EP2954258B1 - Grid lamp having a 2d-array of reflector cells and leds - Google Patents

Grid lamp having a 2d-array of reflector cells and leds Download PDF

Info

Publication number
EP2954258B1
EP2954258B1 EP13814910.9A EP13814910A EP2954258B1 EP 2954258 B1 EP2954258 B1 EP 2954258B1 EP 13814910 A EP13814910 A EP 13814910A EP 2954258 B1 EP2954258 B1 EP 2954258B1
Authority
EP
European Patent Office
Prior art keywords
reflector
lateral positions
pattern
cells
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13814910.9A
Other languages
German (de)
French (fr)
Other versions
EP2954258A1 (en
Inventor
Tobias Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2954258A1 publication Critical patent/EP2954258A1/en
Application granted granted Critical
Publication of EP2954258B1 publication Critical patent/EP2954258B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0083Array of reflectors for a cluster of light sources, e.g. arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/06Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using crossed laminae or strips, e.g. grid-shaped louvers; using lattices or honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a grid lamp, comprising a plurality of reflector cells, each having a neck opening and a light exit opening, and having a plurality of semiconductor light sources in the region of the neck openings.
  • the invention also relates to a method for producing a grid lamp.
  • the invention is particularly applicable to LED grid lights for interior lighting, in particular room lighting.
  • a variant of luminaires for general lighting, in particular room lighting (for example in offices or meeting rooms), are flat LED luminaires with reflector cells arranged in a pattern or grid ("louvre luminaires"). Each of these reflector cells is associated with a light-emitting diode (LED), which is arranged centrally to a neck opening of this reflector cell.
  • LED light-emitting diode
  • louvre luminaires offer better glare reduction.
  • a raster lamp in which in each reflection cell, a multi-chip light emitter is arranged with four disposed in a 2 ⁇ 2 matrix solid-state light emitters, wherein one of the four solid-state light emitter of the multi-chip light emitter emits red light and the other three solid-state light emitter of Multi-chip light emitter emit BSY light, and wherein in a part of the reflection cells, the multi-chip light emitter are oriented so that the red light-emitting solid-state light emitter is disposed in a "down-right” position, and in another part of the reflection cells, the multi-chip light emitters are oriented so that the red light-emitting solid-state light emitter is arranged in a "top-left" position.
  • a grid lamp comprising a plurality of reflector cells, each having a neck opening and a light exit opening, and having a plurality of semiconductor light sources in the region of the neck openings, each reflector cell is associated with exactly one semiconductor light source, wherein for at least two of the reflector cells lateral positions of these semiconductor light sources with respect to the respective neck openings, and wherein a quantity of the different lateral positions occurring in the reflector cells has a regular arrangement.
  • the Lichtabstrahlmuster the individual lighting units of reflector cell and associated semiconductor light source is selectively varied regularly regularly. This results in a well-defined, effectively smoothing superposition of the individual Lichtabstrahlmuster at least in the far field of the grid light.
  • the louver lamp will also be less sensitive to manufacturing tolerances, since a production-related variation of the positions of the semiconductor light sources will usually be smaller than a systematic variation of these positions by the intended different lateral positioning and therefore has low impact.
  • a "lateral position" may be a position in a plane perpendicular to an optical axis of the reflector cell or light unit.
  • the lateral position may also be a position in a plane perpendicular to a longitudinal axis or axis of symmetry of the reflector cell.
  • the lateral position may also be a position in a plane in or parallel to the neck opening.
  • the lateral position may also be a position which results when viewing the light exit opening of the associated reflector cell.
  • no height position is meant, in particular not expressed by a distance to the neck opening.
  • the term "lateral position" in particular to the X and Y coordinates of the semiconductor light source (or a geometric center thereof) and not to the Z coordinate.
  • one of the lateral positions is a central or central position with respect to the neck opening.
  • the central position corresponds to the special case of a lateral offset of size zero, in particular with respect to an axis of symmetry or an optical axis of the reflector cell.
  • a "quantity of the occurring lateral positions" can be understood in particular as the entirety of all lateral positions of semiconductor light sources occurring in the grid light, in particular irrespective of how large the number of occurring lateral positions is.
  • positioning may be meant in particular a determination of one or more lateral positions.
  • the raster lamp may in particular be a flat luminaire.
  • the reflector cells preferably have parallel optical axes.
  • the reflector cells are arranged at least approximately in a regular first pattern.
  • the reflector cells can in particular be arranged exactly in the regular first pattern.
  • the different lateral positions of the semiconductor light sources can then be e.g. can be achieved by a corresponding deviation of the positions of the semiconductor light sources from the exact first pattern.
  • the reflector cells can be produced particularly easily.
  • the reflector cells may be arranged in the exact regular first pattern plus the lateral positions to be achieved and the semiconductor light sources may be arranged in the exact first pattern. This allows a particularly simple assembly of the semiconductor light sources.
  • the first pattern may be a flat pattern.
  • the first pattern may in particular be a rectangular matrix pattern, a circular pattern or ring pattern or a hexagonal pattern and / or in particular a close-packed pattern.
  • the reflector cells may be arranged in a matrix-like, hexagonal or annular pattern and the amount of the different lateral positions occurring in the reflector cells form a similar matrix-like, hexagonal or annular pattern.
  • the reflector cells may be arranged in an mx n matrix pattern and the Semiconductor light sources may be arranged at corresponding lateral positions from a likewise formed as mx n matrix pattern set of positions.
  • a raster lamp may have at least two individual reflector cells and / or one or more reflector gratings.
  • a grid lamp on nine or more reflector cells is particularly preferred.
  • an embodiment with a number of more than 50 reflector cells is particularly preferred.
  • the substrate may be e.g. to be a circuit board. This allows easy mounting of the semiconductor light sources.
  • a substrate may be assigned to a reflector grid, which has all semiconductor light sources assigned to this reflector grid (also referred to as "reflector module").
  • a raster lamp may be composed of one or more such reflector modules.
  • such a substrate may be associated with a plurality of individual reflector cells and / or reflector gratings.
  • Each reflector cell is associated with exactly one semiconductor light source or is "occupied" by exactly one semiconductor light source.
  • the semiconductor light source comprises a light emitting diode.
  • a color of the light emitting diode may be monochrome (e.g., red, green, blue, etc.) or multichrome (e.g., white).
  • the light emitted by the light emitting diode may be an infrared light (IR LED) or an ultraviolet light (UV LED).
  • the light emitting diode may include a wavelength converting phosphor (conversion LED).
  • the phosphor may alternatively or additionally be arranged remotely from the light-emitting diode ("remote phosphor").
  • the light-emitting diode can be present in the form of a single light-emitting diode or in the form of an LED chip.
  • the light-emitting diode may be equipped with at least one own and / or common optics for beam guidance, e.g. at least one Fresnel lens, collimator, and so on.
  • at least one own and / or common optics for beam guidance e.g. at least one Fresnel lens, collimator, and so on.
  • organic LEDs OLEDs, for example polymer OLEDs
  • the semiconductor light source may be e.g. have a diode laser.
  • the diode laser may also be followed by a wavelength-converting phosphor, e.g. in a LARP ("Laser Activated Remote Phosphor") arrangement.
  • LARP Laser Activated Remote Phosphor
  • the reflector cells may also be present or referred to as shell reflectors.
  • the neck opening is typically smaller than the light exit opening.
  • the reflector cells thus generally widen from the neck opening to the light exit opening.
  • the light emitted by an associated semiconductor light source passes through the reflector cell partially directly and partially reflected and then exits at the light exit opening.
  • An associated semiconductor light source may be outside the reflector cell and may emit light through the neck opening or be inserted into or through the neck opening in the reflector cell.
  • the reflector cells or their reflective surfaces are in particular identically shaped.
  • a shape of the reflective surface of the reflector cells is not limited and may be, for example, four-sided truncated pyramidal, conical, truncated pyramidal with pentagonal, hexagonal, etc. base area, etc.
  • the shape of the reflective surface of the reflector cells may be flat or curved, for example parabolic, hyperbolic or free-space curved.
  • the reflective surface may be faceted.
  • the reflective surface may be diffuse or specularly reflective.
  • the reflective surface may comprise wavelength-converting phosphor.
  • lateral position is meant in particular the lateral position of a light source with respect to the respective associated reflector cell, in particular not the position with respect to the entire luminaire.
  • the amount of occurring in the reflector cells lateral positions of the semiconductor light sources forms a section of a mathematical grid of rank 2.
  • a matrix pattern may, in particular, be understood as a section of a rectangular grid.
  • the amount of occurring in the reflector cells lateral positions of the semiconductor light sources forms a rotationally symmetrical pattern. This allows even smoothing to multiple sides.
  • the amount of lateral positions forms a ring pattern.
  • the set of lateral positions forms points of an outer contour which correspond to the contour of the neck opening.
  • a surface for positioning the lateral positions or the semiconductor light sources can be kept particularly large.
  • the predetermined lateral positions may be in a matrix pattern or other rectangular pattern.
  • the predetermined lateral positions may be in a hexagonal pattern.
  • the predetermined lateral positions may be in a circular or oval pattern.
  • the lateral positions of the set predetermined for the reflector cells occupy positions on a non-symmetrical figure, e.g. lying on a Fibonacci spiral.
  • the object is also achieved by a method for producing a grid lamp, wherein the method has at least the following steps: providing a plurality of reflector cells, each having a neck opening and a light exit opening; Arranging a plurality of semiconductor light sources in the region of associated neck openings of the reflector cells at a position which is lateral relative to the associated neck openings, that a lot of the lateral positions form a regular arrangement.
  • the method solves the same tasks as the grid lamp and can be configured analogously.
  • arranging the plurality of semiconductor light sources comprises selecting a lateral position of the respective semiconductor light source from a set of regularly arranged lateral positions for the reflector cells.
  • Fig.1 shows in a view obliquely from above a grid lamp 11.
  • the grid lamp 11 has 64 identically constructed reflector cells 12, which are arranged in a regular matrix-like 8 x 8 basic pattern in a common plane.
  • the reflector cells 12 are aligned in a same direction and have parallel optical axes, which are perpendicular to the common plane (o. Fig.).
  • the 64 reflector cells 12 are in the form of four separately manufactured, each one-piece reflector trellises 13, in a matrix-like 2x2 pattern.
  • Each of the reflector gratings 13 has sixteen reflector cells 12 in a 4x4 pattern.
  • a distance d1 between directly adjacent reflector cells 12 of a common reflector grating 13 is the same. This distance d1 is also slightly smaller than a distance d2 of over a boundary between two different reflector trenches 13 away directly adjacent reflector cells 12th
  • the reflector cells 12 have truncated pyramid-shaped reflecting surfaces 14, wherein a smaller opening than the neck opening 15 and a larger opening serves as a light exit opening 16, as well as in Fig.2 shown. Behind the neck openings 15 of each of the reflector cells 12 is in each case a semiconductor light source in the form of a light emitting diode 17, in particular in the form of a packaged LED or an LED chip. The reflector cells 12 are thus fully occupied by LEDs 17.
  • the LEDs 17 emit their light L in the respective neck opening 15 in the reflector cell 12, with its greatest intensity (main emission) along or, as shown, parallel to the optical axis O of the reflector cell 12. Depending on the angle of incidence or angle the main emission direction, the light L passes directly to the light exit opening 16 or is only mirrored at the respective reflective surface 14.
  • the reflector cell 12 can also be regarded as a shell reflector.
  • the light-emitting diode 17 shown here is not arranged centrally to the neck opening 15, but is located on a laterally offset position.
  • the lateral offset corresponds to a displacement perpendicular to the optical axis O.
  • a lateral position P of the light-emitting diode 17 therefore corresponds in particular to a position on a plane E perpendicular to the optical axis O, in particular in a region of a mathematical projection of the neck opening 15 on this plane E.
  • a position of the light emitting diode 17 along the optical axis O (“height position") may be independently selected therefrom.
  • the reflective surface 14 may be planar, alternatively or additionally curved in section.
  • the LEDs 17 may occupy a position P of a set G1 of sixteen predetermined lateral positions P indicated as dots.
  • the positions P are also arranged in a matrix-like pattern, in a 4 x 4 basic pattern. There are no central position with respect to the neck opening 15.
  • At least two of these light-emitting diodes 17 have a different lateral position P with respect to the associated neck openings 15. More specifically, all the reflector cells 12 associated with a common reflector grid 13 have their light emitting diodes 17 at different lateral positions P, as indicated by the dots. In particular, the positions P of the LEDs 17 correspond to the positions of the respective reflector cells 12 in the reflector grid 13.
  • the LEDs 17 are positioned differently with respect to a common reflector grid 13 in a regular manner.
  • the light-emitting diodes 17 of different reflector gratings 13 can be positioned identically but need not be.
  • All light-emitting diodes 17 of the louvre luminaire 11 are arranged on a common substrate in the form of, for example, a 30 cm ⁇ 30 cm large board 18, as again with respect to FIG Fig.1 shown.
  • the reflector gratings 13 can also be fastened to the circuit board 18.
  • Figure 5 shows a plan view of a section of a grid lamp 31 according to a second embodiment.
  • the reflective surface 34 of the reflector cell 32 is formed as a hexagonal truncated pyramid.
  • the set G2 of the possible lateral positions P of the light emitting diodes 17 at a neck opening 35 is formed as a hexagonal, centered dot pattern and thus corresponds to the arrangement pattern of the reflector cells 32.
  • the lateral positions P are also shown here as dots.
  • the light-emitting diodes can be arranged at a lateral position P, which corresponds to a position of the associated reflector cell 32 in the set of reflector cells 32.
  • Figure 6 shows a further possible set G3 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) rectangular neck opening.
  • the lateral positions P are now arranged in a matrix pattern (for example, a 4x4 matrix pattern) in which a distance of lateral positions between rows and columns is not constant.
  • Figure 7 shows a further possible set G4 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) hexagonal neck opening.
  • the lateral positions P are now similar in a pattern to Figure 5 arranged, but now stretched along one direction (here: the horizontal direction).
  • Figure 8 shows yet another possible set G5 of lateral positions P for light-emitting diodes 17, in particular for a - indicated by dashed lines hexagonal neck opening. Here has been dispensed with a provision of the central position.
  • Fig.9 to Fig.12 show further possible quantities G6 to G9 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) round neck opening.
  • the amount G6 in Figure 9 has an annular pattern at lateral positions P, wherein also a position P at a central location is provided.
  • the amount G7 in Figure 10 shows a pattern analogous to the set G6, but without the central position.
  • the amount G8 in Figure 11 shows a pattern analogous to the set G6, but with an inner subset of, here: three, annularly arranged positions P instead of the central position.
  • the amount G9 in Figure 12 shows a pattern analogous to set G8, but with an inner subset of six annular positions P.
  • the arrangement patterns of all amounts G1 to G9 shown make it possible to selectively vary a light emission pattern of the individual luminous units of reflector cell (eg 12 or 32) and associated light-emitting diode 17 so that at least in the far field of the grid lamp (eg 11 or 31) a smoothing Overlaying the individual Lichtabstrahlmuster results.
  • the louvre lamp is less sensitive to manufacturing tolerances.
  • the halftone cells may be arranged in a different pattern to the lateral positions of the semiconductor light sources.
  • the deviation may relate to the number and / or shape of the positions of the pattern.
  • the reflector cells analogous to Figure 4 or Figure 5 be arranged in a rectangular matrix pattern or a dense hexagon pattern, the reflector cells but have a cone-shaped reflective surface with a round neck opening and light exit opening.
  • the arrangement pattern of the lateral positions may, for example, have a round or annular basic shape.
  • a plurality of the LEDs may be arranged at the same lateral positions of a crowd.
  • one or more lateral positions of a crowd may not be populated with LEDs.
  • a number may include exactly the specified number as well as a usual tolerance range, as long as this is not explicitly excluded.
  • the positioning of the semiconductor light sources can be achieved by placing the semiconductor light sources on the board at suitable locations which take into account the different lateral positions. Then, in particular, an arrangement of the reflector cells may correspond to a regular pattern. Alternatively, with a given arrangement of the semiconductor light sources on the board, the positioning can be achieved by arranging the reflector cells at suitable locations. Thus, for example, in the first embodiment gem. Fig.1 all light-emitting diodes 17 may be arranged in a regular square grid, while the reflector cells 12 are offset in accordance with the desired lateral positions. This may be easier to manufacture.

Description

Die Erfindung betrifft eine Rasterleuchte, aufweisend mehrere Reflektorzellen, welche jeweils eine Halsöffnung und eine Lichtaustrittsöffnung aufweisen, und aufweisend mehrere Halbleiterlichtquellen im Bereich der Halsöffnungen. Die Erfindung betrifft auch ein Verfahren zum Herstellen einer Rasterleuchte. Die Erfindung ist insbesondere anwendbar auf LED-Rasterleuchten zur Innenbeleuchtung, insbesondere Raumbeleuchtung.The invention relates to a grid lamp, comprising a plurality of reflector cells, each having a neck opening and a light exit opening, and having a plurality of semiconductor light sources in the region of the neck openings. The invention also relates to a method for producing a grid lamp. The invention is particularly applicable to LED grid lights for interior lighting, in particular room lighting.

Eine Variante von Leuchten für die Allgemeinbeleuchtung, insbesondere Raumbeleuchtung (z.B. in Büros oder Versammlungsräumen), sind flächige LED-Leuchten mit in einem Muster oder Raster angeordneten Reflektorzellen ("Rasterleuchten"). Jeder dieser Reflektorzellen ist eine Leuchtdiode (LED) zugeordnet, die mittig zu einer Halsöffnung dieser Reflektorzelle angeordnet ist. Im Vergleich zu Pyramiden- und Prismenplatten oder zu sog. "Brightness-Enhancement"-Folien bieten solche Rasterleuchten eine bessere Entblendung.A variant of luminaires for general lighting, in particular room lighting (for example in offices or meeting rooms), are flat LED luminaires with reflector cells arranged in a pattern or grid ("louvre luminaires"). Each of these reflector cells is associated with a light-emitting diode (LED), which is arranged centrally to a neck opening of this reflector cell. In comparison to pyramid and prism plates or so-called "brightness enhancement" films, such louvre luminaires offer better glare reduction.

Bei der Auslegung von Rasterleuchten besteht die Schwierigkeit, dass dann, wenn eine Reflektorzelle so klein ist, dass ihre Halsöffnung nur wenig größer ist als die zugehörige LED, sich hohe Anforderungen an eine Präzision der Form und Anordnung der Reflektorzelle und an eine Präzision der Positionierung der LED ergeben. Außerdem besteht hier bei der Verwendung von metallischen Reflektorzellen das Problem, dass die Schutzabstände zwischen stromführenden Bauteilen und der Reflektorzelle nur schwierig einzuhalten sind. Ist dagegen die Halsöffnung wesentlich größer als die LED, weist ein zugehöriges Lichtverteilungsmuster oft unerwünschte Kanten und Unebenheiten auf.In the design of louvre luminaires, there is the difficulty that when a reflector cell is so small that its neck opening is only slightly larger than the associated LED, high demands are placed on precision of the shape and arrangement of the reflector cell and precision of positioning of the reflector cell LED resulted. In addition, there is the problem here with the use of metallic reflector cells that the protective distances between current-carrying components and the reflector cell are difficult to comply. On the other hand, if the neck opening is substantially larger than the LED, an associated light distribution pattern often has undesirable edges and bumps.

In US 2011/0182065 A1 ist eine Rasterleuchte beschrieben, bei der in jeder Reflektionszelle ein Multi-Chip-Lichtemitter mit vier in einer 2×2-Matrix angeordneten Festkörperlichtemittern angeordnet ist, wobei einer der vier Festkörperlichtemitter des Multi-Chip-Lichtemitters rotes Licht emittiert und die anderen drei Festkörperlichtemitter des Multi-Chip-Lichtemitters BSY-Licht emittieren, und wobei in einem Teil der Reflektionszellen die Multi-Chip-Lichtemitter so orientiert sind, dass der rotes Licht emittierende Festkörperlichtemitter in einer "Unten-rechts"-Position angeordnet ist, und in einem anderen Teil der Reflektionszellen die Multi-Chip-Lichtemitter so orientiert sind, dass der rotes Licht emittierende Festkörperlichtemitter in einer "Oben-links"-Position angeordnet ist.In US 2011/0182065 A1 a raster lamp is described in which in each reflection cell, a multi-chip light emitter is arranged with four disposed in a 2 × 2 matrix solid-state light emitters, wherein one of the four solid-state light emitter of the multi-chip light emitter emits red light and the other three solid-state light emitter of Multi-chip light emitter emit BSY light, and wherein in a part of the reflection cells, the multi-chip light emitter are oriented so that the red light-emitting solid-state light emitter is disposed in a "down-right" position, and in another part of the reflection cells, the multi-chip light emitters are oriented so that the red light-emitting solid-state light emitter is arranged in a "top-left" position.

Es ist die Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zumindest teilweise zu überwinden und insbesondere ein ausreichend glattes Lichtverteilungsmuster auch bei größeren Halsöffnungen zu ermöglichen. Noch eine Aufgabe ist es, eine Rasterleuchte bereitzustellen, die unempfindlicher gegen Herstellungstoleranzen ist.It is the object of the present invention to at least partially overcome the disadvantages of the prior art and in particular to allow a sufficiently smooth light distribution pattern even with larger neck openings. Yet another object is to provide a grid lamp that is less sensitive to manufacturing tolerances.

Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.This object is achieved according to the features of the independent claims. Preferred embodiments are in particular the dependent claims.

Die Aufgabe wird gelöst durch eine Rasterleuchte, aufweisend mehrere Reflektorzellen, welche jeweils eine Halsöffnung und eine Lichtaustrittsöffnung aufweisen, und aufweisend mehrere Halbleiterlichtquellen im Bereich der Halsöffnungen, wobei jeder Reflektorzelle genau eine Halbleiterlichtquelle zugeordnet ist, wobei sich für mindestens zwei der Reflektorzellen seitliche Positionen dieser Halbleiterlichtquellen in Bezug auf die jeweiligen Halsöffnungen unterscheiden und wobei eine Menge der in den Reflektorzellen vorkommenden unterschiedlichen seitlichen Positionen eine regelmäßige Anordnung aufweist.The object is achieved by a grid lamp, comprising a plurality of reflector cells, each having a neck opening and a light exit opening, and having a plurality of semiconductor light sources in the region of the neck openings, each reflector cell is associated with exactly one semiconductor light source, wherein for at least two of the reflector cells lateral positions of these semiconductor light sources with respect to the respective neck openings, and wherein a quantity of the different lateral positions occurring in the reflector cells has a regular arrangement.

Dadurch wird das Lichtabstrahlmuster der einzelnen Leuchteinheiten aus Reflektorzelle und zugeordneter Halbleiterlichtquelle gezielt regelmäßig leicht variiert. Dadurch ergibt sich zumindest im Fernfeld der Rasterleuchte eine gut definierte, effektiv glättende Überlagerung der einzelnen Lichtabstrahlmuster. Zudem wird so die Rasterleuchte auch unempfindlicher gegen Herstellungstoleranzen, da eine herstellungsbedingte Variation der Positionen der Halbleiterlichtquellen in der Regel kleiner sein wird als eine systematische Variation dieser Positionen durch die beabsichtigte unterschiedliche seitliche Positionierung und daher geringe Auswirkungen hat.As a result, the Lichtabstrahlmuster the individual lighting units of reflector cell and associated semiconductor light source is selectively varied regularly regularly. This results in a well-defined, effectively smoothing superposition of the individual Lichtabstrahlmuster at least in the far field of the grid light. In addition, the louver lamp will also be less sensitive to manufacturing tolerances, since a production-related variation of the positions of the semiconductor light sources will usually be smaller than a systematic variation of these positions by the intended different lateral positioning and therefore has low impact.

Dass sich für mindestens zwei der Reflektorzellen seitliche Positionen dieser Halbleiterlichtquellen in Bezug auf die jeweiligen Halsöffnungen unterscheiden, beinhaltet insbesondere, dass sich die einer dieser Reflektorzellen zugehörigen (besetzten) seitlichen Positionen von den (besetzten) seitlichen Positionen einer anderen dieser Reflektorzellen unterscheiden.That differ for at least two of the reflector cells lateral positions of these semiconductor light sources with respect to the respective neck openings, in particular, that includes one of these reflector cells associated (occupied) lateral positions of the (occupied) lateral positions of another of these reflector cells.

Eine "seitliche Position" mag insbesondere eine Position in einer Ebene senkrecht zu einer optischen Achse der Reflektorzelle oder Leuchteinheit sein. Die seitliche Position mag auch eine Position in einer Ebene senkrecht zu einer Längsachse oder Symmetrieachse der Reflektorzelle sein. Die seitliche Position mag zudem eine Position in einer Ebene in der oder parallel zu der Halsöffnung sein. Die seitliche Position mag ferner eine Position sein, welche sich bei Einblick in die Lichtaustrittsöffnung der zugehörigen Reflektorzelle ergibt. Jedoch ist insbesondere keine Höhenposition gemeint, insbesondere nicht ausgedrückt durch einen Abstand zu der Halsöffnung. Wird beispielsweise einer Reflektorzelle ein kartesisches Koordinatensystem mit den Achsenbezeichnungen X, Y und Z zugewiesen, so dass die Z-Achse mit einer Längsachse wie etwa einer Symmetrieachse und/oder einer optischen Achse dieser Reflektorzelle zusammenfällt, so bezieht sich der Begriff "seitliche Position" insbesondere auf die X- und Y-Koordinaten der Halbleiterlichtquelle (oder eines geometrischen Mittelpunktes davon) und nicht auf die Z-Koordinate.In particular, a "lateral position" may be a position in a plane perpendicular to an optical axis of the reflector cell or light unit. The lateral position may also be a position in a plane perpendicular to a longitudinal axis or axis of symmetry of the reflector cell. The lateral position may also be a position in a plane in or parallel to the neck opening. The lateral position may also be a position which results when viewing the light exit opening of the associated reflector cell. However, in particular, no height position is meant, in particular not expressed by a distance to the neck opening. For example, if a Cartesian coordinate system with the axis designations X, Y and Z assigned to a reflector cell, so that the Z-axis coincides with a longitudinal axis such as an axis of symmetry and / or an optical axis of this reflector cell, the term "lateral position" in particular to the X and Y coordinates of the semiconductor light source (or a geometric center thereof) and not to the Z coordinate.

Es ist eine Weiterbildung, dass eine der seitlichen Positionen eine in Bezug auf die Halsöffnung zentrale oder mittige Position ist. Die mittige Position entspricht dem Spezialfall eines seitlichen Versatzes der Größe Null, insbesondere in Bezug auf eine Symmetrieachse oder eine optischen Achse der Reflektorzelle.It is a development that one of the lateral positions is a central or central position with respect to the neck opening. The central position corresponds to the special case of a lateral offset of size zero, in particular with respect to an axis of symmetry or an optical axis of the reflector cell.

Unter einer "Menge der vorkommenden seitlichen Positionen" kann insbesondere die Gesamtheit aller in der Rasterleuchte vorkommenden seitlichen Positionen von Halbleiterlichtquellen verstanden werden, insbesondere unabhängig davon, wie groß die Zahl der vorkommenden seitlichen Positionen ist.A "quantity of the occurring lateral positions" can be understood in particular as the entirety of all lateral positions of semiconductor light sources occurring in the grid light, in particular irrespective of how large the number of occurring lateral positions is.

Mit "Positionierung" mag insbesondere eine Festlegung einer oder mehrerer seitlicher Positionen gemeint sein.By "positioning" may be meant in particular a determination of one or more lateral positions.

Die Rasterleuchte mag insbesondere eine ebene Leuchte sein. Bevorzugt weisen die Reflektorzellen parallele optische Achsen auf.The raster lamp may in particular be a flat luminaire. The reflector cells preferably have parallel optical axes.

Es ist eine Weiterbildung, dass die Reflektorzellen zumindest annähernd in einem regelmäßigen ersten Muster angeordnet sind. Dabei können die Reflektorzellen insbesondere genau in dem regelmäßigen ersten Muster angeordnet sein. Die unterschiedlichen seitlichen Positionen der Halbleiterlichtquellen können dann z.B. durch eine entsprechende Abweichung der Positionen der Halbleiterlichtquellen von dem genauen ersten Muster erreicht werden. So können die Reflektorzellen besonders einfach hergestellt werden. Alternativ mögen die Reflektorzellen in dem genauen regelmäßigen ersten Muster zuzüglich der zu erreichenden seitlichen Positionen angeordnet sein und die Halbleiterlichtquellen in dem genauen ersten Muster angeordnet sein. Dies ermöglicht eine besonders einfache Bestückung der Halbleiterlichtquellen. Das erste Muster mag insbesondere ein ebenes Muster sein. Das erste Muster mag insbesondere ein rechteckiges Matrixmuster, ein Kreismuster oder Ringmuster oder ein hexagonales Muster sein und/oder insbesondere ein dichtgepacktes Muster.It is a development that the reflector cells are arranged at least approximately in a regular first pattern. In this case, the reflector cells can in particular be arranged exactly in the regular first pattern. The different lateral positions of the semiconductor light sources can then be e.g. can be achieved by a corresponding deviation of the positions of the semiconductor light sources from the exact first pattern. Thus, the reflector cells can be produced particularly easily. Alternatively, the reflector cells may be arranged in the exact regular first pattern plus the lateral positions to be achieved and the semiconductor light sources may be arranged in the exact first pattern. This allows a particularly simple assembly of the semiconductor light sources. In particular, the first pattern may be a flat pattern. The first pattern may in particular be a rectangular matrix pattern, a circular pattern or ring pattern or a hexagonal pattern and / or in particular a close-packed pattern.

Es ist noch eine Weiterbildung, dass eine Menge der in den Reflektorzellen vorkommenden unterschiedlichen seitlichen Positionen in einem regelmäßigen zweiten Muster angeordnet ist. Das zweite Muster mag dem ersten Muster grundsätzlich gleichen. So mögen z.B. die Reflektorzellen in einem matrixartigen, hexagonalen oder ringförmigen Muster angeordnet sein und die Menge der in den Reflektorzellen vorkommenden unterschiedlichen seitlichen Positionen ein ähnliches matrixartiges, hexagonales oder ringförmiges Muster bilden. Beispielsweise mögen die Reflektorzellen in einem m x n-Matrixmuster angeordnet sein und die Halbleiterlichtquellen an entsprechenden seitlichen Positionen aus einer ebenfalls als m x n-Matrixmuster gebildeten Menge von Positionen angeordnet sein.It is still a development that a lot of the occurring in the reflector cells different lateral positions is arranged in a regular second pattern. The second pattern may basically be the same as the first pattern. Thus, for example, the reflector cells may be arranged in a matrix-like, hexagonal or annular pattern and the amount of the different lateral positions occurring in the reflector cells form a similar matrix-like, hexagonal or annular pattern. For example, the reflector cells may be arranged in an mx n matrix pattern and the Semiconductor light sources may be arranged at corresponding lateral positions from a likewise formed as mx n matrix pattern set of positions.

Es ist auch eine Weiterbildung, dass mehrere Reflektorzellen einstückig einem Bauteil der Rasterleuchte zugeordnet sind bzw. ein Bauteil mehrere Reflektorzellen bildet oder aufweist. Ein solches Bauteil wird im Folgenden ohne Beschränkung der Allgemeinheit als "Reflektorgitter" bezeichnet. Eine Rasterleuchte mag mindestens zwei einzelne Reflektorzellen und/oder ein oder mehrere Reflektorgitter aufweisen.It is also a development that a plurality of reflector cells are integrally associated with a component of the grid lamp or a component forms or has a plurality of reflector cells. Such a component is referred to below without restriction of the generality as a "reflector grid". A raster lamp may have at least two individual reflector cells and / or one or more reflector gratings.

Vorzugsweise weist eine Rasterleuchte neun oder mehr Reflektorzellen auf. Besonders bevorzugt ist eine Ausführung mit einer Anzahl von mehr als 50 Reflektorzellen.Preferably, a grid lamp on nine or more reflector cells. Particularly preferred is an embodiment with a number of more than 50 reflector cells.

Es ist noch eine Weiterbildung, dass mehrere, insbesondere alle, Halbleiterlichtquellen auf einem gemeinsamen Substrat angeordnet sind. Das Substrat mag z.B. eine Leiterplatte sein. Dies ermöglicht eine einfache Montage der Halbleiterlichtquellen.It is still a further development that several, in particular all, semiconductor light sources are arranged on a common substrate. The substrate may be e.g. to be a circuit board. This allows easy mounting of the semiconductor light sources.

Insbesondere mag einem Reflektorgitter ein Substrat zugeordnet sein, das alle diesem Reflektorgitter zugeordneten Halbleiterlichtquellen aufweist (zusammen auch als "Reflektormodul" bezeichenbar). Eine Rasterleuchte mag aus einem oder mehreren solchen Reflektormodulen zusammengesetzt sein. Alternativ mögen einem solchen Substrat mehrere einzelne Reflektorzellen und/oder Reflektorgitter zugeordnet sein. So wird eine Herstellung und Lagerhaltung als auch eine Erweiterung einer Rasterleuchte um zusätzliche Reflektormodule erleichtert.In particular, a substrate may be assigned to a reflector grid, which has all semiconductor light sources assigned to this reflector grid (also referred to as "reflector module"). A raster lamp may be composed of one or more such reflector modules. Alternatively, such a substrate may be associated with a plurality of individual reflector cells and / or reflector gratings. Thus, a production and storage as well as an extension of a grid lamp is facilitated by additional reflector modules.

Jeder Reflektorzelle ist genau eine Halbleiterlichtquelle zugeordnet ist bzw. ist mit genau einer Halbleiterlichtquelle "besetzt".Each reflector cell is associated with exactly one semiconductor light source or is "occupied" by exactly one semiconductor light source.

Bevorzugterweise umfasst die Halbleiterlichtquelle eine Leuchtdiode. Eine Farbe der Leuchtdiode kann monochrom (z.B. rot, grün, blau usw.) oder multichrom (z.B. weiß) sein. Auch kann das von der Leuchtdiode abgestrahlte Licht ein infrarotes Licht (IR-LED) oder ein ultraviolettes Licht (UV-LED) sein. Die Leuchtdiode kann einen wellenlängenumwandelnden Leuchtstoff enthalten (Konversions-LED). Der Leuchtstoff kann alternativ oder zusätzlich entfernt von der Leuchtdiode angeordnet sein ("Remote Phosphor"). Die Leuchtdiode kann in Form einer einzeln gehäusten Leuchtdiode oder in Form eines LED-Chips vorliegen. Mehrere LED-Chips können auf einem gemeinsamen Substrat ("Submount") montiert sein. Die Leuchtdiode kann mit mindestens einer eigenen und/oder gemeinsamen Optik zur Strahlführung ausgerüstet sein, z.B. mindestens einer Fresnel-Linse, Kollimator, und so weiter. Anstelle oder zusätzlich zu anorganischen Leuchtdioden, z.B. auf Basis von InGaN oder AlInGaP, sind allgemein auch organische LEDs (OLEDs, z.B. Polymer-OLEDs) einsetzbar. Alternativ kann die Halbleiterlichtquelle z.B. einen Diodenlaser aufweisen. Auch dem Diodenlaser mag ein wellenlängenumwandelnder Leuchtstoff nachgeschaltet sein, z.B. in einer LARP ("Laser Activated Remote Phosphor")-Anordnung.Preferably, the semiconductor light source comprises a light emitting diode. A color of the light emitting diode may be monochrome (e.g., red, green, blue, etc.) or multichrome (e.g., white). Also, the light emitted by the light emitting diode may be an infrared light (IR LED) or an ultraviolet light (UV LED). The light emitting diode may include a wavelength converting phosphor (conversion LED). The phosphor may alternatively or additionally be arranged remotely from the light-emitting diode ("remote phosphor"). The light-emitting diode can be present in the form of a single light-emitting diode or in the form of an LED chip. Several LED chips can be mounted on a common substrate ("submount"). The light-emitting diode may be equipped with at least one own and / or common optics for beam guidance, e.g. at least one Fresnel lens, collimator, and so on. Instead of or in addition to inorganic light emitting diodes, e.g. based on InGaN or AlInGaP, organic LEDs (OLEDs, for example polymer OLEDs) can generally also be used. Alternatively, the semiconductor light source may be e.g. have a diode laser. The diode laser may also be followed by a wavelength-converting phosphor, e.g. in a LARP ("Laser Activated Remote Phosphor") arrangement.

Die Reflektorzellen mögen auch als Schalenreflektoren vorliegen oder bezeichnet werden. Die Halsöffnung ist typischerweise kleiner als die Lichtaustrittsöffnung. Die Reflektorzellen weiten sich also in der Regel von der Halsöffnung zu der Lichtaustrittsöffnung. Das von einer zugehörigen Halbleiterlichtquelle abgestrahlte Licht durchläuft die Reflektorzelle teilweise direkt und teilweise reflektiert und tritt dann an der Lichtaustrittsöffnung aus. Eine zugehörige Halbleiterlichtquelle mag sich außerhalb der Reflektorzelle befinden und Licht durch die Halsöffnung einstrahlen oder in oder durch die Halsöffnung in die Reflektorzelle eingeführt sein.The reflector cells may also be present or referred to as shell reflectors. The neck opening is typically smaller than the light exit opening. The reflector cells thus generally widen from the neck opening to the light exit opening. The light emitted by an associated semiconductor light source passes through the reflector cell partially directly and partially reflected and then exits at the light exit opening. An associated semiconductor light source may be outside the reflector cell and may emit light through the neck opening or be inserted into or through the neck opening in the reflector cell.

Die Reflektorzellen bzw. ihre reflektierenden Oberflächen sind insbesondere identisch geformt.The reflector cells or their reflective surfaces are in particular identically shaped.

Eine Form der reflektierenden Oberfläche der Reflektorzellen ist nicht beschränkt und mag z.B. vierseitig pyramidenstumpfförmig, konusförmig, pyramidenstumpfförmig mit fünfeckiger, sechseckiger usw. Grundfläche usw. sein. Die Form der reflektierenden Oberfläche der Reflektorzellen mag eben oder gekrümmt sein, z.B. parabolisch, hyperbolisch oder freiflächnerisch gekrümmt. Die reflektierende Oberfläche mag facettiert sein. Die reflektierende Oberfläche mag diffus oder spekular reflektierend sein. Die reflektierende Oberfläche mag wellenlängenkonvertierenden Leuchtstoff aufweisen.A shape of the reflective surface of the reflector cells is not limited and may be, for example, four-sided truncated pyramidal, conical, truncated pyramidal with pentagonal, hexagonal, etc. base area, etc. The shape of the reflective surface of the reflector cells may be flat or curved, for example parabolic, hyperbolic or free-space curved. The reflective surface may be faceted. The reflective surface may be diffuse or specularly reflective. The reflective surface may comprise wavelength-converting phosphor.

Mit dem Begriff "seitliche Position" ist insbesondere die seitliche Position einer Lichtquelle in Bezug auf die jeweils zugehörige Reflektorzelle gemeint, insbesondere nicht die Position in Bezug auf die gesamte Leuchte.By the term "lateral position" is meant in particular the lateral position of a light source with respect to the respective associated reflector cell, in particular not the position with respect to the entire luminaire.

Es ist ferner eine Ausgestaltung, dass die Menge der in den Reflektorzellen vorkommenden seitlichen Positionen der Halbleiterlichtquellen einen Ausschnitt aus einem mathematischen Gitter vom Rang 2 bildet.It is also an embodiment that the amount of occurring in the reflector cells lateral positions of the semiconductor light sources forms a section of a mathematical grid of rank 2.

Es ist noch eine Ausgestaltung, dass die Menge der seitlichen Positionen einen Ausschnitt aus einem Matrixmuster bildet. Unter einem Matrixmuster kann insbesondere ein Ausschnitt aus einem rechtwinkligen Gitter verstanden werden.It is still an embodiment that the set of lateral positions forms a section of a matrix pattern. A matrix pattern may, in particular, be understood as a section of a rectangular grid.

Es ist noch eine Ausgestaltung, dass die Menge der in den Reflektorzellen vorkommenden seitlichen Positionen der Halbleiterlichtquellen ein drehsymmetrisches Muster bildet. Dadurch wird eine gleichmäßige Glättung zu mehreren Seiten hin ermöglicht.It is still an embodiment that the amount of occurring in the reflector cells lateral positions of the semiconductor light sources forms a rotationally symmetrical pattern. This allows even smoothing to multiple sides.

Es ist ferner eine Ausgestaltung, dass die Menge der seitlichen Positionen ein Ringmuster bildet.It is also an embodiment that the amount of lateral positions forms a ring pattern.

Es ist eine Weiterbildung, dass die Menge der seitlichen Positionen Punkte einer Außenkontur bildet, welche der Kontur der Halsöffnung entsprechen. So lässt sich eine Fläche zur Positionierung der seitlichen Positionen bzw. der Halbleiterlichtquellen besonders groß halten. Beispielsweise mögen bei einer rechteckigen Halsöffnung die vorbestimmten seitlichen Positionen in einem Matrixmuster oder anderen rechteckigen Muster vorliegen. Bei einer sechseckigen Halsöffnung mögen die vorbestimmten seitlichen Positionen z.B. in einem sechseckigen Muster vorliegen. Bei einer kreisförmigen oder ovalen Halsöffnung mögen die vorbestimmten seitlichen Positionen z.B. in einem kreisförmigen oder ovalen Muster vorliegen.It is a development that the set of lateral positions forms points of an outer contour which correspond to the contour of the neck opening. Thus, a surface for positioning the lateral positions or the semiconductor light sources can be kept particularly large. For example, in a rectangular neck opening, the predetermined lateral positions may be in a matrix pattern or other rectangular pattern. For a hexagonal neck opening, for example, the predetermined lateral positions may be in a hexagonal pattern. For example, with a circular or oval neck opening, the predetermined lateral positions may be in a circular or oval pattern.

Es ist auch eine Ausgestaltung, dass die für die Reflektorzellen vorbestimmten seitlichen Positionen der Menge Positionen auf einer nicht-symmetrischen Figur einnehmen, z.B. auf einer Fibonacci-Spirale liegen.It is also an embodiment that the lateral positions of the set predetermined for the reflector cells occupy positions on a non-symmetrical figure, e.g. lying on a Fibonacci spiral.

Die Aufgabe wird auch gelöst durch ein Verfahren zum Herstellen einer Rasterleuchte, wobei das Verfahren mindestens die folgenden Schritte aufweist: Bereitstellen mehrerer Reflektorzellen, welche jeweils eine Halsöffnung und eine Lichtaustrittsöffnung aufweisen; Anordnen mehrerer Halbleiterlichtquellen im Bereich zugehöriger Halsöffnungen der Reflektorzellen an in Bezug auf die zugehörigen Halsöffnungen seitlichen Position so,
dass eine Menge der seitlichen Positionen eine regelmäßige Anordnung bildet.
The object is also achieved by a method for producing a grid lamp, wherein the method has at least the following steps: providing a plurality of reflector cells, each having a neck opening and a light exit opening; Arranging a plurality of semiconductor light sources in the region of associated neck openings of the reflector cells at a position which is lateral relative to the associated neck openings,
that a lot of the lateral positions form a regular arrangement.

Das Verfahren löst die gleichen Aufgaben wie die Rasterleuchte und kann analog ausgestaltet werden.The method solves the same tasks as the grid lamp and can be configured analogously.

Beispielsweise ist es eine Ausgestaltung, dass das Anordnen der mehreren Halbleiterlichtquellen ein Auswählen einer seitlichen Position der jeweiligen Halbleiterlichtquelle aus einer Menge von für die Reflektorzellen vorbestimmten, regelmäßig angeordneten seitlichen Positionen umfasst.For example, it is an embodiment that arranging the plurality of semiconductor light sources comprises selecting a lateral position of the respective semiconductor light source from a set of regularly arranged lateral positions for the reflector cells.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden schematischen Beschreibung von Ausführungsbeispielen, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei können zur Übersichtlichkeit gleiche oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sein.

Fig.1
zeigt in einer Ansicht von schräg oben eine erfindungsgemäße Rasterleuchte gemäß einem ersten Ausführungsbeispiel mit mehreren Reflektorzellen;
Fig.2
zeigt als Schnittdarstellung in Seitenansicht eine Reflektorzelle mit zugeordneter Halbleiterlichtquelle;
Fig.3
zeigt in Draufsicht eine Reflektorzelle mit einer Menge möglicher Positionen der Halbleiterlichtquelle der Rasterleuchte gemäß dem ersten Ausführungsbeispiel;
Fig.4
zeigt in Draufsicht einen Ausschnitt aus der Rasterleuchte gemäß dem ersten Ausführungsbeispiel;
Fig.5
zeigt in Draufsicht einen Ausschnitt aus einer Rasterleuchte gemäß einem zweiten Ausführungsbeispiel;
Fig.6-8
zeigen in Draufsicht mehrere mögliche Mengen von seitlichen Positionen von Halbleiterlichtquellen, insbesondere für Reflektorzellen mit eckigen Halsöffnungen; und
Fig.9-12
zeigen in Draufsicht weitere mögliche Mengen von seitlichen Positionen von Halbleiterlichtquellen, insbesondere für Reflektorzellen mit runden Halsöffnungen.
The above-described characteristics, features, and advantages of this invention, as well as the manner in which they will be achieved, will become clearer and more clearly understood in connection with the following schematic description of exemplary embodiments which will be described in detail in conjunction with the drawings. In this case, the same or equivalent elements may be provided with the same reference numerals for clarity.
Fig.1
shows in a view obliquely from above a grid lamp according to the invention according to a first embodiment with a plurality of reflector cells;
Fig.2
shows a sectional side view of a reflector cell with associated semiconductor light source;
Figure 3
shows in plan view a reflector cell with a set of possible positions of the semiconductor light source of the raster lamp according to the first embodiment;
Figure 4
shows in plan view a section of the grid lamp according to the first embodiment;
Figure 5
shows a plan view of a section of a grid lamp according to a second embodiment;
Fig.6-8
show in plan view a plurality of possible sets of lateral positions of semiconductor light sources, in particular for reflector cells with angular neck openings; and
Fig.9-12
show in plan further possible amounts of lateral positions of semiconductor light sources, in particular for reflector cells with round neck openings.

Fig.1 zeigt in einer Ansicht von schräg oben eine Rasterleuchte 11. Die Rasterleuchte 11 weist 64 gleich aufgebaute Reflektorzellen 12 auf, die in einem regelmäßigen, matrixartigen 8 x 8-Grundmuster in einer gemeinsamen Ebene angeordnet sind. Die Reflektorzellen 12 sind in eine gleiche Richtung ausgerichtet und weisen dazu parallele optische Achsen auf, die senkrecht zu der gemeinsamen Ebene stehen (o. Abb.). Fig.1 shows in a view obliquely from above a grid lamp 11. The grid lamp 11 has 64 identically constructed reflector cells 12, which are arranged in a regular matrix-like 8 x 8 basic pattern in a common plane. The reflector cells 12 are aligned in a same direction and have parallel optical axes, which are perpendicular to the common plane (o. Fig.).

Die 64 Reflektorzellen 12 liegen genauer gesagt in Form von vier separat hergestellten, jeweils einstückigen Reflektorgittern 13 vor, und zwar in einem matrixartigen 2x2-Muster. Jedes der Reflektorgitter 13 weist sechzehn Reflektorzellen 12 in einem 4x4-Muster auf. Ein Abstand d1 zwischen direkt benachbarten Reflektorzellen 12 eines gemeinsamen Reflektorgitters 13 ist gleich. Dieser Abstand d1 ist zudem etwas kleiner als ein Abstand d2 von über eine Grenze zwischen zwei unterschiedlichen Reflektorgittern 13 hinweg direkt benachbarten Reflektorzellen 12.Specifically, the 64 reflector cells 12 are in the form of four separately manufactured, each one-piece reflector trellises 13, in a matrix-like 2x2 pattern. Each of the reflector gratings 13 has sixteen reflector cells 12 in a 4x4 pattern. A distance d1 between directly adjacent reflector cells 12 of a common reflector grating 13 is the same. This distance d1 is also slightly smaller than a distance d2 of over a boundary between two different reflector trenches 13 away directly adjacent reflector cells 12th

Die Reflektorzellen 12 weisen pyramidenstumpfförmige reflektierende Oberflächen 14 auf, wobei eine kleinere Öffnung als Halsöffnung 15 und eine größere Öffnung als Lichtaustrittsöffnung 16 dient, wie auch in Fig.2 gezeigt. Hinter den Halsöffnungen 15 jeder der Reflektorzellen 12 befindet sich jeweils eine Halbleiterlichtquelle in Form einer Leuchtdiode 17, insbesondere in Form einer gehäusten LED oder eines LED-Chips. Die Reflektorzellen 12 sind also voll mit Leuchtdioden 17 besetzt.The reflector cells 12 have truncated pyramid-shaped reflecting surfaces 14, wherein a smaller opening than the neck opening 15 and a larger opening serves as a light exit opening 16, as well as in Fig.2 shown. Behind the neck openings 15 of each of the reflector cells 12 is in each case a semiconductor light source in the form of a light emitting diode 17, in particular in the form of a packaged LED or an LED chip. The reflector cells 12 are thus fully occupied by LEDs 17.

Die Leuchtdioden 17 strahlen ihr Licht L in die jeweilige Halsöffnung 15 in die Reflektorzelle 12 ein, und zwar mit ihrer größten Intensität (Hauptabstrahlrichtung) entlang oder, wie gezeigt, parallel zu der optischen Achse O der Reflektorzelle 12. Je nach Einfallswinkel bzw. Winkel zu der Hauptabstrahlrichtung läuft das Licht L direkt zu der Lichtaustrittsöffnung 16 oder wird erst an der jeweiligen reflektierenden Oberfläche 14 gespiegelt. Die Reflektorzelle 12 kann auch als Schalenreflektor angesehen werden.The LEDs 17 emit their light L in the respective neck opening 15 in the reflector cell 12, with its greatest intensity (main emission) along or, as shown, parallel to the optical axis O of the reflector cell 12. Depending on the angle of incidence or angle the main emission direction, the light L passes directly to the light exit opening 16 or is only mirrored at the respective reflective surface 14. The reflector cell 12 can also be regarded as a shell reflector.

Die hier gezeigte Leuchtdiode 17 ist nicht mittig zu der Halsöffnung 15 angeordnet, sondern befindet sich auf einer dazu seitlich versetzten Position. Die seitliche Versetzung entspricht einer Versetzung senkrecht zu der optischen Achse O. Eine seitliche Position P der Leuchtdiode 17 entspricht also insbesondere einer Position auf einer zu der optischen Achse O senkrechten Ebene E, insbesondere in einem Bereich einer mathematischen Projektion der Halsöffnung 15 auf dieser Ebene E. Eine Position der Leuchtdiode 17 entlang der optischen Achse O ("Höhenposition") mag davon unabhängig gewählt werden.The light-emitting diode 17 shown here is not arranged centrally to the neck opening 15, but is located on a laterally offset position. The lateral offset corresponds to a displacement perpendicular to the optical axis O. A lateral position P of the light-emitting diode 17 therefore corresponds in particular to a position on a plane E perpendicular to the optical axis O, in particular in a region of a mathematical projection of the neck opening 15 on this plane E. A position of the light emitting diode 17 along the optical axis O ("height position") may be independently selected therefrom.

Die reflektierende Oberfläche 14 mag, wie gezeigt, im Schnitt eben oder alternativ oder zusätzlich gekrümmt sein. Wie in Fig.3 gezeigt, können die Leuchtdioden 17 eine Position P einer Menge G1 von sechzehn vorbestimmten seitlichen Positionen P einnehmen, die als Punkte eingezeichnet sind. Die Positionen P sind ebenfalls in einem matrixförmigen Muster angeordnet, und zwar in einem 4 x 4-Grundmuster. Es gibt dabei keine in Bezug auf die Halsöffnung 15 mittige Position.As shown, the reflective surface 14 may be planar, alternatively or additionally curved in section. As in Figure 3 As shown, the LEDs 17 may occupy a position P of a set G1 of sixteen predetermined lateral positions P indicated as dots. The positions P are also arranged in a matrix-like pattern, in a 4 x 4 basic pattern. There are no central position with respect to the neck opening 15.

Wie in Fig.1 und genauer in Fig.4 gezeigt, weisen zumindest zwei dieser Leuchtdioden 17 in Bezug auf die zugehörigen Halsöffnungen 15 eine unterschiedliche seitliche Position P auf. Genauer gesagt weisen alle einem gemeinsamen Reflektorgitter 13 zugeordneten Reflektorzellen 12 ihre Leuchtdioden 17 an unterschiedlichen seitlichen Positionen P auf, wie durch die Punkte angedeutet. Insbesondere entsprechen die Positionen P der Leuchtdioden 17 den Positionen der jeweiligen Reflektorzellen 12 in dem Reflektorgitter 13.As in Fig.1 and more specifically in Figure 4 2, at least two of these light-emitting diodes 17 have a different lateral position P with respect to the associated neck openings 15. More specifically, all the reflector cells 12 associated with a common reflector grid 13 have their light emitting diodes 17 at different lateral positions P, as indicated by the dots. In particular, the positions P of the LEDs 17 correspond to the positions of the respective reflector cells 12 in the reflector grid 13.

In der Rasterleuchte 11 sind also die Leuchtdioden 17 in Bezug auf ein gemeinsames Reflektorgitter 13 auf regelmäßige Weise unterschiedlich positioniert. Die Leuchtdioden 17 unterschiedlicher Reflektorgitter 13 können gleichartig positioniert sein, brauchen es aber nicht zu sein.In the grid lamp 11, therefore, the LEDs 17 are positioned differently with respect to a common reflector grid 13 in a regular manner. The light-emitting diodes 17 of different reflector gratings 13 can be positioned identically but need not be.

Alle Leuchtdioden 17 der Rasterleuchte 11 sind auf einem gemeinsamen Substrat in Form einer beispielsweise 30 cm x 30 cm großen Platine 18 angeordnet, wie wieder in Bezug auf Fig.1 gezeigt. Auch die Reflektorgitter 13 können an der Platine 18 befestigt sein.All light-emitting diodes 17 of the louvre luminaire 11 are arranged on a common substrate in the form of, for example, a 30 cm × 30 cm large board 18, as again with respect to FIG Fig.1 shown. The reflector gratings 13 can also be fastened to the circuit board 18.

Fig.5 zeigt in Draufsicht einen Ausschnitt aus einer Rasterleuchte 31 gemäß einem zweiten Ausführungsbeispiel. Im Gegensatz zu der Rasterleuchte 11 ist die reflektierende Oberfläche 34 der Reflektorzelle 32 als ein sechskantiger Pyramidenstumpf ausgebildet. Es ergeben sich eine kleinere hexagonale Halsöffnung 35 und eine größere hexagonale Lichtaustrittsöffnung 36. Figure 5 shows a plan view of a section of a grid lamp 31 according to a second embodiment. In contrast to the grid lamp 11, the reflective surface 34 of the reflector cell 32 is formed as a hexagonal truncated pyramid. There is a smaller one hexagonal neck opening 35 and a larger hexagonal light exit opening 36.

Die Menge G2 der möglichen seitlichen Positionen P der Leuchtdioden 17 an einer Halsöffnung 35 ist als ein hexagonales, zentriert besetztes Punktmuster ausgebildet und entspricht damit dem Anordnungsmuster der Reflektorzellen 32. Die seitlichen Positionen P sind auch hier als Punkte dargestellt. Insbesondere können die Leuchtdioden an einer seitlichen Position P angeordnet sein, welche einer Position der zugehörigen Reflektorzelle 32 in der Menge der Reflektorzellen 32 entspricht.The set G2 of the possible lateral positions P of the light emitting diodes 17 at a neck opening 35 is formed as a hexagonal, centered dot pattern and thus corresponds to the arrangement pattern of the reflector cells 32. The lateral positions P are also shown here as dots. In particular, the light-emitting diodes can be arranged at a lateral position P, which corresponds to a position of the associated reflector cell 32 in the set of reflector cells 32.

Fig.6 zeigt eine weitere mögliche Menge G3 von seitlichen Positionen P für Leuchtdioden 17, insbesondere für eine (gestrichelt angedeutete) rechteckige Halsöffnung. Die seitlichen Positionen P sind nun in einem Matrixmuster (beispielhaft einem 4x4-Matrixmuster) angeordnet, in dem ein Abstand von seitlichen Positionen zwischen Zeilen und Spalten nicht konstant ist. Figure 6 shows a further possible set G3 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) rectangular neck opening. The lateral positions P are now arranged in a matrix pattern (for example, a 4x4 matrix pattern) in which a distance of lateral positions between rows and columns is not constant.

Fig.7 zeigt eine weitere mögliche Menge G4 von seitlichen Positionen P für Leuchtdioden 17, insbesondere für eine (gestrichelt angedeutete) hexagonale Halsöffnung. Die seitlichen Positionen P sind nun in einem Muster ähnlich zu Fig.5 angeordnet, aber nun entlang einer Richtung (hier: der horizontalen Richtung) gestreckt. Figure 7 shows a further possible set G4 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) hexagonal neck opening. The lateral positions P are now similar in a pattern to Figure 5 arranged, but now stretched along one direction (here: the horizontal direction).

Fig.8 zeigt noch eine weitere mögliche Menge G5 von seitlichen Positionen P für Leuchtdioden 17, insbesondere für eine - gestrichelt angedeutete hexagonale Halsöffnung. Hier ist auf ein Vorsehen der mittigen Position verzichtet worden. Figure 8 shows yet another possible set G5 of lateral positions P for light-emitting diodes 17, in particular for a - indicated by dashed lines hexagonal neck opening. Here has been dispensed with a provision of the central position.

Fig.9 bis Fig.12 zeigen weitere mögliche Mengen G6 bis G9 von seitlichen Positionen P für Leuchtdioden 17, insbesondere für eine (gestrichelt angedeutete) runde Halsöffnung. Die Menge G6 in Fig.9 weist ein ringförmiges Muster an seitlichen Positionen P auf, wobei auch eine Position P an einer zentralen Stelle vorgesehen ist. Die Menge G7 in Fig.10 zeigt ein zu der Menge G6 analoges Muster, aber ohne die zentrale Position. Fig.9 to Fig.12 show further possible quantities G6 to G9 of lateral positions P for LEDs 17, in particular for a (dashed lines indicated) round neck opening. The amount G6 in Figure 9 has an annular pattern at lateral positions P, wherein also a position P at a central location is provided. The amount G7 in Figure 10 shows a pattern analogous to the set G6, but without the central position.

Die Menge G8 in Fig.11 zeigt ein zu der Menge G6 analoges Muster, aber mit einer inneren Teilmenge von, hier: drei, ringförmig angeordneten Positionen P anstelle der zentralen Position. Die Menge G9 in Fig.12 zeigt ein zu der Menge G8 analoges Muster, aber mit einer inneren Teilmenge von sechs ringförmig angeordneten Positionen P.The amount G8 in Figure 11 shows a pattern analogous to the set G6, but with an inner subset of, here: three, annularly arranged positions P instead of the central position. The amount G9 in Figure 12 shows a pattern analogous to set G8, but with an inner subset of six annular positions P.

Die Anordnungsmuster aller gezeigten Mengen G1 bis G9 ermöglichen es, ein Lichtabstrahlmuster der einzelnen Leuchteinheiten aus Reflektorzelle (z.B. 12 oder 32) und zugeordneter Leuchtdiode 17 gezielt leicht zu variieren, so dass sich zumindest im Fernfeld der Rasterleuchte (z.B. 11 bzw. 31) eine glättende Überlagerung der einzelnen Lichtabstrahlmuster ergibt. Zudem wird so die Rasterleuchte unempfindlicher gegen Herstellungstoleranzen.The arrangement patterns of all amounts G1 to G9 shown make it possible to selectively vary a light emission pattern of the individual luminous units of reflector cell (eg 12 or 32) and associated light-emitting diode 17 so that at least in the far field of the grid lamp (eg 11 or 31) a smoothing Overlaying the individual Lichtabstrahlmuster results. In addition, the louvre lamp is less sensitive to manufacturing tolerances.

Obwohl die Erfindung im Detail durch die gezeigten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht darauf eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the illustrated embodiments, the invention is not so limited and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

So mögen die Rasterzellen in einem zu den seitlichen Positionen der Halbleiterlichtquellen unterschiedlichen Muster angeordnet sein. Die Abweichung mag Zahl und/oder Form der Positionen des Musters betreffen. Beispielsweise mögen die Reflektorzellen analog zu Fig.4 oder Fig.5 in einem rechteckigen Matrixmuster oder einem dichtgepackten Sechseckmuster angeordnet sein, die Reflektorzellen aber eine konusförmige reflektierende Oberfläche mit einer runden Halsöffnung und Lichtaustrittsöffnung aufweisen. Dann mag das Anordnungsmuster der seitlichen Positionen beispielsweise eine runde oder ringförmige Grundform aufweisen.Thus, the halftone cells may be arranged in a different pattern to the lateral positions of the semiconductor light sources. The deviation may relate to the number and / or shape of the positions of the pattern. For example, like the reflector cells analogous to Figure 4 or Figure 5 be arranged in a rectangular matrix pattern or a dense hexagon pattern, the reflector cells but have a cone-shaped reflective surface with a round neck opening and light exit opening. Then, the arrangement pattern of the lateral positions may, for example, have a round or annular basic shape.

Auch mögen mehrere der Leuchtdioden an gleichen seitlichen Positionen einer Menge angeordnet sein. Zudem mögen ein oder mehrere seitliche Positionen einer Menge nicht mit Leuchtdioden besetzt werden.Also, a plurality of the LEDs may be arranged at the same lateral positions of a crowd. In addition, one or more lateral positions of a crowd may not be populated with LEDs.

Allgemein kann unter "ein", "eine" usw. eine Einzahl oder eine Mehrzahl verstanden werden, insbesondere im Sinne von "mindestens ein" oder "ein oder mehrere" usw., solange dies nicht explizit ausgeschlossen ist, z.B. durch den Ausdruck "genau ein" usw.Generally, "on", "an", etc. may be taken to mean a singular or a plurality, in particular in the sense of "at least one" or "one or more" etc., unless this is explicitly excluded, e.g. by the expression "exactly one", etc.

Auch kann eine Zahlenangabe genau die angegebene Zahl als auch einen üblichen Toleranzbereich umfassen, solange dies nicht explizit ausgeschlossen ist.Also, a number may include exactly the specified number as well as a usual tolerance range, as long as this is not explicitly excluded.

Bei einer vorgegebenen Anordnung der Reflektorzellen kann die Positionierung der Halbleiterlichtquellen erreicht werden, indem die Halbleiterlichtquellen auf der Platine an geeigneten Stellen, welche die unterschiedlichen seitlichen Positionen berücksichtigen, angebracht werden. Dann mag insbesondere eine Anordnung der Reflektorzellen einem regelmäßigen Muster entsprechen. Alternativ kann bei einer vorgegebenen Anordnung der Halbleiterlichtquellen auf der Platine die Positionierung erreicht werden, indem die Reflektorzellen an geeigneten Stellen angeordnet werden. So können etwa in dem ersten Ausführungsbeispiel gem. Fig.1 alle Leuchtdioden 17 in einem regelmäßigen quadratischen Gitter angeordnet sein, während die Reflektorzellen 12 entsprechend der gewünschten seitlichen Positionen versetzt sind. Dies mag herstellungstechnisch einfacher sein.With a given arrangement of the reflector cells, the positioning of the semiconductor light sources can be achieved by placing the semiconductor light sources on the board at suitable locations which take into account the different lateral positions. Then, in particular, an arrangement of the reflector cells may correspond to a regular pattern. Alternatively, with a given arrangement of the semiconductor light sources on the board, the positioning can be achieved by arranging the reflector cells at suitable locations. Thus, for example, in the first embodiment gem. Fig.1 all light-emitting diodes 17 may be arranged in a regular square grid, while the reflector cells 12 are offset in accordance with the desired lateral positions. This may be easier to manufacture.

Bezugszeichenreference numeral

1111
RasterleuchteLouvrelight
1212
Reflektorzellereflector cell
1313
Reflektorgitterreflector grid
1414
reflektierende Oberflächereflective surface
1515
Halsöffnungneck opening
1616
LichtaustrittsöffnungLight opening
1717
Leuchtdiodeled
1818
Platinecircuit board
3131
RasterleuchteLouvrelight
3232
Reflektorzellereflector cell
3434
reflektierende Oberflächereflective surface
3535
Halsöffnungneck opening
3636
LichtaustrittsöffnungLight opening
d1d1
Abstanddistance
d2d2
Abstanddistance
Ee
Ebenelevel
G1-G9G1-G9
Mengeamount
LL
Lichtlight
OO
optische Achseoptical axis
PP
Positionposition

Claims (9)

  1. Louvre luminaire (11; 31),
    - comprising a plurality of reflector cells (12; 32), which each have a neck opening (15; 35) and a light-exit opening (16; 36), and
    - comprising a plurality of semiconductor light sources (17) in the region of the respectively associated neck opening (15; 35), wherein exactly one semiconductor light source (17) is assigned to each reflector cell (12; 32);
    - wherein the lateral positions (P) of the associated semiconductor light sources (17) in relation to the associated neck openings (15; 35) differ for at least two of the reflector cells (12; 32)
    - and wherein a set (G1-G9) of the different lateral positions (P) occurring in the reflector cells (12; 32) has a regular arrangement.
  2. Louvre luminaire (11; 31) according to Claim 1, wherein the set (G1-G9) of the lateral positions (P) forms a section of mathematical lattice of rank 2.
  3. Louvre luminaire (11; 31) according to one of the preceding claims, wherein the set (G1-G4) of the lateral positions (P) forms a matrix pattern.
  4. Louvre luminaire according to Claim 1, wherein the set (G6-G9) of the lateral positions (P) forms a ring pattern.
  5. Louvre luminaire according to Claim 1, wherein the set of lateral positions (P) lies on a Fibonacci spiral.
  6. Louvre luminaire (11; 31) according to one of the preceding claims, wherein the set (G1-G9) of lateral positions (P) forms a rotationally symmetric pattern.
  7. Louvre luminaire (11; 31) according to one of the preceding claims, wherein predetermined lateral positions (P) of a set (G1-G9) form a pattern which corresponds to a first pattern of the reflector cells (12; 32).
  8. Louvre luminaire according to one of the preceding claims, wherein the set (G1-G9) of the lateral positions (P) occurring in the reflector cells (12; 32) comprises at least nine different lateral positions (P) and wherein lateral positions (P) of the semiconductor light sources (17) differ in relation to the respective neck openings (15; 35) for at least nine of the reflector cells (12; 32).
  9. Method for producing a louvre luminaire (11; 31), wherein the method comprises at least the following steps:
    - providing a plurality of reflector cells (12; 32), which each have a neck opening (15; 35) and a light exit opening (16; 36);
    - arranging a plurality of semiconductor light sources (17) in the region of associated neck openings (15; 35) of the reflector cells (12; 32) at lateral positions (P) in relation to the associated neck openings (15; 35) in such a way
    - that a set (G1-G9) of the lateral positions (P) forms a regular arrangement,
    - wherein the lateral positions (P) of the associated semiconductor light sources (17) in relation to the associated neck openings (15; 35) differ for at least two of the reflector cells (12; 32), and wherein exactly one semiconductor light source (17) is assigned to each reflector cell (12; 32).
EP13814910.9A 2013-02-06 2013-12-19 Grid lamp having a 2d-array of reflector cells and leds Active EP2954258B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013201950.5A DE102013201950A1 (en) 2013-02-06 2013-02-06 Grid lamp with reflector cells and semiconductor light sources
PCT/EP2013/077465 WO2014121877A1 (en) 2013-02-06 2013-12-19 Louver light fitting with reflector cells and semiconductor light sources

Publications (2)

Publication Number Publication Date
EP2954258A1 EP2954258A1 (en) 2015-12-16
EP2954258B1 true EP2954258B1 (en) 2016-11-09

Family

ID=49886908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13814910.9A Active EP2954258B1 (en) 2013-02-06 2013-12-19 Grid lamp having a 2d-array of reflector cells and leds

Country Status (3)

Country Link
EP (1) EP2954258B1 (en)
DE (1) DE102013201950A1 (en)
WO (1) WO2014121877A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206390A1 (en) * 2013-04-11 2014-10-16 Zumtobel Lighting Gmbh LED module and arrangement for light emission
EP3098504B1 (en) * 2015-05-06 2019-08-28 Bega Gantenbrink-Leuchten KG Twisted deep radiator reflectors
JP7277785B2 (en) * 2020-04-10 2023-05-19 日亜化学工業株式会社 light emitting device
EP3957905A1 (en) * 2020-08-18 2022-02-23 Self Electronics Co., Ltd. Anti-glare lamp and lighting arrangement method using the lamp

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723119A (en) * 1984-05-07 1988-02-02 Futaba Denshi Kogyo Kabushiki Kaisha Large-sized color display device
US6106137A (en) * 1998-02-20 2000-08-22 Lorin Industries, Inc. Reflector for automotive exterior lighting
DE102005042066A1 (en) * 2005-09-03 2007-03-15 Osram Opto Semiconductors Gmbh Backlight arrangement with arranged in lighting groups semiconductor light sources
CN101490463A (en) * 2006-07-18 2009-07-22 皇家飞利浦电子股份有限公司 Composite light source
GB2447443A (en) * 2007-03-05 2008-09-17 Sharp Kk Backlight and display
US7828456B2 (en) * 2007-10-17 2010-11-09 Lsi Industries, Inc. Roadway luminaire and methods of use
CN101446404A (en) * 2008-12-29 2009-06-03 浙江晶日照明科技有限公司 LED road lamp and illuminating light-regulating method therefor
US8508116B2 (en) * 2010-01-27 2013-08-13 Cree, Inc. Lighting device with multi-chip light emitters, solid state light emitter support members and lighting elements
US20120098434A1 (en) * 2010-10-26 2012-04-26 Wybron, Inc. Led light assembly and associated method
DE102011080313A1 (en) * 2011-08-03 2013-02-07 Osram Ag GRID LAMP WITH SEVERAL SEMICONDUCTOR RADIATORS

Also Published As

Publication number Publication date
WO2014121877A1 (en) 2014-08-14
DE102013201950A1 (en) 2014-08-07
EP2954258A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
EP2250428B1 (en) Lighting module, lamp and lighting method
DE60219171T2 (en) LED INDICATOR LIGHT
EP3139084B1 (en) Illumination device
DE112015003351T5 (en) LED light
WO2013056928A1 (en) Semiconductor light device comprising a lens having a light deflection structure
EP3864341B1 (en) Low-beam headlight
DE102013104046A1 (en) Optical arrangement and display device
EP2307792B1 (en) Luminaire
WO2006045545A1 (en) Lens and microlens array
DE102011080313A1 (en) GRID LAMP WITH SEVERAL SEMICONDUCTOR RADIATORS
EP2954258B1 (en) Grid lamp having a 2d-array of reflector cells and leds
WO2012130581A1 (en) Optical element and lighting device
EP2650597A2 (en) Lamp
DE102016101345A1 (en) Luminaire with pyramidal or conical cover
WO2012119812A1 (en) Optoelectronic semiconductor device
EP3073179B1 (en) Led module with vaned reflector and luminaire with corresponding led module
WO2017194682A1 (en) Optical assembly and display device
DE20004188U1 (en) lamp
WO2011051129A1 (en) Luminaire, camera or camcorder having same and optical element for a luminaire
DE102015106022A1 (en) Abstrahleinheit for a surgical light
EP2924343B1 (en) Led light with refractive optics for mixing light
DE102011003300B4 (en) lighting device
WO2014048798A2 (en) Ring light module and method for producing a ring light module
DE102014104244B4 (en) light emitting
DE102013203083B4 (en) Reflector raster of a grid lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005350

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005350

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171221

Year of fee payment: 5

Ref country code: CH

Payment date: 20171220

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171221

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013005350

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013005350

Country of ref document: DE

Owner name: SITECO GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 844287

Country of ref document: AT

Kind code of ref document: T

Owner name: SITECO GMBH, DE

Effective date: 20210629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 11

Ref country code: AT

Payment date: 20231214

Year of fee payment: 11