert. Die erste oder dritte Drehmoment-Drehzahl-Kennlinie wird mittels einer Eingabeeinrichtung von einer Bedienerperson angewählt. Hiernach wird der Gebläsemotor in Abhängigkeit von einem von der Steuereinrichtung ermittelten Parameter ausgehend von der angewählten ersten oder dritten Drehmoment-Drehzahl-Kennlinie mit der zweiten Drehmoment-Drehzahl-Kennlinie angesteuert.A (further) method for operating an extractor hood is also provided. In the method, an electronically commutated blower motor with a first, second or third torque-speed characteristic curve is controlled by means of a control device. The first or third torque-speed characteristic is selected by an operator using an input device. The blower motor is then controlled as a function of a parameter determined by the control device, starting from the selected first or third torque-speed characteristic with the second torque-speed characteristic.

Die vorliegend in Bezug auf die Dunstabzugshaube und die weitere Dunstabzugshaube beschriebenen Ausführungsformen gelten entsprechend für die vorliegende Dunstabzugshaubenanordnung sowie das vorliegende Verfahren.The embodiments described in relation to the extractor hood and the further extractor hood apply accordingly to the present extractor hood arrangement and the present method.

Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale oder Ausführungsformen der Dunstabzugshauben, der Dunstabzugshaubenanordnung sowie der Verfahren. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der Erfindung hinzufügen oder abändern.Further possible implementations of the invention also include combinations of features or embodiments of the extractor hoods, the extractor hood arrangement and the methods, which are not explicitly mentioned above or in the following with regard to the exemplary embodiments. The person skilled in the art will also add or change individual aspects as improvements or additions to the respective basic form of the invention.

Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung. Im Weiteren wird die Erfindung anhand von bevorzugten Ausführungsformen unter Bezugnahme auf die beigelegten Figuren näher erläutert.Further advantageous refinements and aspects of the invention are the subject of the subclaims and the exemplary embodiments of the invention described below. The invention is explained in more detail below on the basis of preferred embodiments with reference to the attached figures.

Es zeigen dabei:

  • Fig. 1: schematisch eine Dunstabzugshaubenanordnung gemäß einer Ausführungsform;
  • Fig. 2: Drehmoment-Drehzahl-Kennlinien gemäß einer Ausführungsform;
  • Fig. 3: Fördervolumen-Druckdifferenz-Kennlinien sowie Anlagen-Kennlinien gemäß einer Ausführungsform;
  • Fig. 4: Fördervolumen-Druckdifferenz-Kennlinien für einen Power- und Eco-Modus gemäß einer Ausführungsform;
  • Fig. 5: Fördervolumen-Druckdifferenz-Kennlinien für einen Umluft- und Abluftbetrieb gemäß einer Ausführungsform;
  • Fig. 6: Fördervolumen-Druckdifferenz-Kennlinien zur Vermeidung von Resonanz gemäß einer Ausführungsform;
  • Fig. 7: Fördervolumen-Druckdifferenz-Kennlinien für einen Boost-Modus gemäß einer Ausführungsform; und
  • Fig. 8: Fördervolumen-Druckdifferenz-Kennlinien für einen Boost,- Power- und Eco-Modus gemäß einer weiteren Ausführungsform.
It shows:
  • Fig. 1 : schematically, an extractor hood arrangement according to an embodiment;
  • Fig. 2 : Torque-speed characteristics according to an embodiment;
  • Fig. 3 : Delivery volume-pressure difference characteristics and system characteristics according to an embodiment;
  • Fig. 4 : Delivery volume-pressure difference characteristic curves for a power and eco mode according to an embodiment;
  • Fig. 5 : Delivery volume-pressure difference characteristics for a recirculation and exhaust air operation according to an embodiment;
  • Fig. 6 : Delivery volume-pressure difference characteristics to avoid resonance according to an embodiment;
  • Fig. 7 : Delivery volume-pressure difference characteristic curves for a boost mode according to an embodiment; and
  • Fig. 8 : Delivery volume-pressure difference characteristics for a boost, - power and eco mode according to a further embodiment.

In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten, soweit nichts anderes angegeben ist.In the figures, the same reference symbols denote the same or functionally identical components, unless stated otherwise.

Figur 1 zeigt schematisch eine Dunstabzugshaubenanordnung 1 gemäß einer Ausführungsform. Figure 1 schematically shows an extractor hood arrangement 1 according to an embodiment.

Die Dunstabzugshaubenanordnung 1 umfasst eine Dunstabzugshaube 2, welche oberhalb einer Kochstelle 3 in einer Küche angeordnet ist. Die Dunstabzugshaube 2 kann beispielsweise als Haube oder Esse ausgeführt sein. Die Dunstabzugshaube 2 kann hierzu - wie auch eine Verrohrung 4 - an einer Gebäudewand 5 der Küche befestigt sein. Die Dunstabzugshaube 2 fördert im Betrieb Wrasen 6 von oberhalb der Kochstelle 3 über einen Lufteinlass 7 zu einem Luftauslass 11 derselben. Der Luftauslass 11 ist über die Verrohrung 4 mit der Umgebung außerhalb der Küche luftleitend verbunden. Alternativ kann die Dunstabzugshaube - wie später noch näher erläutert wird - als Umluftgerät vorgesehen sein, wobei der Luftauslass 11 mit dem Innenraum 10 der Küche luftleitend verbunden ist.The extractor hood arrangement 1 comprises an extractor hood 2, which is arranged above a hotplate 3 in a kitchen. The extractor hood 2 can be designed, for example, as a hood or a chimney. For this purpose, the extractor hood 2 can be fastened to a building wall 5 of the kitchen, just like piping 4. In operation, the extractor hood 2 conveys vapors 6 from above the hotplate 3 via an air inlet 7 to an air outlet 11 thereof. The air outlet 11 is connected via the piping 4 to the environment outside the kitchen in an air-conducting manner. Alternatively, the extractor hood - as will be explained in more detail later - can be provided as a circulating air device, the air outlet 11 being connected to the interior 10 of the kitchen in an air-conducting manner.

Die Dunstabzugshaube 2 umfasst ein Lüfterrad 13. Das Lüfterrad 13 wird von einem elektronisch kommutierten Gebläsemotor 14 angetrieben sein. Das Lüfterrad 13 bildet mit einem dieses umgebenden spiralförmigen Gehäuse 15 ein Radialgebläse 16 aus, welches den Wrasen 6 durch einen Fettfilter 12 im Bereich des Lufteinlasses 7 saugt und durch den Luftauslass 11 ausstößt. Dabei muss das Radialgebläse 16 den internen Luftwiderstand der Dunstabzugshaube 2, welcher sich insbesondere aufgrund des Radialgebläses 16 selbst sowie einer internen Verrohrung 17 ergibt, überwinden. Weiterhin muss das Radialgebläse 16 den Luftwiderstand der Verrohrung 4 (soweit diese vorhanden ist) überwinden, um die Luft nach außerhalb des Innenraums 10 der Küche zu fördern. Der interne Luftwiderstand der Dunstabzugshaube 2 ergibt eine Anlagen-Kennlinie derselben im Umluftbetrieb. Die Summe aus dem internen Luftwiderstand der Dunstabzugshaube 2 und dem Luftwiderstand der Verrohrung 4 ergibt die Anlagen-Kennlinie im Abluftbetrieb. Beispielhafte Anlagen-Kennlinien sind in Figur 3 gezeigt und dort mit AK1, AK2 und AK3 bezeichnet.The extractor hood 2 comprises a fan wheel 13. The fan wheel 13 will be driven by an electronically commutated fan motor 14. The fan wheel 13 forms, with a spiral-shaped housing 15 surrounding it, a radial blower 16 which sucks the vapors 6 through a grease filter 12 in the region of the air inlet 7 and ejects them through the air outlet 11. The radial blower 16 must overcome the internal air resistance of the extractor hood 2, which arises in particular due to the radial blower 16 itself and an internal piping 17. Furthermore, the radial fan 16 must overcome the air resistance of the piping 4 (if it is present) in order to convey the air outside the interior 10 of the kitchen. The internal air resistance of the extractor hood 2 results in a system characteristic of the same in recirculation mode. The sum of the internal air resistance of the extractor hood 2 and the air resistance of the piping 4 results in the system characteristic in exhaust air mode. Exemplary system characteristics are in Figure 3 shown and designated there with AK1, AK2 and AK3.

Nun zurückkehrend zu Figur 1 ist dort weiter gezeigt, dass die Dunstabzugshaube 2 eine Steuereinrichtung 21 umfasst, welche den Gebläsemotor 14 ansteuert. Die Steuereinrichtung ist beispielsweise als Mikroprozessor ausgebildet und umfasst einen Speicher 22. Auf dem Speicher 22 sind in Form von Software in Figur 2 gezeigte Drehmoment-Drehzahl-Kennlinien abgelegt.Now returning to Figure 1 it is further shown there that the extractor hood 2 comprises a control device 21 which controls the blower motor 14. The control device is designed, for example, as a microprocessor and comprises a memory 22. The memory 22 contains software in the form of Figure 2 torque-speed characteristics shown.

Figur 2 zeigt eine erste Drehmoment-Drehzahl-Kennlinie DK1, eine zweite Drehmoment-Drehzahl-Kennlinie DK1a, eine dritte Drehmoment-Drehzahl-Kennlinie DK1b, eine vierte Drehmoment-Drehzahl-Kennlinie DK2, und eine fünfte Drehmoment-Drehzahl-Kennlinie DK3. Das Drehmoment M des Gebläsemotors 14 wird dabei als Funktion seiner Drehzahl n dargestellt. Figure 2 shows a first torque-speed characteristic curve DK1, a second torque-speed characteristic curve DK1a, a third torque-speed characteristic curve DK1b, a fourth torque-speed characteristic curve DK2, and a fifth torque-speed characteristic curve DK3. The torque M of the blower motor 14 is shown as a function of its speed n.

Die Drehmoment-Drehzahl-Kennlinien DK1 bis DK3 weisen jeweils eine Asynchroncharakteristik auf. Das heißt, ihre Form entspricht einem liegenden "S". Weiter heißt dies, dass jede der Drehmoment-Drehzahl-Kennlinien DK1 bis DK3 ein Anzugsmoment MA1, MA2, MA3, ein Sattelmoment MS1, MS2, MS3, ein Kippmoment MK1, MK1a, MK1b, MK2, MK3 sowie eine Nenn-Drehzahl nN umfasst. Das Anzugsmoment MA1, MA2, MA3, entspricht dem Drehmoment des Gebläsemotors 14 bei einer Drehzahl n=0. Ausgehend vom Anzugsmoment MA1, MA2, MA3 sinkt das Drehmoment bis zum Sattelmoment MS1, MS2, MS3 mit zunehmender Drehzahl n ab und steigt hiernach wieder, und erreicht sein Maximum MK1, MK1a, MK1b, MK2, MK3. Hiernach sinkt das Drehmoment M wieder ab und nähert sich hin zur Nenn-Drehzahl nN asymptotisch gegen Null an. Ein Arbeitsbereich, in welchem der Gebläsemotor 14 typischerweise von der Steuereinrichtung 21 im Betrieb der Dunstabzugshaube 2 angesteuert wird, ist mit AH bezeichnet.The torque-speed characteristic curves DK1 to DK3 each have an asynchronous characteristic. That means their shape corresponds to a lying "S". This also means that each of the torque-speed characteristic curves DK1 to DK3 has a tightening torque M A1 , M A2 , M A3 , a saddle torque M S1 , M S2 , M S3 , a tipping moment M K1 , M K1a , M K1b , M K2 , M K3 and a nominal speed n N comprises. The tightening torque M A1 , M A2 , M A3 corresponds to the torque of the blower motor 14 at a speed n = 0. Starting from the tightening torque M A1 , M A2 , M A3 , the torque drops to the saddle torque M S1 , M S2 , M S3 with increasing speed n and then rises again, and reaches its maximum M K1 , M K1a , M K1b , M K2 , M K3 . Thereafter, the torque M drops again and approaches the nominal speed n N asymptotically towards zero. A work area in which the blower motor 14 is typically controlled by the control device 21 when the extractor hood 2 is in operation is designated by AH.

Die Drehmoment-Drehzahl-Kennlinien DK1, DK1a, DK1b weisen einen abschnittsweise identischen Verlauf auf. So sind das Anzugs- und das Sattelmoment MA1, MS1 für die Drehmoment-Drehzahl-Kennlinien DK1 bis DK1b identisch. Lediglich hinsichtlich ihres Kippmoments MK1, MK1a und MK1b unterscheiden sie sich. So liegt das Kippmoment MK1a über dem Kippmoment MK1 und das Kippmoment MK1b unter dem Kippmoment MK1. Die Drehmoment-Drehzahl-Kennlinie DK2 verläuft dagegen parallel zur Drehmoment-Drehzahl-Kennlinie DK1 und ist bezüglich dieser nach oben verschoben, also durchwegs durch ein höheres Drehmoment M gekennzeichnet. Folglich liegt das Kippmoment MK2 über MK1a, MK1 und MK1b. Die Drehmoment-Drehzahl-Kennlinie DK3 verläuft ebenfalls parallel zur Drehmoment-Drehzahl-Kennlinie DK1 und zwischen dieser und der Drehmoment-Drehzahl-Kennlinie DK2.The torque-speed characteristic curves DK1, DK1a, DK1b have an identical section in sections. The tightening and saddle torque M A1 , M S1 for the torque-speed characteristic curves DK1 to DK1b are identical. They differ only in terms of their tilting moment M K1 , M K1a and M K1b . This is the tilting moment M K1a over the overturning moment M K1 and the overturning moment M K1b under the overturning moment M K1 . The torque-speed characteristic curve DK2, on the other hand, runs parallel to the torque-speed characteristic curve DK1 and is shifted upward with respect to this, that is to say consistently characterized by a higher torque M. As a result, the overturning moment M K2 lies above M K1a , M K1 and M K1b . The torque-speed characteristic curve DK3 also runs parallel to the torque-speed characteristic curve DK1 and between it and the torque-speed characteristic curve DK2.

Die Drehmoment-Drehzahl-Kennlinie DK1 ist beispielsweise einem Normal-Modus einer ersten Betriebsstufe der Dunstabzugshaube 2 und die Drehmoment-Drehzahl-Kennlinie DK2 einem Normal-Modus einer zweiten Betriebsstufe der Dunstabzugshaube 2 zugeordnet. Es können auch weitere Betriebsstufen, beispielsweise eine dritte und eine vierte Betriebsstufe vorgesehen sein, welche in Figur 1 gezeigt sind. Selbstverständlich ist auch ein Aus-Zustand der Dunstabzugshaube bzw. des Gebläsemotors 14 vorgesehen. Beispielsweise kann die Dunstabzugshaube 2, wie in Figur 1 gezeigt, Knöpfe 23 umfassen, mittels welchen der Aus-Zustand "0" und die erste bis vierte Betriebsstufe "1", "2", "3", "4" anwählbar sind. In Abhängigkeit von einem aktuell gedrückten Knopf 23 steuert die Steuereinrichtung 21 den Gebläsemotor 14 nicht (Aus-Zustand) oder mit der ersten Drehmoment-Drehzahl-Kennlinie DK1 (erste Betriebsstufe) oder der vierten Drehmoment-Drehzahl-Kennlinie DK2 (zweite Betriebsstufe) oder einer weiteren Drehmoment-Drehzahl-Kennlinie (dritte und vierte Betriebsstufe) an. Anstelle der Knöpfe 23 könnte auch eine sonstige Eingabeeinrichtung vorgesehen sein.The torque-speed characteristic curve DK1 is assigned, for example, to a normal mode of a first operating level of the extractor hood 2 and the torque-speed characteristic curve DK2 to a normal mode of a second operating level of the extractor hood 2. Further operating stages, for example a third and a fourth operating stage, which are shown in Figure 1 are shown. Of course, an off-state of the extractor hood or of the blower motor 14 is also provided. For example, the extractor hood 2, as in Figure 1 shown, comprise buttons 23, by means of which the off state "0" and the first to fourth operating stages "1", "2", "3", "4" can be selected. Depending on a button 23 currently pressed, the control device 21 does not control the blower motor 14 (off state) or with the first torque-speed characteristic curve DK1 (first operating stage) or the fourth torque-speed characteristic curve DK2 (second operating stage) or one another torque-speed characteristic (third and fourth operating level). Instead of the buttons 23, another input device could also be provided.

Die zweite Drehmoment-Drehzahl-Kennlinie DK1a entspricht beispielsweise einem Power-Modus und die dritte Drehmoment-Drehzahl-Kennlinie DK1b einem Eco-Modus, wie nachfolgend noch näher erläutert wird. Befindet sich nun die Dunstabzugshaube 2 beispielsweise im Normal-Modus (DK1) des ersten Betriebszustands "1", so kann eine Bedienerperson die Dunstabzugshaube 2 durch Betätigen einer Eingabeeinrichtung beispielsweise in Form eines Knopfes 24 aus dem Normal-Modus entsprechend der ersten Drehmoment-Drehzahl-Kennlinie DK1 in den Power-Modus entsprechend der Drehmoment-Drehzahl-Kennlinie DK1a oder den Eco-Modus entsprechend der Drehmoment-Drehzahl-Kennlinie DK1b umschalten. Beispielsweise kann ein Umschalten in den Power-Modus erfolgen, wenn ein höherer Fördervolumenstrom gewünscht ist. Ein Umschalten in den Eco-Modus kann erfolgen, wenn eine Geräuschbildung durch die Dunstabzugshaube 2 reduziert oder Energie gespart werden soll. Das Umschalten in den Eco- und Power-Modus kann auch erfolgen, wenn die Dunstabzugshaube 2 in dem Normal-Modus der zweiten, dritten oder vierten Betriebsstufe "2" "3" "4" betrieben wird. Die Drehmoment-Drehzahl-Kennlinien DK2a und DK2b illustrieren beispielhaft den der zweiten Betriebsstufe "2" zugeordneten Power- bzw. Eco-Modus. Das Kippmoment MK2a liegt dann über dem Kippmoment MK2 und das Kippmoment MK2b unterhalb dem Kippmoment MK2.The second torque-speed characteristic curve DK1a corresponds, for example, to a power mode and the third torque-speed characteristic curve DK1b to an eco mode, as will be explained in more detail below. If the extractor hood 2 is now, for example, in the normal mode (DK1) of the first operating state "1", an operator can remove the extractor hood 2 by pressing an input device, for example in the form of a button 24 from the normal mode in accordance with the first torque-speed Switch the characteristic curve DK1 to the power mode according to the torque-speed characteristic curve DK1a or the eco mode according to the torque-speed characteristic curve DK1b. For example, a switch to power mode can take place if a higher delivery volume flow is desired. Switching to Eco mode can take place if there is noise from the extractor hood 2 should be reduced or energy saved. The switchover to the eco and power mode can also take place when the extractor hood 2 is operated in the normal mode of the second, third or fourth operating stage "2""3""4". The torque-speed characteristic curves DK2a and DK2b exemplify the power or eco mode assigned to the second operating stage "2". The tilting moment M K2a is then above the tilting moment M K2 and the tilting moment M K2b below the tilting moment M K2 .

Ferner kann die Dunstabzugshaube 2 eine Anzeigeeinrichtung beispielsweise in Form eines TFT-Bildschirms 25 umfassen, auf welchem angezeigt wird, in welcher Betriebsstufe sich die Dunstabzugshaube 2 befindet. Weiter kann der TFT-Bildschirm 25 anzeigen, ob sich die Dunstabzugshaube 2 in dem Normal-Modus, Power-Modus oder dem Eco-Modus befindet. Noch weiterhin kann der TFT-Bildschirm 25 ein von der Dunstabzugshaube 2 aktuell gefördertes Fördervolumen beispielsweise in Kubikmeter pro Stunde anzeigen. Der TFT-Bildschirm 25 kann von der Steuereinrichtung 21 entsprechend angesteuert werden. Die Eingabeeinrichtungen 23, 24 könnten auch in die Anzeigeeinrichtung 25 integriert sein, indem diese beispielsweise als Touchscreen ausgebildet ist, der gleichzeitig auch Eingabeeinrichtung für Benutzerbefehle ist.Furthermore, the extractor hood 2 can comprise a display device, for example in the form of a TFT screen 25, on which it is displayed in which operating stage the extractor hood 2 is located. Furthermore, the TFT screen 25 can display whether the extractor hood 2 is in the normal mode, power mode or the eco mode. Still further, the TFT screen 25 can display a delivery volume currently being conveyed by the extractor hood 2, for example in cubic meters per hour. The TFT screen 25 can be controlled accordingly by the control device 21. The input devices 23, 24 could also be integrated in the display device 25, for example by being designed as a touchscreen, which is also an input device for user commands.

Nachfolgend wird anhand von Figur 3 der Zusammenhang zwischen einer Druckdifferenz p und einem Fördervolumen Q für unterschiedliche Anlagen-Kennlinien AK1 bis AK3 sowie unterschiedliche Fördervolumen-Druckdifferenz-Kennlinien FK1 bis FK4 näher erläutert.The following is based on Figure 3 the relationship between a pressure difference p and a delivery volume Q for different system characteristics AK1 to AK3 and different delivery volume-pressure difference characteristics FK1 to FK4 is explained in more detail.

Figur 3 zeigt dabei die Druckdifferenz p als Funktion des Fördervolumens Q. Die Druckdifferenz p bezeichnet dabei eine Druckdifferenz zwischen dem Umgebungsdruck in dem Kücheninnenraum 10 (siehe Figur 1) und einem Druck, welcher beispielsweise im Luftauslass 11 der Dunstabzugshaube 2 gemessen wird. Das Fördervolumen Q meint ein pro Zeiteinheit gefördertes Luftvolumen, beispielsweise in Kubikmeter pro Stunde. Figure 3 shows the pressure difference p as a function of the delivery volume Q. The pressure difference p denotes a pressure difference between the ambient pressure in the kitchen interior 10 (see Figure 1 ) and a pressure, which is measured, for example, in the air outlet 11 of the extractor hood 2. The delivery volume Q means an air volume delivered per unit of time, for example in cubic meters per hour.

Jeder der Drehmoment-Drehzahl-Kennlinien aus Figur 2 ist eine Fördervolumen-Druckdifferenz-Kennlinie in Figur 3 zugeordnet. So entspricht beispielsweise die Drehmoment-Drehzahl-Kennlinie DK1 der Fördervolumen-Druckdifferenz-Kennlinie FK1 und die Drehmoment-Drehzahl-Kennlinie DK2 der Fördervolumen-Druckdifferenz-Kennlinie FK2. Die den Fördervolumen-Druckdifferenz-Kennlinien FK3 und FK4 entsprechenden Drehmoment-Drehzahl-Kennlinien sind in Figur 2 nicht gezeigt. Jedes Wertepaar einer jeweiligen Drehmoment-Drehzahl-Kennlinie aus Figur 2 hat eine Entsprechung auf einer jeweiligen Fördervolumen-Druckdifferenz-Kennlinie aus Figur 3.Each of the torque-speed characteristics Figure 2 is a delivery volume-pressure difference characteristic in Figure 3 assigned. For example, the torque-speed characteristic curve DK1 corresponds to the delivery volume-pressure difference characteristic curve FK1 and the torque-speed characteristic curve DK2 corresponds to the delivery volume-pressure difference characteristic curve FK2. The corresponding to the delivery volume-pressure difference characteristic curves FK3 and FK4 Torque-speed characteristics are in Figure 2 Not shown. Each pair of values of a respective torque-speed characteristic curve Figure 2 has a correspondence on a respective delivery volume-pressure difference characteristic Figure 3 .

Wird nun die Dunstabzugshaube 2 beispielsweise als Umluftgerät betrieben und mittels eines Knopfs 23 die erste Betriebsstufe "1" im Normal-Modus und damit die erste Fördervolumen-Druckdifferenz-Kennlinie FK1 angewählt, so ergibt sich ein Arbeitspunkt AP1, an welchem die Dunstabzugshaube 2 operiert. Der Arbeitspunkt AP1 ist ein Schnittpunkt zwischen der Fördervolumen-Druckdifferenz-Kennlinie FK1 und der Anlagen-Kennlinie AK1. Die Form der Anlagen-Kennlinien AK1 bis AK3 entspricht einer Parabel, welche durch die folgende Gleichung gekennzeichnet ist: p = a Q 2 ,

Figure imgb0001
wobei sich der Parameter a für die Anlagen-Kennlinien AK1 bis AK3 unterscheidet und eine Funktion des Luftwiderstands der Dunstabzugshaube 2 und/oder der Verrohrung 4 ist.If the extractor hood 2 is now operated, for example, as a recirculating air device and the first operating stage "1" in normal mode and thus the first delivery volume-pressure difference characteristic curve FK1 is selected by means of a button 23, an operating point AP1 results at which the extractor hood 2 operates. The operating point AP1 is an intersection between the delivery volume-pressure difference characteristic curve FK1 and the system characteristic curve AK1. The shape of the system characteristic curves AK1 to AK3 corresponds to a parabola, which is characterized by the following equation: p = a Q 2nd ,
Figure imgb0001
the parameter a for the system characteristics AK1 to AK3 differs and is a function of the air resistance of the extractor hood 2 and / or the piping 4.

So kann beispielsweise die Anlagen-Kennlinie AK2 eine Verrohrung 4 mit einer ersten Länge und die Anlagen-Kennlinie AK3 eine Verrohrung 4 mit einer zweiten Länge darstellen, wobei die zweite Länge größer als die erste Länge und entsprechend auch der Luftwiderstand höher ist. Die Arbeitspunkte AP1, AP2, AP3 und AP4 ergeben sich, indem zwischen den Betriebsstufen "1" bis "4" im Normal-Modus umgeschaltet wird, siehe Figur 2.For example, the system characteristic curve AK2 can represent piping 4 with a first length and the system characteristic curve AK3 can represent piping 4 with a second length, the second length being greater than the first length and, accordingly, the air resistance being higher. The operating points AP1, AP2, AP3 and AP4 result from switching between the operating levels "1" to "4" in normal mode, see Figure 2 .

Es kann vorgesehen sein, dass insbesondere die in Figur 3 und 4 gezeigten Fördervolumen-Druckdifferenz-Kennlinien FK1 bis FK4 beispielsweise in Form einer Tabelle auf dem Speicher 22 der Steuereinrichtung 21 abgelegt sind. Weiterhin können in der Tabelle einem jeweiligen Fördervolumen-Druckdifferenz-Wertepaar p, Q zugeordnete Drehmoment-Drehzahl-Wertepaare M, n abgelegt sein.It can be provided that in particular the Figure 3 and 4th The delivery volume-pressure difference characteristic curves FK1 to FK4 are stored, for example in the form of a table, in the memory 22 of the control device 21. Furthermore, torque-speed value pairs M, n assigned to a respective delivery volume-pressure difference value pair p, Q can be stored.

Die Tabelle kann beispielsweise in einem Herstellungsprozess der Dunstabzugshaube 2 auf dem Speicher 22 abgespeichert werden. Zuvor wird die Tabelle dadurch erzeugt, dass eine Test-Dunstabzugshaube mit unterschiedlichen Fördervolumen Q und Druckdifferenzen p betrieben wird. Gleichzeitig werden das jeweils aktuelle Drehmoment und die jeweils aktuelle Drehzahl in die Tabelle geschrieben. Das aktuelle Drehmoment und die aktuelle Drehzahl können beispielsweise aus der Steuereinrichtung 21 ausgelesen werden.The table can be stored on the memory 22, for example, in a manufacturing process of the extractor hood 2. Before this, the table is generated by using a test extractor hood with different delivery volumes Q and pressure differences p is operated. At the same time, the current torque and the current speed are written to the table. The current torque and the current speed can be read out from the control device 21, for example.

Wird nun die Dunstabzugshaube 2 beim Kunden in Betrieb genommen, so kann die Steuereinrichtung 22 aus dem aktuellen Drehmoment M und der aktuellen Drehzahl n auf das Fördervolumen Q schließen und dieses, wie in Figur 1 gezeigt, der Bedienerperson anzeigen.If the extractor hood 2 is now put into operation by the customer, the control device 22 can draw from the current torque M and the current speed n to the delivery volume Q and this, as in FIG Figure 1 shown to show the operator.

Figur 4 zeigt nun eine ausgewählte Fördervolumen-Druckdifferenz-Kennlinie FK1. Dabei ist wie in Figur 3 die Druckdifferenz p als Funktion des Fördervolumens Q aufgetragen. Die Fördervolumen-Druckdifferenz-Kennlinie FK1 aus Figur 4 entspricht der Drehmoment-Drehzahl-Kennlinie DK1 aus Figur 2. Eine Fördervolumen-Druckdifferenz-Kennlinie FK1a entspricht der Drehmoment-Drehzahl-Kennlinie DK1a und eine Fördervolumen-Druckdifferenz-Kennlinie FK1b der Drehmoment-Drehzahl-Kennlinie DK1b. Die Fördervolumen-Druckdifferenz-Kennlinie FK1, FK1a und FK1b weisen jeweils unterschiedliche Schnittpunkte mit der beispielhaft dargestellten Anlagen-Kennlinie AK1 auf, und entsprechend damit insoweit jeweils unterschiedlichen Wertepaaren p, Q. Diese Arbeitspunkte der Dunstabzugshaube 2 sind mit AP1, AP1a und AP1b bezeichnet. In Figur 4 ist zu erkennen, dass die erste und zweite Fördervolumen-Druckdifferenz-Kennlinie FK1, FK1a einen konvexen Verlauf und die dritte Fördervolumen-Druckdifferenz-Kennlinie FK1b einen konkaven Verlauf aufweist. Figure 4 now shows a selected delivery volume-pressure difference characteristic curve FK1. It is like in Figure 3 the pressure difference p is plotted as a function of the delivery volume Q. The delivery volume-pressure difference characteristic curve FK1 Figure 4 corresponds to the torque-speed characteristic curve DK1 Figure 2 . A delivery volume-pressure difference characteristic curve FK1a corresponds to the torque-speed characteristic curve DK1a and a delivery volume-pressure difference characteristic curve FK1b corresponds to the torque-speed characteristic curve DK1b. The delivery volume-pressure difference characteristic curve FK1, FK1a and FK1b each have different intersection points with the system characteristic curve AK1 shown by way of example, and accordingly accordingly different pairs of values p, Q. These operating points of the extractor hood 2 are designated AP1, AP1a and AP1b. In Figure 4 it can be seen that the first and second delivery volume-pressure difference characteristics FK1, FK1a have a convex course and the third delivery volume-pressure difference characteristic FK1b has a concave course.

Anhand von Figur 4 wird deutlich, dass in der ersten Betriebsstufe "1" das Umschalten zwischen dem Normal-Modus (FK1), dem Power-Modus (FK1a) und dem Eco-Modus (FK1b) zu unterschiedlichen Fördervolumina Q durch die Dunstabzugshaube 2 führt. Gleichzeitig unterscheiden sich auch die Geräuschbildung sowie andere Parameter.Based on Figure 4 it becomes clear that in the first operating stage "1", switching between normal mode (FK1), power mode (FK1a) and eco mode (FK1b) leads to different delivery volumes Q through the extractor hood 2. At the same time, noise generation and other parameters also differ.

Figur 5 zeigt weitere Fördervolumen-Druckdifferenz-Kennlinien beispielsweise für die Dunstabzugshaube 2 aus Figur 1. Figure 5 shows further delivery volume-pressure difference characteristics, for example for the extractor hood 2 Figure 1 .

Beispielsweise kann auf dem Speicher 22 der Steuereinrichtung 21 eine weitere Drehmoment-Drehzahl-Kennlinie hinterlegt sein, welche der Fördervolumen-Druckdifferenz-Kennlinie FK1c entspricht. Weiter kann die Steuereinrichtung 21 dazu eingerichtet sein, zu erkennen, ob die Dunstabzugshaube 2 in einem Umluft- oder Abluftbetrieb eingesetzt wird. Dies kann beispielsweise dadurch bewerkstelligt werden, dass die vorstehend erwähnte, auf dem Speicher 22 hinterlegte Tabelle dahingehend ergänzt wird, dass bestimmte Wertepaare p, Q einem Umluftbetrieb und andere Wertepaare p, Q einem Abluftbetrieb zugewiesen sind. Die Wertepaare p, Q können beispielsweise jeweils einem einem Abluftbetrieb entsprechenden Wertebereich AB und einem einem Umluftbetrieb entsprechenden Wertebereich UB zugewiesen sein. Die Steuereinrichtung 21 kann dann beispielsweise selbsttätig entscheiden, dass sie in dem Umluftbetrieb den Gebläsemotor 14 mit der der Fördervolumen-Druckdifferenz-Kennlinie FK1 entsprechenden Drehmoment-Drehzahl-Kennlinie DK1 und in dem Abluftbetrieb den Gebläsemotor 14 mit der der Fördervolumen-Druckdifferenz-Kennlinie FK1c entsprechenden Drehmoment-Drehzahl-Kennlinie (nicht gezeigt) ansteuert. Dadurch stellt der Gebläsemotor 14 automatisch in dem Abluftbetrieb, in dem von Haus aus gegen einen höheren Luftwiderstand zu arbeiten ist, eine höhere Druckdifferenz p bereit.For example, a further torque-speed characteristic curve can be stored in the memory 22 of the control device 21, which is the delivery volume-pressure difference characteristic curve Corresponds to FK1c. Furthermore, the control device 21 can be set up to recognize whether the extractor hood 2 is used in a recirculating air or exhaust air mode. This can be accomplished, for example, by supplementing the above-mentioned table stored in the memory 22 in such a way that certain value pairs p, Q are assigned to a recirculation mode and other value pairs p, Q are assigned to an exhaust mode. The value pairs p, Q can, for example, each be assigned to a value range AB corresponding to an exhaust air mode and a value range UB corresponding to a recirculation mode. The control device 21 can then, for example, automatically decide that in the recirculation mode, the blower motor 14 with the torque-speed characteristic curve DK1 corresponding to the delivery volume-pressure difference characteristic curve FK1, and in the exhaust air operation the blower motor 14 with that corresponding to the delivery volume-pressure difference characteristic curve FK1c Drives torque-speed characteristic (not shown). As a result, the blower motor 14 automatically provides a higher pressure difference p in the exhaust air mode, in which work is to be carried out against a higher air resistance.

Genauso kann die Steuereinrichtung 21 entscheiden, wenn sie eine Verschiebung der Arbeitspunkte AP1 bis AP4 (siehe Figur 3) über die Zeit feststellt, dass eine Verstopfung des Fettfilters 12 oder der Verrohrung 4 vorliegt. Entsprechend kann die Steuereinrichtung 21 dann den Gebläsemotor 14 in beispielsweise der ersten Betriebsstufe "1" mit der der Fördervolumen-Druckdifferenz-Kennlinie FK1c entsprechenden Drehmoment-Drehzahl-Kennlinie - anstelle der der Fördervolumen-Druckdifferenz-Kennlinie FK1 entsprechenden Drehmoment-Drehzahl-Kennlinie DK1 - ansteuern, um trotz des höheren Luftwiderstands das Fördervolumen Q gleich zu halten.In the same way, the control device 21 can make a decision if it shifts the operating points AP1 to AP4 (see Figure 3 ) determines over time that the grease filter 12 or the piping 4 is blocked. Accordingly, the control device 21 can then operate the blower motor 14 in, for example, the first operating stage "1" with the torque-speed characteristic curve corresponding to the delivery volume pressure difference characteristic curve FK1c - instead of the torque-speed characteristic curve DK1 corresponding to the delivery volume pressure difference characteristic curve FK1. control in order to keep the delivery volume Q constant despite the higher air resistance.

Figur 6 zeigt nun den Fall, dass an einem Arbeitspunkt APR Resonanzen auftreten. Dies kann beispielsweise durch Testen der Dunstabzugshaube 2 in Verbindung mit beispielsweise verschiedenen Verrohrungen 4 festgestellt werden. Es kann nun vorgesehen sein, dass der Arbeitspunkt APR umgangen wird, indem abschnittsweise von der Fördervolumen-Druckdifferenz-Kennlinie FK1 auf eine Fördervolumen-Druckdifferenz-Kennlinie FK1d gewechselt wird. Die Steuereinrichtung 21 kann hierzu entsprechend eingerichtet sein. Die Fördervolumen-Druckdifferenz-Kennlinie FK1d entspricht einer vorbestimmten Drehmoment-Drehzahl-Kennlinie, welche jedoch in keiner der Figuren gezeigt ist. Figure 6 now shows the case where APR resonances occur at an operating point. This can be determined, for example, by testing the extractor hood 2 in connection with, for example, different piping 4. It can now be provided that the working point APR is bypassed by changing in sections from the delivery volume-pressure difference characteristic curve FK1 to a delivery volume-pressure difference characteristic curve FK1d. The control device 21 can be set up accordingly. The delivery volume-pressure difference characteristic curve FK1d corresponds to a predetermined torque-speed characteristic curve, which is, however, not shown in any of the figures.

Fig. 7 illustriert die Möglichkeit, eine Fördervolumen-Druckdifferenz-Kennlinie FK1e vorzusehen, welche gegenüber der Fördervolumen-Druckdifferenz-Kennlinie FK1 parallel verschoben ist, beispielsweise in Richtung einer steigenden Druckdifferenz p sowie eines steigenden Fördervolumens Q. Befindet sich die Dunstabzugshaube beispielsweise in der Betriebsstufe "1" (Fördervolumen-Druckdifferenz-Kennlinie FK1) und drückt die Bedienerperson einen Boost-Knopf 26 der Dunstabzugshaube 2, so steuert die Steuereinrichtung 21 den Gebläsemotor 14 mit einer der in Figur 2 gezeigten Drehmoment-Drehzahl-Kennlinie DK3 entsprechenden Fördervolumen-Druckdifferenz-Kennlinie FK1e an, sodass sich je nach der Anlagen-Kennlinie AK2 oder AK3 eine deutlich höhere Druckdifferenz (AK2) oder ein deutlich höheres Fördervolumen (AK3) ergibt. Ein möglicher Boost-Arbeitspunkt ist mit AP1e bezeichnet. Mit dem Drücken des Boost-Knopfes 26 startet die Steuereinrichtung 21 in einer Ausführungsform einen Timer 27. Nach Ablauf einer auf dem Timer 27 hinterlegten Zeitspanne schaltet die Steuereinrichtung 21 wieder zurück auf die Fördervolumen-Druckdifferenz-Kennlinie FK1. Die Zeitspanne kann durch die Bedienerperson beispielsweise mittels des Touchscreens 25 einstellbar vorgesehen sein. Fig. 7 illustrates the possibility of providing a delivery volume-pressure difference characteristic curve FK1e, which is shifted parallel to the delivery volume-pressure difference characteristic curve FK1, for example in the direction of an increasing pressure difference p and an increasing delivery volume Q. The extractor hood is, for example, in the operating stage "1" (Delivery volume-pressure difference characteristic curve FK1) and the operator presses a boost button 26 of the extractor hood 2, the control device 21 controls the blower motor 14 with one of the in Figure 2 shown torque-speed characteristic curve DK3 corresponding flow volume pressure difference characteristic curve FK1e, so that depending on the system characteristic curve AK2 or AK3 there is a significantly higher pressure difference (AK2) or a significantly higher delivery volume (AK3). A possible boost operating point is designated AP1e. In one embodiment, the control device 21 starts the timer 27 by pressing the boost button 26. After a period of time stored in the timer 27 has elapsed, the control device 21 switches back to the delivery volume-pressure difference characteristic curve FK1. The time period can be set adjustable by the operator, for example by means of the touch screen 25.

Fig. 8 zeigt Fördervolumen-Druckdifferenz-Kennlinien insbesondere für einen Boost-, Power- und Eco-Modus gemäß einer weiteren Ausführungsform. Fig. 8 shows delivery volume-pressure difference characteristics in particular for a boost, power and eco mode according to a further embodiment.

Zusätzlich zu der positiven Boost-Fördervolumen-Druckdifferenz-Kennlinie FK1e aus Fig. 7 zeigt Fig. 8, dass auch eine negative Boost-Fördervolumen-Druckdifferenz-Kennlinie FK1g vorgesehen sein kann, welche gegenüber der Fördervolumen-Druckdifferenz-Kennlinie FK1g in Richtung niedrigerer Druckdifferenz P und niedrigeren Fördervolumens Q parallel verschoben ist.In addition to the positive boost-delivery volume-pressure difference characteristic curve FK1e Fig. 7 shows Fig. 8 that a negative boost-delivery volume-pressure difference characteristic curve FK1g can also be provided, which is shifted in parallel with respect to the delivery volume-pressure difference characteristic curve FK1g in the direction of lower pressure difference P and lower delivery volume Q.

Anhand von Fig. 8 wird weiterhin illustriert, dass für unterschiedliche Verrohrungen, d.h. Anlagen-Kennlinien, ein Eco- oder Power-Modus unterschiedlich ausgestaltet werden kann.Based on Fig. 8 it is further illustrated that an eco or power mode can be designed differently for different pipework, ie system characteristics.

Die Fördervolumen-Druckdifferenz-Kennlinien FK1f, FK1h entsprechen den Fördervolumen-Druckdifferenz-Kennlinien FK1a, FK1b aus Fig. 4 dahingehend, dass sie auch einen Schnittpunkt mit der Fördervolumen-Druckdifferenz-Kennlinie FK1 aufweisen. Allerdings ist die einem Eco-Modus entsprechende Fördervolumen-Druckdifferenz-Kennlinie FK1h konvex und nicht konkav vorgesehen wie die Fördervolumen-Druckdifferenz-Kennlinie FK1b.The delivery volume-pressure difference characteristic curves FK1f, FK1h correspond to the delivery volume-pressure difference characteristic curves FK1a, FK1b Fig. 4 in that they also have an intersection with the delivery volume-pressure difference characteristic curve FK1. However, the delivery volume-pressure difference characteristic curve corresponding to an Eco mode is FK1h Convex and not concave like the delivery volume-pressure difference characteristic FK1b.

Die Steuereinrichtung 21 kann dazu eingerichtet sein, den Gebläsemotor 14 in Abhängigkeit von einer Benutzereingabe oder selbsttätig, beispielweise in Abhängigkeit von einer aktuell vorliegenden Anlagen-Kennlinie AK2, AK3, die von der Steuereinrichtung 21 ermittelt wird, mit einer einer der Fördervolumen-Druckdifferenz-Kennlinien FK1, FK1e, FK1f, FK1g oder FK1h entsprechenden Drehmoment-Drehzahl-Kennlinie anzusteuern. Die Benutzereingabe und/oder die aktuell vorliegende Anlagen-Kennlinie AK2, AK3 wird der Steuereinrichtung 21 als ein oder mehrere Parameter bereitgestellt. Die Ansteuerung in Abhängigkeit von einer aktuell vorliegenden Anlagen-Kennlinie AK2, AK3 erlaubt es vorteilhaft, die Arbeitspunkte der Dunstabzugshaube 2 an eine ggf. vorgesehene Verrohrung 4 anzupassen. Wird beispielsweise ermittelt, dass eine Anlagen-Kennlinie AK3 vorliegt, kann die Steuereinrichtung 21, wenn die Eingabeeinrichtung 25 einen Kundenwunsch nach mehr Fördervolumen Q erkennt, entscheiden, dass ein Umschalten von dem Normal-Modus (FK1) mit einem Arbeitspunkt AP1-1 auf einen Power-Modus (FK1f) mit einem Arbeitspunkt AP1f-1 ein zu geringes zusätzliches Fördervolumen Q erbringt, und daher auf den Boost-Modus (FK1e) mit einem Arbeitspunkt AP1e umschalten, welcher ein hohes zusätzliches Fördervolumen Q aufweist. Erkennt die Steuereinrichtung 21 dagegen, dass eine Anlagen-Kennlinie AK2 vorliegt, so schaltet sie bei einem Kundenwunsch nach mehr Druckdifferenz p ausgehend von dem Normal-Modus (FK1) mit einem Arbeitspunkt AP1-2 auf den Power-Modus (FK1f) mit einem Arbeitspunkt AP1f-2 um, da hier eine ausreichend hohe zusätzliche Druckdifferenz p bereitgestellt wird.The control device 21 can be set up to operate the blower motor 14 as a function of a user input or automatically, for example as a function of a current system characteristic curve AK2, AK3 that is determined by the control device 21, with one of the delivery volume-pressure difference characteristic curves FK1, FK1e, FK1f, FK1g or FK1h to control the corresponding torque-speed characteristic. The user input and / or the current system characteristic curve AK2, AK3 is provided to the control device 21 as one or more parameters. The control as a function of a current system characteristic curve AK2, AK3 advantageously allows the operating points of the extractor hood 2 to be adapted to any piping 4 that may be provided. If, for example, it is determined that there is a system characteristic curve AK3, the control device 21 can, when the input device 25 detects a customer request for more delivery volume Q, decide that a switchover from the normal mode (FK1) with an operating point AP1-1 to one Power mode (FK1f) with an operating point AP1f-1 produces an insufficient delivery volume Q, and therefore switch to Boost mode (FK1e) with an operating point AP1e, which has a high additional delivery volume Q. If, on the other hand, the control device 21 recognizes that a system characteristic curve AK2 is present, it switches from normal mode (FK1) with an operating point AP1-2 to power mode (FK1f) with an operating point when a customer requests a greater pressure difference p AP1f-2 µm, since a sufficiently high additional pressure difference p is provided here.

Verwendete Bezugszeichen:Reference symbols used:

11
DunstabzugshaubenanordnungRange hood arrangement
22nd
DunstabzugshaubeExtractor hood
33rd
KochstelleHotplate
44th
VerrohrungPiping
55
GebäudewandBuilding wall
66
WrasenVapors
77
LufteinlassAir intake
1010th
KücheninnenraumKitchen interior
1111
LuftauslassAir outlet
1212th
FettfilterGrease filter
1313
LüfterradFan wheel
1414
GebläsemotorBlower motor
1515
Gehäusecasing
1616
RadialgebläseRadial fan
1717th
VerrohrungPiping
2121
SteuereinrichtungControl device
2222
SpeicherStorage
2323
Knopfstud
2424th
Knopfstud
2525th
TFT-BildschirmTFT screen
2626
Knopfstud
2727
Timertimer
ABFROM
AbluftbetriebExhaust mode
AHAH
ArbeitsbereichWorkspace
AK1AK1
Anlagen-KennlinieSystem characteristic
AK2AK2
Anlagen-KennlinieSystem characteristic
AK3AK3
Anlagen-KennlinieSystem characteristic
AP1AP1
ArbeitspunktOperating point
AP1-1AP1-1
ArbeitspunktOperating point
AP1-2AP1-2
ArbeitspunktOperating point
AP1aAP1a
ArbeitspunktOperating point
AP1bAP1b
ArbeitspunktOperating point
AP1dAP1d
ArbeitspunktOperating point
AP1f-1AP1f-1
ArbeitspunktOperating point
AP1f-2AP1f-2
ArbeitspunktOperating point
AP1eAP1e
ArbeitspunktOperating point
AP2AP2
ArbeitspunktOperating point
AP3AP3
ArbeitspunktOperating point
AP4AP4
ArbeitspunktOperating point
APRAPR
ArbeitspunktOperating point
DK1DK1
Drehmoment-Drehzahl-KennlinieTorque-speed characteristic
DK1aDK1a
Drehmoment-Drehzahl-KennlinieTorque-speed characteristic
DK1bDK1b
Drehmoment-Drehzahl-KennlinieTorque-speed characteristic
DK2DK2
Drehmoment-Drehzahl-KennlinieTorque-speed characteristic
DK3DK3
Drehmoment-Drehzahl-KennlinieTorque-speed characteristic
FK1FK1
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1aFK1a
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1bFK1b
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1cFK1c
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1dFK1d
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1eFK1e
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1fFK1f
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1gFK1g
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK1hFK1h
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK2FK2
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK3FK3
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
FK4FK4
Fördervolumen-Druckdifferenz-KennlinieFlow rate-pressure difference characteristic
MM
DrehmomentTorque
MA1 M A1
AnzugsmomentTightening torque
MA2 M A2
AnzugsmomentTightening torque
MA3 M A3
AnzugsmomentTightening torque
MK1 M K1
KippmomentOverturning moment
MK1a M K1a
KippmomentOverturning moment
MK1b M K1b
KippmomentOverturning moment
MK2 M K2
KippmomentOverturning moment
MK2a M K2a
KippmomentOverturning moment
MK2b M K2b
KippmomentOverturning moment
MS1 M S1
SattelmomentSaddle torque
MS2 M S2
SattelmomentSaddle torque
MS3 M S3
SattelmomentSaddle torque
nn
Drehzahlrotational speed
nN n N
Nenn-DrehzahlNominal speed
UBUB
UmluftbetriebRecirculation mode

Claims (13)

  1. Extractor hood (2) with an electronically commutated fan motor (14) and a control device (21), which is designed to activate the fan motor (14) with a first or a second speed/torque characteristic curve (DK1, DK1a), wherein the speed/torque characteristic curves (DK1, DKa1) have at least one shared point (MA1, MS1)
    characterised in that
    the control device (21) is provided as a computing device and has a memory (22) on which the speed/torque characteristic curves (DK1, DK1a) are stored, and
    the control device (21) is designed the fan motor (14) with a third speed/torque characteristic curve (DK2), wherein the third speed/torque characteristic curve (DK2) has no shared point with the first and/or second speed/torque characteristic curve (DK1, DK1a), and wherein the third speed/torque characteristic curve (DK2) is stored on the memory (22),
    wherein the control device is designed to activate the fan motor as a function of a determined system characteristic curve with the first, second or third speed/torque characteristic curve.
  2. Extractor hood according to claim 1, characterised in that the control device (21) is designed to activate the fan motor (14) with a fourth speed/torque characteristic curve (DK1b), wherein the first and fourth speed/torque characteristic curves (DK1, DK1b) have at least one shared point (MA1, MS1), wherein the fourth speed/torque characteristic curve (DK1b) is stored on the memory (22).
  3. Extractor hood according to claim 2, characterised in that the first, second, third and/or fourth speed/torque characteristic curve (DK1, DK1a, DK1b, DK2) has an asynchronous characteristic, wherein the asynchronous characteristic preferably comprises a tightening torque (MA1, MA2), a pull-up torque (Msi, MS2), a pull-out torque (MK1, MK1a, MK1b, MK2) and/or a nominal speed (nN).
  4. Extractor hood according to claim 3, characterised in that the first, second and/or fourth speed/torque characteristic curve (DK1, DK1a, DK1b) have the same tightening torque (MA1, MS1) and/or the same nominal speed (nN) and a different pull-out torque (MK1, MK1a, MK1b.)
  5. Extractor hood according to claim 3 or 4, characterised in that the first and third speed/torque characteristic curve (DK1, DK2) differ from one another in respect of their tightening torque (MA1, MA2), pull-up torque (MS1, MS2), and/or pull-out torque (MK1, MK2).
  6. Extractor hood according to one of claims 1 - 5, characterised in that the third speed/torque characteristic curve (DK2) is shifted parallel relative to the first speed/torque characteristic curve (DK1).
  7. Extractor hood according to one of claims 2- 6, characterised in that with conventional use of the extractor hood (2) the first speed/torque characteristic curve (DK1) is assigned a first delivery volume pressure difference characteristic curve (FK1), the second speed/torque characteristic curve (DK1a) is assigned a second delivery volume pressure difference characteristic curve (FK1a), the third speed/torque characteristic curve (DK2) is assigned a third delivery volume pressure difference characteristic curve (FK2) and/or the fourth speed/torque characteristic curve (DK1b) is assigned a fourth delivery volume pressure difference characteristic curve (FK1b).
  8. Extractor hood according to claim 7, characterised in that the first, second and/or third delivery volume pressure difference characteristic curve (FK1, FK1a, FK2) has a convex curve at least in sections and the fourth delivery volume pressure difference characteristic curve (FK1b) has a convex curve at least in sections.
  9. Extractor hood according to one of claims 2 - 8, characterised in that the control device (21) is designed to determine whether, during conventional use, the extractor hood (2) is in recirculated-air or exhaust air operation (UB, AB) and to activate the fan motor (14) with the first, second or fourth speed/torque characteristic curve (DK1, DK1a, DK1b) as a function thereof, wherein an assignment, in which various points on a respective speed/torque characteristic curve (DK1, DK1a, DK1b) are either assigned to recirculated air or exhaust air operation, is saved on the memory (22) of the control device (21).
  10. Extractor hood according to one of claims 1 - 9, characterised in that the control device (21) is designed to identify, during conventional use of the extractor hood (2), whether a saturation of a filter (12) of the extractor hood (2) has occurred or a blockage of pipework (4) connected to the extractor hood (2) is present, and to activate the fan motor (2) with the first, second or fourth speed/torque characteristic curve (DK1, DK1a, DK1b) as a function thereof.
  11. Extractor hood according to one of claims 2 - 10, characterised in that the control device (21) is designed to activate the fan motor as a function of a user input with the first, second, third and/or fourth speed/torque characteristic curve and/or that a display device (25) is provided which is designed to indicate whether the control device (21) activates the fan motor (14) with the first, second, third or fourth speed/torque characteristic curve (DK1, DK1a, DK1b, DK2).
  12. Extractor hood arrangement (1) with pipework (4) and an extractor hood (2) according to one of claims 1 - 11, which is coupled in an air-conducting manner with the pipework (4).
  13. Method for operating an extractor hood (2) according to one of the preceding claims 1- 11,
    characterised by
    storing a first and a second speed/torque characteristic curve (DK1, DKa1) and a third speed/torque characteristic curve (DK2) in a memory (22) of a control device (21), which is provided as a computing device, wherein the first and second speed/torque characteristic curves (DK1, DK1a, DK2) have a least one shared point, wherein the third speed/torque characteristic curve (DK2) has no shared point with the first and/or second speed/torque characteristic curve (DK1, DK1a), and
    activating an electronically commutated fan motor (14) with the first, the second or the third speed/torque characteristic curve (DK1, DK1a) as a function of a determined system characteristic curve by means of the control device (21).
EP14705542.0A 2013-03-11 2014-02-21 Extractor hood Active EP2971976B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14705542T PL2971976T3 (en) 2013-03-11 2014-02-21 Extractor hood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013204135.7A DE102013204135A1 (en) 2013-03-11 2013-03-11 Hood
PCT/EP2014/053462 WO2014139779A1 (en) 2013-03-11 2014-02-21 Extractor hood

Publications (2)

Publication Number Publication Date
EP2971976A1 EP2971976A1 (en) 2016-01-20
EP2971976B1 true EP2971976B1 (en) 2020-04-29

Family

ID=50150714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14705542.0A Active EP2971976B1 (en) 2013-03-11 2014-02-21 Extractor hood

Country Status (5)

Country Link
EP (1) EP2971976B1 (en)
CN (1) CN105209829B (en)
DE (1) DE102013204135A1 (en)
PL (1) PL2971976T3 (en)
WO (1) WO2014139779A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204046A1 (en) * 2017-03-10 2018-09-13 Maico Elektroapparate-Fabrik Gmbh Method for operating a ventilation device and corresponding ventilation device
CN108457886A (en) * 2018-02-11 2018-08-28 上海联达节能科技股份有限公司 A kind of remodeling method of dedusting fan multi gear level controlling system and dust pelletizing system
CN110486773B (en) * 2019-09-30 2020-11-24 佛山市顺德区美的洗涤电器制造有限公司 Control method of range hood and range hood
DE102020118251A1 (en) * 2020-07-10 2022-01-13 Ebm-Papst Mulfingen Gmbh & Co. Kg Method and fan system for determining the condition of a filter in a fan unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100574A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Blower and electric equipment mounted with this blower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002256968A1 (en) * 2001-11-07 2003-06-23 Lab Products, Inc Work station having an air flow controller
US20050224069A1 (en) * 2004-03-29 2005-10-13 Patil Mahendra M System and method for managing air from a cooktop
KR100589540B1 (en) * 2004-05-06 2006-06-14 주식회사 벤토피아 Ventilation system for kitchen utilizing a fan for positive pressure-to-output characteristic
DE102005045137A1 (en) * 2005-09-22 2007-04-05 Minebea Co., Ltd., Kitasaku Operation method e.g. for fan with defined characteristics, involves having fan unit with given constant air volume and comparing motor speed and voltage with target values and adjusting motor voltage as necessary
JP4687730B2 (en) * 2008-03-06 2011-05-25 パナソニック株式会社 Blower and electric device equipped with the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100574A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Blower and electric equipment mounted with this blower

Also Published As

Publication number Publication date
DE102013204135A1 (en) 2014-09-11
EP2971976A1 (en) 2016-01-20
CN105209829A (en) 2015-12-30
PL2971976T3 (en) 2020-09-21
WO2014139779A1 (en) 2014-09-18
CN105209829B (en) 2018-06-22

Similar Documents

Publication Publication Date Title
EP2971976B1 (en) Extractor hood
EP2971978B1 (en) Method for determining an operating state of an extractor hood assembly
EP3136004B1 (en) Combination device with a cooker hob and extractor device
DE102012210844A1 (en) Cook arrangement, has power/rotation speed conversion module built in cooking field or in exhaust hood for converting different heating powers of cooking field into different rotation speeds of ventilator motor of exhaust hood
EP2880368B1 (en) Vapour extraction device and method for controlling a fan motor of a fan
WO2014139778A1 (en) Extractor hood
DE102012207850B4 (en) Extraction device for extracting air from a cooker
EP2397775A2 (en) Extraction device
WO2018122025A1 (en) Method for operating an electronically controlled pump assembly
DE102013015122A1 (en) A method of monitoring airflow in an airflow channel
DE102012204234A1 (en) Microwave combination unit with a fan for cooling
DE102010046769A1 (en) Lifting column unit for electromotive height adjustment of piece of furniture, particularly table of table arrangement, has lifting column, particularly telescopic lifting column and electric drive motor in motor housing
EP2450634A2 (en) System comprising a filter and a capacity measuring device
DE102020124068A1 (en) Downdraft fans and method of operation
DE102015116863A1 (en) Extractor hood to be operated in extract air and recirculation mode
DE102014111720A1 (en) Electric brush for a vacuum cleaner with eddy current brake
DE102012108869A1 (en) "Thermodynamic cycle process plant"
DE102014005384A1 (en) Suction device and method for operating a suction device
DE102016003752B4 (en) Method for operating a drive device of a motor vehicle and corresponding drive device
DE102018203165A1 (en) Extractor device and method for operating a fume extraction device
EP2436294A2 (en) Vacuum cleaner and method for operating same
EP3770510B1 (en) Blower for a fume extractor and combination apparatus
EP2604742A1 (en) Operating element for a domestic appliance, operating unit for such a domestic appliance with such an operating element and domestic appliance with such an operating unit and such an operating element
DE202011050651U1 (en) Motor for use with a pump
WO2017012630A1 (en) Extractor hood and method for operating an extractor hood

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEINHARDT, GERT

Inventor name: SCHLOTMANN, PETER

Inventor name: LESSMEIER, RAINER

Inventor name: GRAW, MARTIN

Inventor name: METZ, DANIEL

Inventor name: WOESSNER, MARKUS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B08B 15/00 20060101ALI20191108BHEP

Ipc: F24C 15/20 20060101AFI20191108BHEP

Ipc: B08B 15/02 20060101ALI20191108BHEP

INTG Intention to grant announced

Effective date: 20191203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014076

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014076

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210221

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210221

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210221

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1263905

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140221

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240214

Year of fee payment: 11

Ref country code: IT

Payment date: 20240229

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429