EP2960487B1 - Fuel injector valve for combustion engines - Google Patents

Fuel injector valve for combustion engines Download PDF

Info

Publication number
EP2960487B1
EP2960487B1 EP15166910.8A EP15166910A EP2960487B1 EP 2960487 B1 EP2960487 B1 EP 2960487B1 EP 15166910 A EP15166910 A EP 15166910A EP 2960487 B1 EP2960487 B1 EP 2960487B1
Authority
EP
European Patent Office
Prior art keywords
spring
nozzle
nozzle needle
fuel
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15166910.8A
Other languages
German (de)
French (fr)
Other versions
EP2960487A1 (en
Inventor
Frank Ulrich Rueckert
Hans-Christoph Magel
Lars Ulrich
Andreas Ohm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2960487A1 publication Critical patent/EP2960487A1/en
Application granted granted Critical
Publication of EP2960487B1 publication Critical patent/EP2960487B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/161Means for adjusting injection-valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0075Stop members in valves, e.g. plates or disks limiting the movement of armature, valve or spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/708Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with hydraulic chambers formed by a movable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves

Definitions

  • the invention relates to a fuel injection valve, as is used in particular for fuel injection in the combustion chambers of high-speed, self-igniting internal combustion engines.
  • Fuel injection valves that atomize fuel under high pressure and thus introduce the fuel into a combustion chamber of an internal combustion engine are known from the prior art.
  • a nozzle needle is arranged to be longitudinally movable within a nozzle body and, by means of its longitudinal movement, opens and closes one or more injection openings. Due to the longitudinal movement, the compressed fuel located inside the nozzle is metered in via the injection openings, the quantity and the timing of the injection being controlled by the longitudinal movement of the nozzle needle.
  • the nozzle needle is spring-loaded in the closing direction, as it is for example from the published patent application DE 100 24 703 A1 is known.
  • the closing spring surrounds the nozzle needle and, with the end facing away from the injection openings, is supported on a sleeve which surrounds the end of the nozzle needle facing away from the combustion chamber and thereby delimits a control chamber.
  • the actual closing force on the nozzle needle is exerted by the fuel pressure within this control chamber, the pressure of which can be regulated via a control valve.
  • the spring force of the closing spring which surrounds the nozzle needle, influences the opening and closing behavior of the nozzle needle, even if the closing spring applies only a part of the forces influencing the nozzle needle.
  • the Nozzle springs perform two functions: First, the nozzle spring presses the sleeve that delimits the control chamber against the component of the housing that connects to the nozzle. The force of the nozzle spring must be large enough to press the sleeve securely against this component, usually the throttle disc, and thereby achieve a reliable seal, which requires a greater force. In addition, the nozzle spring exerts a closing force on the nozzle needle, which presses it against the nozzle seat.
  • This spring force must be known so that the nozzle can be designed correctly and functions in the desired manner, but only a small closing force is required and desired here in order to be able to move the nozzle needle out of its closed position without delay.
  • the spring constant and the preload of the nozzle spring are a compromise in order to optimally fulfill both functions of the nozzle spring.
  • a fuel injector which is responsible for the closing force on the nozzle needle, is from the document DE 10 2012 205 696 A1 a fuel injector is known in which the nozzle needle is surrounded by two different springs: a nozzle spring, which is supported at one end on a stationary housing part and which acts on the nozzle needle at the other end and thereby causes a closing force on the nozzle needle.
  • a second spring is provided, which likewise surrounds the nozzle needle and which presses the sleeve, which receives the end of the nozzle needle facing away from the combustion chamber, against the adjacent throttle disc and thereby seals the control chamber.
  • the fuel in this fuel injection valve is passed through a longitudinal channel which is formed within the nozzle needle.
  • the fuel injection valve according to the invention has the advantage that the fuel which flows through the pressure chamber of the nozzle body in the direction of the injection openings no longer influences the nozzle spring and therefore there are no fluctuations from stroke to stroke due to different forces of the flowing fuel on the nozzle spring .
  • the fuel injection valve has a housing in which a pressure chamber which can be filled with fuel under high pressure is formed, in which a nozzle needle for opening and closing at least one injection opening is arranged to be longitudinally movable, the nozzle needle being guided in the opening of a guide disk.
  • a nozzle spring is arranged under pressure prestress between the guide disk and a spring plate, the spring plate being supported on the nozzle needle, so that the nozzle spring exerts a closing force on the nozzle needle.
  • the spring plate has a sleeve-shaped extension on which a stop surface facing the guide disk is formed, the sleeve-shaped extension of the spring plate at least partially surrounding the nozzle spring.
  • the nozzle needle is guided in a sleeve at its end facing away from the injection openings. This sleeve delimits a control chamber, via whose hydraulic pressure a closing force is exerted on the nozzle needle.
  • the sleeve-shaped extension of the spring plate prevents the fuel from flowing through the nozzle spring or past the nozzle spring when flowing in the direction of the injection openings. This prevents the flowing fuel from exerting forces on the nozzle spring, in particular no transverse forces that would be transmitted to the nozzle needle and would influence the opening behavior.
  • a compact and simple structure of the fuel injection valve is achieved.
  • the stop surface comes into contact with the sleeve-shaped extension of the spring plate after passing through a maximum stroke of the nozzle needle on the guide disk.
  • bores are also advantageously formed in the guide disk, through which the fuel can flow.
  • the bores are advantageously arranged in such a way that the fuel flow flowing through them passes between the spring plate and the wall of the pressure chamber.
  • a plurality of bores are formed in the guide disk, which are arranged distributed over the circumference of the guide disk.
  • this serves to equalize the flow in order to exclude transverse forces on the nozzle needle, and on the other hand it prevents throttling of the fuel flow, which would lead to an undesirable pressure drop on the guide disk.
  • a tension spring is also advantageously arranged under prestress, which presses the sleeve, in which the end of the nozzle needle facing away from the combustion chamber is sealed, against the component delimiting the pressure chamber.
  • the tension spring advantageously has a larger spring constant than the nozzle spring, so that, on the one hand, a good seal is achieved on the sleeve and, on the other hand, only a small closing force is exerted by the nozzle spring on the nozzle needle, so that this is practical even with a small pressure drop in the control chamber opens without delay.
  • FIG. 1 a longitudinal section through an inventive fuel injection valve is shown, only the essential parts of the fuel injection valve being shown.
  • the fuel injection valve 1 has a housing 3 in which a pressure chamber 5 is formed.
  • the pressure chamber 5 can be filled with fuel under high pressure via a high-pressure duct 16 and is delimited at its end on the combustion chamber side by a body seat 8 from which one or more injection openings 11 extend.
  • a nozzle needle 7, which is essentially piston-shaped, is arranged longitudinally displaceably within the pressure chamber 5.
  • the nozzle needle 7 has at its combustion chamber end a sealing surface 9, with which the nozzle needle 7 cooperates with the body seat 8 for opening and closing the injection openings 11, so that when the nozzle needle 7 rests on the body seat 8, the fuel flow from the pressure chamber 5 to the injection openings 11 is interrupted, while when the nozzle needle 7 has lifted off the body seat 8, a fuel flow is released from the pressure chamber 5 between the body seat 8 and the sealing surface 9 to the injection openings 11.
  • the nozzle needle 7 is guided in a guide section 12 within the pressure chamber 5, with bevels 13 being provided for guiding the fuel through the guide section 12, for example three bevels 13, which are arranged uniformly distributed over the circumference of the nozzle needle 7.
  • a guide disk 17 Seen in the longitudinal direction of the pressure chamber 5, a guide disk 17 is arranged approximately in the middle and has an opening 29 which is formed in the center of the guide disk 17.
  • the guide disk 17 is arranged in a stationary manner within the pressure chamber 5, this being possible, for example, in that the housing 3 of the fuel injection valve is constructed in several parts, so that the guide disk 17 can be fixed between the different parts.
  • the nozzle needle 7 is guided at its end facing away from the body seat 8 in a sleeve 15, the sleeve 15 being pressed against a coupler piston 22 by a tension spring 30 which surrounds the nozzle needle 7, so that a control chamber 19 is delimited by the coupler piston 22, the sleeve 15 and the end of the nozzle needle 7 facing away from the body seat, the hydraulic pressure of which exerts a closing force on the nozzle needle 7.
  • the tension spring 30 is arranged under pressure prestress between the sleeve 15 and a spring washer 32, the spring washer 32 in turn being supported on the guide washer 17.
  • a nozzle spring 36 is also provided, which likewise surrounds the nozzle needle 7 and is arranged on the side of the guide disk 17 facing the body seat 8.
  • the nozzle spring 35 is arranged between the guide disc 17 and a spring plate 36 under pressure, the spring plate 36 being supported on a shoulder of the nozzle needle 7.
  • the spring plate 36 which in Figure 2 is shown again enlarged, has a sleeve-shaped extension 38 which almost completely surrounds the nozzle spring 35.
  • a stop surface 40 is formed as an annular surface, which is at a distance h from the guide disk 17 when the fuel injection valve is closed.
  • the coupler piston 22 is guided in a receptacle 24 which is essentially sleeve-shaped and which, together with the coupler piston 22, delimits a coupler chamber 25 which communicates with the control chamber 19 via a connecting throttle 28 formed within the coupler piston 22 connected is.
  • the receptacle 24 is arranged in a stationary manner within the pressure chamber 5, while the coupler piston 22 can be moved in the longitudinal direction via a control piston 27, the control piston 27 in turn being longitudinally movable by an electrical actuator, for example by a piezo actuator.
  • an electrical actuator for example by a piezo actuator.
  • grooves or other recesses can also be formed on the outside of the receptacle 24, through which a fuel flow past the receptacle is made possible.
  • the fuel injector works as follows: At the beginning of the injection, the nozzle needle 7 is in contact with the body seat 8 and thus closes the injection openings 11 with respect to the pressure chamber 5.
  • the coupler piston 22 is in its upper position, ie. H. at a maximum distance from the nozzle needle 7, the coupler chamber 25 and the control chamber 19, which are fed via throttle gaps, as are formed, for example, between the sleeve 15 and the nozzle needle 7 or between the receptacle 24 and the coupler piston 22, are filled with fuel under high pressure , with which the pressure chamber 5 is also filled.
  • the coupler piston 22, driven by the control piston 27, is pressed in the direction of the nozzle needle 7.
  • this increases the coupler space 25 and, on the other hand, the control space 19 shrinks, the overall volume of the coupler space 25 and the control space 19 being increased due to the diameter ratios of the control space 19 to the coupler piston 25.
  • fuel flows in slowly from the pressure chamber 5 via the throttle gap, the pressure in the control chamber 19 thereby decreases and the closing force on the nozzle needle 7 decreases.
  • the hydraulic pressure on the nozzle needle 7, as prevails due to the fuel pressure within the pressure chamber 5, is reduced then the nozzle needle 7 is lifted from the body seat 8 and opens the injection openings 11. The movement of the nozzle needle 7 takes place against the force of the nozzle spring 35 until the spring plate 36 with the stop surface 40 comes into contact with the guide disk 17.
  • the fuel that emerges through the injection openings 11 flows through the high-pressure channel 16 into the pressure chamber 5, through the bores 18 within the guide disk 17 and between the gap that remains between the spring plate 36 and the wall of the pressure chamber 5, to the injection openings 11.
  • the control piston 27 is withdrawn again, so that the coupler piston 22 follows this movement and the total volume, consisting of the control chamber 19 and the coupler piston 25, is reduced again and thus the pressure rises, so that the nozzle needle 7 is caused by the fuel pressure is pressed back into its closed position within the control chamber 19.
  • the fuel that exits through the injection openings 11 flows - as already mentioned - through the pressure chamber 5 and the bores 18 inside the guide disk 17. Since the sleeve-shaped extension 38 of the spring plate 36 the Shields the nozzle spring 35 radially outward, the fuel does not flow past the nozzle spring 35 and does not influence its movement, so that a precisely defined force is exerted on the nozzle needle 7 by the nozzle spring 35.
  • a plurality of bores 18 are preferably arranged in the guide disk 17 distributed over the circumference, on the one hand to enable a uniform fuel flow in the direction of the injection openings 11, which does not exert any transverse forces on the nozzle needle 7, and on the other hand the bores 18 ensure that there are none Throttling of the fuel flow and thus a pressure drop at the guide disc 17 occurs.

Description

Die Erfindung betrifft ein Kraftstoffeinspritzventil, wie es insbesondere zur Kraftstoffeinspritzung in Brennräume von schnelllaufenden, selbstzündenden Brennkraftmaschinen Verwendung findet.The invention relates to a fuel injection valve, as is used in particular for fuel injection in the combustion chambers of high-speed, self-igniting internal combustion engines.

Stand der TechnikState of the art

Kraftstoffeinspritzventile, die Kraftstoff unter hohem Druck fein zerstäuben und so den Kraftstoff in einen Brennraum einer Brennkraftmaschine einbringen, sind aus dem Stand der Technik bekannt. Dabei wird eine Düsennadel längsbeweglich innerhalb eines Düsenkörpers angeordnet, die durch ihre Längsbewegung eine oder mehrere Einspritzöffnungen auf- und zusteuert. Durch die Längsbewegung wird der verdichtete und innerhalb der Düse befindliche Kraftstoff über die Einspritzöffnungen eindosiert, wobei die Menge und der Zeitpunkt der Einspritzung durch die Längsbewegung der Düsennadel gesteuert werden. Die Düsennadel ist dabei in Schließrichtung federbeaufschlagt, wie es beispielsweise aus der Offenlegungsschrift DE 100 24 703 A1 bekannt ist. Dabei umgibt die Schließfeder die Düsennadel und stützt sich mit dem den Einspritzöffnungen abgewandten Ende an einer Hülse ab, die das brennraumabgewandte Ende der Düsennadel umgibt und dadurch einen Steuerraum begrenzt. Die eigentliche Schließkraft auf die Düsennadel wird durch den Kraftstoffdruck innerhalb dieses Steuerraums ausgeübt, dessen Druck über ein Steuerventil reguliert werden kann.Fuel injection valves that atomize fuel under high pressure and thus introduce the fuel into a combustion chamber of an internal combustion engine are known from the prior art. In this case, a nozzle needle is arranged to be longitudinally movable within a nozzle body and, by means of its longitudinal movement, opens and closes one or more injection openings. Due to the longitudinal movement, the compressed fuel located inside the nozzle is metered in via the injection openings, the quantity and the timing of the injection being controlled by the longitudinal movement of the nozzle needle. The nozzle needle is spring-loaded in the closing direction, as it is for example from the published patent application DE 100 24 703 A1 is known. The closing spring surrounds the nozzle needle and, with the end facing away from the injection openings, is supported on a sleeve which surrounds the end of the nozzle needle facing away from the combustion chamber and thereby delimits a control chamber. The actual closing force on the nozzle needle is exerted by the fuel pressure within this control chamber, the pressure of which can be regulated via a control valve.

Die Federkraft der Schließfeder, die die Düsennadel umgibt, beeinflusst das Öffnungs- und Schließverhalten der Düsennadel, auch wenn die Schließfeder nur einen Teil der die Düsennadel beeinflussenden Kräfte aufbringt. Dabei muss die Düsenfeder zwei Funktionen erfüllen: Zum einen drückt die Düsenfeder die Hülse, die den Steuerraum begrenzt, gegen das Bauteil des Gehäuses, das sich an die Düse anschließt. Die Kraft der Düsenfeder muss also groß genug sein, um die Hülse sicher gegen dieses Bauteil, meist die Drosselscheibe, zu drücken und dadurch eine verlässliche Abdichtung zu erreichen, wozu eine größere Kraft notwendig ist. Darüber hinaus übt die Düsenfeder eine Schließkraft auf die Düsennadel aus, die diese gegen den Düsensitz drückt. Diese Federkraft muss bekannt sein, damit die Düse richtig ausgelegt werden kann und in der gewünschten Art und Weise funktioniert, jedoch ist hier nur eine kleine Schließkraft erforderlich und gewünscht, um die Düsennadel verzögerungsfrei aus ihrer Schließstellung bewegen zu können. Die Federkonstante und die Vorspannung der Düsenfeder sind somit ein Kompromiss, um beide Funktionen der Düsenfeder möglichst optimal zu erfüllen.The spring force of the closing spring, which surrounds the nozzle needle, influences the opening and closing behavior of the nozzle needle, even if the closing spring applies only a part of the forces influencing the nozzle needle. The Nozzle springs perform two functions: First, the nozzle spring presses the sleeve that delimits the control chamber against the component of the housing that connects to the nozzle. The force of the nozzle spring must be large enough to press the sleeve securely against this component, usually the throttle disc, and thereby achieve a reliable seal, which requires a greater force. In addition, the nozzle spring exerts a closing force on the nozzle needle, which presses it against the nozzle seat. This spring force must be known so that the nozzle can be designed correctly and functions in the desired manner, but only a small closing force is required and desired here in order to be able to move the nozzle needle out of its closed position without delay. The spring constant and the preload of the nozzle spring are a compromise in order to optimally fulfill both functions of the nozzle spring.

Um eine größere Freiheit bei der Ausgestaltung der Düsenfeder zu haben, die für die Schließkraft auf die Düsennadel verantwortlich ist, ist aus der Schrift DE 10 2012 205 696 A1 ein Kraftstoffeinspritzventil bekannt, bei dem die Düsennadel von zwei unterschiedlichen Federn umgeben ist: Einer Düsenfeder, die sich mit einem Ende an einem ortsfesten Gehäuseteil abstützt und die mit dem anderen Ende die Düsennadel beaufschlagt und dadurch eine Schließkraft auf die Düsennadel bewirkt. Darüber hinaus ist eine zweite Feder vorgesehen, die ebenfalls die Düsennadel umgibt und die die Hülse, die das brennraumabgewandte Ende der Düsennadel aufnimmt, gegen die benachbarte Drosselscheibe drückt und dadurch den Steuerraum abdichtet. Dabei wird der Kraftstoff bei diesem Kraftstoffeinspritzventil durch einen Längskanal geleitet, der innerhalb der Düsennadel ausgebildet ist. Diese Lösung ist jedoch aufwändig und damit teuer in der Fertigung. Wird der Kraftstoff jedoch zwischen der Düsennadel und der Wand des Druckraums vorbeigeleitet, so strömt der Kraftstoff durch die Düsenfeder, die relativ schwach ausgelegt ist und die damit durch den vorbeiströmenden Kraftstoff nennenswert beeinflusst werden kann. Zusätzlich kommt es durch den strömenden Kraftstoff zur Einleitung von Querkräften auf die Feder, was Streuungen der Einspritzcharakteristik von Hub zu Hub verursachen kann. Damit kann die notwendige Präzision bezüglich Menge und Zeitpunkt der Kraftstoffeinspritzung nicht mehr ohne weiteres erreicht werden.In order to have greater freedom in the design of the nozzle spring, which is responsible for the closing force on the nozzle needle, is from the document DE 10 2012 205 696 A1 a fuel injector is known in which the nozzle needle is surrounded by two different springs: a nozzle spring, which is supported at one end on a stationary housing part and which acts on the nozzle needle at the other end and thereby causes a closing force on the nozzle needle. In addition, a second spring is provided, which likewise surrounds the nozzle needle and which presses the sleeve, which receives the end of the nozzle needle facing away from the combustion chamber, against the adjacent throttle disc and thereby seals the control chamber. The fuel in this fuel injection valve is passed through a longitudinal channel which is formed within the nozzle needle. However, this solution is complex and therefore expensive to manufacture. However, if the fuel is passed between the nozzle needle and the wall of the pressure chamber, the fuel flows through the nozzle spring, which is designed to be relatively weak and which can therefore be significantly influenced by the fuel flowing past. In addition, the flowing fuel leads to the introduction of transverse forces on the spring, which can cause scattering of the injection characteristics from stroke to stroke. As a result, the necessary precision with regard to the quantity and timing of the fuel injection can no longer be easily achieved.

Weitere Krafstoffeinspritzventile sind bekannt aus der GB785411 A , JPH01157268 U und GB2312926 A .Other fuel injectors are known from the GB785411 A , JPH01157268 U and GB2312926 A .

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil weist demgegenüber den Vorteil auf, dass der Kraftstoff, der durch den Druckraum des Düsenkörpers in Richtung der Einspritzöffnungen strömt, nicht mehr die Düsenfeder beeinflusst und es somit zu keinen Schwankungen von Hub zu Hub aufgrund unterschiedlicher Kräfte des strömenden Kraftstoffs auf die Düsenfeder kommt. Dazu weist das Kraftstoffeinspritzventil ein Gehäuse auf, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum ausgebildet ist, in dem eine Düsennadel zum Öffnen und Schließen wenigstens einer Einspritzöffnung längsbeweglich angeordnet ist, wobei die Düsennadel in der Öffnung einer Führungsscheibe geführt ist. Eine Düsenfeder ist unter Druckvorspannung zwischen der Führungsscheibe und einem Federteller angeordnet, wobei sich der Federteller an der Düsennadel abstützt, sodass die Düsenfeder eine Schließkraft auf die Düsennadel ausübt. Der Federteller weist einen hülsenförmigen Fortsatz auf, an dem eine der Führungsscheibe zugewandte Anschlagsfläche ausgebildet ist, wobei der hülsenförmige Fortsatz des Federtellers die Düsenfeder zumindest teilweise umgibt. Die Düsennadel wird an ihrem den Einspritzöffnungen abgewandten Ende in einer Hülse geführt. Diese Hülse begrenzt dabei einen Steuerraum, über dessen hydraulischen Druck eine Schließkraft auf die Düsennadel ausgeübt wird.In contrast, the fuel injection valve according to the invention has the advantage that the fuel which flows through the pressure chamber of the nozzle body in the direction of the injection openings no longer influences the nozzle spring and therefore there are no fluctuations from stroke to stroke due to different forces of the flowing fuel on the nozzle spring . For this purpose, the fuel injection valve has a housing in which a pressure chamber which can be filled with fuel under high pressure is formed, in which a nozzle needle for opening and closing at least one injection opening is arranged to be longitudinally movable, the nozzle needle being guided in the opening of a guide disk. A nozzle spring is arranged under pressure prestress between the guide disk and a spring plate, the spring plate being supported on the nozzle needle, so that the nozzle spring exerts a closing force on the nozzle needle. The spring plate has a sleeve-shaped extension on which a stop surface facing the guide disk is formed, the sleeve-shaped extension of the spring plate at least partially surrounding the nozzle spring. The nozzle needle is guided in a sleeve at its end facing away from the injection openings. This sleeve delimits a control chamber, via whose hydraulic pressure a closing force is exerted on the nozzle needle.

Durch den hülsenförmigen Fortsatz des Federtellers wird der Kraftstoff daran gehindert, beim Fließen in Richtung der Einspritzöffnungen durch die Düsenfeder hindurch oder direkt an dieser vorbei zu fließen. Dadurch wird vermieden, dass der fließende Kraftstoff Kräfte auf die Düsenfeder ausübt, insbesondere keine Querkräfte, die sich auf die Düsennadel übertragen und das Öffnungsverhalten beeinflussen würden. Darüber hinaus wird ein kompakter und einfacher Aufbau des Kraftstoffeinspritzventils erreicht.The sleeve-shaped extension of the spring plate prevents the fuel from flowing through the nozzle spring or past the nozzle spring when flowing in the direction of the injection openings. This prevents the flowing fuel from exerting forces on the nozzle spring, in particular no transverse forces that would be transmitted to the nozzle needle and would influence the opening behavior. In addition, a compact and simple structure of the fuel injection valve is achieved.

In einer ersten vorteilhaften Ausgestaltung kommt die Anschlagsfläche am hülsenförmigen Fortsatz des Federtellers nach Durchfahren eines maximalen Hubs der Düsennadel an der Führungsscheibe zur Anlage. Dadurch wird einerseits der maximale Hub der Düsennadel begrenzt, andererseits wird durch die Anlage des hülsenförmigen Fortsatzes an der Führungsscheibe eine gute Abschirmung der Düsenfeder gegenüber dem Kraftstoffstrom innerhalb des Düsenraums erreicht.In a first advantageous embodiment, the stop surface comes into contact with the sleeve-shaped extension of the spring plate after passing through a maximum stroke of the nozzle needle on the guide disk. On the one hand, this limits the maximum stroke of the nozzle needle, and on the other hand, the sleeve-shaped extension on the guide disk provides good shielding of the nozzle spring against the fuel flow within the nozzle chamber.

Zur Durchleitung des Kraftstoffs in Richtung der Einspritzöffnungen sind weiterhin in vorteilhafter Weise Bohrungen innerhalb der Führungsscheibe ausgebildet, durch die der Kraftstoff strömen kann. Dabei sind die Bohrungen in vorteilhafter Weise so angeordnet, dass der durch sie hindurch strömende Kraftstoffstrom zwischen dem Federteller und der Wand des Druckraums hindurchtritt.To pass the fuel in the direction of the injection openings, bores are also advantageously formed in the guide disk, through which the fuel can flow. The bores are advantageously arranged in such a way that the fuel flow flowing through them passes between the spring plate and the wall of the pressure chamber.

In vorteilhafter Weise ist dabei eine Vielzahl von Bohrungen in der Führungsscheibe ausgebildet, die über den Umfang der Führungsscheibe verteilt angeordnet sind. Dies dient einerseits der Vergleichmäßigung der Strömung, um Querkräfte auf die Düsennadel auszuschließen, und andererseits wird dadurch eine Drosselung des Kraftstoffstroms vermieden, was zu einem unerwünschten Druckabfall an der Führungsscheibe führen würde.Advantageously, a plurality of bores are formed in the guide disk, which are arranged distributed over the circumference of the guide disk. On the one hand, this serves to equalize the flow in order to exclude transverse forces on the nozzle needle, and on the other hand it prevents throttling of the fuel flow, which would lead to an undesirable pressure drop on the guide disk.

Zwischen der Hülse und der Führungsscheibe ist weiterhin in vorteilhafter Weise eine Spannfeder unter Vorspannung angeordnet, die die Hülse, in der das brennraumabgewandte Ende der Düsennadel aufgenommen ist, dichtend gegen das den Druckraum begrenzende Bauteil drückt. Dabei weist die Spannfeder in vorteilhafter Weise eine größere Federkonstante auf als die Düsenfeder, sodass einerseits eine gute Abdichtung an der Hülse erreicht wird und andererseits nur eine geringe Schließkraft durch die Düsenfeder auf die Düsennadel ausgeübt wird, sodass diese bereits bei einem geringen Druckabfall im Steuerraum praktisch verzögerungsfrei öffnet.Between the sleeve and the guide disk, a tension spring is also advantageously arranged under prestress, which presses the sleeve, in which the end of the nozzle needle facing away from the combustion chamber is sealed, against the component delimiting the pressure chamber. The tension spring advantageously has a larger spring constant than the nozzle spring, so that, on the one hand, a good seal is achieved on the sleeve and, on the other hand, only a small closing force is exerted by the nozzle spring on the nozzle needle, so that this is practical even with a small pressure drop in the control chamber opens without delay.

Zeichnungdrawing

In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt. Es zeigt

Figur 1
einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil, wobei nur die wesentlichen Teile dargestellt sind und
Figur 2
eine Vergrößerung des in Figur 1 gezeigten Kraftstoffeinspritzventils im Bereich der Führungsscheibe.
In the drawing, a fuel injection valve according to the invention is shown in longitudinal section. It shows
Figure 1
a longitudinal section through an inventive fuel injection valve, only the essential parts are shown and
Figure 2
an increase in the Figure 1 Fuel injector shown in the area of the guide plate.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt, wobei nur die wesentlichen Teile des Kraftstoffeinspritzventils dargestellt sind. Das Kraftstoffeinspritzventil 1 weist ein Gehäuse 3 auf, in dem ein Druckraum 5 ausgebildet ist. Der Druckraum 5 kann über einen Hochdrucckanal 16 mit Kraftstoff unter hohem Druck befüllt werden und wird an seinem brennraumseitigen Ende von einem Körpersitz 8 begrenzt, von dem eine oder mehrere Einspritzöffnungen 11 ausgehen. Innerhalb des Druckraums 5 ist eine Düsennadel 7, die im Wesentlichen kolbenförmig ausgebildet ist, längsverschiebbar angeordnet. Die Düsennadel 7 weist an ihrem brennraumseitigen Ende eine Dichtfläche 9 auf, mit der die Düsennadel 7 mit dem Körpersitz 8 zum Öffnen und Schließen der Einspritzöffnungen 11 zusammenwirkt, sodass bei Anlage der Düsennadel 7 auf dem Körpersitz 8 der Kraftstoffstrom aus dem Druckraum 5 zu den Einspritzöffnungen 11 unterbrochen wird, während dann, wenn die Düsennadel 7 vom Körpersitz 8 abgehoben hat, ein Kraftstoffstrom aus dem Druckraum 5 zwischen dem Körpersitz 8 und der Dichtfläche 9 hindurch zu den Einspritzöffnungen 11 freigegeben wird.In Figure 1 a longitudinal section through an inventive fuel injection valve is shown, only the essential parts of the fuel injection valve being shown. The fuel injection valve 1 has a housing 3 in which a pressure chamber 5 is formed. The pressure chamber 5 can be filled with fuel under high pressure via a high-pressure duct 16 and is delimited at its end on the combustion chamber side by a body seat 8 from which one or more injection openings 11 extend. A nozzle needle 7, which is essentially piston-shaped, is arranged longitudinally displaceably within the pressure chamber 5. The nozzle needle 7 has at its combustion chamber end a sealing surface 9, with which the nozzle needle 7 cooperates with the body seat 8 for opening and closing the injection openings 11, so that when the nozzle needle 7 rests on the body seat 8, the fuel flow from the pressure chamber 5 to the injection openings 11 is interrupted, while when the nozzle needle 7 has lifted off the body seat 8, a fuel flow is released from the pressure chamber 5 between the body seat 8 and the sealing surface 9 to the injection openings 11.

Die Düsennadel 7 ist in einem Führungsabschnitt 12 innerhalb des Druckraums 5 geführt, wobei zur Durchleitung des Kraftstoffs am Führungsabschnitt 12 Anschliffe 13 vorgesehen sind, beispielsweise drei Anschliffe 13, die gleichmäßig über den Umfang der Düsennadel 7 verteilt angeordnet sind.The nozzle needle 7 is guided in a guide section 12 within the pressure chamber 5, with bevels 13 being provided for guiding the fuel through the guide section 12, for example three bevels 13, which are arranged uniformly distributed over the circumference of the nozzle needle 7.

In Längsrichtung des Druckraums 5 gesehen ist etwa in der Mitte eine Führungsscheibe 17 angeordnet, die eine Öffnung 29 aufweist, die mittig in der Führungsscheibe 17 ausgebildet ist. Die Führungsscheibe 17 ist dabei innerhalb des Druckraums 5 ortsfest angeordnet, wobei dies beispielsweise dadurch geschehen kann, dass das Gehäuse 3 des Kraftstoffeinspritzventils mehrteilig aufgebaut ist, sodass die Führungsscheibe 17 zwischen den verschiedenen Teilen fixiert werden kann. Die Düsennadel 7 wird an ihrem dem Körpersitz 8 abgewandten Ende in einer Hülse 15 geführt, wobei die Hülse 15 durch eine Spannfeder 30, die die Düsennadel 7 umgibt, gegen einen Kopplerkolben 22 gedrückt wird, sodass durch den Kopplerkolben 22, die Hülse 15 und das körpersitzabgewandte Ende der Düsennadel 7 ein Steuerraum 19 begrenzt wird, durch dessen hydraulischen Druck eine Schließkraft auf die Düsennadel 7 ausgeübt wird. Die Spannfeder 30 ist unter Druckvorspannung zwischen der Hülse 15 und einer Federscheibe 32 angeordnet, wobei sich die Federscheibe 32 ihrerseits auf der Führungsscheibe 17 abstützt.Seen in the longitudinal direction of the pressure chamber 5, a guide disk 17 is arranged approximately in the middle and has an opening 29 which is formed in the center of the guide disk 17. The guide disk 17 is arranged in a stationary manner within the pressure chamber 5, this being possible, for example, in that the housing 3 of the fuel injection valve is constructed in several parts, so that the guide disk 17 can be fixed between the different parts. The nozzle needle 7 is guided at its end facing away from the body seat 8 in a sleeve 15, the sleeve 15 being pressed against a coupler piston 22 by a tension spring 30 which surrounds the nozzle needle 7, so that a control chamber 19 is delimited by the coupler piston 22, the sleeve 15 and the end of the nozzle needle 7 facing away from the body seat, the hydraulic pressure of which exerts a closing force on the nozzle needle 7. The tension spring 30 is arranged under pressure prestress between the sleeve 15 and a spring washer 32, the spring washer 32 in turn being supported on the guide washer 17.

Zur Erzeugung einer Schließkraft auf die Düsennadel 7 ist weiterhin eine Düsenfeder 36 vorgesehen, die die Düsennadel 7 ebenfalls umgibt und die auf der dem Körpersitz 8 zugewandten Seite der Führungsscheibe 17 angeordnet ist. Dabei ist die Düsenfeder 35 zwischen der Führungsscheibe 17 und einem Federteller 36 unter Druckvorspannung angeordnet, wobei sich der Federteller 36 an einem Absatz der Düsennadel 7 abstützt. Der Federteller 36, der in Figur 2 nochmals vergrößert dargestellt ist, weist dabei einen hülsenförmigen Fortsatz 38 auf, der die Düsenfeder 35 fast vollständig umgibt. Am hülsenförmigen Fortsatz 38 ist an der der Führungsscheibe 17 zugewandten Seite eine Anschlagfläche 40 als Ringfläche ausgebildet, die im geschlossenen Zustand des Kraftstoffeinspritzventils einen Abstand h zur Führungsscheibe 17 aufweist.To generate a closing force on the nozzle needle 7, a nozzle spring 36 is also provided, which likewise surrounds the nozzle needle 7 and is arranged on the side of the guide disk 17 facing the body seat 8. The nozzle spring 35 is arranged between the guide disc 17 and a spring plate 36 under pressure, the spring plate 36 being supported on a shoulder of the nozzle needle 7. The spring plate 36, which in Figure 2 is shown again enlarged, has a sleeve-shaped extension 38 which almost completely surrounds the nozzle spring 35. On the sleeve-shaped extension 38, on the side facing the guide disk 17, a stop surface 40 is formed as an annular surface, which is at a distance h from the guide disk 17 when the fuel injection valve is closed.

Zur Steuerung des Kraftstoffdrucks innerhalb des Steuerraums 19 ist der Kopplerkolben 22 in einer Aufnahme 24 geführt, die im Wesentlichen hülsenförmig ausgebildet ist und die zusammen mit dem Kopplerkolben 22 einen Kopplerraum 25 begrenzt, der über eine innerhalb des Kopplerkolbens 22 ausgebildete Verbindungsdrossel 28 mit dem Steuerraum 19 verbunden ist. Hierbei ist die Aufnahme 24 ortsfest innerhalb des Druckraums 5 angeordnet, während der Kopplerkolben 22 über einen Steuerkolben 27 in Längsrichtung bewegbar ist, wobei der Steuerkolben 27 wiederum durch einen elektrischen Aktor längsbewegbar ist, beispielsweise durch einen Piezoaktor. Zwischen der Aufnahme 24 und der Wand des Druckraums 5 verbleibt dabei ein Spalt, durch den der Kraftstoff in Richtung der Einspritzöffnungen 11 strömen kann. Alternativ können an der Außenseite der Aufnahme 24 auch Nuten oder andere Ausnehmungen ausgebildet sind, durch die eine Kraftstoffströmung an der Aufnahme vorbei ermöglicht wird.To control the fuel pressure within the control chamber 19, the coupler piston 22 is guided in a receptacle 24 which is essentially sleeve-shaped and which, together with the coupler piston 22, delimits a coupler chamber 25 which communicates with the control chamber 19 via a connecting throttle 28 formed within the coupler piston 22 connected is. Here, the receptacle 24 is arranged in a stationary manner within the pressure chamber 5, while the coupler piston 22 can be moved in the longitudinal direction via a control piston 27, the control piston 27 in turn being longitudinally movable by an electrical actuator, for example by a piezo actuator. Between the receptacle 24 and the wall of the pressure chamber 5 there remains a gap through which the fuel can flow in the direction of the injection openings 11. Alternatively, grooves or other recesses can also be formed on the outside of the receptacle 24, through which a fuel flow past the receptacle is made possible.

Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Zu Beginn der Einspritzung befindet sich die Düsennadel 7 in Anlage am Körpersitz 8 und verschließt so die Einspritzöffnungen 11 gegenüber dem Druckraum 5. Der Kopplerkolben 22 befindet sich in seiner oberen Stellung, d. h. mit maximalem Abstand zur Düsennadel 7, wobei der Kopplerraum 25 und der Steuerraum 19, gespeist über Drosselspalte, wie sie beispielsweise zwischen der Hülse 15 und der Düsennadel 7 oder zwischen der Aufnahme 24 und dem Kopplerkolben 22 ausgebildet sind, mit Kraftstoff unter hohem Druck befüllt sind, mit dem auch der Druckraum 5 befüllt ist. Zur Einspritzung wird der Kopplerkolben 22, angetrieben durch den Steuerkolben 27, in Richtung der Düsennadel 7 gedrückt. Dadurch vergrößert sich einerseits der Kopplerraum 25 und andererseits verkleinert sich der Steuerraum 19, wobei aufgrund der Durchmesserverhältnisse von Steuerraum 19 zu Kopplerkolben 25 insgesamt eine Volumenzunahme des Gesamtraums aus Kopplerraum 25 und Steuerraum 19 erreicht wird. Da über die Drosselspalte nur langsam Kraftstoff aus dem Druckraum 5 nachströmt, sinkt dadurch der Druck im Steuerraum 19 und verringert die Schließkraft auf die Düsennadel 7. Durch den hydraulischen Druck auf die Düsennadel 7, wie er durch den Kraftstoffdruck innerhalb des Druckraums 5 herrscht, wird dann die Düsennadel 7 vom Körpersitz 8 abgehoben und gibt die Einspritzöffnungen 11 frei. Dabei erfolgt die Bewegung der Düsennadel 7 entgegen der Kraft der Düsenfeder 35 so lange, bis der Federteller 36 mit der Anschlagfläche 40 an der Führungsscheibe 17 zur Anlage kommt. Der Kraftstoff, der durch die Einspritzöffnungen 11 austritt, fließt dabei über den Hochdruckkanal 16 in den Druckraum 5, durch die Bohrungen 18 innerhalb der Führungsscheibe 17 und zwischen dem Spalt, der zwischen dem Federteller 36 und der Wand des Druckraums 5 verbleibt, zu den Einspritzöffnungen 11. Zur Beendigung der Einspritzung wird der Steuerkolben 27 wieder zurückgezogen, sodass der Kopplerkolben 22 dieser Bewegung folgt und das Gesamtvolumen, bestehend aus dem Steuerraum 19 und dem Kopplerkolben 25, wieder verringert und damit den Druck ansteigen lässt, sodass die Düsennadel 7 durch den Kraftstoffdruck innerhalb des Steuerraums 19 wieder zurück in ihre Schließstellung gedrückt wird.The fuel injector works as follows: At the beginning of the injection, the nozzle needle 7 is in contact with the body seat 8 and thus closes the injection openings 11 with respect to the pressure chamber 5. The coupler piston 22 is in its upper position, ie. H. at a maximum distance from the nozzle needle 7, the coupler chamber 25 and the control chamber 19, which are fed via throttle gaps, as are formed, for example, between the sleeve 15 and the nozzle needle 7 or between the receptacle 24 and the coupler piston 22, are filled with fuel under high pressure , with which the pressure chamber 5 is also filled. For injection, the coupler piston 22, driven by the control piston 27, is pressed in the direction of the nozzle needle 7. On the one hand, this increases the coupler space 25 and, on the other hand, the control space 19 shrinks, the overall volume of the coupler space 25 and the control space 19 being increased due to the diameter ratios of the control space 19 to the coupler piston 25. Since fuel flows in slowly from the pressure chamber 5 via the throttle gap, the pressure in the control chamber 19 thereby decreases and the closing force on the nozzle needle 7 decreases. The hydraulic pressure on the nozzle needle 7, as prevails due to the fuel pressure within the pressure chamber 5, is reduced then the nozzle needle 7 is lifted from the body seat 8 and opens the injection openings 11. The movement of the nozzle needle 7 takes place against the force of the nozzle spring 35 until the spring plate 36 with the stop surface 40 comes into contact with the guide disk 17. The fuel that emerges through the injection openings 11 flows through the high-pressure channel 16 into the pressure chamber 5, through the bores 18 within the guide disk 17 and between the gap that remains between the spring plate 36 and the wall of the pressure chamber 5, to the injection openings 11. To end the injection, the control piston 27 is withdrawn again, so that the coupler piston 22 follows this movement and the total volume, consisting of the control chamber 19 and the coupler piston 25, is reduced again and thus the pressure rises, so that the nozzle needle 7 is caused by the fuel pressure is pressed back into its closed position within the control chamber 19.

Der Kraftstoff, der durch die Einspritzöffnungen 11 austritt, fließt - wie schon erwähnt - durch den Druckraum 5 und die Bohrungen 18 innerhalb der Führungsscheibe 17 hindurch. Da der hülsenförmige Fortsatz 38 des Federtellers 36 die Düsenfeder 35 radial nach außen abschirmt, fließt der Kraftstoff nicht an der Düsenfeder 35 vorbei und beeinflusst diese nicht in ihrer Bewegung, sodass durch die Düsenfeder 35 eine genau definierte Kraft auf die Düsennadel 7 ausgeübt wird. Hierbei sind in der Führungsscheibe 17 vorzugsweise mehrere Bohrungen 18 über den Umfang verteilt angeordnet, um einerseits einen gleichmäßigen Kraftstoffstrom in Richtung der Einspritzöffnungen 11 zu ermöglichen, der keine Querkräfte auf die Düsennadel 7 ausübt, und die Bohrungen 18 andererseits dafür sorgen, dass es zu keiner Drosselung des Kraftstoffstroms und damit zu einem Druckabfall an der Führungsscheibe 17 kommt.The fuel that exits through the injection openings 11 flows - as already mentioned - through the pressure chamber 5 and the bores 18 inside the guide disk 17. Since the sleeve-shaped extension 38 of the spring plate 36 the Shields the nozzle spring 35 radially outward, the fuel does not flow past the nozzle spring 35 and does not influence its movement, so that a precisely defined force is exerted on the nozzle needle 7 by the nozzle spring 35. In this case, a plurality of bores 18 are preferably arranged in the guide disk 17 distributed over the circumference, on the one hand to enable a uniform fuel flow in the direction of the injection openings 11, which does not exert any transverse forces on the nozzle needle 7, and on the other hand the bores 18 ensure that there are none Throttling of the fuel flow and thus a pressure drop at the guide disc 17 occurs.

Claims (8)

  1. Fuel injection valve for internal combustion engines, having a housing (3) in which there is formed a pressure chamber (5) which can be filled with fuel at high pressure and in which a nozzle needle (7) for opening and closing at least one injection opening (11) is arranged in longitudinally movable fashion, wherein the nozzle needle (7) is guided in the opening (29) of a guide disc (17), and having a nozzle spring (35) which is arranged under compressive preload between the guide disc (17) and a spring plate (36), wherein the spring plate (36) is supported on the nozzle needle (7) such that the nozzle spring (35) exerts a closing force on the nozzle needle (7), wherein the spring plate (36) has a sleeve-shaped projection (38) on which there is formed a stop surface (40) facing toward the guide disc (17), wherein the sleeve-shaped projection (38) of the spring plate (36) at least partially surrounds the nozzle spring (35), characterized in that the nozzle needle (7) is guided, at its end averted from the injection openings (11), in a sleeve (15), and a control chamber (19) is delimited by that face side of the nozzle needle (7) which is averted from the injection openings (11) and by the sleeve (15), by the hydraulic pressure of which control chamber a closing force is exerted on the nozzle needle (7).
  2. Fuel injection valve according to Claim 1, characterized in that the stop surface (40) on the sleeve-shaped projection (38) of the spring plate (36) comes to bear against the guide disc (17) after travelling through a maximum stroke (h) of the nozzle needle (7).
  3. Fuel injection valve according to Claim 1 or 2, characterized in that the sleeve-shaped projection (38) fully surrounds the nozzle spring (35) when the spring plate (36) comes to bear with its stop surface (40) against the guide disc (17).
  4. Fuel injection valve according to Claim 1, 2 or 3, characterized in that, in the guide disc (17), there is formed at least one bore (18) through which the fuel within the pressure chamber (5) can flow in the direction of the injection openings (11).
  5. Fuel injection valve according to Claim 4, characterized in that the fuel stream flows through the at least one bore (18) and through a gap between the spring plate (37) and the wall of the pressure chamber (5).
  6. Fuel injection valve according to Claim 4 or 5, characterized in that, in the guide disc (17), there is formed a multiplicity of bores (18) which are arranged so as to be distributed over the circumference of the guide disc (17).
  7. Fuel injection valve according to Claim 1, characterized in that a bracing spring (30) is arranged under preload between the sleeve (15) and the guide disc (17).
  8. Fuel injection valve according to Claim 7, characterized in that the bracing spring (30) has a higher spring constant (D) than the nozzle spring (35) .
EP15166910.8A 2014-06-26 2015-05-08 Fuel injector valve for combustion engines Active EP2960487B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014212337.2A DE102014212337A1 (en) 2014-06-26 2014-06-26 Fuel injection valve for internal combustion engines

Publications (2)

Publication Number Publication Date
EP2960487A1 EP2960487A1 (en) 2015-12-30
EP2960487B1 true EP2960487B1 (en) 2020-07-08

Family

ID=53051745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15166910.8A Active EP2960487B1 (en) 2014-06-26 2015-05-08 Fuel injector valve for combustion engines

Country Status (2)

Country Link
EP (1) EP2960487B1 (en)
DE (1) DE102014212337A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926693B2 (en) * 2017-06-06 2021-08-25 株式会社Soken Fuel injection device, control device and fuel injection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785411A (en) * 1955-02-23 1957-10-30 Saurer Ag Adolph Improvements in and relating to injection nozzles for internal combustion engines
JPH01157268U (en) * 1988-04-21 1989-10-30
DE19618698A1 (en) * 1996-05-09 1997-11-13 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE10024703A1 (en) 2000-05-18 2001-11-22 Bosch Gmbh Robert Injection arrangement for fuel storage injection system has valve unit blocking auxiliary channel and outlet path in alternation
DE102012205696A1 (en) 2012-04-05 2013-10-10 Robert Bosch Gmbh Fuel injector, particularly common rail injector, for injecting fuel into combustion chamber, has high-pressure chamber divided two subspaces by separating element that is movably arranged with nozzle needle in longitudinal axis direction
DE102012010614B4 (en) * 2012-05-30 2014-07-03 L'orange Gmbh injector
DE102012221624A1 (en) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Fuel injection valve for internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014212337A1 (en) 2015-12-31
EP2960487A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
EP2183476B1 (en) Fuel injection valve with improved tightness on the sealing seat of a pressure-compensated control valve
EP1656498A1 (en) Fuel injection valve controlled by a pilot valve
EP3535486B1 (en) Fuel injection valve for injecting a gaseous and / or liquid fuel
DE202014010759U1 (en) Electronic fuel injection atomizer for a fuel injection system for an internal combustion engine
EP2735725A1 (en) Fuel injector valve for combustion engines
DE102014226407A1 (en) Injector for fuels
EP1356203B1 (en) Device for supplying high pressure fuel to an internal combustion engine
EP2960487B1 (en) Fuel injector valve for combustion engines
DE19954288A1 (en) Fuel injection valve for fitting to internal combustion engines has an injection valve element to control injection openings, a control valve to affect movement in injection valve elements and a valve element for regulating pressure
WO2011042296A1 (en) Fuel injection valve and production thereof
EP1999363B1 (en) Fuel injection valves for internal combustion engines
EP2824310B1 (en) Fuel injector valve for combustion engines
EP1608866B1 (en) Fuel-injection valve for internal combustion engines
DE102016208055A1 (en) Fuel injection valve for internal combustion engines
EP2426348B1 (en) Fuel injector valve
DE202015009430U1 (en) Atomizer of an electric injection nozzle for an injection system for an internal combustion engine
DE10111783A1 (en) injection
DE10121340A1 (en) Common rail injector for internal combustion engine fuel injection system has casing and intermediate plate bounding control chamber implemented in one piece with inlet and outlet choke
DE102010043110A1 (en) Fuel injection valve for internal combustion engines
EP1210512B1 (en) Injector
DE102005041667B4 (en) Injector with direct needle control
DE10003252A1 (en) Injector
DE102012205696A1 (en) Fuel injector, particularly common rail injector, for injecting fuel into combustion chamber, has high-pressure chamber divided two subspaces by separating element that is movably arranged with nozzle needle in longitudinal axis direction
WO2005026525A1 (en) Fuel-injection valve for internal combustion engines
DE102012213535A1 (en) Fuel injector has outer contour whose diameter on case inner surface is smaller than diameter of outer contour on case outer surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180905

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012937

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012937

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210508

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210508

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1288732

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220725

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015012937

Country of ref document: DE