EP1356203B1 - Device for supplying high pressure fuel to an internal combustion engine - Google Patents

Device for supplying high pressure fuel to an internal combustion engine Download PDF

Info

Publication number
EP1356203B1
EP1356203B1 EP01991686A EP01991686A EP1356203B1 EP 1356203 B1 EP1356203 B1 EP 1356203B1 EP 01991686 A EP01991686 A EP 01991686A EP 01991686 A EP01991686 A EP 01991686A EP 1356203 B1 EP1356203 B1 EP 1356203B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
longitudinal grooves
bore
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01991686A
Other languages
German (de)
French (fr)
Other versions
EP1356203A1 (en
Inventor
Harald Schorr
Alexander Redlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1356203A1 publication Critical patent/EP1356203A1/en
Application granted granted Critical
Publication of EP1356203B1 publication Critical patent/EP1356203B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies

Definitions

  • the invention is based on a device for high-pressure fuel supply of an internal combustion engine, as it corresponds to the preamble of patent claim 1.
  • a device for high-pressure fuel supply of an internal combustion engine, as it corresponds to the preamble of patent claim 1.
  • Such a device is in the form of a fuel injection valve, for example from the published patent application DE 198 43 344 A1 known.
  • a bore is formed, in which a piston-shaped valve member is arranged longitudinally displaceable.
  • the valve member has a sealing portion with which it is guided in a guide portion of the bore, so that in this area between the valve member and the inner wall of the bore only a very small annular gap remains just large enough to ensure the longitudinal displacement of the valve member ,
  • At the combustion chamber facing the end of the guide portion of the bore is followed by a trained by a radial extension of the bore pressure chamber to the guide area, which pressure chamber can be filled with fuel under high pressure.
  • the pressure chamber continues to the combustion chamber as an annular channel surrounding the valve member and is delimited at the combustion chamber end by a valve sealing surface which closes the bore toward the combustion chamber.
  • the valve member has at its combustion chamber end a valve sealing surface which cooperates with the valve seat for controlling at least one injection opening, so that the injection opening can be connected to the pressure chamber by the longitudinal movement of the valve member.
  • a leakage oil space adjoins it, which is constantly kept at a low pressure level by a corresponding leak oil connection. Since at least during the injection in the pressure chamber, a very high fuel pressure is applied, there is a high pressure difference between the two ends of the guide portion of the bore. As a result, fuel is forced through the annular gap, which remains due to the L Lucassverschiebles between the sealing portion of the valve member and the guide portion of the bore from the pressure space in the leakage oil space. Especially in the case of fuels such as are used for self-igniting internal combustion engines, the fuel in this area also serves to lubricate the valve member in the bore.
  • the document DE 198 20 264 shows recesses on the valve needle, which have the shape of fine grooves. These run transversely to the longitudinal axis of the valve needle, parallel to this or at an angle thereto. Specifically, the longitudinal grooves extend over the entire, guided length of the valve needle, so that the longitudinal grooves are always connected to the pressure chamber and reach into a low-pressure space.
  • the inventive device for high-pressure fuel supply of an internal combustion engine has the advantage that at the guide portion of the guided in the bore piston-shaped element recesses are formed which are hydraulically connected to the pressure chamber, but do not reach into the leakage oil space.
  • the recesses are in this case preferably formed as grooves, which lead from the high pressure region, so the pressure chamber, up to a certain height of the sealing portion, but not into the low pressure region.
  • the structure of the recesses not only prevents the pressure drop behind the narrowest point of the annular channel formed between the piston-shaped element and the bore, but builds up a higher pressure compared to the opposite side. This pressure buildup causes the valve member to experience a force that is directed away from the inner wall surface of the bore, thus centering the piston-shaped member in the bore again.
  • the recesses are arranged distributed uniformly over the circumference of the piston-shaped element, so as to connect each area of the circumference of the piston-shaped element via a recess with the pressure chamber.
  • the leakage flow does not increase excessively through the annular gap between the piston-shaped element and the bore through the recesses, the cross section of the recesses must be very small.
  • This is in the inventive Device provided a depth of 1 to 50 microns, preferably 2 to 10 microns.
  • the width can vary between 100 and 500 microns.
  • the formation of the recesses according to the invention when the device is a fuel injection valve and the piston-shaped element is a valve member. Due to the high fuel pressures in such fuel injectors, as are preferably used for auto-ignition internal combustion engines, an exact alignment of the valve member in the bore is particularly important to ensure proper operation over the life.
  • FIG. 1 a longitudinal section through a fuel injection valve, the FIGS. 2, 3, 4 and 5 Magnifications in the guide area of the valve member.
  • FIG. 1 is a longitudinal section through a device for high-pressure fuel supply of an internal combustion engine, wherein the device is here a fuel injection valve.
  • a designed as a valve body 1 component has a bore 3, in which a piston-shaped element, which is designed here as a valve member 5, longitudinally displaceable is arranged.
  • the valve member 5 has a longitudinal axis 6 and is sealingly guided with a sealing portion 105 in a guide chamber 103 facing away from the combustion chamber of the bore 3. Starting from the sealing portion 105 of the valve member 5, the valve member 5 tapers to the combustion chamber to form a pressure shoulder 13 and thus passes over into a valve member shaft 205 reduced in diameter.
  • a valve sealing surface 7 is formed, which is at least approximately conical and cooperates with a formed on the combustion chamber end of the bore 3 valve seat 9.
  • at least one injection opening 11 is formed, which connects the bore 3 with the combustion chamber of the internal combustion engine.
  • a pressure chamber 19 is formed by a radial extension of the bore 3 in the valve body 1, which extends as a valve member 205 surrounding the annular channel to the valve seat 9.
  • the pressure chamber 19 is connectable via an inlet channel 25 extending in the valve body 1 with a high-pressure fuel source, not shown in the drawing, and can be filled with fuel at high pressure via this.
  • the combustion chamber facing away from the end face of the valve body 1 abuts against a valve holding body 2 and is clamped against it by a tensioning device, not shown in the drawing in the axial direction. It can also be provided to form the valve body 1 and the valve holding body 2 in one piece.
  • a leakage oil chamber 15 is formed, in which the bore 3 opens and which is constantly relieved of pressure via a drain channel, not shown in the drawing, so that there is always a low fuel pressure in the leakage oil chamber 15.
  • a closing device not shown in the drawing is arranged, which exerts a closing force F on the valve member 5, wherein the closing force F directed to the valve seat 9 is.
  • the direction of the closing force F is indicated in the drawing by an arrow.
  • the function of the fuel injection valve in the injection of fuel into the combustion chamber of the internal combustion engine is as follows, wherein two modes of operation can be distinguished: In the first mode, a high fuel pressure in the pressure chamber 19 is constantly maintained by the high-pressure fuel source via the inlet channel 25. This results in a hydraulic force on the pressure shoulder 13, which is directed against the closing force F. If no injection takes place, then the closing force F is selected to be correspondingly high, so that the valve member 5 bears against the valve seat 9 with its valve sealing surface 7. If an injection takes place, then the closing force F is reduced so that the hydraulic force on the pressure shoulder 13 now predominates and the valve member 5 is moved in the direction of the leakage oil space 15.
  • valve sealing surface 7 lifts off from the valve seat 9 and fuel is injected from the pressure chamber 19 through the injection opening 11 into the combustion chamber of the internal combustion engine.
  • closing force F By a corresponding increase in the closing force F, the injection is terminated again and the valve member 5 returns to its original position by a longitudinal movement.
  • an at least approximately constant closing force is exerted on the valve member 5, and the movement of the valve member 5 is effected by a variable fuel pressure in the pressure chamber 19. If no injection takes place, then prevails in the pressure chamber 19, a lower fuel pressure, so that the hydraulic force on the pressure shoulder 13 is smaller than the closing force F. If an injection takes place, then fuel is introduced via the inlet channel 25 into the pressure chamber 19, whereby there the fuel pressure increases.
  • the valve member 5 moves in the longitudinal direction and lifts, as in the first mode, with the valve sealing surface 7 from the valve seat 9, and the injection is carried out as described in the first mode.
  • the end of the injection is initiated by the fuel supply is interrupted by the supply passage 25, whereby the fuel pressure in the pressure chamber 19 drops and thus the hydraulic force on the pressure shoulder 13. Due to the closing force F, the valve member 5 returns to the starting position and closes the injection port 11.
  • FIG. 2 an enlarged view in the region of the guide portion 103 of the bore 3 is shown.
  • the valve member 5 is longitudinally displaceable in the bore 3, it must there have a certain play, so that between the seal portion 105 of the valve member 5 and the guide portion 103 of the bore 3, an annular gap 17 is formed.
  • the pressure chamber 19 is always applied a high fuel pressure
  • constantly fuel flows through this annular gap-shaped throttle gap from the pressure chamber 19 into the leakage oil chamber 15.
  • the fuel pressure drops in the throttle gap 17 approximately linearly from the pressure chamber 19 to the leakage oil chamber 15 down from.
  • valve member 5 undergoes a rotationally symmetrical hydraulic force on the surface of the sealing portion 105, so that cancel the radial forces on the valve member 5 each other. If the valve member 5, however, shifted from its central position, the annular gap 17 is smaller on the investment side, while it increases correspondingly on the opposite side. Without consideration of the recesses 30, the pressure in the annular gap 17 drops at least approximately linearly from the high-pressure chamber 19 to the leakage oil chamber 15. Considering the groove-shaped recesses 30, as they FIG. 2 shows, there is another state: The plant side of the valve member 5 opposite flows through the enlarged annular gap 17 there, the main portion of the leakage past the valve member 5.
  • FIG. 3 shows the same section as FIG. 2 a further fuel injection valve according to the invention.
  • the recesses 30 are formed here as inclined to the longitudinal axis 6 longitudinal grooves so that they have a helical course.
  • Another embodiment is shown in FIG.
  • the recesses 30 are shown as meandering grooves extending to about two thirds of the length of the sealing portion 105 of the valve member 5.
  • FIG. 5 a further embodiment is shown in which the recesses 30 are formed by piecewise straight grooves which are hydraulically connected to each other. This results in labyrinth-like structures on the surface of the valve member 5, the uniform distribution of the fuel over the Ensure the circumference of the valve member 5 without a preferential direction exists.
  • FIGS. 2, 3, 4 and 5 develop their respective advantage only in the overall geometry of the fuel injection valve. Which configuration, depth and cross-sectional shape is particularly advantageous in each case must be determined by experiment or simulation of the airfoil.
  • the cross-section of the recesses 30 must be kept relatively small.
  • the recesses 30 have a depth of 1 to 50 ⁇ m, preferably 2 to 10 ⁇ m.
  • the width of the groove-shaped recesses 30 is preferably 100 to 500 microns, wherein the cross-sectional shape of the recesses may be formed, for example, rectangular, circular section, triangular or U-shaped.
  • the recesses extend, starting from the combustion chamber facing the end of the sealing portion 105, about half to about three quarters of the length of the sealing portion 105. In this way, the leakage oil flow flowing through the recesses 30 and from there through the annular gap 17 to the leakage oil chamber 15, kept within reasonable limits.
  • recesses 30 In addition to the application of the recesses 30 according to the invention on a valve member 5, it may also be provided to form such recesses on other piston-shaped elements which are longitudinally displaceably guided in a bore, if on one side of the bore a high pressure and on the other side a low pressure prevails.
  • Such an arrangement is also given for example in fuel injection pumps, which compress fuel on one side by a longitudinally movable piston which is mounted in a bore and supply under high pressure to a fuel injection valve, while on the other side of the guide portion of this piston, a low fuel pressure is maintained.
  • the recesses 30 according to the invention are not formed on the piston-shaped element 5, but on the inner wall of the bore 3. Hydraulically, this results in a comparable situation as in the formation of the recesses 30 on the outer surface of the piston-shaped element 5.

Abstract

The invention relates to a device for supplying high pressure fuel to an internal combustion engine. Said device comprises a piston-shaped element (5) which is arranged in a bore hole (3) of a component (1) in a longitudinally displaceable manner. Said piston-shaped element (5) and the sealing section (105) thereof are guided in a guiding section (103) of the bore hole (3), one end of said guiding section (103) running into a pressure chamber (19) which can be filled with high pressure fuel and the other end into an overflow chamber (15). At least one recess (30) is formed on the sealing section (105) of the piston-shaped element (5), said recess being hydraulically connected to the pressure chamber (19) and sealed in relation to the overflow chamber (15), with the exception of the ring gap (17) between the piston-shaped element (5) and the inner wall of the guiding section (103). The piston-shaped element (5) is thus hydraulically centred in the bore hole (3).

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine aus, wie sie dem Oberbegriff des Patentanspruchs 1 entspricht. Eine solche Vorrichtung ist in Form eines Kraftstoffeinspritzventils beispielsweise aus der Offenlegungsschrift DE 198 43 344 A1 bekannt. In einem Ventilkörper ist eine Bohrung ausgebildet, in der ein kolbenförmiges Ventilglied längsverschiebbar angeordnet ist. Das Ventilglied weist einen Dichtungsabschnitt auf, mit dem es in einem Führungsabschnitt der Bohrung geführt ist, so daß in diesem Bereich zwischen dem Ventilglied und der Innenwand der Bohrung nur ein äußerst kleiner Ringspalt verbleibt, der gerade groß genug ist, um die Längsverschiebbarkeit des Ventilglieds sicherzustellen. Am brennraumzugewandten Ende des Führungsabschnitts der Bohrung schließt sich ein durch eine radiale Erweiterung der Bohrung ausgebildeter Druckraum an den Führungsbereich an, welcher Druckraum mit Kraftstoff unter hohem Druck befüllt werden kann. Der Druckraum setzt sich dem Brennraum zu als ein das Ventilglied umgebender Ringkanal fort und wird am brennraumseitigen Ende von einer Ventildichtfläche begrenzt, die die Bohrung zum Brennraum hin abschließt. Das Ventilglied weist an seinem brennraumseitigen Ende eine Ventildichtfläche auf, die mit dem Ventilsitz zur Steuerung wenigstens einer Einspritzöffnung zusammenwirkt, so daß durch die Längsbewegung des Ventilglieds die Einspritzöffnung mit dem Druckraum verbindbar ist.The invention is based on a device for high-pressure fuel supply of an internal combustion engine, as it corresponds to the preamble of patent claim 1. Such a device is in the form of a fuel injection valve, for example from the published patent application DE 198 43 344 A1 known. In a valve body, a bore is formed, in which a piston-shaped valve member is arranged longitudinally displaceable. The valve member has a sealing portion with which it is guided in a guide portion of the bore, so that in this area between the valve member and the inner wall of the bore only a very small annular gap remains just large enough to ensure the longitudinal displacement of the valve member , At the combustion chamber facing the end of the guide portion of the bore is followed by a trained by a radial extension of the bore pressure chamber to the guide area, which pressure chamber can be filled with fuel under high pressure. The pressure chamber continues to the combustion chamber as an annular channel surrounding the valve member and is delimited at the combustion chamber end by a valve sealing surface which closes the bore toward the combustion chamber. The valve member has at its combustion chamber end a valve sealing surface which cooperates with the valve seat for controlling at least one injection opening, so that the injection opening can be connected to the pressure chamber by the longitudinal movement of the valve member.

Am brennraumabgewandten Ende der Bohrung schließt sich an diese ein Leckölraum an, der durch einen entsprechenden Leckölanschluß ständig auf einem niedrigen Druckniveau gehalten wird. Da zumindest während der Einspritzung im Druckraum ein sehr hoher Kraftstoffdruck anliegt, herrscht zwischen den beiden Enden des Führungsabschnitt der Bohrung eine hohe Druckdifferenz. Hierdurch wird Kraftstoff durch den Ringspalt, der wegen der Längsverschiebbarkeit zwischen dem Dichtungsabschnitt des Ventilglieds und dem Führungsabschnitt der Bohrung verbleibt, vom Druckraum in den Leckölraum gepreßt. Gerade bei Kraftstoffen, wie sie für selbstzündende Brennkraftmaschinen verwendet werden, dient der Kraftstoff in diesem Bereich auch zur Schmierung des Ventilglieds in der Bohrung. Zur Verbesserung der Schmiereigenschaften und zum gleichmäßigen Ausbilden des Schmierfilms sind deshalb in der Offenlegungsschrift DE 198 43 344 A1 verschiedene Arten von Ausnehmungen am Dichtungsabschnitt des Ventilglieds vorgesehen. Als Beispiele werden unter anderem ringförmige Nuten und Vertiefungen mit kreisförmigem Querschnitt vorgeschlagen, die zu einem gleichmäßigen Schmierfilm und damit zu geringem Verschleiß des Ventilglieds in der Bohrung führen sollen. Aufgrund der hohen Druckdifferenz zwischen den beiden Enden des Führungsabschnitts der Bohrung kommt es bei einem verkippten Ventilglied zu einer hydraulischen Querkraft, die das Ventilglied an die Innenwand der Bohrung drückt. Diese Querkraft resultiert aus einem Druckabfall durch die Querschnittsverengung im Drosselspalt. Durch das Einbringen der Ringnuten gemäß DE 198 43 344 A1 soll nun eine Stabilisierung des Ventilglieds durch tangentialen Druckausgleich erreicht werden. Diese Methode vermindert aber lediglich die Querkraft an der Stelle der Ringnut. Sie erzeugt aber keinen Druckaufbau, der als Rückstellkraft zur Stabilisierung des Ventilglieds wirken könnte. Dadurch kann es zu unzulässig hohem Verschleiß des Ventilglieds in der Bohrung kommen und damit zu einer verminderten Lebensdauer des Kraftstoffeinspritzventils oder der sonstigen Vorrichtung zur Versorgung der Brennkraftmaschine.At the end of the bore away from the combustion chamber, a leakage oil space adjoins it, which is constantly kept at a low pressure level by a corresponding leak oil connection. Since at least during the injection in the pressure chamber, a very high fuel pressure is applied, there is a high pressure difference between the two ends of the guide portion of the bore. As a result, fuel is forced through the annular gap, which remains due to the Längsverschiebbarkeit between the sealing portion of the valve member and the guide portion of the bore from the pressure space in the leakage oil space. Especially in the case of fuels such as are used for self-igniting internal combustion engines, the fuel in this area also serves to lubricate the valve member in the bore. To improve the lubricating properties and uniform formation of the lubricating film are therefore in the published patent application DE 198 43 344 A1 various types of recesses provided on the sealing portion of the valve member. As examples, annular grooves and recesses with a circular cross-section are proposed, among other things, which should lead to a uniform lubricating film and thus to low wear of the valve member in the bore. Due to the high pressure difference between the two ends of the guide portion of the bore occurs in a tilted valve member to a hydraulic transverse force, which presses the valve member to the inner wall of the bore. This transverse force results from a pressure drop through the cross-sectional constriction in the throttle gap. By introducing the annular grooves according to DE 198 43 344 A1 Now, a stabilization of the valve member to be achieved by tangential pressure equalization. However, this method only reduces the transverse force at the location of the annular groove. But it does not generate pressure build-up, which could act as a restoring force for stabilizing the valve member. This can lead to unacceptably high wear of the valve member in the bore and thus to a reduced Life of the fuel injection valve or other device for supplying the internal combustion engine.

Das Dokument DE 198 20 264 zeigt Ausnehmungen an der Ventilnadel, die die Form von feinen Nuten haben. Diese verlaufen quer zur Längsachse der Ventilnadel, parallel zu dieser oder in einem Winkel dazu. Speziell die Längsnuten verlaufen dabei über die gesamte, geführte Länge der Ventilnadel, so dass die Längsnuten stets mit dem Druckraum verbunden sind und bis in einen Niederdruckraum reichen.The document DE 198 20 264 shows recesses on the valve needle, which have the shape of fine grooves. These run transversely to the longitudinal axis of the valve needle, parallel to this or at an angle thereto. Specifically, the longitudinal grooves extend over the entire, guided length of the valve needle, so that the longitudinal grooves are always connected to the pressure chamber and reach into a low-pressure space.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine weist demgegenüber den Vorteil auf, daß am Führungsabschnitt des in der Bohrung geführten kolbenförmigen Elements Ausnehmungen ausgebildet sind, die mit dem Druckraum hydraulisch verbunden sind, jedoch nicht bis in den Leckölraum reichen. Die Ausnehmungen sind hierbei vorzugsweise als Rillen ausgebildet, die vom Hochdruckbereich, also dem Druckraum, bis zu einer gewissen Höhe des Dichtungsabschnitts führen, jedoch nicht bis in den Niederdruckbereich. In dieser Ausführung verhindert die Struktur der Ausnehmungen nicht nur den Druckabfall hinter der engsten Stelle des zwischen dem kolbenförmigen Element und der Bohrung gebildeten Ringkanals, sondern baut im Vergleich zur gegenüberliegenden Seite einen höheren Druck auf. Dieser Druckaufbau bewirkt, daß das Ventilglied eine Kraft erfährt, die von der Innenwandfläche der Bohrung weggerichtet ist und so das kolbenförmige Element wieder in der Bohrung zentriert.The inventive device for high-pressure fuel supply of an internal combustion engine has the advantage that at the guide portion of the guided in the bore piston-shaped element recesses are formed which are hydraulically connected to the pressure chamber, but do not reach into the leakage oil space. The recesses are in this case preferably formed as grooves, which lead from the high pressure region, so the pressure chamber, up to a certain height of the sealing portion, but not into the low pressure region. In this embodiment, the structure of the recesses not only prevents the pressure drop behind the narrowest point of the annular channel formed between the piston-shaped element and the bore, but builds up a higher pressure compared to the opposite side. This pressure buildup causes the valve member to experience a force that is directed away from the inner wall surface of the bore, thus centering the piston-shaped member in the bore again.

In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung sind die Ausnehmungen gleichmäßig über den Umfang des kolbenförmigen Elements verteilt angeordnet, um so jeden Bereich des Umfangs des kolbenförmigen Elements über eine Ausnehmung mit dem Druckraum zu verbinden.In an advantageous embodiment of the object of the invention, the recesses are arranged distributed uniformly over the circumference of the piston-shaped element, so as to connect each area of the circumference of the piston-shaped element via a recess with the pressure chamber.

Damit der Leckölstrom durch den Ringspalt zwischen dem kolbenförmigen Element und der Bohrung durch die Ausnehmungen nicht übermäßig steigt, muß der Querschnitt der Ausnehmungen sehr klein gewählt werden. Hierbei ist in der erfindungsgemäßen Vorrichtung eine Tiefe von 1 bis 50 µm vorgesehen, vorzugsweise 2 bis 10 µm. Bei rillenförmigen Ausnehmungen kann die Breite zwischen 100 und 500 µm variieren.Thus, the leakage flow does not increase excessively through the annular gap between the piston-shaped element and the bore through the recesses, the cross section of the recesses must be very small. This is in the inventive Device provided a depth of 1 to 50 microns, preferably 2 to 10 microns. For groove-shaped recesses, the width can vary between 100 and 500 microns.

Besonders vorteilhaft ist die Ausbildung der erfindungsgemäßen Ausnehmungen, wenn die Vorrichtung ein Kraftstoffeinspritzventil und das kolbenförmige Element ein Ventilglied ist. Durch die hohen Kraftstoffdrücke in solchen Kraftstoffeinspritzventilen, wie sie vorzugsweise für selbstzündende Brennkraftmaschinen verwendet werden, ist eine exakte Ausrichtung des Ventilglieds in der Bohrung besonders wichtig, um einen einwandfreien Betrieb über die Lebensdauer zu gewährleisten.Particularly advantageous is the formation of the recesses according to the invention, when the device is a fuel injection valve and the piston-shaped element is a valve member. Due to the high fuel pressures in such fuel injectors, as are preferably used for auto-ignition internal combustion engines, an exact alignment of the valve member in the bore is particularly important to ensure proper operation over the life.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous embodiments of the subject matter of the invention are the description, the drawings and the claims removed.

Zeichnungdrawing

In der Zeichnung ist eine Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine in Form eines Einspritzventils dargestellt. Es zeigt Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil, die Figuren 2, 3, 4 und 5 Vergrößerungen im Führungsbereich des Ventilglieds.In the drawing, an apparatus for high-pressure fuel supply of an internal combustion engine in the form of an injection valve is shown. It shows FIG. 1 a longitudinal section through a fuel injection valve, the FIGS. 2, 3, 4 and 5 Magnifications in the guide area of the valve member.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In Figur 1 ist ein Längsschnitt durch eine Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine darstellt, wobei die Vorrichtung hier ein Kraftstoffeinspritzventil ist. Ein als Ventilkörper 1 ausgebildetes Bauteil weist eine Bohrung 3 auf, in der ein kolbenförmiges Element, das hier als Ventilglied 5 ausgebildet ist, längsverschiebbar angeordnet ist. Das Ventilglied 5 weist eine Längsachse 6 auf und ist mit einem Dichtungsabschnitt 105 in einem brennraumabgewandten Führungsabschnitt 103 der Bohrung 3 dichtend geführt. Ausgehend vom Dichtungsabschnitt 105 des Ventilglieds 5 verjüngt sich das Ventilglied 5 dem Brennraum zu unter Bildung einer Druckschulter 13 und geht so in einen im Durchmesser verkleinerten Ventilgliedschaft 205 über. Am brennraumseitigen Ende des Ventilglieds 5 ist eine Ventildichtfläche 7 ausgebildet, die zumindest näherungsweise konisch ausgebildet ist und mit einem am brennraumseitigen Ende der Bohrung 3 ausgebildeten Ventilsitz 9 zusammenwirkt. Im Ventilsitz 9 ist wenigstens eine Einspritzöffnung 11 ausgebildet, die die Bohrung 3 mit dem Brennraum der Brennkraftmaschine verbindet. Im Bereich der Druckschulter 13 ist durch eine radiale Erweiterung der Bohrung 3 im Ventilkörper 1 ein Druckraum 19 ausgebildet, der sich als ein den Ventilgliedschaft 205 umgebender Ringkanal bis zum Ventilsitz 9 erstreckt. Der Druckraum 19 ist über einen im Ventilkörper 1 verlaufenden Zulaufkanal 25 mit einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle verbindbar und über diese mit Kraftstoff unter hohem Druck befüllbar.In FIG. 1 is a longitudinal section through a device for high-pressure fuel supply of an internal combustion engine, wherein the device is here a fuel injection valve. A designed as a valve body 1 component has a bore 3, in which a piston-shaped element, which is designed here as a valve member 5, longitudinally displaceable is arranged. The valve member 5 has a longitudinal axis 6 and is sealingly guided with a sealing portion 105 in a guide chamber 103 facing away from the combustion chamber of the bore 3. Starting from the sealing portion 105 of the valve member 5, the valve member 5 tapers to the combustion chamber to form a pressure shoulder 13 and thus passes over into a valve member shaft 205 reduced in diameter. At the combustion chamber end of the valve member 5, a valve sealing surface 7 is formed, which is at least approximately conical and cooperates with a formed on the combustion chamber end of the bore 3 valve seat 9. In the valve seat 9, at least one injection opening 11 is formed, which connects the bore 3 with the combustion chamber of the internal combustion engine. In the region of the pressure shoulder 13, a pressure chamber 19 is formed by a radial extension of the bore 3 in the valve body 1, which extends as a valve member 205 surrounding the annular channel to the valve seat 9. The pressure chamber 19 is connectable via an inlet channel 25 extending in the valve body 1 with a high-pressure fuel source, not shown in the drawing, and can be filled with fuel at high pressure via this.

Die brennraumabgewandte Stirnseite des Ventilkörpers 1 liegt an einem Ventilhaltekörper 2 an und wird gegen diesen durch eine in der Zeichnung nicht dargestellte Spannvorrichtung in axialer Richtung verspannt. Es kann dabei auch vorgesehen sein, den Ventilkörper 1 und den Ventilhaltekörper 2 einstückig auszubilden. Im Ventilhaltekörper 2 ist ein Leckölraum 15 ausgebildet, in den die Bohrung 3 mündet und der über einen in der Zeichnung nicht dargestellten Leckölkanal ständig druckentlastet ist, so daß im Leckölraum 15 stets ein niedriger Kraftstoffdruck herrscht. Im Leckölraum 15 ist eine in der Zeichnung nicht dargestellte Schließvorrichtung angeordnet, die eine Schließkraft F auf das Ventilglied 5 ausübt, wobei die Schließkraft F auf den Ventilsitz 9 gerichtet ist. Die Richtung der Schließkraft F ist in der Zeichnung durch einen Pfeil gekennzeichnet. Die Funktion des Kraftstoffeinspritzventils bei der Einspritzung von Kraftstoff in den Brennraum der Brennkraftmaschine ist wie folgt, wobei zwei Betriebsarten unterschieden werden können: Bei der ersten Betriebsart wird durch die Kraftstoffhochdruckquelle über den Zulaufkanal 25 ständig ein hoher Kraftstoffdruck im Druckraum 19 aufrecht erhalten. Hierdurch ergibt sich eine hydraulische Kraft auf die Druckschulter 13, die entgegen der Schließkraft F gerichtet ist. Soll keine Einspritzung erfolgen, so wird die Schließkraft F entsprechend hoch gewählt, so daß das Ventilglied 5 mit seiner Ventildichtfläche 7 am Ventilsitz 9 anliegt. Soll eine Einspritzung erfolgen, so wird die Schließkraft F reduziert, so daß die hydraulische Kraft auf die Druckschulter 13 nunmehr überwiegt und das Ventilglied 5 in Richtung des Leckölraum 15 bewegt wird. Hierdurch hebt die Ventildichtfläche 7 vom Ventilsitz 9 ab und Kraftstoff wird aus dem Druckraum 19 durch die Einspritzöffnung 11 in den Brennraum der Brennkraftmaschine eingespritzt. Durch ein entsprechendes Erhöhen der Schließkraft F wird die Einspritzung wieder beendet und das Ventilglied 5 kehrt in seine ursprüngliche Position durch eine Längsbewegung zurück. Bei der zweiten Betriebsart wird eine zumindest näherungsweise konstante Schließkraft auf das Ventilglied 5 ausgeübt, und die Bewegung des Ventilglieds 5 erfolgt durch einen variablen Kraftstoffdruck im Druckraum 19. Soll keine Einspritzung erfolgen, so herrscht im Druckraum 19 ein niedriger Kraftstoffdruck, so daß die hydraulische Kraft auf die Druckschulter 13 kleiner ist als die Schließkraft F. Soll eine Einspritzung erfolgen, so wird Kraftstoff über den Zulaufkanal 25 in den Druckraum 19 eingeführt, wodurch dort der Kraftstoffdruck ansteigt. Sobald die hydraulische Kraft auf die Druckschulter 13 höher ist als die Schließkraft F, bewegt sich das Ventilglied 5 in Längsrichtung und hebt, wie bei der ersten Betriebsart, mit der Ventildichtfläche 7 vom Ventilsitz 9 ab, und die Einspritzung erfolgt wie bei der ersten Betriebsart beschrieben. Das Ende der Einspritzung wird dadurch eingeleitet, daß die Kraftstoffzufuhr durch den Zulaufkanal 25 unterbrochen wird, wodurch der Kraftstoffdruck im Druckraum 19 abfällt und damit auch die hydraulische Kraft auf die Druckschulter 13. Bedingt durch die Schließkraft F kehrt das Ventilglied 5 wieder in die Ausgangsposition zurück und verschließt die Einspritzöffnung 11.The combustion chamber facing away from the end face of the valve body 1 abuts against a valve holding body 2 and is clamped against it by a tensioning device, not shown in the drawing in the axial direction. It can also be provided to form the valve body 1 and the valve holding body 2 in one piece. In the valve holding body 2, a leakage oil chamber 15 is formed, in which the bore 3 opens and which is constantly relieved of pressure via a drain channel, not shown in the drawing, so that there is always a low fuel pressure in the leakage oil chamber 15. In the leakage oil chamber 15, a closing device, not shown in the drawing is arranged, which exerts a closing force F on the valve member 5, wherein the closing force F directed to the valve seat 9 is. The direction of the closing force F is indicated in the drawing by an arrow. The function of the fuel injection valve in the injection of fuel into the combustion chamber of the internal combustion engine is as follows, wherein two modes of operation can be distinguished: In the first mode, a high fuel pressure in the pressure chamber 19 is constantly maintained by the high-pressure fuel source via the inlet channel 25. This results in a hydraulic force on the pressure shoulder 13, which is directed against the closing force F. If no injection takes place, then the closing force F is selected to be correspondingly high, so that the valve member 5 bears against the valve seat 9 with its valve sealing surface 7. If an injection takes place, then the closing force F is reduced so that the hydraulic force on the pressure shoulder 13 now predominates and the valve member 5 is moved in the direction of the leakage oil space 15. As a result, the valve sealing surface 7 lifts off from the valve seat 9 and fuel is injected from the pressure chamber 19 through the injection opening 11 into the combustion chamber of the internal combustion engine. By a corresponding increase in the closing force F, the injection is terminated again and the valve member 5 returns to its original position by a longitudinal movement. In the second mode, an at least approximately constant closing force is exerted on the valve member 5, and the movement of the valve member 5 is effected by a variable fuel pressure in the pressure chamber 19. If no injection takes place, then prevails in the pressure chamber 19, a lower fuel pressure, so that the hydraulic force on the pressure shoulder 13 is smaller than the closing force F. If an injection takes place, then fuel is introduced via the inlet channel 25 into the pressure chamber 19, whereby there the fuel pressure increases. Once the hydraulic force on the pressure shoulder 13 is higher than the closing force F, the valve member 5 moves in the longitudinal direction and lifts, as in the first mode, with the valve sealing surface 7 from the valve seat 9, and the injection is carried out as described in the first mode. The end of the injection is initiated by the fuel supply is interrupted by the supply passage 25, whereby the fuel pressure in the pressure chamber 19 drops and thus the hydraulic force on the pressure shoulder 13. Due to the closing force F, the valve member 5 returns to the starting position and closes the injection port 11.

In der Figur 2 ist eine vergrößerte Darstellung im Bereich des Führungsabschnitts 103 der Bohrung 3 dargestellt. Damit das Ventilglied 5 in der Bohrung 3 längsverschiebbar ist, muß es dort ein gewisses Spiel haben, so daß zwischen dem Dichtungsabschnitt 105 des Ventilglieds 5 und dem Führungsabschnitt 103 der Bohrung 3 ein Ringspalt 17 ausgebildet ist. Insbesondere bei der oben geschilderten ersten Betriebsart, bei der am Druckraum 19 stets ein hoher Kraftstoffdruck anliegt, fließt ständig Kraftstoff über diesen ringspaltförmigen Drosselspalt vom Druckraum 19 in den Leckölraum 15. Bei einem genau mittig in der Bohrung 3 zentrierten Ventilglied 5 fällt der Kraftstoffdruck im Drosselspalt 17 näherungsweise linear vom Druckraum 19 zum Leckölraum 15 hin ab. Das Ventilglied 5 erfährt eine rotationssymmetrische hydraulische Kraft auf die Oberfläche des Dichtungsabschnitts 105, so daß sich die Radialkräfte auf das Ventilglied 5 gegenseitig aufheben. Ist das Ventilglied 5 hingegen aus seiner zentrischen Lage verschoben, so wird der Ringspalt 17 an der Anlageseite kleiner, während er sich auf der gegenüberliegenden Seite entsprechend vergrößert. Ohne Berücksichtigung der Ausnehmungen 30 fällt der Druck im Ringspalt 17 zumindest näherungsweise linear vom Hochdruckraum 19 bis zum Leckölraum 15 ab. Berücksichtigt man die rillenförmigen Ausnehmungen 30, wie sie Figur 2 zeigt, ergibt sich ein anderer Zustand: Der Anlageseite des Ventilglieds 5 gegenüberliegend strömt durch den dort vergrößerten Ringspalt 17 der Hauptanteil des Lecköls am Ventilglied 5 vorbei. In diesem Bereich spielen die rillenförmigen Ausnehmungen 30 für den Druckverlauf im Ringspalt 17 praktisch keine Rolle, so daß hier weiterhin ein linearer Druckabfall gegeben ist. Auf der Anlageseite des Ventilglieds 5 an der Innenwand des Führungsabschnitts 103 der Bohrung 3 ist der Ringspalt 17 hingegen verringert, so daß nur ein geringer Kraftstoffstrom in diesem Bereich stattfindet. Da die Ausnehmungen 30 in diesem Bereich mit dem Druckraum 19 hydraulisch verbunden sind, setzt sich der Kraftstoffhochdruck des Druckraums 19 in die Ausnehmungen 30 fort, so daß in den gesamten Ausnehmungen 30 im wesentlichen der Druck des Druckraums 19 herrscht, zumindest aber ein deutlich höherer Druck als auf der gleichen Höhe an der gegenüberliegenden Seite des Ringspalts 17. Durch diese Druckverteilung ergibt sich eine resultierende Kraft auf das Ventilglied 5, die dieses zurück in die Mitte der Bohrung 3 drückt, so daß das Ventilglied 5 in der zentrischen Position der Bohrung 3 in einem stabilen Gleichgewicht verharrt.In the FIG. 2 an enlarged view in the region of the guide portion 103 of the bore 3 is shown. Thus, the valve member 5 is longitudinally displaceable in the bore 3, it must there have a certain play, so that between the seal portion 105 of the valve member 5 and the guide portion 103 of the bore 3, an annular gap 17 is formed. In particular, in the above-described first mode in which the pressure chamber 19 is always applied a high fuel pressure, constantly fuel flows through this annular gap-shaped throttle gap from the pressure chamber 19 into the leakage oil chamber 15. At a centered exactly in the bore 3 valve member 5, the fuel pressure drops in the throttle gap 17 approximately linearly from the pressure chamber 19 to the leakage oil chamber 15 down from. The valve member 5 undergoes a rotationally symmetrical hydraulic force on the surface of the sealing portion 105, so that cancel the radial forces on the valve member 5 each other. If the valve member 5, however, shifted from its central position, the annular gap 17 is smaller on the investment side, while it increases correspondingly on the opposite side. Without consideration of the recesses 30, the pressure in the annular gap 17 drops at least approximately linearly from the high-pressure chamber 19 to the leakage oil chamber 15. Considering the groove-shaped recesses 30, as they FIG. 2 shows, there is another state: The plant side of the valve member 5 opposite flows through the enlarged annular gap 17 there, the main portion of the leakage past the valve member 5. In this area, the groove-shaped recesses 30 for the pressure curve in the annular gap 17 play virtually no role, so that here continues a linear pressure drop is given. On the contact side of the valve member 5 on the inner wall of the guide portion 103 of the bore 3, however, the annular gap 17 is reduced, so that only a small flow of fuel takes place in this area. Since the recesses 30 are hydraulically connected in this area with the pressure chamber 19, the fuel high pressure of the pressure chamber 19 continues into the recesses 30, so that in the entire recesses 30 substantially the pressure of the pressure chamber 19 prevails, but at least a significantly higher pressure By this pressure distribution results in a resultant force on the valve member 5, which presses this back into the center of the bore 3, so that the valve member 5 in the central position of the bore 3 in a stable balance remains.

Figur 3 zeigt denselben Ausschnitt wie Figur 2 eines weiteren erfindungsgemäßen Kraftstoffeinspritzventils. Die Ausnehmungen 30 sind hier als zur Längsachse 6 geneigte Längsrillen ausgebildet, so daß sie eine schraubenförmigen Verlauf aufweisen. Ein weiteres Ausführungsbeispiel ist in Figur 4 dargestellt. Hier sind die Ausnehmungen 30 als mäanderförmig ausgebildete Rillen dargestellt, die sich auf etwa zwei Drittel der Länge des Dichtungsabschnitts 105 des Ventilglieds 5 erstrecken. In Figur 5 ist ein weiteres Ausführungsbeispiel gezeigt, bei dem die Ausnehmungen 30 durch stückweise gerade Rillen gebildet werden, die untereinander hydraulisch verbunden sind. Hierdurch ergeben sich Labyrinth-artige Strukturen auf der Oberfläche des Ventilglieds 5, die eine gleichmäßige Verteilung des Kraftstoffs über den Umfang des Ventilglieds 5 sicherstellen, ohne daß eine Vorzugsrichtung existiert. FIG. 3 shows the same section as FIG. 2 a further fuel injection valve according to the invention. The recesses 30 are formed here as inclined to the longitudinal axis 6 longitudinal grooves so that they have a helical course. Another embodiment is shown in FIG. Here, the recesses 30 are shown as meandering grooves extending to about two thirds of the length of the sealing portion 105 of the valve member 5. In FIG. 5 a further embodiment is shown in which the recesses 30 are formed by piecewise straight grooves which are hydraulically connected to each other. This results in labyrinth-like structures on the surface of the valve member 5, the uniform distribution of the fuel over the Ensure the circumference of the valve member 5 without a preferential direction exists.

Die Ausgestaltungen der Fig. 2, 3, 4 und 5 entfalten ihren jeweiligen Vorteil nur in der Gesamtgeometrie des Kraftstoffeinspritzventils. Welche Ausgestaltung, Tiefe und Querschnittsform jeweils besonders vorteilhaft ist, muß in jedem Einzelfall durch Versuch oder Simulation des Strömungsprofils bestimmt werden.The embodiments of FIGS. 2, 3, 4 and 5 develop their respective advantage only in the overall geometry of the fuel injection valve. Which configuration, depth and cross-sectional shape is particularly advantageous in each case must be determined by experiment or simulation of the airfoil.

Damit der Leckölstrom vom Druckraum 19 in den Leckölraum 15 keine unzulässig hohen Werte annimmt, muß der Querschnitt der Ausnehmungen 30 relativ klein gehalten werden. Um dies zu erreichen, weisen die Ausnehmungen 30 eine Tiefe von 1 bis 50 µm, vorzugsweise 2 bis 10 µm, auf. Die Breite der rillenförmigen Ausnehmungen 30 ist vorzugsweise 100 bis 500 µm, wobei die Querschnittsform der Ausnehmungen beispielsweise rechteckförmig, kreisabschnittsförmig, dreieckförmig oder u-förmig ausgebildet sein kann. Die Ausnehmungen erstrecken sich dabei, ausgehend vom brennraumzugewandten Ende des Dichtungsabschnitts 105, etwa über die Hälfte bis etwa drei Viertel der Länge des Dichtungsabschnitts 105. Auf diese Weise wird der Leckölstrom, der durch die Ausnehmungen 30 fließt und von dort durch den Ringspalt 17 bis in den Leckölraum 15, in vertretbaren Grenzen gehalten.So that the leakage oil flow from the pressure chamber 19 into the leakage oil chamber 15 does not assume inadmissibly high values, the cross-section of the recesses 30 must be kept relatively small. In order to achieve this, the recesses 30 have a depth of 1 to 50 μm, preferably 2 to 10 μm. The width of the groove-shaped recesses 30 is preferably 100 to 500 microns, wherein the cross-sectional shape of the recesses may be formed, for example, rectangular, circular section, triangular or U-shaped. The recesses extend, starting from the combustion chamber facing the end of the sealing portion 105, about half to about three quarters of the length of the sealing portion 105. In this way, the leakage oil flow flowing through the recesses 30 and from there through the annular gap 17 to the leakage oil chamber 15, kept within reasonable limits.

Neben der Anwendung der erfindungsgemäßen Ausnehmungen 30 an einem Ventilglied 5 kann es auch vorgesehen sein, derartige Ausnehmungen an anderen kolbenförmigen Elementen auszubilden, die längsverschiebbar in einer Bohrung geführt sind, wenn auf einer Seite der Bohrung ein hoher Druck und auf der anderen Seite ein niedriger Druck herrscht. Eine solche Anordnung ist beispielsweise auch bei Kraftstoffeinspritzpumpen gegeben, die durch einen längsbeweglichen Kolben, der in einer Bohrung gelagert ist, Kraftstoff auf einer Seite komprimieren und unter hohem Druck einem Kraftstoffeinspritzventil zuführen, während auf der anderen Seite des Führungsabschnitts dieses Kolbens ein niedriger Kraftstoffdruck aufrecht erhalten wird.In addition to the application of the recesses 30 according to the invention on a valve member 5, it may also be provided to form such recesses on other piston-shaped elements which are longitudinally displaceably guided in a bore, if on one side of the bore a high pressure and on the other side a low pressure prevails. Such an arrangement is also given for example in fuel injection pumps, which compress fuel on one side by a longitudinally movable piston which is mounted in a bore and supply under high pressure to a fuel injection valve, while on the other side of the guide portion of this piston, a low fuel pressure is maintained.

Alternativ zu den oben beschriebenen Vorrichtungen kann es auch vorgesehen sein, die erfindungsgemäßen Ausnehmungen 30 nicht an dem kolbenförmigen Element 5 auszubilden, sondern an der Innenwand der Bohrung 3. Hydraulisch ergibt sich dadurch eine vergleichbare Situation wie bei der Ausbildung der Ausnehmungen 30 an der Außenfläche des kolbenförmigen Elements 5.As an alternative to the above-described devices, it may also be provided that the recesses 30 according to the invention are not formed on the piston-shaped element 5, but on the inner wall of the bore 3. Hydraulically, this results in a comparable situation as in the formation of the recesses 30 on the outer surface of the piston-shaped element 5.

Claims (7)

  1. Fuel injection valve for the supply of fuel at high pressure to an internal combustion engine, having a valve element (5) which is arranged in a longitudinally movable manner in a bore (3) of a valve body (1), which valve element (5) is guided with a sealing section (105) in a guide section (103) of the bore (3), wherein the guide section (103) opens at one end into a pressure chamber (19) which can be filled with fuel at high pressure and at the other end into a leakage oil chamber (15), in which leakage oil chamber (15) a low fuel pressure prevails at all times, characterized in that longitudinal grooves (30) are formed on the sealing section (105) of the valve element (5), which longitudinal grooves run in the longitudinal direction of the valve element (5) and are hydraulically connected to the pressure chamber (19) and extend into the pressure chamber (19) at their end facing towards the pressure chamber (19) but do not extend into the leakage oil chamber (15), and which longitudinal grooves are sealed off, with the exception of the annular gap (17) formed between the valve element (5) and the inner wall of the guide section (103), with respect to the leakage oil chamber (15), wherein the longitudinal grooves (30) have a depth of 2 to 50 µm.
  2. Fuel injection valve according to Claim 1, characterized in that the longitudinal grooves (30) have a rectangular cross section.
  3. Fuel injection valve according to Claim 1, characterized in that the longitudinal grooves (30) have a triangular cross section.
  4. Fuel injection valve according to Claim 1, characterized in that the longitudinal grooves (30) have a cross section in the shape of a segment of a circle.
  5. Fuel injection valve according to Claim 1, characterized in that the recesses extend over 20% to 80%, preferably 50 to 80%, of the length of the sealing section (105) of the valve element (5).
  6. Fuel injection valve according to one of the preceding claims, characterized in that the longitudinal grooves (30) have a depth of 2 to 10 µm.
  7. Fuel injection valve according to one of the preceding claims, characterized in that a plurality of longitudinal grooves (30) are formed on the valve element (5), which longitudinal grooves (30) are arranged so as to be distributed uniformly about the circumference.
EP01991686A 2001-01-19 2001-12-22 Device for supplying high pressure fuel to an internal combustion engine Expired - Lifetime EP1356203B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10102234 2001-01-19
DE10102234A DE10102234A1 (en) 2001-01-19 2001-01-19 High pressure fuel supply unit, for an IC motor with fuel injection, has a drilling through the valve body to take a piston with a sealing section against the guide section of the drilling, with a hydraulic piston centering action
PCT/DE2001/004915 WO2002064969A1 (en) 2001-01-19 2001-12-22 Device for supplying high pressure fuel to an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1356203A1 EP1356203A1 (en) 2003-10-29
EP1356203B1 true EP1356203B1 (en) 2011-09-28

Family

ID=7671029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991686A Expired - Lifetime EP1356203B1 (en) 2001-01-19 2001-12-22 Device for supplying high pressure fuel to an internal combustion engine

Country Status (6)

Country Link
US (1) US7011256B2 (en)
EP (1) EP1356203B1 (en)
JP (1) JP2004518076A (en)
DE (1) DE10102234A1 (en)
PL (1) PL357212A1 (en)
WO (1) WO2002064969A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245573A1 (en) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
JP4007202B2 (en) 2003-01-23 2007-11-14 株式会社デンソー Sliding structure of shaft member and injector
JP4119812B2 (en) * 2003-09-19 2008-07-16 ボッシュ株式会社 Fuel injection valve
JP4066959B2 (en) 2004-01-27 2008-03-26 株式会社デンソー Fuel injection device
JP2008057458A (en) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd Fuel injection valve
DE102012223334A1 (en) * 2012-12-17 2014-06-18 Robert Bosch Gmbh Piston-cylinder unit
DE102014218179A1 (en) 2014-09-11 2016-03-17 Robert Bosch Gmbh Axial piston machine and use of an axial piston machine
DE102015211705A1 (en) * 2015-06-24 2016-12-29 Robert Bosch Gmbh Fuel injector with control valve
DE102015226326A1 (en) * 2015-12-21 2017-06-22 Robert Bosch Gmbh Hydraulic coupler and fuel injection valve with such
DE102017115613A1 (en) * 2017-07-12 2019-01-17 L'orange Gmbh Fuel injector and injection system for an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433710A1 (en) * 1984-09-14 1986-03-27 Robert Bosch Gmbh, 7000 Stuttgart ELECTRICALLY CONTROLLED PUMPEDUESE FOR FUEL INJECTION IN DIESEL INTERNAL COMBUSTION ENGINES
DE19820264A1 (en) 1998-05-07 1999-11-11 Mtu Friedrichshafen Gmbh High-pressure piston cylinder unit for internal combustion engine
GB9819746D0 (en) * 1998-09-11 1998-11-04 Lucas Ind Plc Fuel injector
DE19843344A1 (en) * 1998-09-22 2000-03-23 Bosch Gmbh Robert Fuel injection valve for internal combustion engine has valve member axially movably positioned in bore of valve body, which has valve sealing surface at combustion chamber-side end
US6776358B2 (en) * 1998-10-09 2004-08-17 Jun Arimoto Fuel injection nozzle for a diesel engine
EP1041274B1 (en) 1998-10-09 2010-09-08 Jun Arimoto Fuel injection valve for diesel engine
GB9904938D0 (en) * 1999-03-04 1999-04-28 Lucas Ind Plc Fuel injector

Also Published As

Publication number Publication date
PL357212A1 (en) 2004-07-26
US20040124286A1 (en) 2004-07-01
JP2004518076A (en) 2004-06-17
DE10102234A1 (en) 2002-07-25
EP1356203A1 (en) 2003-10-29
US7011256B2 (en) 2006-03-14
WO2002064969A1 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
DE69918902T2 (en) fuel injector
DE102005003663B4 (en) Fuel injectors with reduced wear
DE10315821A1 (en) Motor vehicle internal combustion engine injection valve has housing with bore and pressure space defining throttled connection with valve shoulder on needle
DE10163908A1 (en) Fuel injection valve for internal combustion engines
EP1356203B1 (en) Device for supplying high pressure fuel to an internal combustion engine
DE69818382T2 (en) INJEKTOR
EP1387950B1 (en) Valve comprising radial recesses
DE10313225A1 (en) Fuel injection valve for internal combustion engines
EP3055549B1 (en) Plunger/fluid-line arrangement, in particular control-plunger/control-bore arrangement
DE102009032850A1 (en) Pressure relief valve for limiting fluid pressure in distribution pipe of common rail injection system of modern diesel engine, has valve stem including outer surface and drilling section with inner surface that are aligned to each other
EP1373715A1 (en) Fuel-injection valve for internal combustion engines
DE3113475A1 (en) Fuel injection nozzle
EP1346143A1 (en) Fuel injection valve for internal combustion engines
EP1574701A1 (en) Common rail injector
DE102005020365A1 (en) Valve, in particular fuel injection valve
DE10260724A1 (en) Fuel injection valve for internal combustion engines
EP0502315A1 (en) Fuel injection pump for internal combustion engines
EP1608866B1 (en) Fuel-injection valve for internal combustion engines
DE19901057A1 (en) Fuel injection valve for internal combustion engines
EP0396127B1 (en) Fuel injection apparatus
DE202015009430U1 (en) Atomizer of an electric injection nozzle for an injection system for an internal combustion engine
DE10318989A1 (en) Fuel injection valve, for an IC motor, has a ring groove at the valve needle in a constant hydraulic link with the fuel-filled pressure zone and its downstream edge acting a sealing edge, to reduce wear at the valve seat
DE19929881A1 (en) Fuel injection valve for internal combustion engines
EP2960487B1 (en) Fuel injector valve for combustion engines
DE10148350A1 (en) Fuel injector, for a common rail direct fuel injection at an IC motor, has a fuel flow channel through the valve unit, opening into a flow zone directly upstream of the valve seat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50115965

Country of ref document: DE

Effective date: 20111201

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111228

26N No opposition filed

Effective date: 20120629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115965

Country of ref document: DE

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130123

Year of fee payment: 12

Ref country code: DE

Payment date: 20130225

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115965

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115965

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231