EP2964885A2 - Moteur excentrique - Google Patents

Moteur excentrique

Info

Publication number
EP2964885A2
EP2964885A2 EP14733683.8A EP14733683A EP2964885A2 EP 2964885 A2 EP2964885 A2 EP 2964885A2 EP 14733683 A EP14733683 A EP 14733683A EP 2964885 A2 EP2964885 A2 EP 2964885A2
Authority
EP
European Patent Office
Prior art keywords
rotor
rotary blade
housing
motor
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14733683.8A
Other languages
German (de)
English (en)
Inventor
József KOLOSSA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from HU1300740A external-priority patent/HUP1300740A2/hu
Application filed by Individual filed Critical Individual
Publication of EP2964885A2 publication Critical patent/EP2964885A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3442Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means

Definitions

  • Eccentric motor The invention relates to an eccentric motor, in particular to an eccentric motor performing relative motions in its internal structure.
  • one of the possible solutions may be that the rotational axis of the rotary blade(s) and the rotational axis of the main shaft are the same and they coincide with the geometrical longitudinal axis of the cylinder.
  • the document GB 324414 discloses a motor wherein the rotor, which is eccentrically arranged within a motor housing having a cylindrical inner space, is formed by two concentric drums closely fitting to each other, said drums being sealingly coupled to each other.
  • the outer drum and the inner drum are sealingly mounted to the rotary blade at opposite points thereof so that the rotary blade, which is, in turn, fixed to the main shaft, can move in a radial direction with respect to each of the drums.
  • both the outer drum and the inner drums shall have a respective circumferential opening so that they provide a free space for the rotary blade during its rotational motion relative to the eccentric drums.
  • the rotor formed of the outer and inner drums is slightly concealed along a shorter arcuate section of the cylindrical housing, said shorter section being defined between an inlet port and an outlet port of the housing, meaning that the peripheral circle of the inner surface of the motor housing intersects the peripheral circle of the outer surface of the rotor.
  • a common drawback of the above mentioned solutions is that during rotation of the motor, the rotor is driven by the rotary blade only at the circumferential contact point of the rotary blade, which also means that the rotary blade exerts a compressive force to the rotor segment moving ahead thereof in the direction of rotation, while the rotary segment following the rotary blade should be pressed to the rotary blade so that the working space along the rotary blade be sealingly closed.
  • the arcuate guiding elements moving within the rotor are to be forced to the rotary blade by means of a flexible pressure medium, for example pneumatically, hydraulically or through a compression spring.
  • the pressing force exerted by the guiding elements to the rotary blade also changes periodically due to the inertance of the pressure medium, which may result in a vibration within the motor, on the one hand, and thereby the seal between the guiding element and the rotary blade may be subject to an overload, on the other hand, which may lead to a faster maturing and wearing of said seal.
  • To move the pressure medium may require an auxiliary equipment, and motion of the pressure medium inherently results in a frictional energy loss, which has an adverse effect to the operation of the motor.
  • the invention is based on the inventive idea that if a mechanical forced connection is provided between the rotary blade and the rotor to automatically equalize the rotational speeds of said two parts, then during rotation of the motor, a substantially constant force acts on the seal or sealing mechanism between the rotary blade and the rotor along the lateral envelope surface of the outer end portion of the rotary blade, whereby slamming between the rotor and the rotary blade, as well as the thus resulted vibration, can be entirely avoided.
  • the lifetime of said seal may be substantially longer, which has a particular significance from the point of view of the maintenance of the motor.
  • a uniform, vibration-free and slam-free rotation of the rotor may be provided without supplying further energy, thereby the motor also operates in a uniform manner.
  • an eccentric motor comprising:
  • main shaft concentrically aligned with a geometrical central axis of the cylindrical space of the motor housing, said main shaft being led through at least one of the terminal cylinder lids of the motor housing by means of bearing,
  • a rotor eccentrically arranged inside the motor housing wherein the rotational axis of the rotor is spaced at a predetermined distance of eccentricity from the geometrical central axis of the main sheath surface of the motor housing, wherein said rotor is coupled to said terminal cylinder lids of the motor housing by means of bearing and adapted to rotate around its rotational axis, and wherein within the rotor a clearance of specific width is formed for each of the rotary blades, said clearance being separated from the working space of the motor by a sealing and closing mechanism, and
  • the motor is characterized by that the at least one rotary blade and the rotor are coupled to each other through a coupling member to establish a forced mechanical connection therebetween, said coupling member being adapted to move relatively to the rotary blade in a direction parallel to the longitudinal axis thereof, and also relatively to the rotor in a direction perpendicular to the longitudinal axis of the rotating blade.
  • the coupling member is a coulisse assembly having a coulisse housing and guiding elements connected thereto, wherein the coulisse housing is arranged to slide along the rotary blade, and the guiding elements are slidably connected into respective linear guiding channels of the rotor, said guiding channels extending perpendicularly to the longitudinal axis of the rotary blade.
  • the sealing and closing assembly for closing the clearance formed in the rotor comprises eccentric blades arranged within the coulisse housing with one eccentric blade adjacent to both lateral surfaces of the rotary blade, said eccentric blades being slidably guided in parallel to the longitudinal axis of the rotary blade in a slot between the coulisse housing and the rotary blade, and arcuate blades hingedly coupled to the eccentric blades, said arcuate blades being slidably guided in respective arcuate channels of the rotor.
  • the sealing and closing assembly for closing the clearance formed in the rotor comprises eccentric blades arranged in the coulisse housing with one eccentric blade adjacent to both lateral surfaces of the rotary blade, said eccentric blades being slidably guided in parallel to the longitudinal axis of the rotary blade between the coulisse housing and the rotary blade, and arcuate blades hingedly coupled to the eccentric blades, wherein the arcuate blades comprise guiding elements on their inner side, said guiding elements leaning against an outer surface of the housing of the rotor, and wherein said arcuate blades are sealingly connected to each other at a part of the rotor diagonally opposite to the rotary blade in such a manner that they are partly overlapped and they can move relatively to each other, and wherein said arcuate blades fit to the concealed sheath surface and are sealingly connected to the cylinder lids.
  • the coupling member is a coulisse assembly having a coulisse housing and guiding elements formed on the coulisse housing, said guiding elements protruding from the coulisse housing on both sides of the at least one rotary blade, in a direction parallel to the main shaft, said guiding elements slidably leaning against a respective bridging element of the rotor.
  • FIG. 1 is a schematic cross-sectional view of a first embodiment of the eccentric motor according to the invention
  • FIGS. 2A to 2D are schematic cross-sectional views illustrating the application of the first embodiment of the eccentric motor according to the invention as an internal combustion engine, in four different phases of the engine,
  • FIG. 3A is a schematic cross-sectional view of a second embodiment of the eccentric motor according to the invention.
  • FIG. 3B is a schematic exploded view of the second embodiment of the eccentric motor according to the invention.
  • FIG. 4A is a schematic cross sectional view of a third embodiment of the eccentric motor according to the invention.
  • FIG. 4B is a schematic assembly diagram of the third embodiment of the eccentric motor according to the invention.
  • FIG. 5A is a schematic cross-sectional view of a fourth embodiment of the eccentric motor according to the invention.
  • Figure 5B is a schematic exploded view
  • Figure 5C is a schematic assembly diagram, respectively, of the rotating parts arranged within the motor housing in the fourth embodiment of the eccentric motor according to the invention
  • FIG. 6 illustrates the application of the first embodiment of the eccentric motor according to the invention as a one-cylinder internal combustion engine, in an exemplary schematic cross-sectional view, in the second operational cycle of the motor, and
  • FIG. 7 is a cross-sectional view of a fifth embodiment of the eccentric motor according to the invention, illustrating a simplified assembly of the motor.
  • FIG. 1 schematically illustrates a cross-sectional view of a first embodiment of the eccentric motor according to the invention.
  • the eccentric motor 10 according to the invention comprises a housing 11 having a substantially cylindricaliy shaped internal cylinder space 12 with a radius R.
  • the cylinder space 12 of the housing 11 has a geometrical central axis T1 (extending orthogonally to the plane of the sheet in Figure 1), wherein the main shaft F of the motor 10 coincides with said central axis T1.
  • a rotary blade 13 is firmly mounted to the main shaft F, whereby the longitudinal axis L of the rotary blade 13 is perpendicular to the central axis T1 , meaning that the rotary blade 13 is arranged in a radial direction with respect to the main shaft F.
  • An outer end portion of the rotary blade 13 has the same circumferential arc as that of the main sheath surface 23 of the cylinder space 12.
  • the rotary blade 13 is so long that the envelope surface 13a of its outer end portion leans against the main sheath surface 23 of the cylinder space 2 in a sealed and flexible manner, whereby it can slide along said main sheath surface 23 in a sealed and flexible manner.
  • the outer end portion of the rotary blade 13 may be provided, if necessary, with a sealing member or a sealing-lubricating member that contacts the main sheath surface 23 of the cylinder space 12, said members preferably being designed to be replaceable. Additionally, the outer end portion of the rotary blade 13 can be flexibly offset outwardly in the longitudinal direction of the rotary blade 13, for example by means of a spring 51 shown in Figure 1 , thereby forming an even more reliable seal between the rotary blade 13 and the main sheath surface 23 of the cylinder space 12.
  • a rotor 18 eccentrically arranged with respect to the central axis T1 of the cylinder space 12, wherein the rotational axis T2 of said rotor 18 is spaced at a predetermined, motor-specific distance X from the central axis T1 of the cylinder space 12.
  • This distance X defines the eccentricity of the eccentric motor according to the invention.
  • a clearance 40 having a width W, which is dependent on the value of eccentricity X and the width of the rotary blade 13, should be formed inside the rotor 18. The particular value of the width of said clearance depends on the specific technical design of the motor.
  • the housing 11 further comprises an inlet port 31 for feeding the working medium into the cylinder space 12 and an outlet port 32 for discharging the working medium from the cylinder space 12.
  • the inner surface of the cylinder space 12 comprises an also cylindrical, but concealed sheath surface 24 along a given section thereof, wherein the circumferential radius of said sheath surface 24, while taking the clearance of alignment also into view, is substantially equal to the radius r of the rotor 18, thereby the outer surface of the rotor 18 matches the concealed sheath surface 24 of the cylinder space 12.
  • the concealed sheath surface 24 is preferably arranged along the shorter arc section between the inlet port 31 and the outlet port 32.
  • the main shaft F is led out through at least one of the terminal cylinder lids (not shown in the drawings) of the housing 11 by means of bearings.
  • the rotor 18 is also coupled to the terminal cylinder lids (not shown in the drawings) of the housing 11 by means of bearings with allowing its rotation around the rotational axis T2, the rotor 18 also being rotatable along the central axis of the sheath surface 24.
  • the rotary blade 13 and the rotor 18 are coupled to each other through a coupling member 20.
  • the coupling member 20 is directly connected to the rotor 18 and the rotary blade 13 (and thereby it is also indirectly connected to the main shaft F).
  • the coupling member 20 is driven by the rotary blade 3 and the synchronized driving of the rotor 18 is carried out through said coupling member 20.
  • the coupling member 20 is formed by a coulisse assembly comprising a coulisse housing 16 and guiding elements 17 attached thereto.
  • the coulisse housing 6 is arranged around the rotary blade 13 so that during rotation of the rotary blade 13, it can move along the rotary blade 13 (in parallel to its longitudinal axis L, in a radial direction with respect to the main shaft F).
  • the coulisse housing 16 is preferably mounted on the rotary blade 13 in a slidable manner, but it is also appreciable that it is coupled to the rotary blade 13 by means of bearings.
  • the guiding elements 17 are engaged in respective linear guiding channels 34 of the rotor 18 in a moveable, preferably slidable manner.
  • the guiding channels 34 are formed in the rotor 18 perpendicularly to the longitudinal axis L of the rotary blade 13.
  • the smallest width W of the free clearance 40 provided within the rotor 18 for the rotary blade 13 is determined by the value of eccentricity X, the width of the rotary blade 3 and the width of the coulisse housing 16.
  • each eccentric blade 14 movesably arranged in the coulisse housing 16, one being arranged adjacent to both of the lateral surfaces of the rotary blade 13, wherein each eccentric blade 14 is slidably guided in a respective slot between the coulisse housing 16 and the rotary blade 13.
  • the eccentric blade 14 can move relatively to both of the coulisse housing 16 and the rotary blade 13 in a direction parallel to the longitudinal axis L of the rotary blade 13.
  • a respective arcuate blade 15 is hingedly connected.
  • the arcuate blades 15 are slidably guided in respective arcuate channels 27 of the rotor 18.
  • the arcuate blades 15 have the function to separate the clearance 40 formed in the rotor 8 for the rotary blade 13 and the working space of the motor 10 in a sealed manner.
  • the respective lateral surfaces of the rotary blade 13, as well as the arcuate blades 15, the eccentric blades 14, the outer surface of the rotor 18, the inner surface of the housing 11 and the terminal cylinder lids of the motor 10 together define a closed working space in the motor.
  • the eccentric blades 14 also function to equalize the periodically changing difference between the rotational speeds of the two arcuate blades 15 arranged on the two lateral surfaces of the rotary blade 13, said rotational speed difference being resulted from the eccentricity.
  • Said equalization is performed in such a way that during rotation of the rotary blade 13, the eccentric blades 14 on the lateral surfaces of the rotary blade 13 can move relatively to each other in the coulisse housing 16 and also relatively to the rotary blade 13 along the circumferential arc of the rotor 18.
  • the main shaft F and the rotary blade 13 mounted thereto are arranged in the housing 11 coaxially with the central axis T1 of the main sheath surface 23 of the cylinder space 12, said main sheath surface 23.
  • the rotor 18 is arranged so that its rotational axis T2 coincides with the eccentric central axis of the concealed sheath surface 24 of the cylinder space 12, said eccentric central axis being shifted relatively to the central axis T1.
  • the above mentioned coulisse assembly establishes a forced mechanical connection. Due to the arrangement of the rotor 18, it is seated along the concealed sheath surface 24 of the cylinder space 12.
  • the position of the rotor 18 eccentrically arranged inside the cylinder space 12 is regarded as an initial phase, in which the rotary blade 13 accommodates at the deepest position inside the rotor 18.
  • This situation is illustrated in Figure 2A.
  • the coulisse assembly is in a middle position with respect to the rotor 18, and the outer end of the rotary blade 13 is spaced apart from the concealed sheath surface 24.
  • a detrimental space of relatively small volume develops.
  • a non-divided working space develops in the cylinder space 12 along the main sheath surface 23.
  • the rotary blade 13 stays at a marginal position with respect to the rotor 18, and accordingly, one of the arcuate blades 15 intrudes into the respective arcuate channel 27 to the maximum extent, while the other arcuate blade 15 on the opposite side of the rotary blade 13 is in a most retracted position, therefore the eccentric blades 14 along the circumference of the rotor 18 stay at different rotational speed equalization positions along the longitudinal axis L of the rotary blade 13.
  • the two lateral surfaces of the rotary blade 13 may be classified as a surface E facing in the direction of rotation (forward direction), and a surface H facing in the direction opposite to the rotational direction (backward direction). In this phase the rotary blade 13 divides the working space into two parts; namely a smaller space Q2 behind the surface H of the rotary blade 13 and a larger space Q1 ahead of the surface E of the rotary blade 13.
  • the rotary blade 13 accommodates again in the middle within the rotor 18, but in this case it emerges from the rotor 18 to the maximum extent. At this point, the rotary blade 13 is in its maximum torque transmission position during the continuous process of transmission of the torque of the motor. In this phase, the rotary blade 3 divides the working space into two spaces Q1 and Q2, both having the same volume. The outer surface of the housing of the rotor 18 still leans against the entire concealed sheath surface 24 of the housing 11.
  • the rotary blade 13 is again in its marginal position within the rotor 18, but now, unlike in the phase at 90 degrees as shown in Figure 2B, it is shifted towards the other half of the rotor 18.
  • the eccentric blades 14 are at different positions (and at a maximum distance from each other) along the longitudinal axis L of the rotary blade 13.
  • the space Q2 behind the surface H of the rotary blade 13 is much larger than the space Q1 remaining ahead of the surface E, which space Q1 gradually diminishes as the rotary blade 13 further rotates.
  • First cycle the external air (e.g. at ambient pressure) is allowed to flow into the space Q2 behind the surface H through a suction valve 201 at the inlet port 31 of the housing 11 , while the air previously sucked is compressed in the space Q1 ahead of the surface E.
  • the external air e.g. at ambient pressure
  • Second cycle after reaching the upper dead point, the air compressed in the space ahead of the surface E is fed into the space Q2 behind the surface H through a transfer valve system and a transfer channel, wherein the fuel, which is fed also through the suction valve 201 , is burnt in the closed working space, and the energy released during the combustion accompanied with an explosion is transferred through the rotary blade 13 to the main shaft F. In the meantime, compression is carried out again in the space Q1 ahead of the surface E.
  • This working cycle is schematically illustrated in a cross-sectional view in Figure 6. (It is noted that the conceptual structural design of the motor strongly depends on the number of the connected cylinders.)
  • the energy released in the working space can be continuously altered into rotational motion.
  • the main shaft F is rotated externally, for example by means of an electromotor, and moving and/or compressing the flowing working medium is performed through an appropriate operation of the suction valve and the discharge valve.
  • the motor 10 comprises two rotary blades 13, 13' that are mounted to the main shaft F opposite to each other along the longitudinal axis L. Accordingly, the motor 10 comprises two pairs of eccentric blades 14 and two pairs of arcuate blades 15 associated therewith, wherein the arcuate blades 15 are engaged in the respective (altogether four) circumferential arcuate guiding channels 27 of the rotor 18.
  • FIGS 4A and 4B illustrate a third embodiment of the eccentric motor according to the invention in a schematic cross-sectional view and in an assembly diagram, respectively, wherein the motor comprises only one rotary blade.
  • a specific feature of this embodiment is that the arcuate blades 15 connected to the rotary blade 13 through the eccentric blades 14 are not guided within the housing of the rotor 18, rather they lean against an outer surface of the housing of the rotor 18 by means of guiding elements formed on the inner surface of the arcuate blades 15.
  • the housing of the rotor 18 now has a reduced circumferential radius r'. It is preferred that the arcuate blades 15 lean against said outer surface of the housing of the rotor 18 in guiding channels formed on its outer surface. In this case the arcuate blades 15 engage with each other at a diagonally opposite part of the rotor 18 so that they can move relatively to each other in a sealed manner along the outer surface of the rotor 18, for example they can slide on each other.
  • the closed working spaces thus defined by the respective lateral surfaces of the rotary blade 13, the entire outer surface of the arcuate blades 15, the outer surface of the eccentric blades 14, the inner sheath surface of the housing 11 and the terminal cylinder lids of the motor 10.
  • the clearance 40 provided within the rotor 18 for the rotary blade 13 is separated from the working space by the respective lateral surfaces of the rotary blade 13, as well as by the arcuate blades 15 and the eccentric blades 14.
  • An advantage of this embodiment is that contrary to the first embodiment shown in Figure 1 , here the outer surface of the arcuate blades 14 and the envelop surface 13a of the outer end portion of the rotary blade 13 always lean against the main sheath surface 23 of the cylinder space 12 while the rotary blade 13 is passing along the concealed sheath surface 24.
  • a further difference of this embodiment from the embodiment shown in Figure 1 is that instead of the outer sheath surface of the rotor 18, the outer sheath surface of the arcuate blades 15 is seated in the housing 11 along the concealed sheath surface 24.
  • the detrimental space along the eccentric blades and the arcuate blades is reduced to have a substantially smaller surface, and the disadvantage of the first embodiment may also be eliminated, which is due to the fact that along the contact surface of the rotor 18 and the cylinder lid of the motor 10, an aligned structural slot is formed that cannot be completely sealed by the lateral surfaces of the rotary blade 3. Additionally, when leaving the concealed sheath surface 24, the rotary blade 13 can return into the cylinder space 12 more easily because it is continuously accommodated within the cylinder space 12, which improves the tightness of the motor to a great extent.
  • Figure 5A illustrates a fourth embodiment of the eccentric motor according to the invention in a schematic cross-sectional view
  • Figures 5B and 5C illustrate an assembled group of parts rotating within the cylinder space, in an exploded view and assembly diagram, respectively.
  • Those elements common with the previous embodiments are now indicated by the same reference numbers again.
  • the fourth embodiment which also comprises only one rotary blade 3, differs from the third embodiment shown in Figures 4A and 4B only in that the coupling member formed by the coulisse assembly to provide a uniform and synchronized rotation does not comprise the above mentioned guiding elements, which orthogonally project from the coulisse housing 16, but instead of them, some guiding elements 50 protruding from the coulisse housing 16 in one direction parallel to the main shaft F are formed on the coulisse housing 16 adjacent to both lateral surfaces of the rotary blade 13, said guiding elements 50 slidably leaning against a bridging element 51 of the rotor 18.
  • the coulisse housing 16 moves back and forth along the rotary blade 13 while due to the guiding elements 50, the coulisse housing 16 itself is sliding back and forth on the bridging element 51 formed on the rotor 18, perpendicularly to the longitudinal axis L of the rotary blade 13 according to a directed internal control.
  • said guiding elements can be formed not only on the coulisse housing but also on the rotor; in the latter case the corresponding guiding elements (e.g. shoulder, rail or groove, bearings) are formed on the coulisse housing or inside the coulisse housing, said guiding elements being adapted to guide the guiding elements of the rotor. It is also feasible that the guiding elements formed on the coulisse housing (or on the rotor) protrude not only into one direction, but one or more of them protrudes in an opposite direction with respect to the remaining ones.
  • a specific feature of the fifth preferred embodiment (comprising two rotary blades) shown in Figure 7 is that the sealing and closing mechanism, which is used for separating the working space of the motor from the clearance 40 formed for the rotary blades 13, 13' within the rotor 18, is just constituted by the coupling member 20a, which is used to establish a forced mechanical connection between the rotary blades 13, 13' and the rotor 18, i.e. in this embodiment those two functions are provided by the same structural element.
  • the coupling member 20a is formed by a coulisse assembly comprising a longitudinal wall 70 surrounding the rotary blades 13, 13', wherein at both of the outer ends of said longitudinal wall 70 there are guiding elements 71 arranged, said guiding elements protruding in opposite directions, perpendicularly to the longitudinal axis L of the rotary blades 13, 13'.
  • the longitudinal wall 70 is sealingly arranged around the rotary blades 13, 13' in such a way that during rotation of the rotary blades 13, 13' they can move along the rotary blades 13, 13' (in a direction parallel to the longitudinal axis L thereof and radially with respect to the main shaft F).
  • the longitudinal wall 70 is connected to the rotary blades 13, 13' in a slidable and sealed manner.
  • the guiding elements 71 are moveably engaged in respective linear guiding channels 74 of the rotor 18, preferably in a slidable manner.
  • the guiding channels 74 are formed within the rotor 18 orthogonally to the longitudinal axis L of the rotary blades 13, 13', with one pair of guiding channels 74 for each rotary blade.
  • the coulisse assembly shown in Figure 7 i.e. the block including the longitudinal wall 70 and the associated guiding elements 71
  • the coulisse assembly shown in Figure 7 also moves within the rotor 18 orthogonally to the longitudinal axis L of the rotary blades 13, 13' at the same time, generally within a range corresponding to the double of the eccentricity, thereby said coulisses assembly continuously and uniformly drives the rotor 18, always resulting in a synchronous rotation of the rotor 18 and the rotary blades 13, 13' (and thereby the main shaft F).
  • the eccentric motor according to the invention is more beneficial in view of the former technical designs because due to the forced mechanical connection provided by the coupling member between the rotary blade and the rotor, the rotary blade and the rotor always rotate synchronously, thereby slamming of the rotor to the rotary blade and consequently, the harmful vibration of the motor, as well as the periodically changing forces between the rotary blade and the rotor are all avoided.
  • the tightness of the motor may be effectively improved by increasing the sealing sheath surface of the rotary blade matching the main sheath surface of the cylinder.
  • the eccentric motor according to the invention may also be adapted for using as an internal combustion engine or a pump engine (e.g. air pump), or as a compressor (e.g. gas compressor, fluid compressor).
  • a pump engine e.g. air pump
  • a compressor e.g. gas compressor, fluid compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Abstract

L'invention porte sur un moteur excentrique (10), qui comprend un carter de moteur (11) ayant un espace de cylindre interne (12) de forme sensiblement cylindrique ; un arbre principal (F) aligné concentriquement avec l'axe central géométrique (T1) de l'espace cylindrique (12) du carter de moteur (11), ledit arbre principal (F) passant à travers au moins un des couvercles de cylindre d'extrémité du carter de moteur (11) au moyen d'un palier ; au moins une palette rotative (13) fixée rigidement à l'arbre principal (F) et disposée radialement par rapport à l'arbre principal (F), la surface de gaine (13a) de la partie extrémité extérieure de la palette rotative (13) ayant le même arc circonférentiel que celui d'une surface de gaine principale intérieure (22) du carter de moteur (11), ladite surface de gaine (13a) s'appuyant contre ladite surface de gaine principale intérieure (23) de façon flexible ; au moins un orifice d'entrée (31) et au moins un orifice de sortie (32) tous deux formés dans le carter de moteur (11) ; un rotor (18) agencé excentriquement à l'intérieur du carter de moteur (11), l'axe de rotation (T2) du rotor (12) étant espacé d'une distance d'excentricité prédéterminée (X) de l'axe central géométrique (T1) de la surface de gaine principale (23) du carter de moteur (11), ledit rotor (12) étant couplé auxdits couvercles de cylindre d'extrémité du carter de moteur (11) au moyen d'un palier, et un jeu d'une largeur spécifique (W) étant formé dans le rotor (18) pour chacune des palettes rotatives (13), ledit jeu étant séparé de la chambre de travail du moteur au moyen d'un mécanisme d'étanchéité et de fermeture ; et le rotor (18) dudit mécanisme d'étanchéité et de fermeture étant placé dans la surface de gaine principale (23) du carter de moteur (11) et s'accouplant au carter de moteur (11) le long d'une surface de gaine renfoncée (24) de façon étanche. L'au moins une palette rotative (13) et le rotor (18) sont accouplés l'un à l'autre par l'intermédiaire d'un élément d'accouplement (20) pour établir une liaison mécanique forcée entre eux, ledit élément d'accouplement étant apte à se déplacer par rapport à la palette rotative (13) dans une direction parallèle à son axe longitudinal (L), et aussi par rapport au rotor (18) dans une direction perpendiculaire à l'axe longitudinal (L) de la palette rotative (13).
EP14733683.8A 2013-03-07 2014-03-06 Moteur excentrique Withdrawn EP2964885A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HUP1300144 2013-03-07
HU1300740A HUP1300740A2 (hu) 2013-12-19 2013-12-19 Excentrikus motor
PCT/HU2014/000024 WO2014135908A2 (fr) 2013-03-07 2014-03-06 Moteur excentrique

Publications (1)

Publication Number Publication Date
EP2964885A2 true EP2964885A2 (fr) 2016-01-13

Family

ID=89991364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14733683.8A Withdrawn EP2964885A2 (fr) 2013-03-07 2014-03-06 Moteur excentrique

Country Status (4)

Country Link
US (1) US20150377023A1 (fr)
EP (1) EP2964885A2 (fr)
JP (1) JP2016517490A (fr)
WO (1) WO2014135908A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605685B (en) * 2021-02-04 2023-03-29 Univ Jiangsu Rotary engine
CN112796876B (zh) * 2021-02-04 2021-12-21 江苏大学 一种旋转式发动机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US552854A (en) * 1896-01-07 Rotary engine
US883955A (en) * 1907-08-19 1908-04-07 George W Hopkins Rotary engine.
US1032342A (en) * 1910-04-09 1912-07-09 Ernst Morell Rotary pump.
US1616733A (en) * 1925-06-06 1927-02-08 Preston K Wood Air compressor
GB324414A (en) 1928-10-30 1930-01-30 Ettore Lanzerotti Spina Improvements in rotary pumps and blowers
US2106959A (en) * 1936-05-13 1938-02-01 Phillips John Positive pressure compressor
US2413935A (en) * 1944-07-03 1947-01-07 Calvin C Williams Pump
BE746579R (fr) * 1970-02-26 1970-07-31 Aro Tankanlagenbau Gmbh Moteur a combustion interne a pistons
DE2448828A1 (de) * 1974-10-14 1976-04-22 Koepke Guenter Dr Ing Rotationsbrennkraftmaschine mit zwischenkammer
DE2503817A1 (de) * 1975-01-30 1976-08-05 Koepke Guenter Dr Ing Rotationsbrennkraftmaschine mit zwischenkammer
KR890008458A (ko) * 1987-11-16 1989-07-10 미타 가츠시게 로터리베인형 압축기
RU2241129C1 (ru) 2003-09-10 2004-11-27 Шаруденко Андрей Юрьевич Роторная машина (варианты), рабочий орган для роторной машины и двигательная установка с ее использованием

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014135908A2 *

Also Published As

Publication number Publication date
WO2014135908A3 (fr) 2014-11-27
JP2016517490A (ja) 2016-06-16
US20150377023A1 (en) 2015-12-31
WO2014135908A2 (fr) 2014-09-12

Similar Documents

Publication Publication Date Title
US4437823A (en) Rotary machine with an axially moving partition
US5415141A (en) Rotary engine with radially sliding vanes
US7866284B2 (en) Oscillating piston engine
WO2014166431A1 (fr) Dispositif de rotation et moteur hydraulique, moteur, compresseur et pompe correspondants
RU2014107782A (ru) Роторно-поршневой двигатель, в частности с вращением ротора в камере сгорания
US6983729B2 (en) Rotary piston machine
US3902829A (en) Rotary power device
RU2569992C1 (ru) Гидравлическая машина рыля
US6926505B2 (en) Rotary machine housing with radially mounted sliding vanes
US20150377023A1 (en) Eccentric motor
CZ198394A3 (en) Voluminous machine
US5944499A (en) Rotor-type pump having a communication passage interconnecting working-fluid chambers
RU2538990C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
US20170101926A1 (en) Rotary combustion engine system having toroidal compression and expansion chambers
US11988207B2 (en) Sealing system for a rotary-piston compressor
GB2438859A (en) Toroidal fluid machine
US4925378A (en) Rotary vane compressor with valve controlled pressure biased sealing means
CN111379699A (zh) 压缩机
US2858770A (en) Dual chambered fluid power device
WO2018217173A1 (fr) Appareil à palettes rotatives
RU2405950C2 (ru) Роторный двигатель внутреннего сгорания
US20210340902A1 (en) Rotary Roller Motor
RU2241122C2 (ru) Роторная машина
RU2630643C1 (ru) Роторно-пластинчатый двигатель
RU2640886C1 (ru) Роторно-поршневая гибридная машина объемного действия

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150908

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003