EP2939500B1 - Table de cuisson à induction - Google Patents

Table de cuisson à induction Download PDF

Info

Publication number
EP2939500B1
EP2939500B1 EP13821078.6A EP13821078A EP2939500B1 EP 2939500 B1 EP2939500 B1 EP 2939500B1 EP 13821078 A EP13821078 A EP 13821078A EP 2939500 B1 EP2939500 B1 EP 2939500B1
Authority
EP
European Patent Office
Prior art keywords
current
voltage
vessel
coil
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13821078.6A
Other languages
German (de)
English (en)
Other versions
EP2939500A1 (fr
Inventor
Metin OZTURK
Namik Yilmaz
Hakan Suleyman YARDIBI
Metin ASTOPRAK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcelik AS
Original Assignee
Arcelik AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelik AS filed Critical Arcelik AS
Publication of EP2939500A1 publication Critical patent/EP2939500A1/fr
Application granted granted Critical
Publication of EP2939500B1 publication Critical patent/EP2939500B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Definitions

  • the present invention relates to an induction heating cooktop wherein it is detected whether or not the vessel placed thereon is at the appropriate position.
  • the induction heating cooktop functions according to the principle of heating a cast iron or steel ferromagnetic cookware, for example a pot, with the magnetic field effect generated by the induction coil.
  • SSQR single switch quasi-resonant
  • the single switch quasi-resonant circuits (SSQR) are preferred due to cost advantage; however, they operate in a narrower energy frequency range and can deliver power to the cookware only within a certain voltage and power range.
  • induction heating cooktops wherein the single switch quasi-resonant circuits (SSQR) are used, problems are encountered in detecting different kinds of cookware and the changes in position of the cookware on the cooktop burner. Furthermore, difficulties arise in detecting the position of the cookware in mains voltage fluctuations and at different temperature conditions.
  • multi coil - multi zone structure is used, heating can be maintained on the entire cooktop surface and flexibility is provided for the user. In this type of induction heating cooktops, induction coils of various shapes and sizes are situated on the cooktop surface.
  • the detection of the cookware position and furthermore the characteristic features like the diameter, type and the ferromagnetic properties during power transmittance to the cookware is quite critical for products wherein multi coil and also the single switch quasi-resonant circuits (SSQR) are used.
  • the position of the vessel placed on the induction coil is generally defined by circular border lines drawn on the cooktop surface. If aligned with the induction coil according to the predetermined border lines, the vessel can be heated efficiently. The user is allowed to slide the vessel outside the said border lines a little and the vessel can be heated at the desired power setting as long as it is in the efficient heating zone.
  • the vessel With the condition of being in the efficient heating zone, the vessel should be heated according to the power setting selected by the user and without being affected by variable mains voltage and temperature conditions and if the vessel is slid outside the efficient heating zone, this situated should be detected and energy transmitted to the vessel should be interrupted. If it is not detected that the vessel is slid outside the efficient heating zone, the vessel cannot be heated according to the selected power setting and the circuit board can be damaged.
  • the European Patent Application No. EP2282606 relates to an induction apparatus control method.
  • the presence or absence of the vessel on the induction coil, the resistivity and the dimensions thereof are detected by comparing the resonance voltage with a predetermined fixed reference voltage in the control unit.
  • JP2011023163 a rice cooker is explained wherein existence or nonexistence of a pan on the induction heater or whether or not the pan is located at a designated position is detected under unstable power source voltage conditions.
  • GB2062985 discloses an induction heating cooktop comprising a bridge rectifier that converts the alternating current into direct current, a filter circuit disposed at the outlet of the bridge rectifier, one or more than one induction coil through which the coil current passes during the heating of the vessel placed on the upper plate of the induction heating cooktop so as to be inside the efficient heating zone, a resonant circuit having a resonant capacitor connected in parallel to the induction coil, a power switch that drives the resonant circuit, a collector node whereon resonance voltage is generated, a drive circuit providing the power switch to be driven, a user interface, and a control unit that regulates the operation of the power switch by means of the drive circuit in accordance with the heating setting selected via the user interface.
  • the aim of the present invention is the realization of an induction heating cooktop wherein the position of the vessel placed on the induction coil is detected under variable mains input voltage and temperature conditions.
  • the induction heating cooktop realized in order to attain the aim of the present invention, explicated in the first claim and the respective claims thereof, comprises a bridge rectifier that converts the alternating current into direct current, a filter circuit disposed at the outlet of the bridge rectifier, one or more than one induction coil through which the coil current passes during the heating of the vessel placed on the upper plate of the induction heating cooktop so as to be inside the efficient heating zone, a resonant circuit having a resonant capacitor connected in parallel to the induction coil, a power switch that drives the resonant circuit, a collector node whereon resonance voltage is generated, a drive circuit providing the power switch to be driven, a user interface, a control unit that regulates the operation of the power switch by means of the drive circuit in accordance with the heating setting selected via the user interface, a current monitoring circuit connected in series to the induction coil and providing the monitoring of the coil current, and a voltage monitoring circuit connected to the collector node and providing the monitoring of the resonant voltage change, wherein the control unit
  • the current monitoring circuit comprises a current detection resistor connected in series to the induction coil
  • a current transformer connected in series to the induction coil and a current detection resistor connected in parallel to the secondary side of the current transformer.
  • the voltage monitoring circuit comprises a voltage divider that decreases the resonant voltage, thus enabling easy measurement thereof.
  • the control unit decides that the vessel is inside the efficient heating zone on the upper plate of the cooktop, wherein the vessel is allowed to be slid a little off the level of the induction coil, if the resonant voltage changes monitored by means of the voltage monitoring circuit are smaller than the limit resonant voltage changes prerecorded in its memory for different power scales selected via the user interface.
  • the control unit compensates the induction coil current monitored by means of the current monitoring circuit by increasing the induction coil current if low or decreasing it if high, thus the power transferred to the vessel is enabled to be kept constant as long as the vessel is inside the efficient heating zone even if slid a little off the level of the induction coil.
  • the control unit Upon detecting that the vessel is slid outside the efficient heating zone, the control unit stops the operation of the induction heating cooktop.
  • the control unit keeps the power transferred to the vessel constant in variable mains voltage and temperature conditions in accordance with the heating settings selected via the user interface. By precisely detecting the alignment of the vessel on the induction coil, the power switch that drives the induction coil, and other electronic components are prevented from being damaged.
  • the induction heating cooktop (1) comprises a bridge rectifier (2) that converts the alternating current received from the mains into direct current, a high frequency filter circuit (3) at the outlet of the bridge rectifier (2) and one or more than one induction coil (4) through which the coil current (I L ) passes during the heating of the vessel (K) placed on the upper plate (P) of the induction heating cooktop (1) so as to be inside the efficient heating zone (B).
  • the vessel (K) or other ferromagnetic cooking containers are placed so as to be inside an efficient heating zone (B) that allows them to go a little beyond the border line (S) defining the position thereof at the induction coil (4) level and that provides the efficient heating thereof ( Figure 1 ).
  • the induction heating cooktop (1) comprises a resonant circuit (6) having a resonant capacitor (5) connected in parallel to the induction coil (4), a power switch (7), for example an IGBT (Insulated Gate Bipolar Transistor), having a collector, an emitter and a freewheeling diode, that drives the resonant circuit (6), that is in conducting state in the turned-off position, providing the resonant capacitor (5) to be charged during the conduction time, that interrupts conduction in the turned-on position, providing the resonant capacitor (5) to be discharged during the non-conduction time and that provides the power to be delivered from the induction coil (4) to the vessel (K), a collector node (8) whereon resonance voltage (Vce) or in other words the collector-emitter voltage of the power switch (7) is generated during the non-conduction (turn-on) times of the power switch (7), a drive circuit (9) providing the power switch (7) to be driven with the drive voltage (Vge) at the required
  • the vessel (K) placed on the upper plate (P) of the induction heating cooktop (1) stays inside the efficient heating zone (B) having a diameter greater than the border line (S) marked on the upper plate (P)
  • the vessel (K) is heated by receiving constant power in accordance with the heating setting (power scale) selected via the user interface (10).
  • the user is allowed to slide the vessel (K) a little off the induction coil (4) level. If the vessel (K) is slid outside the efficient heating zone (B), the power being transferred from the induction coil (4) to the vessel (K) is interrupted.
  • the conduction times wherein the power switch (7) is in the turned-off position are determined by the heating setting selected via the user interface (10).
  • the non-conduction times wherein the power switch (7) is in the turned-on position are determined by the control unit (11) depending on the characteristic features of the vessel (K) placed on the induction coil (4), alignment of the vessel (K) on the induction coil (4), mains voltage conditions and the temperature of the vessel (K).
  • resonance voltage (Vce) is generated at the collector node (8), the coil current (I L ) passes through the induction coil (4) and energy is transferred to the vessel (K).
  • the induction heating cooktop (1) of the present invention comprises,
  • the control unit (11) decides that the vessel (K) is slid outside the efficient heating zone (B), interrupts the coil current (I L ) and stops the operation of the induction heating cooktop (1).
  • the control unit (11) keeps the coil current (I L ) constant and hence the power transferred to the vessel (K) in variable mains voltage and temperature conditions by means of the current monitoring circuit (12) and the drive circuit (9). Even if slid a little off the level of the induction coil (4), the vessel (K) is enabled to be heated inside the efficient heating zone (B) in accordance with the heating setting selected via the user interface (10).
  • control unit (11) compares the constant coil current (I L-SB ) values prerecorded in its memory and corresponding to the heating setting selected via the user interface (10) with the actual coil current (I L ) values monitored by means of the current monitoring circuit (12), intervenes in the power switch (7) by means of the drive circuit (9) and enables the actual coil current (I L ) to be equalized with the constant coil current (I L-SB ), thus enables the power transferred from the induction coil (4) to the vessel (K) to be kept constant.
  • I L-SB constant coil current
  • the current monitoring circuit (12) comprises a current detection resistor (14) that is connected in series to the induction coil (4) and that converts the coil current (I L ) into voltage data ( Figure 3 ).
  • the control unit (11) receives the voltage data relating to the coil current (I L ) from the terminals of the current detection resistor (14).
  • the current monitoring circuit (12) comprises a current transformer (15) connected in series to the induction coil (4) and decreasing the coil current (I L ) to a level that can be detected by the control unit (11) and the current detection resistor (14) connected in parallel to the secondary side of the current transformer (15) ( Figure 2 ).
  • the voltage monitoring circuit (13) comprises a voltage divider (16) that has resistors (R1, R2) connected in series to the collector node (8) and that applies an easy-to-monitor, low level resonant voltage (Vce) to the control unit (11) by dividing the resonant voltage (Vce) ( Figure 2 , Figure 3 ).
  • the induction heating cooktop (1) of the present invention constant power is transferred to the vessel (K) in the efficient heating zone (B) wherein the vessel (K) is allowed to be slid a little off the induction coil (4) level and the vessel (K) being slid causes change in the resonant voltage (Vce).
  • the coil current (I L ) is kept constant and the resonant voltage ( ⁇ Vce) that changes as the vessel (K) is slid off over the induction coil (4) is monitored.
  • the control unit (11) keeps the coil current (I L ) constant and detects whether or not the vessel (K) is present or the alignment of the vessel (K) on the induction coil (4) is appropriate by monitoring the resonant voltage changes ( ⁇ Vce) caused by the vessel (K) being slid.
  • the power switch (7) and the other electronic circuit components are prevented from being damaged.
  • the position of the vessel (K) placed on the induction coil (4) is detected precisely under variable mains input voltage and temperature conditions, and the vessel (K) is provided to be heated with a constant power.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)
  • General Induction Heating (AREA)

Claims (6)

  1. Une table de cuisson à chauffage d'induction (1) comprenant un pont redresseur (2) qui convertit le courant alternatif en courant continu, un circuit de filtre (3) qui est disposé à la sortie du pont redresseur (2), une ou plus d'une bobine d'induction (4) à travers laquelle le courant de bobine (IL) passe pendant le chauffage du récipient (K) placé sur la plaque supérieure (P) de la table de cuisson à chauffage par induction (1) de manière à être à l'intérieur dans la zone de chauffage efficace (B), un circuit oscillant (6) qui présente un condensateur de résonance (5) connecté en parallèle à la bobine d'induction (4), un interrupteur d'alimentation (7) qui entraîne le circuit oscillant (6), un noeud de collecteur (8) sur lequel une tension de résonance (Vce) est générée, un circuit d'entraînement (9) qui permet à l'interrupteur d'alimentation (7) d'être entraîné, une interface utilisateur (10), et une unité de commande (11) qui régule le fonctionnement de l'interrupteur d'alimentation (7) au moyen du circuit d'entraînement (9) en fonction du réglage de chauffage sélectionné par l'intermédiaire de l'interface utilisateur (10), caractérisée en ce que
    la table de cuisson à chauffage par induction comprend un circuit de surveillance de courant (12) qui est connecté en série à la bobine d'induction (4) et qui permet la surveillance du courant de bobine (IL), et un circuit de surveillance de tension (13) qui est connecté au noeud de collecteur (8) et qui permet la surveillance du changement de la tension de résonance (AVce), où l'unité de commande (11) décide que le récipient (K) est dans la zone de chauffage efficace (B) si les changements de la tension de résonance (AVce) surveillés par le circuit de surveillance de tension (13) sont inférieurs aux changements de tension de résonance limites (ΔVce-lim) préenregistrés dans sa mémoire pour des échelles de puissance différentes sélectionnées par l'interface utilisateur (10) et maintient constant le courant de bobine (IL) surveillé par le circuit de surveillance de courant (12) et la puissance transférée au récipient (K).
  2. Une table de cuisson à chauffage d'induction (1) selon la Revendication 1, caractérisée par l'unité de commande (11) qui décide que le récipient (K) est coulissé hors de dans la zone de chauffage efficace (B) et qui arrête le fonctionnement de la table de cuisson à chauffage d'induction (1) si les changements de tension de résonance (ΔVce) surveillés par le circuit de surveillance de tension (13) sont supérieurs aux changements de tension de résonance limites (ΔVce-lim).
  3. Une table de cuisson à chauffage d'induction (1) selon la Revendication 1 ou 2, caractérisée en ce que l'unité de commande (11) compare le courant de bobine constant (IL-SB) préenregistré dans sa mémoire et correspondant au réglage de chauffage sélectionné par l'intermédiaire de l'interface utilisateur (10) avec le courant de bobine réel (IL), intervient dans l'interrupteur d'alimentation (7) par l'intermédiaire du circuit d'entraînement (9) et permet au courant de bobine réel (IL) d'être égalisée avec le courant de bobine constant (IL-SB).
  4. Une table de cuisson à chauffage d'induction (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que le circuit de surveillance de courant (12) comprend une résistance de détection de courant (14) qui est connectée en série à la bobine d'induction (4) et qui convertit le courant de bobine (IL) en données de tension.
  5. Une table de cuisson à chauffage d'induction (1) selon l'une quelconque des revendications de 1 à 3, caractérisée en ce que le circuit de surveillance de courant (12) comprend un transformateur de courant (15) qui est connecté en série à la bobine d'induction (4) et diminue le courant de bobine (IL), et la résistance de détection de courant (14) qui est connectée en parallèle au transformateur de courant (15).
  6. Une table de cuisson à chauffage d'induction (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que le circuit de surveillance de tension (13) comprend un diviseur de tension (16) qui présente des résistances (R1, R2) connectées en série au noeud de collecteur (8) et qui applique une tension de résonance facile à surveiller à faible niveau (Vce) à l'unité de commande (11) en divisant la tension de résonance (Vce).
EP13821078.6A 2012-12-12 2013-12-11 Table de cuisson à induction Not-in-force EP2939500B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR201214557 2012-12-12
PCT/EP2013/076220 WO2014090872A1 (fr) 2012-12-12 2013-12-11 Table de cuisson à induction

Publications (2)

Publication Number Publication Date
EP2939500A1 EP2939500A1 (fr) 2015-11-04
EP2939500B1 true EP2939500B1 (fr) 2017-01-11

Family

ID=49956129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13821078.6A Not-in-force EP2939500B1 (fr) 2012-12-12 2013-12-11 Table de cuisson à induction

Country Status (3)

Country Link
EP (1) EP2939500B1 (fr)
CN (1) CN105165116A (fr)
WO (1) WO2014090872A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323010A (zh) * 2016-11-15 2017-01-11 天津林立感应加热电炉制造有限公司 大直径可吊装感应加热炉圈
CN110398676B (zh) * 2018-04-23 2022-03-15 佛山市顺德区美的电热电器制造有限公司 烹饪设备上锅具的移动状态检测方法、装置及烹饪设备
US20190327792A1 (en) 2018-04-23 2019-10-24 Whirlpool Corporation Control circuits and methods for distributed induction heating devices
US11140751B2 (en) 2018-04-23 2021-10-05 Whirlpool Corporation System and method for controlling quasi-resonant induction heating devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889090A (en) * 1973-06-15 1975-06-10 Westinghouse Electric Corp Induction heat cooking apparatus
GB2062985B (en) * 1979-11-12 1983-11-02 Matsushita Electric Ind Co Ltd Small load detection by comparison between input and output parameters of an induction heat cooking apparatus
KR950007600A (ko) * 1993-08-10 1995-03-21 문정환 전자조리기의 소물감지회로

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2939500A1 (fr) 2015-11-04
CN105165116A (zh) 2015-12-16
WO2014090872A1 (fr) 2014-06-19

Similar Documents

Publication Publication Date Title
EP2932794B1 (fr) Surface de cuisson à chauffage par induction
JP6021933B2 (ja) 誘導加熱調理器
EP2932793B1 (fr) Surface de cuisson à chauffage par induction
EP3042541B1 (fr) Dispositif de chauffage à induction comprenant un circuit de détection de position d'ustensile de cuisine
JP6038345B2 (ja) 誘導加熱調理器
US9066373B2 (en) Control method for an induction cooking appliance
EP2939500B1 (fr) Table de cuisson à induction
JPWO2014069011A1 (ja) 誘導加熱調理器
EP3424269B1 (fr) Circuit de commande de puissance de cuisinière à induction
EP2939499B1 (fr) Table de cuisson à chauffage par induction
JP2011034712A (ja) 誘導加熱調理器
JP2006114311A (ja) 誘導加熱調理器
WO2015059802A1 (fr) Cuisinière à chauffage par induction
JP6211175B2 (ja) 誘導加熱調理器
WO2016010493A1 (fr) Plaque de cuisson par induction permettant une commande de réglage de puissance améliorée
EP3170362B1 (fr) Système et procédé permettant la modification de positionnement de batterie de cuisine dans une cuisinière à chauffage par induction
KR20210081053A (ko) 전자 유도 가열 조리기기 및 그의 구동 모듈
JP5542506B2 (ja) 誘導加熱調理器
EP3432683B1 (fr) Appareil de cuisson à induction, procédé de fonctionnement et programme informatique
KR20220127472A (ko) 유도가열 조리기의 유도가열 회로
WO2017149055A1 (fr) Circuit de commande de puissance de cuisinière à induction
JPWO2014069009A1 (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160928

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 862310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013016590

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 862310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013016590

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181218

Year of fee payment: 6

Ref country code: FR

Payment date: 20181221

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013016590

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191211