EP2953797B1 - Heat sensitive recording material - Google Patents

Heat sensitive recording material Download PDF

Info

Publication number
EP2953797B1
EP2953797B1 EP14716224.2A EP14716224A EP2953797B1 EP 2953797 B1 EP2953797 B1 EP 2953797B1 EP 14716224 A EP14716224 A EP 14716224A EP 2953797 B1 EP2953797 B1 EP 2953797B1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
cross
recording material
starch
biopolymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14716224.2A
Other languages
German (de)
French (fr)
Other versions
EP2953797A1 (en
Inventor
Lutz KÜHNE
Uwe Brasch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Papierfabrik August Koehler SE
Original Assignee
Papierfabrik August Koehler SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Papierfabrik August Koehler SE filed Critical Papierfabrik August Koehler SE
Publication of EP2953797A1 publication Critical patent/EP2953797A1/en
Application granted granted Critical
Publication of EP2953797B1 publication Critical patent/EP2953797B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/337Additives; Binders
    • B41M5/3372Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/42Intermediate, backcoat, or covering layers
    • B41M5/44Intermediate, backcoat, or covering layers characterised by the macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/04Direct thermal recording [DTR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/38Intermediate layers; Layers between substrate and imaging layer

Definitions

  • the invention relates to a heat-sensitive recording material (thermal paper) with a flat support (thermal raw paper), a thermal reaction layer on at least one side of the flat support and optionally an intermediate layer (thermal insulation layer) formed between the flat support and the respective thermal reaction layer and optionally with further layers.
  • the invention also relates to a method for producing such a heat-sensitive recording material and to the use thereof.
  • Heat-sensitive recording materials of the type described above are for example from the US-A-6,759,366 and the WO 2008/006474 A1 known.
  • the US-A-6,759,366 describes a heat-sensitive recording material which has a thermal reaction layer on the top and bottom of a carrier substrate.
  • the carrier substrate is preferably based on cellulose and is thermally insulating. This ensures that the heat pulse generated during thermal printing is largely available for the development of the thermal reaction layer.
  • a so-called primer layer is preferably located between the carrier substrate and the thermal reaction layer formed by which a better adhesion of the layers and the thermal insulation necessary for thermal printing is achieved.
  • the WO 2008/006474 A1 also discloses a heat-sensitive recording material with a flat support, a thermal reaction layer on at least one side of the flat support and an intermediate layer formed between the flat support and the respective thermal reaction layer, which contains hollow-sphere pigments embedded in a binder, and optionally with further layers and / or Top layers, the hollow-sphere pigments being in the form of a composite pigment, and wherein nanoscale pigment particles adhere to the surface of an organic hollow-sphere pigment.
  • That from the WO 2008/006474 A1 known recording material shows in particular improved insulating properties.
  • a material is applied as an intermediate layer which contains the pigments mentioned in a suitable binder.
  • the binder is used in particular to connect the intermediate layers as well as possible to the flat carrier and to ensure an optimal connection of the subsequent layers. Synthetic and / or natural polymers are used as binders.
  • the DE 11 2007 002 203 T5 describes a thermal recording material comprising an intermediate layer and a thermal recording layer laminated on a support in that order, the intermediate layer being a layer formed by applying a coating liquid having a swellable starch and a pigment in a dispersed state in one Dispersing medium consisting of water as the main component is obtained, and the intermediate layer contains a heat-insulating organic pigment which is in the form of hollow or cup-shaped particles.
  • Binders are of great importance in heat-sensitive recording materials. They are used to fix pigments and other components such as color formers, co-reactants, sensitizers and lubricants as well as other additives. Binders also favor the connection of the different layers to one another. Starches are usually used as binders, Polyvinyl alcohol or synthetic binders, such as styrene / butadiene latices and stryol / acrylate latices, are used. Binding agents can be applied in pure form directly on one or two sides to the base paper as surface sizing or can be introduced into the paper in the so-called sump mode over the paper surface (impregnation).
  • the known heat-sensitive recording materials have various disadvantages, for example in terms of aging resistance, in particular when using synthetic binders. These adverse effects are particularly noticeable at elevated temperatures and high ambient humidity. Furthermore, the placement behavior of the known heat-sensitive recording materials can be critical, especially when using org. Hollow ball pigments in the thermal insulation coating. Finally, the synthetic binders commonly used in known heat-sensitive recording materials are expensive and have ecological disadvantages.
  • the object of the present invention is therefore to provide a heat-sensitive recording material which overcomes the disadvantages of the known heat-sensitive recording materials.
  • heat-sensitive recording materials are to be provided which have improved properties with regard to the aging resistance and the laying behavior.
  • the cross-linked biopolymer material in the form of nanoparticles has a degree of swelling of less than 1.
  • the degree of swelling was as in the DE 11 2007 002 203 T5 as described:
  • the degree of swelling relates to a volume expansion when the crosslinked biopolymer material swells in water in the form of nanoparticles.
  • a sample of an anhydrous amount of 2 g is added to 200 ml of pure water, dispersed therein and immediately thereafter it is heated in a good-boiling water bath for 30 minutes and cooled to room temperature.
  • the part of the water that has evaporated is added and the sample is redispersed and 100 ml of the dispersion are placed exactly in a measuring cylinder.
  • the measuring cylinder is left for 24 hours at room temperature and a precipitate is measured visually for its amount (ml) and this value is taken as the degree of swelling.
  • the flat carrier is not critical. However, it is preferred that the flat carrier is based on cellulose fibers, a synthetic paper carrier, the fibers of which, in particular, consist wholly or partly of plastic fibers, or a plastic film.
  • the flat carrier is preferably used with a weight per unit area of approximately 20 to 600 g / m 2 , in particular approximately 30 to 300 g / m 2 .
  • thermal reaction layer There are also no special requirements for the choice of materials for the thermal reaction layer (s). Possible materials are color formers, color developers, other binders, pigments, melting aids, anti-aging agents and other additives, etc.
  • the thermal reaction layer therefore contains the essential functional components that are ultimately responsible for the development of a font or an image.
  • Color formers in the form of 2-anilino-3-methyl-6-diethylamino-fluorane, 2-anilino-3-methyl-6-di-n-butylamino-fluorane, 2-anilino-3-methyl-6 are preferred - (N-ethyl-, Np-toluidino-amino) -fluorane, 2-anilino-3-methyl-6- (N-methyl-, N-propyl-amino) -fluorane, 2-anilino-3-methyl-6 - (N-ethyl-, N-isopentylamino) -fluorane and / or 3,3-bis- (4-dimethylamino-phenyl) -6-dimethylamino-phthalide are present and the color developers are in the form of phenol or Urea derivatives such as 2,2-bis (4-dimethylamino-phenyl) -6-dimethylamino-phthalide are present and the color developers are
  • the sensitizing melting aids are available, for example, in the form of 2-benzyloxynaphthalene (BON), p-benzylbiphenyl (PBBP), oxalic acid dibenzyl ester, oxalic acid di- (p-methylbenzyl) ester, 1,2-bis (phenoxy-methyl) -benzene, 4- (4-tolyloxy) biphenyl, ethylene glycol diphenyl ether, ethylene glycol m-tolyl ether and 1,2-bis (3,4-dimethylphenyl) ethane and the lubricants in the form of fatty acid amides, such as, for . B.
  • stearic acid amide fatty acid alkanolamides, such as. B. stearic acid methylolamide, ethylene-bis-alkanoylamides, such as. B. ethylene bisstearoylamide, synthetic waxes such. B. paraffin waxes of different melting points, ester waxes of different molecular weights, ethylene waxes, propylene waxes of different hardness or natural waxes, such as. B. carnauba wax and / or fatty acid metal soaps, such as.
  • the rheological aids in the form of water-soluble hydrocolloids such as starches, starch derivatives, sodium alginates, polyvinyl alcohols, methyl celluloses, hydroxyethyl or hydroxypropyl methyl celluloses, carboxymethyl celluloses, poly (meth) acrylates, in the form of white whitening acrylates e.g. B.
  • diaminostilbene-disulfonic acid distyryl biphenyls, benzoxazole derivatives
  • the fluorescent substances in the form of daylight fluorescent pigments of different colors or fluorescent fibers
  • the anti-aging agents in the form of sterically hindered phenols, such as 1,1,3-tris (2-methyl-4-hydroxy-5-cyclohexylphenyl) butane, 1 , 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,1'-bis (2-methyl-4-hydroxy-5-tert-butylphenyl) - butane and 1,1'-bis (4-hydroxyphenyl) cyclohexane.
  • the usual intermediate layer (s) can also be used as the intermediate layer (s).
  • the intermediate layer increases the image quality, prevents heat conduction into the base paper and supports the function and sensitivity properties of the thermal reaction layer. In particular, it also contributes to a sufficient fixation of the fusible components in the writing process and thus ensures good runnability in the thermal printer.
  • Suitable materials of the intermediate layer (s) are those which allow the thermal reaction layer to adhere to the flat support or which serve to protect or isolate the thermal reaction layer.
  • the usual materials used are further binders, pigments, rheology aids, dispersants, optical brighteners and surfactants.
  • the binders are preferably in the form of synthetic and / or natural polymers.
  • the pigments are preferably organic hollow sphere pigments or inorganic pigments, such as, for example, calcined kaolin. Mixtures of these pigments, but also CaCO 3 or Ca silicates or others can be used.
  • the respective intermediate layer is preferably used with a weight per unit area of approximately 1 to 14 g / m 2 and in particular approximately 2 to 9 g / m 2 .
  • an outer layer can be applied, which has the function of a protective layer.
  • a protective layer can be applied, which has the function of a protective layer.
  • film-forming polymers such as polyvinyl alcohols, modified polyvinyl alcohols, polyacrylates and polyurethanes, into which pigments can also be incorporated, it being expedient to crosslink the film-forming polymer.
  • the function of the protective layer is particularly favorable when the film-forming polymer is largely crosslinked. Crosslinking generally takes place by incorporating agents which promote crosslinking, during the drying of the coating slip used in the formation of the protective layer.
  • backcoat There can also be another layer on the back (backcoat) that provides additional protection, for example when printing, laminating, etc.
  • the essence of the invention is that a crosslinked biopolymer material in the form of nanoparticles is used in at least the thermal reaction layer (s) and / or the intermediate layer (s), and particularly preferably in the intermediate layer (s) .
  • Such a material is for example from the US-B1-6,677,386 and the WO 2008/022127 known.
  • the cross-linked biopolymer material in the form of nanoparticles is according to the in the US-B1-6,677,386 described process, according to which a biopolymer material, such as starch, containing amylose and amylopectin or both, is mixed with a plasticizer.
  • a biopolymer material such as starch, containing amylose and amylopectin or both
  • a plasticizer such as polyethylene glycol dimethacrylate
  • This mixture is mixed under the action of strong shear forces to plasticize the biopolymer material and form a thermoplastic melt phase, preferably in a co-rotating, fully intermeshing twin-screw extruder, as a result of which the crystalline structure of the biopolymer material is lost.
  • the nanoparticles leave the extruder as a strand, which is ground to a fine powder.
  • the nanoparticles are present in agglomerated form in the powder and can be dispersed in an aqueous medium.
  • the biopolymeric material can be starch or other polysaccharides, such as cellulose and vegetable gums, as well as proteins (e.g. gelatin, whey protein).
  • the biopolymeric material can be modified beforehand, e.g. B. with cationic groups, with carboxymethyl groups, by acylation, phosphorylation, hydroxyalkylation, oxidation or the like.
  • Starches, starch derivatives and mixtures of other polymers containing at least 50% starch are preferred.
  • the starch either as a single component or in a mixture with other polymers, and the starch derivatives preferably have a molecular weight of at least 10,000 g / mol and are not dextran or dextrin.
  • Waxy starches such as, for example, waxy corn starch, are particularly preferred.
  • the bio-polymeric material preferably has a dry weight of at least about 50% by weight at the start of the process.
  • the process is preferably carried out at at least about 40 ° C, but below the decomposition temperature of the biopolymer material, for example at about 200 ° C.
  • the shear forces can be such that 100 J specific mechanical energy per g biopolymer material acts. Depending on the equipment used, the minimum energy may be higher; even if non-gelatinized material is used, the specific mechanical energy can be higher, e.g. B. at least about 250 J / g, preferably at least about 500 J / g.
  • the plasticizer can be water or a polyol (for example ethylene glycol, propylene glycol, polyglycols, glycerol, sugar alcohols, urea, citric acid ester, etc.).
  • the total amount of plasticizer is preferably between about 15 and 50%.
  • a lubricant such as lecithin, other phospholipids or monoglycerides can if desired, be added, for example in an amount of about 0.5 to 2.5 wt .-%.
  • An acid preferably a solid or semi-solid organic acid, such as maleic acid, citric acid, oxalic acid, lactic acid, gluconic acid or a carbohydrate-degrading enzyme, such as amylase, can be present in an amount of about 0.01 to 5% by weight, based on that biopolymer material.
  • the acid or enzyme help with the slight depolymerization, which is advantageous in the production of nanoparticles of a defined size.
  • the crosslinking is preferably reversible, and this can be partially or completely removed after mechanical processing.
  • Suitable reversible crosslinking agents preferably include those that form chemical bonds at a low water concentration and dissociate or hydrolyze again in the presence of a higher water concentration. This type of crosslinking leads to a temporarily high viscosity during the process, followed by a lower viscosity after the process has ended.
  • Examples of reversible crosslinking agents are dialdehydes and polyaldehydes, acid anhydrides and mixed anhydrides and the like (e.g. succinate and acetic anhydride).
  • Suitable dialdehydes and polyaldehydes are glutaraldehyde, glyoxal, periodate oxidized hydrocarbons and the like. Glyoxal is a particularly suitable cross-linking agent.
  • the crosslinking agents can be used alone or as a mixture of reversible and non-reversible crosslinking agents.
  • Conventional crosslinking agents such as epichlorohydrin and other epoxides, triphosphates, divinyl sulfone can be used as non-reversible crosslinking agents for biopolymer material based on polysaccharides. Dialdehydes, thiol reagents and the like can be used for protein-based biopolymers.
  • the crosslinking can take place with acid or base catalysis.
  • the amount of crosslinking agent can be between about 0.1 and 10% by weight, based on the biopolymer material.
  • the crosslinking agent can be present at the start of the mechanical reaction, but in the case of a non-pregelatinized biopolymer material, such as granular starch, it is preferred that the crosslinking agent is added later, for example during the mechanical reaction.
  • the mechanically treated, crosslinked biopolymeric material is then preferably brought into the form of a latex by dispersing it in a suitable solvent, usually in water and / or another hydroxylic solvent such as alcohol, at a concentration between about 4 and 50% by weight .-%, particularly preferably between about 10 and 40 wt .-%.
  • a cryogenic grinding process can be carried out before the dispersion, but stirring at a slightly elevated temperature can also be useful.
  • This processing results in a gel that takes the form of a latex either spontaneously or after induction by water adsorption. This viscosity behavior can be used for the application of the particles, such as improved mixing behavior.
  • the dispersed biopolymeric material can be further crosslinked using the same or different crosslinking agents.
  • the extrudate is characterized in that it swells in an aqueous solvent, for example in water or a mixture which contains at least about 50% water together with a water-miscible solvent, such as an alcohol, and forms a dispersion of nanoparticles after a drop in viscosity .
  • an aqueous solvent for example in water or a mixture which contains at least about 50% water together with a water-miscible solvent, such as an alcohol, and forms a dispersion of nanoparticles after a drop in viscosity .
  • Conjugates of the same can also be used as the cross-linked biopolymer material in the form of nanoparticles.
  • This is the cross-linked biopolymeric material described above in the form of nanoparticles which are chemically or physically linked to another additive.
  • additives are titanium dioxide, aluminum oxide, aluminum trihydrate, sodium aluminum phosphate, aluminum phosphate, sodium aluminum magnesium silicate, fly ash, zeolites, sodium aluminum silicate, tallow clay minerals, delaminated clay, calcined kaolin clay, montmorylonite clay, nano clay, silica.
  • Such conjugates are for example in the WO 2010/065750 A1 described.
  • the crosslinked biopolymer material is used in the form of nanoparticles in the thermoreaction layer (s) and / or in the intermediate layer (s). Its use in the intermediate layer (s) is particularly preferred, since the remaining line porosity increases the insulation and thus the thermal sensitivity to the reaction could be improved. In addition, this favors the absorption of fusible components in the writing process, which is advantageous in particular with heat-sensitive recording materials without a topcoat with regard to the behavior on the thermal strip.
  • the crosslinked biopolymer material in the form of nanoparticles is starch, a starch derivative or a polymer mixture with at least about 50% by weight of starch or starch derivative, starch and starch derivatives being particularly preferred.
  • Starch is very particularly preferred, in particular a cross-linked starch that has not been modified in any other way.
  • the average mean particle size of the nanoparticles is preferably between approximately 10 nm and 600 nm, particularly preferably between approximately 40 nm and 400 nm and very particularly preferably between approximately 40 nm and 200 nm.
  • Ecosphere 2240 Biolatex Binder Ecosphere 92240 can be used as the crosslinked biopolymer material , 92273, X282 Biolatex Binder and Ecosphere 2202 (all available from EcoSynthetix Inc.).
  • the biopolymer material in the form of nanoparticles is preferably in the respective layer (s) in an amount of about 1 to 50% by weight, particularly preferably in an amount of about 2 to 40% by weight, and particularly preferably in an amount of about 2 to 30% by weight, based on the total weight of the dry matter of the respective layer. Too low quantities have the disadvantage that the connection of the neighboring layers is unsatisfactory.
  • the planar support has a basis weight of approximately 20 to 600 g / m 2 , in particular approximately 30 to 300 g / m 2
  • the respective intermediate layer (s) has a basis weight of approximately 1 to 14 g / m 2 , in particular from about 2 to 9 g / m 2 and / or the thermal reaction layer (s) a basis weight of about 1 to 8 g / m 2 , in particular from about 2 to 6 g / m 2 .
  • At least one further binder is also present in the layer or layers in which the crosslinked biopolymer material is in the form of nanoparticles.
  • the at least one further binder is preferably present in the respective layer in an amount of less than 20% by weight.
  • the invention is essentially free in the selection of the at least one further binder, provided that the properties of the heat-sensitive recording material are not impaired thereby.
  • At least one further binder in the form of water-soluble starches, starch derivatives, hydroxyethyl celluloses, polyvinyl alcohols, modified polyvinyl alcohols, acrylamide / (meth) acrylate copolymers and / or acrylamide / acrylate / methacrylate terpolymers is preferred.
  • Such materials result in a coating that is water soluble.
  • latices such as polymethacrylate esters, styrene / acrylate ester copolymers, styrene / butadiene copolymers, polyurethanes, acrylate / butadiene copolymers, polyvinyl acetates and / or acrylonitrile / butadiene copolymers and the like. It is in the professional consideration to use a particularly suitable binder or mixture of binders in individual cases. The use of polyvinyl alcohol is particularly preferred.
  • the at least one further binder can be present in all layers, preferably in the thermal reaction layer (s) and / or in the intermediate layer (s), its use in the intermediate layer (s) being particularly preferred, since this results in the desired Properties can be particularly improved.
  • a further binder is understood here to mean a binder which is used in addition to the crosslinked biopolymer material in the form of nanoparticles in the layer or layers in which the crosslinked biopolymer material is in the form of nanoparticles. It goes without saying that one or more conventional binders can be present in those layers in which the crosslinked biopolymer material in the form of nanoparticles is not used.
  • one or more conventional binders can be completely or partially replaced by a crosslinked biopolymer material in the form of nanoparticles. This applies to all layers.
  • the heat-sensitive recording material according to the invention is a heat-sensitive recording material with a flat support, a thermoreaction layer on at least one side of the flat support and an intermediate layer formed between the flat support and the respective thermoreaction layer and optionally further layers, where as a binder a biopolymer material in the form of nanoparticles is used in at least one of the layers.
  • the heat-sensitive recording material comprises a flat support, a thermal reaction layer and an intermediate layer formed between the flat support and the thermal reaction layer, the interlayer in addition to the crosslinked biopolymer material in the form of nanoparticles, among other things, at least one Pigment, preferably at least one hollow spherical pigment, and at least one co-binder, preferably polyvinyl alcohol, latex or starch (this is a different starch than the starch that can be used as a crosslinked biopolymer material in the form of nanoparticles, for example natural enzymatic or oxidatively degraded starches, starch esters or starch ethers), particularly preferably polyvinyl alcohol.
  • at least one Pigment preferably at least one hollow spherical pigment
  • co-binder preferably polyvinyl alcohol, latex or starch (this is a different starch than the starch that can be used as a crosslinked biopolymer material in the form of nanoparticles, for example natural enzymatic or
  • an inorganic pigment or a mixture of the two can also be used.
  • Particularly suitable hollow spherical pigments are styrene / acrylate copolymers.
  • the crosslinked biopolymer material in the form of nanoparticles is preferably in an amount of about 1 to 40% by weight, particularly preferably in an amount of 2 to 30% by weight, the pigment (mixture) is preferably in an amount of about 50 to 95% by weight, particularly preferably in an amount of approximately 60 to 90% by weight, and the co-binder preferably in an amount of approximately 0 to 10% by weight, particularly preferably approximately 1 to 9% by weight %, in front.
  • the crosslinked biopolymer material in the form of nanoparticles can be obtained by a process in which a biopolymer material is plasticized using shear forces and in the presence of a crosslinking agent and, if appropriate, subsequently dispersed in a hydroxylic solvent, preferably water.
  • both sides of the carrier substrate can be provided simultaneously with the coating slip to form the intermediate layers on-line in the paper machine. It is also possible to first provide the one and then the other side of the carrier substrate with intermediate layers. The respective application process is therefore not subject to any restrictions and can be carried out in the usual way. The same also applies to the formation of the thermal reaction layer, in which an aqueous dispersion which contains the necessary and beneficial constituents is applied and applied in the usual way is dried. The specialist therefore does not need any further technical instructions.
  • a method for producing the heat-sensitive recording material described above in which a crosslinked biopolymer material in the form of nanoparticles, preferably as a powder, particularly preferably directly in the color formulation, is used.
  • the heat-sensitive recording material according to the invention can be used in many areas, for example as paper for fax printing, the printing of receipts or receipts, parking tickets, entrance tickets and tickets, medical examination protocols and barcode labels.
  • Binding agents or presumably especially their low-molecular accompanying substances from all layers, can impair the aging resistance. These negative effects increase with increasing storage time of the paper at elevated temperatures and increased ambient humidity, as is the case, for example, in the tropics. Migration processes, in particular the low-molecular accompanying substances, probably play a role here.
  • the use of synthetic latices in particular has a negative impact on writing performance and writing stability.
  • the present invention in particular the use of a crosslinked biopolymer material in the form of nanoparticles, leads to a heat-sensitive recording material whose aging resistance is significantly improved.
  • the resistance to aging affects both the aging before labeling, ie the aging of the unprinted thermal paper, and the aging after labeling, that is, the aging of the thermal printing.
  • the background whiteness of the heat-sensitive recording material according to the invention is also very favorable after aging.
  • the heat-sensitive recording material according to the invention also shows clearly positive effects with regard to the so-called deposit behavior on the thermal strip.
  • This is an important property characteristic of thermal paper, which reflects the degree of contamination of a thermal strip in the application.
  • thermal paper When a thermal paper is heated in the thermal printer, it melts, and the melt that forms can lead to deposits on the thermal bar of the printer. It is of crucial importance whether the thermal melt is sufficiently fixed in the thermal function layers.
  • the absorption capacity of the intermediate layer plays a central role here, a porous line structure being very helpful.
  • the heat-sensitive recording material according to the invention is less expensive to produce and the use of synthetic binders which have to be obtained from fossil raw materials can be reduced.
  • An interlayer recipe according to Table 1 (Recipe 1) or an interlayer recipe according to Table 2 (Recipe 2) was applied with a dry application of about 3 g / m 2 by means of a doctor blade onto a conventional flat carrier (thermal raw paper) with a respective basis weight of 44 g / m 2 applied and dried.
  • the paper substrates produced in this way were then coated with a thermal coating slip in accordance with Table 3 (recipe 3).
  • the line application was about 4.5 g / m 2 (otro) using a doctor blade.
  • the coating dispersion A mentioned there was ground by grinding 30 parts by weight of 2-anilino-3-methyl-6-di-n-butylamino-fluorane with 55 parts by weight of a 15% aqueous solution of polyvinyl alcohol in a ball mill to an average particle size of 1.5 ⁇ m.
  • Coating dispersion B was prepared by grinding 65 parts by weight of 2,2-bis (4-hydroxyphenyl) propane together with 35 parts by weight of benzyl naphthyl ether, 75 parts by weight of a 15% strength aqueous polyvinyl alcohol solution and 90 Parts by weight of water in a mill to an average particle size of 1.5 microns.
  • the heat-sensitive recording materials thus obtained were subjected to an aging test (aging after inscription) in two defined climates over a period of several weeks.
  • the image stability was determined weekly.
  • a typeface was generated on a thermal printer and its optical density was determined before aging. Afterwards the material was aged freely hanging in different climates over a certain period of time. climates were dry heat (50 ° C) and damp heat (40 ° C / 80% rh) over a period of 1, 2, 4, 6 and 9 weeks. After aging, the remaining optical density was measured and the drop in image stability was determined in%: (OD after / OD before -1) ⁇ 100. Furthermore, the background whiteness of the respective paper samples after aging was determined. The white measurement was carried out from the top using an Elrepho 3000 reflection photometer (from Datacolor). The degree of whiteness was determined with filter R 457 (ISO 2470) without UV filter.
  • Table 4 Image stability after aging Test duration % Drop in opt. Density after x weeks of aging Background white% after x weeks of aging Intermediate layer after: 0.25 mJ / dot 0.45 mJ / dot 50 ° C 40 ° C / 80% RH 50 ° C 40 ° C / 80% RH 50 ° C 40 ° C / 80% RH Recipe 1 1Where. -24.1 -25.5 -1.6 -3.9 77.2 81.3 2Where -28.4 -36.4 -6.6 -6.3 74.3 76.4 4Wo. -40.5 -42.7 -18.0 -11.8 72.2 72.2 6Wo. -46.6 -50.9 -27.0 -18.1 68.5 70.3 9Wo.
  • the results show a more stable aging behavior of the heat-sensitive recording material when using formulation 2 in comparison to a heat-sensitive recording material when using formulation 1.
  • the increased stability of the background can be seen particularly when the storage time is longer. This trend is particularly evident under warm, humid climatic conditions.
  • the heat-sensitive recording material with recipe 2 showed significantly better deposition behavior than the heat-sensitive recording material with recipe 1.
  • a conventional thermal paper with its thermal reaction layer was brought into contact with a pure binder layer, which was applied to a base paper (counter paper).
  • the reference paper was a standard POS paper (available from the August Koehler SE paper mill).
  • the binder to be examined was provided as a solution or as a dispersion.
  • the binder solution or dispersion was applied to a Thermal raw paper applied with a squeegee and dried.
  • the application weight was in the range of 2 to 3 g / m 2 (dry).
  • the paper was then stored at 35 ° C / 75% RH between plexiglass plates at a defined pressure of 7kg.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Description

Die Erfindung betrifft ein wärmeempfindliches Aufzeichnungsmaterial (Thermopapier) mit einem flächigen Träger (Thermorohpapier), einer Thermoreaktionsschicht auf mindestens einer Seite des flächigen Trägers und gegebenenfalls einer zwischen dem flächigen Träger und der jeweiligen Thermoreaktionsschicht ausgebildeten Zwischenschicht (Thermoisolationsschicht) sowie wahlweise mit weiteren Schichten. Die Erfindung betrifft auch ein Verfahren zur Herstellung eines derartigen wärmeempfindlichen Aufzeichnungsmaterials sowie dessen Verwendung.The invention relates to a heat-sensitive recording material (thermal paper) with a flat support (thermal raw paper), a thermal reaction layer on at least one side of the flat support and optionally an intermediate layer (thermal insulation layer) formed between the flat support and the respective thermal reaction layer and optionally with further layers. The invention also relates to a method for producing such a heat-sensitive recording material and to the use thereof.

Wärmeempfindliche Aufzeichnungsmaterialien der vorstehend bezeichneten Art sind beispielsweise aus der US-A-6,759,366 und der WO 2008/006474 A1 bekannt.Heat-sensitive recording materials of the type described above are for example from the US-A-6,759,366 and the WO 2008/006474 A1 known.

Die US-A-6,759,366 beschreibt ein wärmeempfindliches Aufzeichnungsmaterial, welches auf der Ober- und der Unterseite eines Trägersubstrates jeweils eine Thermoreaktionsschicht aufweist. Das Trägersubstrat basiert vorzugsweise auf Cellulose und ist thermisch isolierend. Dadurch wird sichergestellt, dass der beim Thermodruck generierte Wärmeimpuls größtenteils zur Entwicklung der Thermoreaktionsschicht zur Verfügung steht. Vorzugsweise ist zwischen Trägersubstrat und Thermoreaktionsschicht eine sogenannte Primerschicht ausgebildet, durch die eine bessere Haftung der Schichten und die für den Thermodruck notwendige Wärmeisolation erzielt wird.The US-A-6,759,366 describes a heat-sensitive recording material which has a thermal reaction layer on the top and bottom of a carrier substrate. The carrier substrate is preferably based on cellulose and is thermally insulating. This ensures that the heat pulse generated during thermal printing is largely available for the development of the thermal reaction layer. A so-called primer layer is preferably located between the carrier substrate and the thermal reaction layer formed by which a better adhesion of the layers and the thermal insulation necessary for thermal printing is achieved.

Die WO 2008/006474 A1 offenbart ebenfalls ein wärmeempfindliches Aufzeichnungsmaterial mit einem flächigen Träger, einer Thermoreaktionsschicht auf mindestens einer Seite des flächigen Trägers und einer zwischen dem flächigen Träger und der jeweiligen Thermoreaktionsschicht ausgebildeten Zwischenschicht, die in einem Bindemittel eingebettete Hohlkugel-Pigmente enthält, sowie gegebenenfalls mit weiteren Schichten und/oder Oberschichten, wobei die Hohlkugel-Pigmente als Komposit-Pigment vorliegen, und wobei auf der Oberfläche eines organischen Hohlkugel-Pigments nanoskalige Pigmentteilchen haften. Das aus der WO 2008/006474 A1 bekannte Aufzeichnungsmaterial zeigt insbesondere verbesserte Isoliereigenschaften. Als Zwischenschicht wird ein Material aufgebracht, das die genannten Pigmente in einem geeigneten Bindemittel enthält. Das Bindemittel dient insbesondere dazu, die Zwischenschichten bestmöglich mit dem flächigen Träger zu verbinden und eine optimale Anbindung der nachfolgenden Schichten zu gewährleisten. Als Bindemittel kommen synthetische und/oder natürliche Polymere zum Einsatz.The WO 2008/006474 A1 also discloses a heat-sensitive recording material with a flat support, a thermal reaction layer on at least one side of the flat support and an intermediate layer formed between the flat support and the respective thermal reaction layer, which contains hollow-sphere pigments embedded in a binder, and optionally with further layers and / or Top layers, the hollow-sphere pigments being in the form of a composite pigment, and wherein nanoscale pigment particles adhere to the surface of an organic hollow-sphere pigment. That from the WO 2008/006474 A1 known recording material shows in particular improved insulating properties. A material is applied as an intermediate layer which contains the pigments mentioned in a suitable binder. The binder is used in particular to connect the intermediate layers as well as possible to the flat carrier and to ensure an optimal connection of the subsequent layers. Synthetic and / or natural polymers are used as binders.

Die DE 11 2007 002 203 T5 beschreibt ein thermisches Aufzeichnungsmaterial, das eine Zwischenschicht und eine thermische Aufzeichnungsschicht, die in dieser Reihenfolge auf einem Träger laminiert sind, umfasst, wobei die Zwischenschicht eine Schicht ist, die durch Auftragen einer Beschichtungsflüssigkeit, die eine quellbare Stärke und ein Pigment in dispergiertem Zustand in einem Dispergiermedium, das aus Wasser als Hauptkomponente besteht, enthält, erhalten wird, und die Zwischenschicht ein wärmeisolierendes organisches Pigment enthält, das in Form von hohlen oder becherförmigen Partikeln ist.The DE 11 2007 002 203 T5 describes a thermal recording material comprising an intermediate layer and a thermal recording layer laminated on a support in that order, the intermediate layer being a layer formed by applying a coating liquid having a swellable starch and a pigment in a dispersed state in one Dispersing medium consisting of water as the main component is obtained, and the intermediate layer contains a heat-insulating organic pigment which is in the form of hollow or cup-shaped particles.

Bindemittel sind in wärmeempfindlichen Aufzeichnungsmaterialien von großer Bedeutung. Sie dienen zur Fixierung von Pigmenten und anderen Komponenten, wie Farbbildnern, Coreaktanten, Sensitizern und Gleitmitteln sowie weiteren Additiven. Auch begünstigen Bindemittel die Verbindung der verschiedenen Schichten untereinander. Als Bindemittel werden üblicherweise Stärken, Polyvinylalkohol oder synthetische Bindemittel, wie beispielsweise Styrol/Butadien-Latices und Stryol/Acrylat-Latices, eingesetzt. Bindemittel können in reiner Form direkt ein- oder zweiseitig auf das Rohpapier als Oberflächenleimung aufgetragen oder im sogenannten Sumpfbetrieb über die Papieroberfläche in das Papier eingebracht werden (Tränkung).Binders are of great importance in heat-sensitive recording materials. They are used to fix pigments and other components such as color formers, co-reactants, sensitizers and lubricants as well as other additives. Binders also favor the connection of the different layers to one another. Starches are usually used as binders, Polyvinyl alcohol or synthetic binders, such as styrene / butadiene latices and stryol / acrylate latices, are used. Binding agents can be applied in pure form directly on one or two sides to the base paper as surface sizing or can be introduced into the paper in the so-called sump mode over the paper surface (impregnation).

Die bekannten wärmeempfindlichen Aufzeichnungsmaterialien weisen jedoch verschiedene Nachteile auf, so beispielsweise hinsichtlich der Alterungsbeständigkeit, insbesondere bei Einsatz von synthetischen Bindemitteln. Diese nachteiligen Effekte kommen besonders bei erhöhten Temperaturen und hoher Umgebungsfeuchte zum Tragen. Ferner kann das Ablegeverhalten der bekannten wärmeempfindlichen Aufzeichnungsmaterialien kritisch sein, insbesondere bei Verwendung org. Hohlkugelpigmente im Thermoisolationsstrich. Schließlich sind die in bekannten wärmeempfindlichen Aufzeichnungsmaterialien üblicherweise eingesetzten synthetischen Bindemittel teuer und bringen ökologische Nachteile mit sich.However, the known heat-sensitive recording materials have various disadvantages, for example in terms of aging resistance, in particular when using synthetic binders. These adverse effects are particularly noticeable at elevated temperatures and high ambient humidity. Furthermore, the placement behavior of the known heat-sensitive recording materials can be critical, especially when using org. Hollow ball pigments in the thermal insulation coating. Finally, the synthetic binders commonly used in known heat-sensitive recording materials are expensive and have ecological disadvantages.

Aufgabe der vorliegenden Erfindung ist es daher, ein wärmeempfindliches Aufzeichnungsmaterial bereitzustellen, welches die Nachteile der bekannten wärmeempfindlichen Aufzeichnungsmaterialien behebt. Insbesondere sollen wärmeempfindliche Aufzeichnungsmaterialien bereitgestellt werden, die hinsichtlich der Alterungsbeständigkeit sowie des Ablegeverhaltens verbesserte Eigenschaften aufweisen. Schließlich wäre es wünschenswert, die Herstellungskosten zu senken und umweltfreundliche Materialien einzusetzen.The object of the present invention is therefore to provide a heat-sensitive recording material which overcomes the disadvantages of the known heat-sensitive recording materials. In particular, heat-sensitive recording materials are to be provided which have improved properties with regard to the aging resistance and the laying behavior. Finally, it would be desirable to reduce manufacturing costs and use environmentally friendly materials.

Erfindungsgemäß wird diese Aufgabe durch ein wärmeempfindliches Aufzeichnungsmaterial nach Anspruch 1 gelöst.According to the invention this object is achieved by a heat-sensitive recording material according to claim 1.

Das vernetzte biopolymere Material in Form von Nanopartikeln wiest einen Quellungsgrad von kleiner als 1 auf. Der Quellungsgrad wurde wie in der DE 11 2007 002 203 T5 beschrieben ermittelt:
Der Quellungsgrad bezieht sich auf eine Volumenexpansion, wenn das vernetzte biopolymere Material in Form von Nanopartikeln in Wasser quillt. Hierzu wird eine Probe einer wasserfreien Menge von 2 g zu 200 ml reinem Wasser gegeben, darin dispergiert und unmittelbar danach wird diese in einem gut siedenden Wasserbad für 30 Minuten erhitzt und auf Raumtemperatur abgekühlt. Der Teil des Wassers, der verdampft wurde, wird zugesetzt und die Probe wird erneut dispergiert und 100 ml der Dispersion werden genau in einen Messzylinder gegeben. Der Messzylinder wird für 24 Stunden bei Raumtemperatur stehen gelassen und ein Präzipitat wird visuell bezüglich seiner Menge (ml) gemessen und dieser Wert wird als Quellungsgrad genommen.
The cross-linked biopolymer material in the form of nanoparticles has a degree of swelling of less than 1. The degree of swelling was as in the DE 11 2007 002 203 T5 as described:
The degree of swelling relates to a volume expansion when the crosslinked biopolymer material swells in water in the form of nanoparticles. For this purpose, a sample of an anhydrous amount of 2 g is added to 200 ml of pure water, dispersed therein and immediately thereafter it is heated in a good-boiling water bath for 30 minutes and cooled to room temperature. The part of the water that has evaporated is added and the sample is redispersed and 100 ml of the dispersion are placed exactly in a measuring cylinder. The measuring cylinder is left for 24 hours at room temperature and a precipitate is measured visually for its amount (ml) and this value is taken as the degree of swelling.

Die Auswahl des Materials des flächigen Trägers ist nicht kritisch. Es ist jedoch bevorzugt, dass der flächige Träger auf Cellulosefasern basiert, ein synthetischer Papierträger, dessen Fasern insbesondere ganz oder teilweise aus Kunststofffasern bestehen, oder eine Kunststofffolie ist. Der flächige Träger wird vorzugsweise mit einem Flächengewicht von etwa 20 bis 600 g/m2, insbesondere von etwa 30 bis 300 g/m2 eingesetzt.The selection of the material of the flat carrier is not critical. However, it is preferred that the flat carrier is based on cellulose fibers, a synthetic paper carrier, the fibers of which, in particular, consist wholly or partly of plastic fibers, or a plastic film. The flat carrier is preferably used with a weight per unit area of approximately 20 to 600 g / m 2 , in particular approximately 30 to 300 g / m 2 .

Auch an die Auswahl der Materialien der Thermoreaktionsschicht(en) sind keine besonderen Anforderungen zu stellen. Als Materialien kommen Farbbildner, Farbentwickler, weitere Bindemittel, Pigmente, Schmelzhilfsmittel, Alterungsschutzmittel und weitere Additive, etc. in Frage. Die Thermoreaktionsschicht enthält demnach die wesentlichen funktionalen Bestandteile, die letztendlich für die Entwicklung einer Schrift oder eines Bildes verantwortlich sind.There are also no special requirements for the choice of materials for the thermal reaction layer (s). Possible materials are color formers, color developers, other binders, pigments, melting aids, anti-aging agents and other additives, etc. The thermal reaction layer therefore contains the essential functional components that are ultimately responsible for the development of a font or an image.

Bei der Auswahl des Farbbildners und des Farbentwicklers für die Thermoreaktionsschicht(en) des erfindungsgemäßen Aufzeichnungsmaterials gibt es keine relevante Beschränkung. Dabei werden bevorzugt Farbbildner in Form von 2-Anilino-3-methyl-6-diethyl-amino-fluoran, 2-Anilino-3-methyl-6-di-n-butylamino-fluoran, 2-Anilino-3-methyl-6-(N-ethyl-,N-p-toluidino-amino)-fluoran, 2-Anilino-3-methyl-6-(N-methyl-, N-propyl-amino)-fluoran, 2-Anilino-3-methyl-6-(N-ethyl-, N-isopentyl-amino)-fluoran und/oder 3,3-Bis-(4-dimethylamino-phenyl)-6-dimethyl-amino-phthalid vorliegen und die Farbentwickler in Form von Phenol- bzw. Harnstoffderivaten wie 2,2-Bis-(4-hydroxyphenyl)-propan, Bis-(4-hydroxyphenyl)-sulfon, 4-Hydroxy-4 '-iso-propoxy-diphenyl-sulfon, Bis-(3-allyl-4-hydroxy-phenyl)-sulfon, 2,2-Bis-(4-Hydroxyphenyl)-4-methyl-pentan, N-(Toluolsulfonyl)-N '-(3-p-toluolsulfonyl-oxy-phenyl)-harnstoff und Zinksalzen von Derivaten der Salicylsäure verwendet. Wie erwähnt, können in der (den) Thermoreaktionsschicht(en) noch verschiedene andere die Eigenschaften begünstigende Substanzen bzw. Hilfsmittel enthalten sein. Dabei kann es sich beispielsweise um sensitivierende Schmelzhilfsmittel, Gleitmittel, Rheologiehilfsmittel, fluoreszierende Substanzen und dergleichen handeln.When selecting the color former and the color developer for the thermal reaction layer (s) of the recording material according to the invention, there are no relevant restriction. Color formers in the form of 2-anilino-3-methyl-6-diethylamino-fluorane, 2-anilino-3-methyl-6-di-n-butylamino-fluorane, 2-anilino-3-methyl-6 are preferred - (N-ethyl-, Np-toluidino-amino) -fluorane, 2-anilino-3-methyl-6- (N-methyl-, N-propyl-amino) -fluorane, 2-anilino-3-methyl-6 - (N-ethyl-, N-isopentylamino) -fluorane and / or 3,3-bis- (4-dimethylamino-phenyl) -6-dimethylamino-phthalide are present and the color developers are in the form of phenol or Urea derivatives such as 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, 4-hydroxy-4 'isopropoxy diphenyl sulfone, bis (3-allyl-4- hydroxy-phenyl) -sulfone, 2,2-bis- (4-hydroxyphenyl) -4-methyl-pentane, N- (toluenesulfonyl) -N '- (3-p-toluenesulfonyl-oxy-phenyl) -urea and zinc salts of Derivatives of salicylic acid are used. As mentioned, the thermoreaction layer (s) can also contain various other substances or auxiliaries which promote the properties. These can be, for example, sensitizing melting aids, lubricants, rheology aids, fluorescent substances and the like.

Die sensitivierenden Schmelzhilfsmittel liegen z.B. vor in Form von 2-Benzyloxynaphthalin (BON), p-Benzylbiphenyl (PBBP), Oxalsäure-dibenzylester, Oxalsäure-di-(p-methylbenzyl)-ester, 1,2-Bis-(phenoxy-methyl)-benzol, 4-(4-Tolyloxy)-biphenyl, Ethylenglykol-diphenylether, Ethylen-glykol-m-tolylether und 1,2-Bis-(3,4-dimethylphenyl)-ethan und die Gleitmittel in Form von Fettsäureamiden, wie z. B. Stearinsäureamid, Fettsäurealkanolamiden, wie z. B. Stearinsäuremethylolamid, Ethylen-bis-alkanoylamiden, wie z. B. Ethylen-bisstearoylamid, synthetischen Wachsen, wie z. B. Paraffinwachse verschiedener Schmelzpunkte, Esterwachsen unterschiedlicher Molekulargewichte, Ethylenwachsen, Propylenwachsen unterschiedlicher Härten oder auch natürlichen Wachsen, wie z. B. Carnaubawachs und/oder Fettsäure-Metallseifen, wie z. B. Zinkstearat, Calciumstearat oder auch Behenatsalze, die Rheologiehilfsmittel in Form von wasserlöslichen Hydrokolloiden, wie z.B. Stärken, Stärkederivaten, Natriumalginaten, Polyvinylalkoholen, Methylcellulosen, Hydroxyethyl- oder Hydroxypropylmethylcellulosen, Carboxymethylcellulosen, Poly(meth)-acrylaten, die optischen Aufheller in Form von Weißtönern z. B. aus den Substanzgruppen Diaminostilben-disulfonsäure, Distyryl-biphenyle, Benzoxazolderivate, die fluoreszierenden Substanzen in Form von Tageslichtleuchtpigmenten unterschiedlicher Farbtöne oder fluoreszierenden Fasern, die Alterungsschutzmittel in Form von sterisch gehinderten Phenolen, wie z.B. 1,1,3-Tris-(2-methyl-4-hydroxy-5-cyclohexyl-phenyl)-butan, 1,1,3-Tris-(2-methyl-4-hydroxy-5-tert.-butylphenyl)-butan, 1,1'-Bis-(2-methyl-4-hydroxy-5-tert.-butylphenyl)-butan und 1,1'-Bis-(4-hydroxyphenyl)-cyclohexan.The sensitizing melting aids are available, for example, in the form of 2-benzyloxynaphthalene (BON), p-benzylbiphenyl (PBBP), oxalic acid dibenzyl ester, oxalic acid di- (p-methylbenzyl) ester, 1,2-bis (phenoxy-methyl) -benzene, 4- (4-tolyloxy) biphenyl, ethylene glycol diphenyl ether, ethylene glycol m-tolyl ether and 1,2-bis (3,4-dimethylphenyl) ethane and the lubricants in the form of fatty acid amides, such as, for . B. stearic acid amide, fatty acid alkanolamides, such as. B. stearic acid methylolamide, ethylene-bis-alkanoylamides, such as. B. ethylene bisstearoylamide, synthetic waxes such. B. paraffin waxes of different melting points, ester waxes of different molecular weights, ethylene waxes, propylene waxes of different hardness or natural waxes, such as. B. carnauba wax and / or fatty acid metal soaps, such as. As zinc stearate, calcium stearate or behenate salts, the rheological aids in the form of water-soluble hydrocolloids, such as starches, starch derivatives, sodium alginates, polyvinyl alcohols, methyl celluloses, hydroxyethyl or hydroxypropyl methyl celluloses, carboxymethyl celluloses, poly (meth) acrylates, in the form of white whitening acrylates e.g. B. from the substance groups diaminostilbene-disulfonic acid, distyryl biphenyls, benzoxazole derivatives, the fluorescent substances in the form of daylight fluorescent pigments of different colors or fluorescent fibers, the anti-aging agents in the form of sterically hindered phenols, such as 1,1,3-tris (2-methyl-4-hydroxy-5-cyclohexylphenyl) butane, 1 , 1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,1'-bis (2-methyl-4-hydroxy-5-tert-butylphenyl) - butane and 1,1'-bis (4-hydroxyphenyl) cyclohexane.

Bevorzugt wird/werden die Thermoreaktionsschicht(en) mit einem Flächengewicht von etwa 1 bis 8 g/m2, insbesondere von etwa 2 bis 6 g/m2 eingesetzt.The thermal reaction layer (s) with a weight per unit area of approximately 1 to 8 g / m 2 , in particular approximately 2 to 6 g / m 2 , are / are preferably used.

Auch als Zwischenschicht(en) kann (können) (eine) übliche Zwischenschicht(en) herangezogen werden. Die Zwischenschicht erhöht die Bildqualität, verhindert die Wärmeleitung in das Rohpapier und unterstützt die Funktion und Sensitivitätseigenschaften der Thermoreaktionsschicht. Insbesondere trägt sie auch zu einer ausreichenden Fixierung der schmelzbaren Komponenten im Schreibvorgang bei und gewährleistet damit eine gute Lauffähigkeit im Thermodrucker.The usual intermediate layer (s) can also be used as the intermediate layer (s). The intermediate layer increases the image quality, prevents heat conduction into the base paper and supports the function and sensitivity properties of the thermal reaction layer. In particular, it also contributes to a sufficient fixation of the fusible components in the writing process and thus ensures good runnability in the thermal printer.

Geeignete Materialien der Zwischenschicht(en) sind solche, die das Anhaften der Thermoreaktionsschicht am flächigen Träger erlauben bzw. zum Schutz oder zur Isolation der Thermoreaktionsschicht dienen. Als übliche Materialien kommen, neben gegebenenfalls dem vernetzten biopolymeren Material in Form von Nanopartikeln, weitere Bindemittel, Pigmente, Rheologiehilfsmittel, Dispergiermittel, optische Aufheller und Tenside zum Einsatz. Vorzugsweise liegen die Bindemittel in Form synthetischer und/oder natürlicher Polymere vor. Bei den Pigmenten handelt es sich vorzugsweise um organische Hohlkugelpigmente oder anorganische Pigmente, wie beispielsweise kalziniertes Kaolin. Es können auch Gemische dieser Pigmente, aber auch CaCO3 oder Ca-Silikate oder andere eingesetzt werden.Suitable materials of the intermediate layer (s) are those which allow the thermal reaction layer to adhere to the flat support or which serve to protect or isolate the thermal reaction layer. In addition to the crosslinked biopolymer material in the form of nanoparticles, the usual materials used are further binders, pigments, rheology aids, dispersants, optical brighteners and surfactants. The binders are preferably in the form of synthetic and / or natural polymers. The pigments are preferably organic hollow sphere pigments or inorganic pigments, such as, for example, calcined kaolin. Mixtures of these pigments, but also CaCO 3 or Ca silicates or others can be used.

Bevorzugt wird die jeweilige Zwischenschicht mit einem Flächengewicht von etwa 1 bis 14 g/m2 und insbesondere von etwa 2 bis 9 g/m2 eingesetzt.The respective intermediate layer is preferably used with a weight per unit area of approximately 1 to 14 g / m 2 and in particular approximately 2 to 9 g / m 2 .

Falls gewünscht, können weitere Schichten zum Einsatz kommen. So kann beispielsweise eine äußere Schicht (topcoat) aufgebracht werden, die die Funktion einer Schutzschicht hat. Eine solche besteht vorteilhafterweise aus filmbildenden Polymeren, wie Polyvinylalkoholen, modifizierten Polyvinylalkoholen, Polyacrylaten und Polyurethanen, in die noch Pigmente eingebracht sein können, wobei es zweckmäßig ist, das filmbildende Polymer zu vernetzen. Die Funktion der Schutzschicht ist besonders dann günstig, wenn das filmbildende Polymer weitgehend vernetzt ist. Das Vernetzen findet im Allgemeinen durch Einbindung von die Vernetzung begünstigenden Mitteln, während des Trocknens der bei der Ausbildung der Schutzschicht herangezogenen Streichmasse, statt. Auch auf der Rückseite kann eine weitere Schicht vorliegen (backcoat), die zusätzlichen Schutz, beispielsweise beim Bedrucken, Laminieren etc., bringt.If desired, additional layers can be used. For example, an outer layer (top coat) can be applied, which has the function of a protective layer. One of these advantageously consists of film-forming polymers, such as polyvinyl alcohols, modified polyvinyl alcohols, polyacrylates and polyurethanes, into which pigments can also be incorporated, it being expedient to crosslink the film-forming polymer. The function of the protective layer is particularly favorable when the film-forming polymer is largely crosslinked. Crosslinking generally takes place by incorporating agents which promote crosslinking, during the drying of the coating slip used in the formation of the protective layer. There can also be another layer on the back (backcoat) that provides additional protection, for example when printing, laminating, etc.

Der Kern der Erfindung liegt darin, dass in mindestens der/den Thermoreaktionsschicht(en) und/oder der/den Zwischenschicht(en), und besonders bevorzugt in der/den Zwischenschicht(en), ein vernetztes biopolymeres Material in Form von Nanopartikeln eingesetzt wird.The essence of the invention is that a crosslinked biopolymer material in the form of nanoparticles is used in at least the thermal reaction layer (s) and / or the intermediate layer (s), and particularly preferably in the intermediate layer (s) .

Ein derartiges Material ist beispielsweise aus der US-B1-6,677,386 und der WO 2008/022127 bekannt.Such a material is for example from the US-B1-6,677,386 and the WO 2008/022127 known.

Das vernetzte biopolymere Material in Form von Nanopartikeln wird gemäß dem in der US-B1-6,677,386 beschriebenen Verfahren hergestellt, wonach ein biopolymeres Material, wie beispielsweise Stärke, enthaltend Amylose und Amylopektin oder beides, mit einem Plastifizierungsmittel vermischt wird. Diese Mischung wird unter Einwirkung starker Scherkräfte unter Plastifizierung des biopolymeren Materials und Bildung einer thermoplastischen Schmelzphase vermischt, bevorzugt in einem gleichläufigen, vollständig ineinandergreifenden Doppelschneckenextruder, wodurch die kristalline Struktur des biopolymeren Materials verloren geht. Um die Nanopartikel zu vernetzen, wird während desThe cross-linked biopolymer material in the form of nanoparticles is according to the in the US-B1-6,677,386 described process, according to which a biopolymer material, such as starch, containing amylose and amylopectin or both, is mixed with a plasticizer. This mixture is mixed under the action of strong shear forces to plasticize the biopolymer material and form a thermoplastic melt phase, preferably in a co-rotating, fully intermeshing twin-screw extruder, as a result of which the crystalline structure of the biopolymer material is lost. In order to crosslink the nanoparticles, during the

Mischvorgangs ein Vernetzungsmittel zugegeben. Die Nanopartikel verlassen den Extruder als Strang, der zu einem feinen Pulver gemahlen wird. Im Pulver liegen die Nanopartikel agglomeriert vor und können in einem wässrigen Medium dispergiert werden.Mixing process added a crosslinking agent. The nanoparticles leave the extruder as a strand, which is ground to a fine powder. The nanoparticles are present in agglomerated form in the powder and can be dispersed in an aqueous medium.

Bei dem biopolymeren Material kann es sich um Stärke oder andere Polysaccharide handeln, wie Cellulose und Pflanzengummis, sowie Proteine (z. B. Gelatine, Molkeprotein). Das biopolymere Material kann zuvor modifiziert werden, z. B. mit kationischen Gruppen, mit Carboxymethyl-Gruppen, durch Acylierung, Phosphorylierung, Hydroxyalkylierung, Oxidation oder ähnlichem. Stärken, Stärkederivate und Mischungen von anderen Polymeren, die mindestens 50% Stärke enthalten, sind bevorzugt. Die Stärke, entweder als Einzelkomponente oder in einer Mischung mit anderen Polymeren, und die Stärkederivate weisen bevorzugt ein Molekulargewicht von mindestens 10.000 g/mol auf, und sind kein Dextran oder Dextrin. Besonders bevorzugt sind Wachsstärken, wie beispielsweise Wachsmaisstärke.The biopolymeric material can be starch or other polysaccharides, such as cellulose and vegetable gums, as well as proteins (e.g. gelatin, whey protein). The biopolymeric material can be modified beforehand, e.g. B. with cationic groups, with carboxymethyl groups, by acylation, phosphorylation, hydroxyalkylation, oxidation or the like. Starches, starch derivatives and mixtures of other polymers containing at least 50% starch are preferred. The starch, either as a single component or in a mixture with other polymers, and the starch derivatives preferably have a molecular weight of at least 10,000 g / mol and are not dextran or dextrin. Waxy starches, such as, for example, waxy corn starch, are particularly preferred.

Das biopolmere Material hat bei Verfahrensbeginn bevorzugt ein Trockengewicht von mindestens etwa 50 Gew-%. Das Verfahren wird bevorzugt bei mindestens etwa 40°C durchgeführt, aber unterhalb der Zersetzungstemperatur des biopolymeren Materials, beispielsweise bei etwa 200°C.The bio-polymeric material preferably has a dry weight of at least about 50% by weight at the start of the process. The process is preferably carried out at at least about 40 ° C, but below the decomposition temperature of the biopolymer material, for example at about 200 ° C.

Die Scherkräfte können derart sein, dass 100 J spezifische mechanische Energie pro g biopolymeres Material einwirken. Abhängig von der eingesetzten Apparatur kann die Mindestenergie höher sein; auch dann, wenn nicht gelatiniertes Material eingesetzt wird, kann die spezifische mechanische Energie höher sein, z. B. mindestens etwa 250 J/g, bevorzugt mindestens etwa 500 J/g.The shear forces can be such that 100 J specific mechanical energy per g biopolymer material acts. Depending on the equipment used, the minimum energy may be higher; even if non-gelatinized material is used, the specific mechanical energy can be higher, e.g. B. at least about 250 J / g, preferably at least about 500 J / g.

Bei dem Plastifizierungsmittel kann es sich um Wasser oder ein Polyol (beispielsweise Ethylenglykol, Propylenglykol, Polyglykole, Glycerol, Zuckeralkohole, Harnstoff, Zitronensäureester, etc.) handeln. Die Gesamtmenge an Plastifizierungsmittel liegt bevorzugt zwischen etwa 15 und 50%. Ein Gleitmittel, wie Lecithin, andere Phospholipide oder Monoglyceride können, falls gewünscht, zugegeben werden, beispielsweise in einer Menge von etwa 0,5 bis 2,5 Gew.-%. Eine Säure, bevorzugt eine feste oder halbfeste organische Säure, wie Maleinsäure, Zitronensäure, Oxalsäure, Milchsäure, Glukonsäure oder ein Kohlenhydrat-abbauendes Enzym, wie Amylase, kann in einer Menge von etwa 0,01 bis 5 Gew.-%, bezogen auf das biopolymere Material, vorhanden sein. Die Säure oder das Enzym helfen bei der geringfügigen Depolymerisierung, die bei der Herstellung von Nanopartikeln definierter Größe vorteilhaft ist.The plasticizer can be water or a polyol (for example ethylene glycol, propylene glycol, polyglycols, glycerol, sugar alcohols, urea, citric acid ester, etc.). The total amount of plasticizer is preferably between about 15 and 50%. A lubricant such as lecithin, other phospholipids or monoglycerides can if desired, be added, for example in an amount of about 0.5 to 2.5 wt .-%. An acid, preferably a solid or semi-solid organic acid, such as maleic acid, citric acid, oxalic acid, lactic acid, gluconic acid or a carbohydrate-degrading enzyme, such as amylase, can be present in an amount of about 0.01 to 5% by weight, based on that biopolymer material. The acid or enzyme help with the slight depolymerization, which is advantageous in the production of nanoparticles of a defined size.

Die Vernetzung ist bevorzugt reversibel, wobei diese teilweise oder vollständig nach der mechanischen Verarbeitung aufgehoben werden kann. Geeignete reversible Vernetzungsmittel beinhalten vorzugsweise solche, die chemische Bindungen bei niedriger Wasserkonzentration bilden und in Gegenwart einer höheren Wasserkonzentration wieder dissoziieren oder hydrolysieren. Diese Art der Vernetzung führt zu einer temporär hohen Viskosität während des Verfahrens gefolgt von einer niedrigeren Viskosität nach Abschluß des Verfahrens. Beispiele für reversible Vernetzungsmittel sind Dialdehyde und Polyaldehyde, Säureanhydride und gemischte Anhydride und dergleichen (z. B. Succinat und Essigsäureanhydrid). Geeignete Dialdehyde und Polyaldehyde sind Glutaraldehyd, Glyoxal, Periodat-oxidierte Kohlenwasserstoffe und dergleichen. Glyoxal ist ein besonders geeignetes Vernetzungsmittel.The crosslinking is preferably reversible, and this can be partially or completely removed after mechanical processing. Suitable reversible crosslinking agents preferably include those that form chemical bonds at a low water concentration and dissociate or hydrolyze again in the presence of a higher water concentration. This type of crosslinking leads to a temporarily high viscosity during the process, followed by a lower viscosity after the process has ended. Examples of reversible crosslinking agents are dialdehydes and polyaldehydes, acid anhydrides and mixed anhydrides and the like (e.g. succinate and acetic anhydride). Suitable dialdehydes and polyaldehydes are glutaraldehyde, glyoxal, periodate oxidized hydrocarbons and the like. Glyoxal is a particularly suitable cross-linking agent.

Die Vernetzungsmittel können allein oder als Mischung aus reversiblen und nichtreversibeln Vernetzungsmitteln eingesetzt werden. Konventionelle Vernetzungsmittel, wie Epichlorhydrin und andere Epoxide, Triphosphate, Divinylsulphon können als nicht-reversible Vernetzungsmittel für biopolymeres Material auf Basis von Polysacchariden eingesetzt werden. Dialdehyde, Thiol-Reagenzien und dergleichen können für Biopolymere auf Proteinbasis verwendet werden. Die Vernetzung kann säure- oder basenkatalysiert stattfinden. Die Menge an Vernetzungsmittel kann zwischen etwa 0,1 und 10 Gew.-%, in Bezug auf das biopolymere Material, liegen. Das Vernetzungsmittel kann schon zu Beginn der mechanischen Umsetzung vorliegen, aber im Falle eines nicht vorgelatinierten biopolymeren Materials, wie beispielsweise granularer Stärke, ist es bevorzugt, dass das Vernetzungsmittel später zugegeben wird, beispielsweise während der mechanischen Umsetzung.The crosslinking agents can be used alone or as a mixture of reversible and non-reversible crosslinking agents. Conventional crosslinking agents such as epichlorohydrin and other epoxides, triphosphates, divinyl sulfone can be used as non-reversible crosslinking agents for biopolymer material based on polysaccharides. Dialdehydes, thiol reagents and the like can be used for protein-based biopolymers. The crosslinking can take place with acid or base catalysis. The amount of crosslinking agent can be between about 0.1 and 10% by weight, based on the biopolymer material. The crosslinking agent can be present at the start of the mechanical reaction, but in the case of a non-pregelatinized biopolymer material, such as granular starch, it is preferred that the crosslinking agent is added later, for example during the mechanical reaction.

Das mechanisch behandelte, vernetzte biopolymere Material wird dann vorzugsweise in die Form eines Latex gebracht, indem es in einem geeigneten Lösungsmittel dispergiert wird, üblicherweise in Wasser und/oder einem anderen hydroxylischen Lösungsmittel, wie beispielsweise Alkohol, bei einer Konzentration zwischen etwa 4 und 50 Gew.-%, besonders bevorzugt zwischen etwa 10 und 40 Gew.-%. Vor der Dispergierung kann ein kryogener Mahlvorgang durchgeführt werden, aber Rühren bei leicht erhöhter Temperatur kann ebenso zielführend sein. Diese Verarbeitung führt zu einem Gel, das entweder spontan oder nach Induktion durch Wasseradsorption die Form eines Latex annimmt. Dieses Viskositätsverhalten kann für die Anwendung der Partikel genutzt werden, wie beispielsweise verbessertes Mischverhalten. Falls gewünscht, kann das dispergierte biopolymere Material weiter vernetzt werden, mit denselben oder anderen Vernetzungsmitteln. Das Extrudat ist dadurch gekennzeichnet, dass es in einem wässrigen Lösungsmittel aufquellt, beispielsweise in Wasser oder einer Mischung, die mindestens etwa 50% Wasser zusammen mit einem in Wasser mischbaren Lösungsmittel, wie einem Alkohol, enthält, und nach einem Viskositätsabfall eine Dispersion von Nanopartikeln bildet.The mechanically treated, crosslinked biopolymeric material is then preferably brought into the form of a latex by dispersing it in a suitable solvent, usually in water and / or another hydroxylic solvent such as alcohol, at a concentration between about 4 and 50% by weight .-%, particularly preferably between about 10 and 40 wt .-%. A cryogenic grinding process can be carried out before the dispersion, but stirring at a slightly elevated temperature can also be useful. This processing results in a gel that takes the form of a latex either spontaneously or after induction by water adsorption. This viscosity behavior can be used for the application of the particles, such as improved mixing behavior. If desired, the dispersed biopolymeric material can be further crosslinked using the same or different crosslinking agents. The extrudate is characterized in that it swells in an aqueous solvent, for example in water or a mixture which contains at least about 50% water together with a water-miscible solvent, such as an alcohol, and forms a dispersion of nanoparticles after a drop in viscosity .

Als vernetztes biopolymeres Material in Form von Nanopartikeln können auch Konjugate derselben eingesetzt werden. Dabei handelt es sich um das vorstehend geschilderte vernetzte biopolymere Material in Form von Nanopartikeln, die chemisch oder physikalisch mit einem weiteren Additiv verbunden sind. Als Additive kommen beispielsweise Titandioxid, Aluminiumoxid, Aluminiumtrihydrat, Natrium-Aluminiumphosphat, Aluminiumphosphat, Natrium-Aluminium-Magnesiumsilikat, Flugasche, Zeolithe, Natrium-Aluminiumsilikat, Talgtonminerale, delaminierte Tonerde, calcinierte Kaolin-Tonerde, Montmorylonit-Tonerde, Nano-Tonerde, Silica-Partikel, Zinkoxid, Calciumcarbonat, optische Aufheller, Biocide, Stabilisatoren, etc. sowie Kombinationen davon in Frage. Derartige Konjugate sind beispielsweise in der WO 2010/065750 A1 beschrieben.Conjugates of the same can also be used as the cross-linked biopolymer material in the form of nanoparticles. This is the cross-linked biopolymeric material described above in the form of nanoparticles which are chemically or physically linked to another additive. Examples of additives are titanium dioxide, aluminum oxide, aluminum trihydrate, sodium aluminum phosphate, aluminum phosphate, sodium aluminum magnesium silicate, fly ash, zeolites, sodium aluminum silicate, tallow clay minerals, delaminated clay, calcined kaolin clay, montmorylonite clay, nano clay, silica. Particles, zinc oxide, calcium carbonate, optical brighteners, biocides, stabilizers, etc., as well as combinations thereof. Such conjugates are for example in the WO 2010/065750 A1 described.

Wie erwähnt, wird das vernetzte biopolymere Material in Form von Nanopartikeln in der/den Thermoreaktionsschicht/en und/oder der/den Zwischenschicht(en), eingesetzt. Besonders bevorzugt ist dessen Einsatz in der/den Zwischenschicht(en), da durch die verbliebene Strichporösität eine Steigerung der Isolation erzielt und damit die thermische Reaktionsempfindlichkeit verbessert werden könnte. Hinzu kommt, dass dadurch die Absorption schmelzbarer Komponenten im Schreibvorgang begünstigt wird, was insbesondere bei wärmeempfindlichen Aufzeichnungsmaterialien ohne topcoat vorteilhaft bezüglich des Ablegeverhaltens auf der Thermoleiste ist.As mentioned, the crosslinked biopolymer material is used in the form of nanoparticles in the thermoreaction layer (s) and / or in the intermediate layer (s). Its use in the intermediate layer (s) is particularly preferred, since the remaining line porosity increases the insulation and thus the thermal sensitivity to the reaction could be improved. In addition, this favors the absorption of fusible components in the writing process, which is advantageous in particular with heat-sensitive recording materials without a topcoat with regard to the behavior on the thermal strip.

In einer bevorzugten Ausführungsform handelt es sich bei dem vernetzten biopolymeren Material in Form von Nanopartikeln um Stärke, ein Stärkederivat oder ein Polymergemisch mit mindestens etwa 50 Gew.-% Stärke oder Stärkederivat, wobei Stärke und Stärkederivate besonders bevorzugt sind. Ganz besonders bevorzugt ist Stärke, insbesondere eine vernetzte Stärke, die nicht anderweitig modifiziert wurde.In a preferred embodiment, the crosslinked biopolymer material in the form of nanoparticles is starch, a starch derivative or a polymer mixture with at least about 50% by weight of starch or starch derivative, starch and starch derivatives being particularly preferred. Starch is very particularly preferred, in particular a cross-linked starch that has not been modified in any other way.

Die durchschnittliche mittlere Partikelgröße der Nanopartikel liegt vorzugsweise zwischen etwa 10 nm und 600 nm, besonders bevorzugt zwischen etwa 40 nm und 400 nm und ganz besonders bevorzugt zwischen etwa 40 nm und 200 nm. Als vernetztes biopolymeres Material können beispielsweise Ecosphere 2240 Biolatex Binder, Ecosphere 92240, 92273, X282 Biolatex Binder und Ecosphere 2202 (alle erhältlich von EcoSynthetix Inc.) eingesetzt werden.The average mean particle size of the nanoparticles is preferably between approximately 10 nm and 600 nm, particularly preferably between approximately 40 nm and 400 nm and very particularly preferably between approximately 40 nm and 200 nm. For example, Ecosphere 2240 Biolatex Binder, Ecosphere 92240 can be used as the crosslinked biopolymer material , 92273, X282 Biolatex Binder and Ecosphere 2202 (all available from EcoSynthetix Inc.).

Das biopolymere Material in Form von Nanopartikeln liegt in der (den) jeweiligen Schicht(en) vorzugsweise in einer Menge von etwa 1 bis 50 Gew.-%, besonders bevorzugt in einer Menge von etwa 2 bis 40 Gew.-%, und besonders bevorzugt in einer Menge von etwa 2 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Trockenmasse der jeweiligen Schicht, vor. Zu niedrige Mengen haben den Nachteil, dass die Anbindung der benachbarten Schichten nicht zufriedenstellend ist.The biopolymer material in the form of nanoparticles is preferably in the respective layer (s) in an amount of about 1 to 50% by weight, particularly preferably in an amount of about 2 to 40% by weight, and particularly preferably in an amount of about 2 to 30% by weight, based on the total weight of the dry matter of the respective layer. Too low quantities have the disadvantage that the connection of the neighboring layers is unsatisfactory.

In einer besonders bevorzugten Ausführungsform hat der flächige Träger ein Flächengewicht von etwa 20 bis 600 g/m2, insbesondere von etwa 30 bis 300 g/m2, die jeweilige(n) Zwischenschicht(en) ein Flächengewicht von etwa 1 bis 14 g/m2, insbesondere von etwa 2 bis 9 g/m2 und/oder die Thermoreaktionsschicht(en) ein Flächengewicht von etwa 1 bis 8 g/m2, insbesondere von etwa 2 bis 6 g/m2.In a particularly preferred embodiment, the planar support has a basis weight of approximately 20 to 600 g / m 2 , in particular approximately 30 to 300 g / m 2 , the respective intermediate layer (s) has a basis weight of approximately 1 to 14 g / m 2 , in particular from about 2 to 9 g / m 2 and / or the thermal reaction layer (s) a basis weight of about 1 to 8 g / m 2 , in particular from about 2 to 6 g / m 2 .

In einer weiteren bevorzugten Ausführungsform liegt auch in der bzw. den Schichten, in der bzw. in denen sich das vernetzte biopolymere Material in Form von Nanopartikeln befindet, mindestens ein weiteres Bindemittel vor. Dies hat den Vorteil, dass durch die Kombination verschiedener Bindemittel und ihrer Charakteristika das gewünschte Ergebnis den Anforderungen an das jeweilige wärmeempfindliche Aufzeichnungsmaterial, insbesondere in Bezug auf optische Erscheinung, Isolationsverhalten und/oder weitere spezifische Merkmale, weiter angepasst werden kann. Das mindestens eine weitere Bindemittel liegt bevorzugt in einer Menge von weniger als 20 Gew.-% in der jeweiligen Schicht vor.In a further preferred embodiment, at least one further binder is also present in the layer or layers in which the crosslinked biopolymer material is in the form of nanoparticles. This has the advantage that the desired result can be further adapted to the requirements of the respective heat-sensitive recording material, in particular with regard to optical appearance, insulation behavior and / or other specific features, by combining different binders and their characteristics. The at least one further binder is preferably present in the respective layer in an amount of less than 20% by weight.

Bei der Auswahl des mindestens einen weiteren Bindemittels ist die Erfindung im Wesentlichen frei, sofern dadurch die Eigenschaften des wärmeempfindlichen Aufzeichnungsmaterials nicht beeinträchtigt werden. Bevorzugt ist mindestens ein weiteres Bindemittel in Form von wasserlöslichen Stärken, Stärkederivaten, Hydroxyethylcellulosen, Polyvinylalkoholen, modifizierten Polyvinylalkoholen, Acrylamid/(Meth)acrylat-Copolymeren und/oder Acrylamid/Acrylat/Methacrylat-Terpolymeren. Derartige Materialien führen zu einer Beschichtung, die wasserlöslich ist. Andererseits gibt es auch solche, die zu einer wasserunlöslichen Struktur führen. Dabei handelt es sich beispielsweise um Latices, wie Polymethacrylatester, Styrol/Acrylatester-Copolymere, Styrol/Butadien-Copolymere, Polyurethane, Acrylat/Butadien-Copolymere, Polyvinylacetate und/oder Acrylnitril/Butadien-Copolymere und dergleichen. Es liegt im fachmännischen Erwägen, hier im Einzelfall ein besonders geeignetes Bindemittel oder Bindemittelgemisch heranzuziehen. Besonders bevorzugt ist der Einsatz von Polyvinylalkohol.The invention is essentially free in the selection of the at least one further binder, provided that the properties of the heat-sensitive recording material are not impaired thereby. At least one further binder in the form of water-soluble starches, starch derivatives, hydroxyethyl celluloses, polyvinyl alcohols, modified polyvinyl alcohols, acrylamide / (meth) acrylate copolymers and / or acrylamide / acrylate / methacrylate terpolymers is preferred. Such materials result in a coating that is water soluble. On the other hand, there are also those that lead to a water-insoluble structure. These are, for example, latices, such as polymethacrylate esters, styrene / acrylate ester copolymers, styrene / butadiene copolymers, polyurethanes, acrylate / butadiene copolymers, polyvinyl acetates and / or acrylonitrile / butadiene copolymers and the like. It is in the professional consideration to use a particularly suitable binder or mixture of binders in individual cases. The use of polyvinyl alcohol is particularly preferred.

Das mindestens eine weitere Bindemittel kann in allen Schichten, bevorzugt in der/den Thermoreaktionsschicht(en) und/oder der/den Zwischenschicht(en) vorliegen, wobei dessen Einsatz in der/den Zwischenschicht(en) besonders bevorzugt ist, da hierdurch die gewünschten Eigenschaften besonders verbessert werden können.The at least one further binder can be present in all layers, preferably in the thermal reaction layer (s) and / or in the intermediate layer (s), its use in the intermediate layer (s) being particularly preferred, since this results in the desired Properties can be particularly improved.

Unter einem weiteren Bindemittel wird hier ein Bindemittel verstanden, das zusätzlich zu dem vernetzten biopolymeren Material in Form von Nanopartikeln in der bzw. den Schichten, in der bzw. denen das vernetzte biopolymere Material in Form von Nanopartikeln vorliegt, eingesetzt wird. Es ist selbstverständlich, dass in denjenigen Schichten, in denen das vernetzte biopolymere Material in Form von Nanopartikeln nicht zum Einsatz kommt, ein oder mehrere übliche Bindemittel vorliegen können.A further binder is understood here to mean a binder which is used in addition to the crosslinked biopolymer material in the form of nanoparticles in the layer or layers in which the crosslinked biopolymer material is in the form of nanoparticles. It goes without saying that one or more conventional binders can be present in those layers in which the crosslinked biopolymer material in the form of nanoparticles is not used.

D. h. in dem erfindungsgemäßen wärmeempfindlichen Aufzeichnungsmaterial können ein oder mehrere übliche Bindemittel vollständig oder teilweise durch ein vernetztes biopolymeres Material in Form von Nanopartikeln ersetzt sein. Dies gilt für alle Schichten.That is, in the heat-sensitive recording material according to the invention, one or more conventional binders can be completely or partially replaced by a crosslinked biopolymer material in the form of nanoparticles. This applies to all layers.

In einer bevorzugten Ausführungsform handelt es sich bei dem erfindungsgemäßen wärmeempfindlichen Aufzeichnungsmaterial um ein wärmeempfindliches Aufzeichnungsmaterial mit einem flächigen Träger, einer Thermoreaktionsschicht auf mindestens einer Seite des flächigen Trägers und einer zwischen dem flächigen Träger und der jeweiligen Thermoreaktionsschicht ausgebildeten Zwischenschicht und gegebenenfalls weiteren Schichten, wobei als Bindemittel in mindestens einer der Schichten ein biopolymeres Material in Form von Nanopartikeln eingesetzt wird.In a preferred embodiment, the heat-sensitive recording material according to the invention is a heat-sensitive recording material with a flat support, a thermoreaction layer on at least one side of the flat support and an intermediate layer formed between the flat support and the respective thermoreaction layer and optionally further layers, where as a binder a biopolymer material in the form of nanoparticles is used in at least one of the layers.

In einer bevorzugten Ausführungsform umfasst das wärmeempfindliche Aufzeichnungsmaterial einen flächigen Träger, eine Thermoreaktionsschicht sowie eine zwischen dem flächigen Träger und der Thermoreaktionsschicht ausgebildete Zwischenschicht, wobei in der Zwischenschicht neben dem vernetzten biopolymeren Material in Form von Nanopartikeln unter anderem mindestens ein Pigment, vorzugsweise mindestens ein Hohlkugelpigment, und mindestens ein Co-Bindemittel, vorzugsweise Polyvinylalkohol, Latex oder Stärke (hierbei handelt es sich um eine andere Stärke als die Stärke die als vernetztes biopolymeres Material in Form von Nanopartikeln eingesetzt werden kann, beispielsweise um natürliche enzymatisch oder oxidativ abgebaute Stärken, Stärkeester oder Stärkeether), besonders bevorzugt Polyvinylalkohol, vorliegen. Anstelle eines Holkugelpigments kann auch ein anorganisches Pigment oder eine Abmischung aus beiden eingesetzt werden. Besonders geeignete Hohlkugelpigmente sind Styrol/Acrylat-Copolymere. Das vernetzte biopolymere Material in Form von Nanopartikeln liegt hierbei vorzugsweise in einer Menge von etwa 1 bis 40 Gew.-%, besonders bevorzugt in einer Menge von 2 bis 30 Gew.-%, das Pigment(gemisch) vorzugsweise in einer Menge von etwa 50 bis 95 Gew.-%, besonders bevorzugt in einer Menge von etwa 60 bis 90 Gew.-%, und das Co-Bindemittel vorzugsweise in einer Menge von etwa 0 bis 10 Gew.-%, besonders bevorzugt etwa 1 bis 9 Gew.-%, vor.In a preferred embodiment, the heat-sensitive recording material comprises a flat support, a thermal reaction layer and an intermediate layer formed between the flat support and the thermal reaction layer, the interlayer in addition to the crosslinked biopolymer material in the form of nanoparticles, among other things, at least one Pigment, preferably at least one hollow spherical pigment, and at least one co-binder, preferably polyvinyl alcohol, latex or starch (this is a different starch than the starch that can be used as a crosslinked biopolymer material in the form of nanoparticles, for example natural enzymatic or oxidatively degraded starches, starch esters or starch ethers), particularly preferably polyvinyl alcohol. Instead of a wood ball pigment, an inorganic pigment or a mixture of the two can also be used. Particularly suitable hollow spherical pigments are styrene / acrylate copolymers. The crosslinked biopolymer material in the form of nanoparticles is preferably in an amount of about 1 to 40% by weight, particularly preferably in an amount of 2 to 30% by weight, the pigment (mixture) is preferably in an amount of about 50 to 95% by weight, particularly preferably in an amount of approximately 60 to 90% by weight, and the co-binder preferably in an amount of approximately 0 to 10% by weight, particularly preferably approximately 1 to 9% by weight %, in front.

Das vernetzte biopolymere Material in Form von Nanopartikeln ist erhältlich mittels eines Verfahrens bei dem ein biopolymeres Material unter Einsatz von Scherkräften und in Anwesenheit eines Vernetzungsmittels plastifiziert und gegebenenfalls anschließend in einem hydroxylischen Lösungsmittel, vorzugsweise Wasser, dispergiert wird.The crosslinked biopolymer material in the form of nanoparticles can be obtained by a process in which a biopolymer material is plasticized using shear forces and in the presence of a crosslinking agent and, if appropriate, subsequently dispersed in a hydroxylic solvent, preferably water.

Dem Fachmann stehen vielfältige Verfahren zur Verfügung, um das erfindungsgemäße wärmeempfindliche Aufzeichnungsmaterial gemäß der Erfindung herzustellen. So können beispielsweise On-line in der Papiermaschine beide Seiten des Trägersubstrats gleichzeitig mit der Streichmasse zur Ausbildung der Zwischenschichten versehen werden. Auch ist es möglich, zunächst die eine und dann die andere Seite des Trägersubstrats mit Zwischenschichten zu versehen. Das jeweilige Auftragsverfahren unterliegt also keinen Einschränkungen und kann in üblicher Weise vorgenommen werden. Gleiches gilt auch für die Ausbildung der Thermoreaktionsschicht, bei der eine wässrige Dispersion, die die notwendigen und begünstigenden Bestandteile enthält, in üblicher Weise aufgetragen und getrocknet wird. Der Fachmann benötigt demzufolge keine weiteren technischen Anweisungen.Various methods are available to the person skilled in the art for producing the heat-sensitive recording material according to the invention in accordance with the invention. For example, both sides of the carrier substrate can be provided simultaneously with the coating slip to form the intermediate layers on-line in the paper machine. It is also possible to first provide the one and then the other side of the carrier substrate with intermediate layers. The respective application process is therefore not subject to any restrictions and can be carried out in the usual way. The same also applies to the formation of the thermal reaction layer, in which an aqueous dispersion which contains the necessary and beneficial constituents is applied and applied in the usual way is dried. The specialist therefore does not need any further technical instructions.

Ferner offenbart wird ein Verfahren zur Herstellung des vorstehend geschilderten wärmeempfindlichen Aufzeichnungsmaterials, bei dem ein vernetztes biopolymeres Material in Form von Nanopartikeln, vorzugsweise als Pulver, besonders bevorzugt direkt im Farbansatz, eingesetzt wird.Furthermore, a method for producing the heat-sensitive recording material described above is disclosed, in which a crosslinked biopolymer material in the form of nanoparticles, preferably as a powder, particularly preferably directly in the color formulation, is used.

Dies hat den Vorteil, dass gegenüber herkömmlichen Kochstärken, größere Mengen an dem biopolymeren Material eingesetzt und dass höhere Streichfarbenfeststoffgehalte bereit gestellt werden können, ohne dass hierdurch die rheologischen Eigenschaften negativ beeinflusst werden.This has the advantage that, compared to conventional cooking starches, larger amounts of the biopolymer material are used and that higher coating color solids contents can be made available without the rheological properties being adversely affected thereby.

Das erfindungsgemäße wärmeempfindliche Aufzeichnungsmaterial kann in vielen Bereichen eingesetzt werden, beispielsweise als Papier für den Faxdruck, den Druck von Kassenbons oder Quittungen, Parkscheinen, Eintritts- und Fahrkarten, medizinischen Untersuchungsprotokollen und Barcodeetiketten.The heat-sensitive recording material according to the invention can be used in many areas, for example as paper for fax printing, the printing of receipts or receipts, parking tickets, entrance tickets and tickets, medical examination protocols and barcode labels.

Die Erkenntnisse bzw. Vorteile, die mit der vorliegenden Erfindung verbunden sind, lassen sich im Wesentlichen wie folgt zusammenfassen:
Bindemittel bzw. vermutlich besonders deren niedermolekulare Begleitstoffe aus allen Schichten, können die Alterungsbeständigkeit beeinträchtigen. Diese negativen Effekte nehmen mit zunehmender Lagerdauer des Papiers bei erhöhten Temperaturen sowie erhöhter Umgebungsfeuchte, wie dies beispielsweise in den Tropen der Fall ist, zu. Hierbei spielen wahrscheinlich Migrationsvorgänge, insbesondere der niedermolekularen Begleitstoffe eine Rolle. Besonders der Einsatz synthetischer Latices hat einen negativen Einfluss auf die Schreibleistung und die Schriftbeständigkeit.
The findings and advantages associated with the present invention can essentially be summarized as follows:
Binding agents, or presumably especially their low-molecular accompanying substances from all layers, can impair the aging resistance. These negative effects increase with increasing storage time of the paper at elevated temperatures and increased ambient humidity, as is the case, for example, in the tropics. Migration processes, in particular the low-molecular accompanying substances, probably play a role here. The use of synthetic latices in particular has a negative impact on writing performance and writing stability.

Die vorliegende Erfindung, insbesondere der Einsatz eines vernetzten biopolymeren Materials in Form von Nanopartikeln, führt zu einem wärmeempfindlichen Aufzeichnungsmaterial, dessen Alterungsbeständigkeit deutlich verbessert ist. Die Alterungsbeständigkeit betrifft sowohl die Alterung vor Beschriftung, d.h. die Alterung des nicht bedruckten Thermopapiers, wie auch die Alterung nach Beschriftung, also die Alterung des Thermodrucks. Ebenso ist die Hintergrundweiße des erfindungsgemäßen wärmeempfindlichen Aufzeichnungsmaterials nach Alterung sehr günstig.The present invention, in particular the use of a crosslinked biopolymer material in the form of nanoparticles, leads to a heat-sensitive recording material whose aging resistance is significantly improved. The resistance to aging affects both the aging before labeling, ie the aging of the unprinted thermal paper, and the aging after labeling, that is, the aging of the thermal printing. The background whiteness of the heat-sensitive recording material according to the invention is also very favorable after aging.

Deutlich positive Effekte zeigt das erfindungsgemäße wärmeempfindliche Aufzeichnungsmaterial auch hinsichtlich des sogenannten Ablegeverhaltens auf der Thermoleiste. Hierbei handelt es sich um ein wichtiges Eigenschaftsmerkmal von Thermopapieren, welches den Grad der Verschmutzung einer Thermoleiste im Anwendungsfall wiedergibt. Bei Erwärmung eines Thermopapiers im Thermodrucker kommt es zu einem Schmelzvorgang, wobei die sich bildende Schmelze zu Ablagerungen auf der Thermoleiste des Druckers führen kann. Hierbei ist es von entscheidender Bedeutung, ob die Thermoschmelze in ausreichendem Maß in den Thermofunktionsschichten fixiert wird. Eine zentrale Rolle nimmt hierbei die Aufnahmefähigkeit der Zwischenschicht ein, wobei eine poröse Strichstruktur sehr hilfreich ist. Der Einsatz eines vernetzten biopolymeren Materials in Form von Nanopartikeln in der Zwischenschicht führt zu einer solchen Strichporösität, wodurch eine verminderte Verschmutzungsneigung des Thermodruckkopfs erreicht werden kann, insbesondere bei Einsatz eines wenig absorptiven Hohlkugelpigments als Pigment in der Zwischenschicht.The heat-sensitive recording material according to the invention also shows clearly positive effects with regard to the so-called deposit behavior on the thermal strip. This is an important property characteristic of thermal paper, which reflects the degree of contamination of a thermal strip in the application. When a thermal paper is heated in the thermal printer, it melts, and the melt that forms can lead to deposits on the thermal bar of the printer. It is of crucial importance whether the thermal melt is sufficiently fixed in the thermal function layers. The absorption capacity of the intermediate layer plays a central role here, a porous line structure being very helpful. The use of a crosslinked biopolymeric material in the form of nanoparticles in the intermediate layer leads to such a line porosity, whereby a reduced tendency for soiling of the thermal print head can be achieved, in particular when using a low-absorptive hollow sphere pigment as a pigment in the intermediate layer.

Schließlich ist das erfindungsgemäße wärmeempfindliche Aufzeichnungsmaterial kostengünstiger herzustellen und der Einsatz von synthetischen Bindemitteln, die aus fossilen Rohstoffen gewonnen werden müssen, kann vermindert werden.Finally, the heat-sensitive recording material according to the invention is less expensive to produce and the use of synthetic binders which have to be obtained from fossil raw materials can be reduced.

Die Erfindung wird nachfolgend anhand von nicht beschränkten Beispielen im Detail erläutert.The invention is explained in detail below on the basis of non-restricted examples.

BeispieleExamples Herstellung wärmeempfindlicher Aufzeichnungsmaterialien:Production of heat-sensitive recording materials:

Eine Zwischenschicht-Rezeptur gemäß Tabelle 1 (Rezeptur 1) beziehungsweise eine Zwischenschicht-Rezeptur nach Tabelle 2 (Rezeptur 2) wurde mit einem Trockenauftrag von etwa 3 g/m2 mittels Rakel auf einen üblichen flächigen Träger (Thermorohpapier) mit einem jeweiligen Flächengewicht von 44 g/m2 aufgebracht und getrocknet.An interlayer recipe according to Table 1 (Recipe 1) or an interlayer recipe according to Table 2 (Recipe 2) was applied with a dry application of about 3 g / m 2 by means of a doctor blade onto a conventional flat carrier (thermal raw paper) with a respective basis weight of 44 g / m 2 applied and dried.

Anschließend wurden die so hergestellten Papiersubstrate mit einer Thermo-Streichmasse gemäß Tabelle 3 (Rezeptur 3) beschichtet. Der Strichauftrag betrug etwa 4,5 g/m2 (otro) mittels Rakel. Die dort genannte Beschichtungsdispersion A wurde durch Mahlen von 30 Gew.-Teilen 2-Anilino-3-methyl-6-di-n-butylamino-fluoran mit 55 Gew.-Teilen einer 15% wässrigen Polyvinylalkohollösung in einer Kugelmühle zu einer durchschnittlichen Partikelgröße von 1,5 µm hergestellt. Die Beschichtungsdispersion B wurde durch Mahlen von 65 Gew.-Teilen 2,2-Bis-(4-hydroxyphenyl)-propan zusammen mit 35 Gew.-Teilen Benzyl-Naphthyl-Ether 75 Gew.-Teilen einer 15%igen wässrigen Polyvinylalkohollösung und 90 Gew.-Teilen Wasser in einer Mühle auf eine durchschnittliche Partikelgröße von 1,5 µm hergestellt. Tabelle 1 Rezeptur 1 TG Nassmasse 100% Ofentrocken (otro) Komponente % g g Wasser 5,50 --- Ropaque HP-1055 *1 27 71,08 19,19 Styron-Latex*2 48 14,66 7,04 PV-OH *3 20 8,58 1,72 Rheologiehilfsmittel *4 31 0,18 0,06 100,00 28,00 pH-Wert = 8,2; Brookfield Viskosität (100 U/min; Spindel 3; 20°C) = 380 mPas
*1 Hohlkugelpigment Fa. Dow (Styrol/Acrylat-Copolymer)
*2 Bindemittel vom Typ Styrol/Butadien-Latex (Fa. Styron)
*3 Polyvinylalkohol niedrigviskos, hochverseift (Fa. Kuraray)
*4 Rheocoat-Typ der Fa. Coatex (Acrylatcopolymer)
Tabelle 2 Rezeptur 2 TG Nassmasse 100% Ofentrocken (otro) Komponente % g g Wasser 13,73 --- Ropaque HP-1055 *1 27 70,43 19,02 Ecosphere 2240 95 7,35 6,98 PV-OH *3 20 8,49 1,70 100,00 27,70 pH-Wert = 8,8; Brookfield Viskosität (100 U/min; Spindel 4; 20°C) = 1400 mPas
*1 Hohlkugelpigment Fa. Dow (Styrol/Acrylat-Copolymer)
*2 vernetzte Stärke, EcoSphere®-Qualität (Fa. Ecosynthetix)
*3 Polyvinylalkohol niedrigviskos, hochverseift (Fa. Kuraray)
Tabelle 3 Rezeptur 3 Nassmasse 100% Ofentrocken (otro) Komponente g g Wasser 12,35 --- PVA hochviskos, hochverseift (10%) 10,44 1,04 Leukophor UO (31,3%)*1 0,22 0,07 PCC-Slurry (55%)*2 28,92 15,91 Dispersion B 25,52 10,72 Stearinsäureamid-Dispersion*3 11,12 2,78 Zn-Stearat-Dispersion*3 4,84 1,45 Dispersion A 5,92 2,66 Rheologiehilfsmittel (25%)*4 0,67 0,16 100,00 34,8 pH-Wert: 8,3; Brookfield-Viskosität (100 U/min, Spindel 3, 20°C) = 480 mPas; Oberflächenspannung (statische Ringmethode nach Du Noüy) 48 mN/m; Trockengehalt etwa 35 Gew.-%
*1 optischer Aufheller (anionisches Stilben-Derivat) (Fa. Clariant)
*2 d50: 1,0 µ, Calcit-Typ,
*3 Fa. Chukyo
*4 Sterocoll-Typ (Fa. BASF) (Copolymerisat von Acrylsäureestern und Carbonsäuren)
The paper substrates produced in this way were then coated with a thermal coating slip in accordance with Table 3 (recipe 3). The line application was about 4.5 g / m 2 (otro) using a doctor blade. The coating dispersion A mentioned there was ground by grinding 30 parts by weight of 2-anilino-3-methyl-6-di-n-butylamino-fluorane with 55 parts by weight of a 15% aqueous solution of polyvinyl alcohol in a ball mill to an average particle size of 1.5 µm. Coating dispersion B was prepared by grinding 65 parts by weight of 2,2-bis (4-hydroxyphenyl) propane together with 35 parts by weight of benzyl naphthyl ether, 75 parts by weight of a 15% strength aqueous polyvinyl alcohol solution and 90 Parts by weight of water in a mill to an average particle size of 1.5 microns. Table 1 Recipe 1 TG Wet mass 100% Oven dry (otro) component % G G water 5.50 --- Ropaque HP-1055 * 1 27 71.08 19.19 Styron latex * 2 48 14.66 7.04 PV-OH * 3 20th 8.58 1.72 Rheology aids * 4 31 0.18 0.06 100.00 28.00 pH = 8.2; Brookfield viscosity (100 rpm; spindle 3; 20 ° C) = 380 mPas
* 1 hollow spherical pigment from Dow (styrene / acrylate copolymer)
* 2 styrene / butadiene latex binders (from Styron)
* 3 low viscosity, highly saponified polyvinyl alcohol (Kuraray)
* 4 Rheocoat type from Coatex (acrylate copolymer)
Recipe 2 TG Wet mass 100% Oven dry (otro) component % G G water 13.73 --- Ropaque HP-1055 * 1 27 70.43 19.02 Ecosphere 2240 95 7.35 6.98 PV-OH * 3 20th 8.49 1.70 100.00 27.70 pH = 8.8; Brookfield viscosity (100 rpm; spindle 4; 20 ° C) = 1400 mPas
* 1 hollow spherical pigment from Dow (styrene / acrylate copolymer)
* 2 networked starch, EcoSphere® quality (Ecosynthetix)
* 3 low viscosity, highly saponified polyvinyl alcohol (Kuraray)
Recipe 3 Wet mass 100% Oven dry (otro) component G G water 12.35 --- PVA highly viscous, highly saponified (10%) 10.44 1.04 Leukophore UO (31.3%) * 1 0.22 0.07 PCC slurry (55%) * 2 28.92 15.91 Dispersion B 25.52 10.72 Stearic acid amide dispersion * 3 11.12 2.78 Zn stearate dispersion * 3 4.84 1.45 Dispersion A 5.92 2.66 Rheology aids (25%) * 4 0.67 0.16 100.00 34.8 pH: 8.3; Brookfield viscosity (100 rpm, spindle 3, 20 ° C) = 480 mPas; Surface tension (static ring method according to Du Noüy) 48 mN / m; Dry content about 35% by weight
* 1 optical brightener (anionic stilbene derivative) (Clariant)
* 2 d 50 : 1.0 µ, calcite type,
* 3 Chukyo
* 4 Sterocoll type (from BASF) (copolymer of acrylic acid esters and carboxylic acids)

Alterung nach BeschriftungAging after labeling

Die so erhaltenen wärmeempfindlichen Aufzeichnungsmaterialien wurden einem Alterungstest (Alterung nach Beschriftung) bei zwei definierten Klimata über einen Zeitraum von mehreren Wochen unterworfen. Die Bildbeständigkeit wurde wöchentlich bestimmt.The heat-sensitive recording materials thus obtained were subjected to an aging test (aging after inscription) in two defined climates over a period of several weeks. The image stability was determined weekly.

Hierzu wurde auf einem Thermodrucker ein Schriftbild generiert und dessen optische Dichte vor Alterung bestimmt. Danach wurde das Material freihängend in unterschiedlichen Klimata über einen bestimmten Zeitraum gealtert. Klimata waren Trockenwärme (50°C) und Feuchtwärme (40°C / 80% r.F.) jeweils über eine Zeitspanne von 1, 2, 4, 6 und 9 Wochen. Nach Alterung wurde die verbliebene optische Dichte gemessen und der Abfall der Bildbeständigkeit in % bestimmt: (ODnach/ODvor-1)100. Desweiteren wurde die Hintergrundweiße der jeweiligen Papierproben nach Alterung bestimmt. Die Weißemessung erfolgte von der Oberseite mit einem Elrepho 3000 Reflexionsphotometer (Fa. Datacolor). Bestimmt wurde hierbei der Weißgrad mit Filter R 457 (ISO 2470) ohne UV-Filter.For this purpose, a typeface was generated on a thermal printer and its optical density was determined before aging. Afterwards the material was aged freely hanging in different climates over a certain period of time. Climates were dry heat (50 ° C) and damp heat (40 ° C / 80% rh) over a period of 1, 2, 4, 6 and 9 weeks. After aging, the remaining optical density was measured and the drop in image stability was determined in%: (OD after / OD before -1) 100. Furthermore, the background whiteness of the respective paper samples after aging was determined. The white measurement was carried out from the top using an Elrepho 3000 reflection photometer (from Datacolor). The degree of whiteness was determined with filter R 457 (ISO 2470) without UV filter.

Die Ergebnisse sind in Tabelle 4 zusammengefasst. Tabelle 4 Bildbeständigkeit nach Alterung TestDauer %-Abfall der opt. Dichte nach x Wochen Alterung Hintergrundweiße % nach x Wochen Alterung Zwischenschicht nach: 0,25 mJ/dot 0,45 mJ/dot 50°C 40°C/ 80% r.F. 50°C 40°C/ 80% r.F. 50°C 40°C/ 80% r.F. Rezeptur 1 1Wo. -24,1 -25,5 -1,6 -3,9 77,2 81,3 2Wo. -28,4 -36,4 -6,6 -6,3 74,3 76,4 4Wo. -40,5 -42,7 -18,0 -11,8 72,2 72,2 6Wo. -46,6 -50,9 -27,0 -18,1 68,5 70,3 9Wo. -49,1 -56,4 -31,1 -19,7 67,3 69,5 Rezeptur 2 1Wo. -17,6 -21,8 1,7 2,5 78,0 82,6 2Wo. -21,6 -22,8 -0,8 -0,8 76,5 82,7 4Wo. -28,4 -28,7 -6,8 -0,8 75,3 81,7 6Wo. -30,4 -39,6 -12,7 -5,8 71,6 80,4 9Wo. -35,3 -38,6 -14,4 -6,6 72,3 80,9 The results are summarized in Table 4. Table 4 Image stability after aging Test duration % Drop in opt. Density after x weeks of aging Background white% after x weeks of aging Intermediate layer after: 0.25 mJ / dot 0.45 mJ / dot 50 ° C 40 ° C / 80% RH 50 ° C 40 ° C / 80% RH 50 ° C 40 ° C / 80% RH Recipe 1 1Where. -24.1 -25.5 -1.6 -3.9 77.2 81.3 2Where -28.4 -36.4 -6.6 -6.3 74.3 76.4 4Wo. -40.5 -42.7 -18.0 -11.8 72.2 72.2 6Wo. -46.6 -50.9 -27.0 -18.1 68.5 70.3 9Wo. -49.1 -56.4 -31.1 -19.7 67.3 69.5 Recipe 2 1Where. -17.6 -21.8 1.7 2.5 78.0 82.6 2Where -21.6 -22.8 -0.8 -0.8 76.5 82.7 4Wo. -28.4 -28.7 -6.8 -0.8 75.3 81.7 6Wo. -30.4 -39.6 -12.7 -5.8 71.6 80.4 9Wo. -35.3 -38.6 -14.4 -6.6 72.3 80.9

Die Ergebnisse zeigen ein stabileres Alterungsverhalten des wärmeempfindlichen Aufzeichnungsmaterials bei Verwendung der Rezeptur 2 im Vergleich zu einem wärmeempfindlichen Aufzeichnungsmaterial bei Verwendung der Rezeptur 1. Die erhöhte Stabilität des Hintergrunds ist besonders bei längerer Lagerungsdauer zu sehen. Dieser Trend zeigt sich besonders verstärkt unter feuchtwarmen Klimabedingungen.The results show a more stable aging behavior of the heat-sensitive recording material when using formulation 2 in comparison to a heat-sensitive recording material when using formulation 1. The increased stability of the background can be seen particularly when the storage time is longer. This trend is particularly evident under warm, humid climatic conditions.

Ablegeverhalten:Laying behavior:

Die Prüfung des Ablegeverhaltens erfolgte auf zwei marktüblichen Thermodruckern (Epson TM-T88II und Mettler-Waage Type L2-RT) und wurde nach visueller Begutachtung mit Noten von 0 bis 3 bewertet:
Tabelle 5 zeigt die Bewertung des Ablegens auf der Thermoleiste: Tabelle 5 Bemerkung Drucker A Drucker B Rezeptur 1 2 -3 2-3 Rezeptur 2 0,5-1 0,5-1 0=keine Ablagerungen, l=leicht/erkennbar, 2=mittel, 3=stark
The filing behavior was checked on two commercially available thermal printers (Epson TM-T88II and Mettler scales type L2-RT) and was rated with marks from 0 to 3 after visual inspection:
Table 5 shows the evaluation of the placement on the thermal bar: Table 5 comment Printer A Printer B Recipe 1 2 -3 2-3 Recipe 2 0.5-1 0.5-1 0 = no deposits, l = easy / recognizable, 2 = medium, 3 = strong

Das wärmeempfindliche Aufzeichnungsmaterial mit der Rezeptur 2 zeigte ein signifikant besseres Ablegeverhalten als das wärmeempfindliche Aufzeichnungsmaterial mit der Rezeptur 1.The heat-sensitive recording material with recipe 2 showed significantly better deposition behavior than the heat-sensitive recording material with recipe 1.

Alterung vor Beschriftung:Aging before labeling:

Zur Bestimmung der Lagerstabilität, d. h. der Stabilität eines wärmeempfindlichen Aufzeichnungsmaterials vor Beschriftung, wurde ein übliches Thermopapier mit seiner Thermoreaktionsschicht (Referenzpapier) in Kontakt mit einer reinen Bindemittelschicht gebracht, welches auf ein Rohpapier aufgetragen wurde (Konterpapier). Bei dem Referenzpapier handelte es sich um ein Standard POS-Papier (erhältlich von der Papierfabrik August Koehler SE). Das zu untersuchende Bindemittel wurde als Lösung bzw. als Dispersion bereitgestellt. Die Bindemittel-Lösung bzw. Dispersion wurde auf ein Thermorohpapier mittels Rakel aufgebracht und getrocknet. Das Auftragsgewicht lag im Bereich von 2 bis 3 g/m2 (trocken). Das Papier wurde dann bei 35°C/75% r.F. zwischen Plexiglasplatten bei einem definierten Druck von 7kg gelagert. Nach definierten Zeitabständen von 4, 8, 12 16, 20, 28 Wochen wurde jeweils ein Muster entnommen und auf einem Thermodrucker bedruckt, um die verbliebene Schreibleistung zu bestimmen. Hierzu wurde die optische Dichte vor bzw. nach Alterung des Papiers gemessen und die Schreibleistung [(ODnach/ODvor)100] bestimmt. Diese Testmethodik zielt auf den Einfluss des Bindemittels auf die Alterung des wärmeempfindlichen Aufzeichnungsmaterials ab. Die Ergebnisse können Tabelle 6 entnommen werden. Es ist ersichtlich, dass das wärmeempfindliche Aufzeichnungsmaterial unter Verwendung eines vernetzten biopolymeren Materials in Form von Nanopartikeln (Nr. 2) eine deutlich verbesserte Lagerstabilität im Vergleich zu wärmeempfindlichen Aufzeichnungsmaterialien mit bekannten Bindemitteln aufweist. Tabelle 6 Alterung vor Beschriftung Schreibleistung [%] Schreibleistung [%] Nr. Bindemittel 0,25 mJ/dot; 35°C/75% r.F. 0,45 mJ/dot; 35°C/75% r.F. 4 Wo. 8 Wo. 12 Wo. 16 Wo. 20 Wo. 28 Wo. 4 Wo. 8 Wo. 12 Wo. 16 Wo. 20 Wo. 28 Wo. 1 Referenz ohne Kontakt zum Konterpapier 97,0 92,9 99,0 93,9 92,9 93,9 97,7 97,7 100,8 95,5 99,2 98,5 2 Referenzpapier im Kontakt zu Ecosphere 2240 97,0 91,9 99,0 89,9 90,9 93,9 99,2 94,7 99,2 94,0 92,5 92,5 3 Referenzpapier im Kontakt zu SB-Latex 1 89,8 80,8 80,8 76,8 70,7 62,6 91,7 88,0 80,5 79,7 77,4 56,4 4 Referenzpapier im Kontakt zu SA-Latex 1 81,8 66,7 72,7 50,5 39,4 40,4 88,0 68,4 75,2 49,6 42,1 37,6 5 Referenzpapier im Kontakt zu SB-Latex 2 87,6 84,3 75,2 66,9 70,3 - 95,0 90,7 84,9 77,0 69,8 - 6 Referenzpapier im Kontakt zu SB-Latex 3 90,9 79,3 76,9 71,9 57,9 - 97,1 89,2 80,6 79,9 61,9 - 7 Referenzpapier im Kontakt zu SB-Latex 4 86,0 81,0 81,0 70,3 73,6 - 95,0 90,7 87,8 77,7 79,9 - 8 Referenzpapier im Kontakt zu SA-Latex 2 67,8 44,6 28,1 29,8 21,5 - 66,9 38,9 34,5 25,2 23,7 - 9 Referenzpapier im Kontakt zu PV-OH 92,9 86,9 88,9 79,8 77,8 74,7 97,7 87,2 91,9 85,0 75,2 77,4 SB-Latex 1 = XZ34946.01 Styrol-Butadien Copolymer (Fa. Styron)
SB-Latex 2 = Synthomer 76M10 (Fa. Synthomer)
SB-Latex 3 = Litex PX9366 (Fa. Polymer Latex)
SB-Latex 4 = XZ9182.00 (Fa. Styron)
SA-Latex 1 = Makrovil SE348 (Fa. Indulor)
SA-Latex 2 = DAL 7294 (Fa. Styron)
PV-OH = Polyvinylalkohol niedrigviskos, hochverseift (Fa. Kuraray)
Ecosphere 2240 = vernetzte Stärke, EcoSphere®-Qualität (Fa. Ecosynthetix)
To determine the storage stability, ie the stability of a heat-sensitive recording material before writing, a conventional thermal paper with its thermal reaction layer (reference paper) was brought into contact with a pure binder layer, which was applied to a base paper (counter paper). The reference paper was a standard POS paper (available from the August Koehler SE paper mill). The binder to be examined was provided as a solution or as a dispersion. The binder solution or dispersion was applied to a Thermal raw paper applied with a squeegee and dried. The application weight was in the range of 2 to 3 g / m 2 (dry). The paper was then stored at 35 ° C / 75% RH between plexiglass plates at a defined pressure of 7kg. After defined intervals of 4, 8, 12, 16, 20, 28 weeks, a sample was taken in each case and printed on a thermal printer in order to determine the remaining writing performance. For this purpose, the optical density was measured before and after aging of the paper and the writing performance [(OD after / OD before ) 100] was determined. This test methodology aims at the influence of the binder on the aging of the heat-sensitive recording material. The results can be seen in Table 6. It can be seen that the heat-sensitive recording material using a crosslinked biopolymer material in the form of nanoparticles (No. 2) has a significantly improved storage stability compared to heat-sensitive recording materials with known binders. Table 6 Aging before labeling Write performance [%] Write performance [%] No. binder 0.25 mJ / dot; 35 ° C / 75% RH 0.45 mJ / dot; 35 ° C / 75% RH 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 28 weeks 4 weeks 8 weeks 12 weeks 16 weeks 20 weeks 28 weeks 1 Reference without contact to the counter paper 97.0 92.9 99.0 93.9 92.9 93.9 97.7 97.7 100.8 95.5 99.2 98.5 2nd Reference paper in contact with Ecosphere 2240 97.0 91.9 99.0 89.9 90.9 93.9 99.2 94.7 99.2 94.0 92.5 92.5 3rd Reference paper in contact with SB-Latex 1 89.8 80.8 80.8 76.8 70.7 62.6 91.7 88.0 80.5 79.7 77.4 56.4 4th Reference paper in contact with SA-Latex 1 81.8 66.7 72.7 50.5 39.4 40.4 88.0 68.4 75.2 49.6 42.1 37.6 5 Reference paper in contact with SB-Latex 2 87.6 84.3 75.2 66.9 70.3 - 95.0 90.7 84.9 77.0 69.8 - 6 Reference paper in contact with SB-Latex 3 90.9 79.3 76.9 71.9 57.9 - 97.1 89.2 80.6 79.9 61.9 - 7 Reference paper in contact with SB-Latex 4 86.0 81.0 81.0 70.3 73.6 - 95.0 90.7 87.8 77.7 79.9 - 8th Reference paper in contact with SA-Latex 2 67.8 44.6 28.1 29.8 21.5 - 66.9 38.9 34.5 25.2 23.7 - 9 Reference paper in contact with PV-OH 92.9 86.9 88.9 79.8 77.8 74.7 97.7 87.2 91.9 85.0 75.2 77.4 SB-Latex 1 = XZ34946.01 styrene-butadiene copolymer (from Styron)
SB-Latex 2 = Synthomer 76M10 (from Synthomer)
SB-Latex 3 = Litex PX9366 (from Polymer Latex)
SB-Latex 4 = XZ9182.00 (Styron)
SA-Latex 1 = Makrovil SE348 (Indulor)
SA-Latex 2 = DAL 7294 (Styron)
PV-OH = polyvinyl alcohol, low viscosity, highly saponified (Kuraray)
Ecosphere 2240 = cross-linked starch, EcoSphere® quality (Ecosynthetix)

Claims (9)

  1. A heat-sensitive recording material with a flat support, a thermal reaction layer on at least one side of the flat support and an intermediate layer, which is formed between the flat support and the respective thermal reaction layer, and selectively further layers, wherein a cross-linked biopolymer material in the form of nanoparticles is used as the binder, and wherein the cross-linked biopolymer material in the form of nanoparticles is obtainable by means of a method, in which a biopolymer material is plasticised using shear forces and in the presence of a cross-linking agent and then dispersed in a hydroxylic solvent, wherein the cross-linked biopolymer material in the form of nanoparticles is used in the thermal reaction layer(s) and/or the intermediate layer(s), and wherein the cross-linked biopolymer material in the form of nanoparticles has a degree of swelling, of less than 1, wherein the cross-linked biopolymer material in the form of nanoparticles is a starch, a starch derivative or a polymer mixture with at least 50% by weight starch or starch derivative, wherein the degree of swelling relates to a volume expansion when the cross-linked biopolymer material in the form of nanoparticles swells in water, wherein for this purpose, a sample of a water-free quantity of 2 g is added to 200 ml pure water, dispersed therein and directly thereafter heated in a water bath that is boiling well for 30 minutes and cooled to room temperature, and the part of the water that was evaporated is added and the sample is dispersed again and 100 ml of the dispersion are placed precisely in a measuring cylinder, and the measuring cylinder is allowed to stand for 24 hours at room temperature and a precipitate is measured visually with respect to its quantity (ml) and this value is taken as the degree of swelling.
  2. A recording material according to any one of the preceding claims, characterised in that the cross-linked biopolymer material in the form of nanoparticles is used in the intermediate layer(s).
  3. A recording material according to any one of the preceding claims, characterised in that the cross-linked biopolymer material in the form of nanoparticles is starch.
  4. A recording material according to any one of the preceding claims, characterised in that the average mean particle size of the nanoparticles is between 10 nm and 600 nm, preferably between 40 nm and 400 nm, and quite especially preferably between 40 and 200 nm.
  5. A recording material according to any one of the preceding claims, characterised in that the cross-linked biopolymer material in the form of nanoparticles is present in the respective layer(s) in a quantity of 1 to 50 % by weight, preferably in a quantity of 1 to 40 % by weight and especially preferably in a quantity of 2 to 30 % by weight, based on the total weight of the respective layer.
  6. A recording material according to any one of the preceding claims, characterised in that the flat support has a weight per unit area of 20 to 600 g/m2, especially of 30 to 300 g/m2, the respective intermediate layer(s) has/have a weight per unit area of 1 to 14 g/m2, especially of 2 to 9 g/m2 and/or the thermal reaction layer(s) has/have a weight per unit area of 1 to 8 g/m2, especially of 2 to 6 g/m2.
  7. A recording material according to any one of the preceding claims, characterised in that at least one further binder is additionally present in the layer(s), in which the cross-linked biopolymer material in the form of nanoparticles is present.
  8. A recording material according to any one of the preceding claims, characterised in that it comprises a flat support, a thermal reaction layer and an intermediate layer formed between the flat support and the thermal reaction layer, wherein the intermediate layer contains in addition to the cross-linked biopolymer material in the form of nanoparticles starch or a starch derivative, a hollow sphere pigment or an inorganic pigment or a mix of the two and a co-binder, preferably polyvinyl alcohol, latex or a starch, which differs from the starch that can be used as a cross-linked biopolymer material in the form of nanoparticles, especially preferably polyvinyl alcohol.
  9. Use of the heat-sensitive recording material according to any one of the preceding claims 1 to 8 as paper for fax printing, the printing of sales slips or receipts, car park tickets, entry and travel tickets, medical investigation programs and barcode labels.
EP14716224.2A 2013-02-08 2014-02-07 Heat sensitive recording material Active EP2953797B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013002297.5A DE102013002297A1 (en) 2013-02-08 2013-02-08 Heat-sensitive recording material
PCT/DE2014/100043 WO2014121788A1 (en) 2013-02-08 2014-02-07 Heat sensitive recording material

Publications (2)

Publication Number Publication Date
EP2953797A1 EP2953797A1 (en) 2015-12-16
EP2953797B1 true EP2953797B1 (en) 2020-05-06

Family

ID=50472948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14716224.2A Active EP2953797B1 (en) 2013-02-08 2014-02-07 Heat sensitive recording material

Country Status (8)

Country Link
US (1) US9676218B2 (en)
EP (1) EP2953797B1 (en)
KR (1) KR102242986B1 (en)
CN (1) CN105050825B (en)
BR (1) BR112015018636B1 (en)
DE (2) DE102013002297A1 (en)
ES (1) ES2805368T3 (en)
WO (1) WO2014121788A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5823086B1 (en) 2014-03-17 2015-11-25 日本製紙株式会社 Thermal recording material
DE102018111495B4 (en) 2018-05-14 2020-04-09 Papierfabrik August Koehler Se Thermoresponsive paper coatings based on cellulose derivatives
JP2021146642A (en) * 2020-03-19 2021-09-27 株式会社リコー Thermosensitive recording medium, method for producing thermosensitive recording medium, and article
FI3957489T3 (en) * 2020-08-19 2023-01-31 Developer-free thermosensitive recording material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677386B1 (en) * 1999-01-25 2004-01-13 Ato B.V. Biopolymer nanoparticles
DE112007002203T5 (en) * 2006-09-19 2009-07-30 Mitsubishi Paper Mills Limited Thermal recording material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170386A (en) 1986-01-24 1987-07-27 Fuji Photo Film Co Ltd Thermosensible recording material
JP3083895B2 (en) 1991-11-25 2000-09-04 株式会社リコー Thermal recording material
US6759366B2 (en) 2001-12-18 2004-07-06 Ncr Corporation Dual-sided imaging element
DE602007000133D1 (en) 2006-03-15 2008-11-06 Ricoh Kk Reversible thermosensitive recording medium, reversible thermosensitive recording label, reversible thermosensitive element, image processing apparatus and image processing method
DE102006032521B3 (en) 2006-07-12 2008-04-03 Papierfabrik August Koehler Ag Heat-sensitive recording material
WO2008022127A2 (en) 2006-08-15 2008-02-21 Ecosynthetix Inc. Process for producing biopolymer nanoparticles
ATE518661T1 (en) 2007-03-29 2011-08-15 Jujo Paper Co Ltd THERMAL RECORDING MATERIAL
MX2011005791A (en) 2008-12-03 2011-06-20 Ecosynthetix Inc Process for producing biopolymer nanoparticle biolatex compositions having enhanced performance and compositions based thereon.
JP5218638B2 (en) * 2009-03-02 2013-06-26 王子ホールディングス株式会社 Thermosensitive recording material and method for producing the same
WO2011122552A1 (en) * 2010-03-30 2011-10-06 三菱製紙株式会社 Heat-sensitive recording material and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677386B1 (en) * 1999-01-25 2004-01-13 Ato B.V. Biopolymer nanoparticles
DE112007002203T5 (en) * 2006-09-19 2009-07-30 Mitsubishi Paper Mills Limited Thermal recording material

Also Published As

Publication number Publication date
WO2014121788A1 (en) 2014-08-14
ES2805368T3 (en) 2021-02-11
CN105050825B (en) 2017-10-31
KR20150118118A (en) 2015-10-21
BR112015018636B1 (en) 2021-12-07
CN105050825A (en) 2015-11-11
BR112015018636A2 (en) 2017-07-18
US9676218B2 (en) 2017-06-13
DE112014000727A5 (en) 2015-11-05
EP2953797A1 (en) 2015-12-16
US20150367664A1 (en) 2015-12-24
KR102242986B1 (en) 2021-04-21
WO2014121788A4 (en) 2014-10-23
DE102013002297A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
DE2847855A1 (en) HEAT SENSITIVE RECORDING MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
EP2043876B1 (en) Heat-sensitive recording material
EP2993055B1 (en) Web-shaped heat-sensitive recording material with a protective layer
EP2993054B1 (en) Sheet-form heat-sensitive recording material with at least two layers
EP2953797B1 (en) Heat sensitive recording material
EP3305538A1 (en) Heat sensitive recording material
EP2329959B1 (en) Heat-sensitive recording material with barrier coating
DE69301527T2 (en) Heat sensitive recording sheet
EP3625058B1 (en) Layered composite comprising a carrier layer and a finishing layer, and method for the production thereof
EP2279877B1 (en) Heat sensitive recording material
DE202017006776U1 (en) Heat-sensitive recording material
DE60222210T2 (en) Heat-sensitive recording material
EP3957489B1 (en) Developer-free thermosensitive recording material
DE60032686T2 (en) HEAT-SENSITIVE RECORDING MATERIAL
EP3155169B1 (en) Cf paper
DE102021115909A1 (en) Heat-sensitive recording materials
DE202020005616U1 (en) A thermosensitive recording material comprising phenol-free organic color developers
EP1543984B1 (en) Heat-sensitive recording material for double-sided printing
DE102005050418A1 (en) Heat-sensitive recording material e.g. for printed images, has intermediate layer containing organic hollow-sphere pigments
EP3885152B1 (en) Use of n-(p-toluenesulfonyl)-n'-(3-p-toluenesulfonyloxyphenyl)urea as colour developer in a heat-sensitive recording material
DE102016219569A1 (en) Heat-sensitive recording material
EP2070714B1 (en) Method of producing a heat sensitive recording material
DE102021133333A1 (en) Heat-sensitive recording material in sheet form
DE102016219567A1 (en) Heat-sensitive recording material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1266164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014133

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014133

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2805368

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1266164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240307

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240222

Year of fee payment: 11

Ref country code: FR

Payment date: 20240226

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506