EP2937276B1 - Ordinateur de plongée contrôlable de manière intuitive - Google Patents

Ordinateur de plongée contrôlable de manière intuitive Download PDF

Info

Publication number
EP2937276B1
EP2937276B1 EP15162567.0A EP15162567A EP2937276B1 EP 2937276 B1 EP2937276 B1 EP 2937276B1 EP 15162567 A EP15162567 A EP 15162567A EP 2937276 B1 EP2937276 B1 EP 2937276B1
Authority
EP
European Patent Office
Prior art keywords
input device
dive computer
rotational input
rotational
dive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15162567.0A
Other languages
German (de)
English (en)
Other versions
EP2937276A1 (fr
Inventor
Arne Sieber
Sebastian Reif
Benjamin Kuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Outdoors Inc
Original Assignee
Johnson Outdoors Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Outdoors Inc filed Critical Johnson Outdoors Inc
Publication of EP2937276A1 publication Critical patent/EP2937276A1/fr
Application granted granted Critical
Publication of EP2937276B1 publication Critical patent/EP2937276B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C2011/021Diving computers, i.e. portable computers specially adapted for divers, e.g. wrist worn, watertight electronic devices for detecting or calculating scuba diving parameters

Definitions

  • the invention relates to a dive computer and to a method of operating a dive computer.
  • a self-contained underwater breathing apparatus allows divers to breathe underwater. Breathing gases under higher ambient pressure, causes a gas uptake of the body. The physics of the gas uptake is described in Henry's law. Of major concern during diving is the uptake of inert gases in the body, as these gases will be released during ascent and after the dive, which may cause the formation of inert gas bubbles within the body. This may cause decompression sickness (DCS) or "the bends".
  • DCS decompression sickness
  • Decompression models are used to simulate and calculate inert gas uptake in the body and to calculate ascend profiles so that a diver can safely ascend to the surface with minimized risk of suffering DCS.
  • Common practice is to perform one or more decompression stops during the ascent. While in the early years of diving a depth gauge, a watch and decompression tables were used for diving and to manage decompression obligations, today is common practice to use a diver worn dive computer.
  • a user interface may be provided for a dive computer on the one hand to perform user settings like setting date and time, setting the dive computer to imperial or metric units, selecting a personalized dive computer conservatism, select the altitude or for instance set the oxygen content of the breathing gas mixture.
  • a user interface can be used to switch between different menus and screens, in particular to switch the dive computer to logbook mode, where previous dive data are displayed or to a dive planner mode.
  • Some recreational diving computers also allow the diver to switch between different breathing gases under water during the dive, which is of particular interest, when carrying multiple gas supplies and using oxygen rich decompression gases.
  • More advanced dive computers typically linked to technical diving activities, allow on the one hand more personalized settings, like for instance which decompression model is used, or allow modification of parameters of the decompression model.
  • breathing gas mixtures containing helium are used as bottom gas for deep diving.
  • Such breathing gas is usually referred to TRIMIX (i.e. mixture between O 2 , He and N 2 ).
  • TRIMIX i.e. mixture between O 2 , He and N 2
  • technical diving computers usually can be programmed with different breathing gas mixtures - typically 3-16 breathing gases, where for each gas the O 2 and the He fraction is set. Underwater, during the dive, the diver can set the dive computer to the breathing gas he is actually breathing so that the dive computer can perform the decompression calculations accordingly.
  • Some recreational dive computers have additional features. They can display pictures, can store information about the user, may display maps or display the heart rate of the diver (see EP1878654A1 ).
  • buttons Dive computers found on the market today are operated with buttons. Different types of buttons are used, but the majority of manufacturers are using mechanical O-ring sealed push buttons. Some manufacturers use piezo buttons, which do not require an O-ring seal of a moving part, thus are believed to be more robust. Some manufactures use an accelerometers ( GB2455389A , US5899204A ) instead of buttons, where the divers tap on the dive computer instead of pressing a button.
  • buttons are required to implement an efficient user interface.
  • Dive computers usually feature between 1 to 5 push buttons. In some models short and long button pushes are used to call different functions. This increases the input capability of the dive computer, but also increases the complexity of the operation of a dive computer.
  • buttons are used to implement different functions - like when one button is used to increment or decrement a value with a short button press, but confirms a value with a long button press, operation becomes less intuitive, the user interface is not self-explaining and the user usually needs to read the user manual before being able to perform user settings.
  • the rescue team In case of a dive accident, the rescue team usually also examines the dive computer to understand the dive profile and to decide which treatment is used. Also here, an intuitive user interface of the dive computer is a safety benefit.
  • a dive computer for displaying output data to a user during a dive
  • the dive computer comprises a user input unit configured for inputting input data to the dive computer by rotating a rotatable input device.
  • a method of operating a dive computer for displaying output data to a user comprises inputting input data to the dive computer by actuating a rotatable input device of the dive computer.
  • a system for intuitive operation of a dive computer where a wheel is used as input device.
  • a wheel, mounted on the outside of the dive computer may be connected with an O-ring sealed axis to a rotational encoder inside the dive computer.
  • the wheel may be used to increment and decrement parameters and to switch between different screens, menus and menu items.
  • the wheel may have a push button function.
  • An embodiment relates to a method of intuitive operation of a dive computer, wherein a wheel is used in a dive computer as input device.
  • a wheel is an intuitive method to increment or decrement values or to switch between different menus, screens or menu items.
  • Such one or more wheels can be used to switch between different menus and for selecting.
  • the dive computer comprises at least one of a depth sensor, a clock, a microcontroller (or processor), and a display. It may measure the depth and may use a decompression model to calculate inert gas uptake in the body in real time, and may perform decompression calculations. Such a dive computer may show on the screen or display depth, dive time, remaining no decompression time, time to surface and/or required decompression stops/ceiling.
  • the rotatable input device is a wheel.
  • a wheel may be mounted at a housing of the dive computer so as to be rotatable around a predefined rotation axis, in particular a symmetry axis of the wheel.
  • the wheel may be substantially cylindrically shaped and may be rotatable around its central axis.
  • the rotational input device may be rotatable or pivotable, in a lever type, around a rotation or pivoting axis which does not correspond to a central or symmetry axis of the rotational input device body.
  • the wheel may be mounted on the outside of the dive computer and may be connected with an O-ring sealed axis to a rotational encoder or potentiometer inside the dive computer.
  • a wheel based input device allows a simple and intuitive way of operating a dive computer.
  • the rotational function of the wheel can be used to switch between different screen layouts (like surface screen, settings screen, logbook screen, dive screen, etc.)
  • Using the push function of the menu or using a separate button can then be used to confirm a screen setting.
  • the dive computer further comprises a rotational detector configured for detecting a detection signal from the rotatable input device indicative of the data inputted by the user.
  • the rotational detector may be mounted statically in a housing of the dive computer and may be configured for detecting a rotation state or position of the rotatable input device.
  • a processor of the dive computer may be programmed so as to assign a corresponding control command to certain positional or rotational states or rotation patterns of the rotational input device.
  • Rotational encoders or potentiometers can be read out in a very simple way with microcontrollers. Such a rotational encoder may for instance be based on two outputs, which can provide a square signal when the encoder is turned.
  • the signals of the two outputs may have a phase shift dependent on the direction of rotation of the encoder.
  • Potentiometers can be read with an analog to digital converter input of a microcontroller.
  • Other rotary or rotational encoders may be based on absolute positions, quadrature output, digital binary output or digital output on a bus interface like I2C.
  • optical encoders may be used, wherein a pattern is printed, engraved, molded and/or milled into the wheel and then read with an optical photo sensor like found in a computer mouse.
  • the rotational detector is configured as one of the group consisting of an optical detector configured for detecting an optical detection signal as light propagating from the rotating input device, a magnetic detector configured for detecting a magnetic detection signal from at least one magnetic element forming part of the rotational input device, a potentiometer configured for detecting a resistance signal depending on a rotational state of the rotational input device.
  • an optical detector a photocell or the like may be statically mounted at a housing of the dive computer and may capture optical data from the rotating input device body.
  • the input device body may be provided with an optically detectable marker or pattern so that the optical detector can determine a positional or rotational state of the rotational input device body by processing the captured optical data.
  • one or more magnetic elements may be arranged at, for instance attached to, the input device body so that, when the body rotates as a result of a user actuation, a magnetic detector may detect the presence of magnetic elements passing the detector during the rotation.
  • a potentiometer as a rotation detector can determine a value of a resistance which changes in accordance with a rotation of the input device body.
  • the detector may also comprise or consist of an encoder (in particular a rotational encoder) with an output signal indicative of turning angle (i.e. rotation angle) and direction (i.e. rotation direction) of the wheel.
  • the user input unit is further configured for inputting further input data to the dive computer by pushing or pulling the rotational input device, in particular by pushing or pulling along a rotational axis around which the rotational input device is rotatable.
  • the functionality may hence be further extended by allowing a user to input a control command not only by rotating the rotational input device, but to input additional control commands by using the input device body as a push button or as a pull button.
  • a push or pull axis may correspond to a rotation axis.
  • the mechanical wheel may also be designed with a push button function. Therefore the axis can not only be rotated but also moved in axial direction.
  • the user input unit is further configured for inputting further input data to the dive computer by touching the rotational input device
  • the pushable rotational input device comprises a biasing mechanism configured for applying a predefined biasing force to the rotational input device for biasing the rotational input device into a non-pushed position.
  • a biasing mechanism configured for applying a predefined biasing force to the rotational input device for biasing the rotational input device into a non-pushed position.
  • This biasing force is predefined so as to prevent undesired triggering of a pushing operation by water pressure at the maximum diving depth. Since the hydrostatic pressure in diving will perform a force on the axis, the axis can be spring loaded, wherein the force of the spring shall be greater than the cross section area of the axis multiplied by the hydrostatic pressure found at maximum depth.
  • the dive computer comprises a housing at which the rotational input device is mounted, and a sealing, in particular one or more O-rings, mounted for sealing a gap between the housing and the input device.
  • a sealing in particular one or more O-rings, mounted for sealing a gap between the housing and the input device.
  • one or more O-rings may be arranged along an axis of the input device body so as to ensure a waterproof bearing of the input device body at and/or in the housing. Sealing an axis with an O-ring is a robust and reliable method, it is however also possible to select an implementation of a wheel input device without a mechanical O-ring sealed connection. This may be specially of interest, when the electronics of the dive computer is potted or encapsulated, like for instance in silicone gel, polyurethane or resin.
  • the dive computer comprises a housing at which the rotational input device is rotatably mounted, and a magnetic coupling configured for coupling the housing to the rotational input device in a waterproof way.
  • a magnetic coupling may render the provision of sealing rings or the like dispensable, since corresponding magnetic elements may cooperate functionally even through a (in particular non-magnetic) housing hermetically sealing an interior of the dive computer (for instance electronics, etc.) with regard to the aqueous environment.
  • An alternative way of implementing a wheel without an O-ring sealed axis can hence be the use of magnetic sensors.
  • the wheel may include several magnets, and a magnetic sensor inside the dive computer housing may detect the position of the magnets and based on that the position of the wheel.
  • the dive computer comprises a processor (such as a microcontroller) configured for processing the data input by the user input unit for determining the data to be displayed to the user based on the processed input data.
  • a processor for instance a microprocessor, may interpret the data input via the rotational input device in terms of a pre-stored set of control commands, each assigned to a respective actuation state of the input device. For instance, data displayed to a user (such as a diver) may be selected and configured in accordance with the assigned rotational input device states/control commands. Displaying the data to the user may be performed via an LCD display, or any other electronic display.
  • the dive computer comprises a housing, wherein the processor is potted within the housing.
  • the electronics such as the processor, parts of the display, etc.
  • the dive computer can be rendered waterproof even when no sealing is provided.
  • a sealing function may be provided by the encapsulation.
  • the processor is configured for incrementing a displayed value, in particular breathing gas fractions, upon rotating the rotational input device in one direction and for decrementing the displayed value upon rotating the rotational input device in the opposite direction.
  • a displayed value in particular breathing gas fractions
  • turning the rotational input device in one direction may increase a number or other value displayed on the display of the dive computer, whereas rotating the rotational input device in a counter-direction will decrease the displayed value.
  • the wheel can hence be used to change numerical values of the dive computer by rotation.
  • a rotation in one direction increments a parameter.
  • a rotation in the opposite direction decrements a parameter.
  • a push or pull button function of the wheel (in addition to the actuation by rotation mechanism) or a separate button can be used to confirm a selection.
  • the processor is configured for switching between a plurality of displayed menu items in accordance with a rotation of the rotational input device.
  • a scrollbar may be displayed on a display of the dive computer, wherein the scrollbar allows to select between different menu items. Rotating the rotational input device in a direction will move a highlighted one of the menu items upwardly, whereas rotating the wheel in a counter-direction will move the highlighted menu item in a downward direction on the display.
  • the wheel can be used to switch between different menu items.
  • the menu item, which is currently selected is highlighted, like for instance displayed with a different color, displayed inverted, displayed blinking or underlined.
  • the processor is configured for selecting (for activating a corresponding function) a menu item, to which the processor has switched as a result of a rotation of the rotational input device, in response to a push operation of the rotational input device.
  • the processor is configured for switching between a plurality of displayed menu items or between a plurality of screens in response to a push operation of the rotational input device.
  • a push operation of the rotational input device it is also possible to interpret a push of the actuator wheel as the control command for switching between different menu items or different screens. In such an embodiment, selection of a switched menu item or screen can then be initiated by a rotation of the rotational input device.
  • the processor is configured for switching between a plurality of screens in accordance with a rotation of the rotational input device.
  • Such different screens may be a setting screen for time and date, another screen for adjusting breathing gas properties, a further screen for displaying logbook data, etc.
  • the processor is configured for activating different switching functions in accordance with a duration of a push operation of the rotational input device.
  • a short-term push (for instance less than a predefined threshold value of for instance 1 s) may initiate a first function
  • a long-term duration (for instance longer than the predefined threshold value of for instance 1 s) may trigger another function. It is also possible to assign more than two functions to more than two pushing time intervals (for instance by predefining a plurality of threshold values).
  • the software of the dive computer may also be designed in a way that allows measurement of the length of the push of push button function the wheel, to implement more functions with one switching function, like for instance a short push enables or disables a particular breathing gas, and a long push selects that particular breathing gas as breathing gas actually used.
  • the long push can also be used to restore default settings.
  • the method comprises displaying output data during a dive. Additionally or alternatively, the method comprises displaying output data when the dive computer is located in an air atmosphere.
  • the display of output data as well as the actuation of the rotatable/rotational input device for inputting input data may be performed outside of the water or inside the water.
  • the dive computer is configured as a mask-mountable dive computer, i.e. a dive computer having mounting provisions for mounting it on a dive mask.
  • the dive computer is configured as a mask-mounted dive computer, i.e. a dive computer mounted on a dive mask.
  • the wheel can also be used as character and text input device. By rotating the wheel, the different characters may be displayed. Pushing a separate button or pushing the optional wheel push button function selects the displayed character. For instance, the characters are displayed on the display in a consecutive way, like for instance following the ASCII table.
  • Rotating the wheel during the dive may be used to display different preprogrammed gas settings.
  • displayed gas can be selected as breathing gas which is currently breathed by the diver and which should be used for calculation inert gas uptake and release in the body.
  • a dive computer with a wheel is provided.
  • the wheel may be connected to a rotational encoder inside the dive computer.
  • the wheel may be connected to a potentiometer inside the dive computer.
  • the mechanical connection may be established with an O-ring sealed axis.
  • the wheel may be also used as push button input device. Instead, a mechanical connection with a magnetic coupling may be used. Magnetic sensors may be used. The position of the wheel may be read out with a photo sensor.
  • a method of intuitive operation of a dive computer is provided, where a wheel is used as input device.
  • the wheel may be used to increment and decrement breathing gas fractions.
  • the wheel may be used to switch between menu items.
  • the wheel may be used to switch between screens.
  • a push function of the wheel may be used to implement a switching function.
  • the switching function may be used to confirm a highlighted menu item.
  • the duration of the push may be measured to implement different switching functions.
  • FIG. 1 shows a dive computer 1 with a wheel 2 according to an exemplary embodiment of the invention.
  • the wheel 2 is mounted on the dive computer 1.
  • the dive computer 1 is configured for displaying dive-related output data to a user, i.e. a diver, during a dive.
  • the dive computer 1 displays this output data via a display 9, such as an LCD display.
  • the dive computer 1 comprises a housing 10 in which the display 9 is integrated.
  • a rotatable input device embodied as the wheel 2 is mounted at the housing 10 of the dive computer 1.
  • the rotatable wheel 2 serves as a user input unit configured for inputting control commands to the dive computer 1.
  • the rotatable wheel 2 can be turned (in clockwise direction and in counterclockwise direction, see double arrow 17) around a rotation axis 18 corresponding to its symmetry axis.
  • the wheel 2 is configured as a push button which can be activated for inputting additional user commands into the dive computer 1 by pushing the rotational input device 2 by applying pressure along its rotational axis 18 (see pushing direction 19).
  • multiple commands can be input by a user by the very intuitive single wheel 2 allowing to be rotated clockwise, counterclockwise and being pushed.
  • Figure 2 shows a cross section of the dive computer 1 of Figure 1 .
  • the cross-sectional view of the dive computer 1 in Figure 2 shows details of the rotatable and pushable rotational input device embodied as wheel 2.
  • the wheel 2 is connected with an axis or shaft 3 to an encoder 4 inside the dive computer 1.
  • O-rings 5 seal the axis or shaft 3. Hence, O-rings 5 are mounted for sealing a gap between the housing 10 and the wheel 2.
  • the encoder 4 can feature a mechanical push button function.
  • the dive computer 1 comprises a rotational detector in form of the encoder 4 configured for detecting a detection signal from the rotatable and pushable rotational input device wheel 2 which is indicative of a control command of a user input by rotating and/or pushing the wheel 2 around or along the symmetry axis 18 thereof.
  • the encoder 4 is configured as an optical detector for detecting an optical detection signal, i.e. light originating from the rotating wheel 2 and propagating to the encoder 4.
  • a photocell is arranged close to the surrounding lateral surface of the wheel 2.
  • a spring 6 is used to apply a counterforce (i.e. antiparallel to the pushing direction 19).
  • the biasing spring 6 applies a predefined spring force for biasing the wheel 2 into a non-pushed position, thereby preventing undesired triggering of a pushing operation by water pressure when the dive computer 1 is sub-merged during a dive.
  • FIG 3 shows a mask mounted dive computer 7 with a wheel 2 according to an exemplary embodiment of the invention.
  • the mask mounted dive computer 7 comprises a diver mask 20 (only shown schematically/partially in Figure 3 ) and a dive computer 1 mounted thereon.
  • the dive computer 1 is mechanically connected with the mask 20 (detachably or non-detachably).
  • Figure 4 shows a block diagram 30 of various functional components of a dive computer 1 according to an exemplary embodiment of the invention.
  • the rotatable and pushable wheel 2 is functionally connected to a detector embodied as optical encoder 4 for detecting rotation and/or pushing operations by a user.
  • a processor 11 (such as a microcontroller) is supplied with corresponding detector data and assigns, by using data and algorithms from a database 12 (such as a storage memory) control commands assigned to each of the detected rotation and/or pushing operations.
  • the processor 11 calculates, based on input data input by the user via the wheel 2, output data to be displayed on the display 9 which is subsequently displayed to the user.
  • a first control command may be assigned to a rotation of the wheel 2 in a clockwise direction
  • a second control command may be assigned to a rotation of the wheel 2 in a counterclockwise direction
  • a third control command may be assigned to a pushing actuation of the wheel 2.
  • different control commands may be assigned to different pushing durations.

Claims (14)

  1. Un ordinateur de plongée (1) pour afficher des données de sortie à un utilisateur pendant une plongée,
    dans lequel l'ordinateur de plongée (1) comprend une unité d'entrée utilisateur configurée pour entrer des données d'entrée dans l'ordinateur de plongée (1) en faisant tourner un dispositif d'entrée rotatif (2),
    dans lequel l'unité d'entrée utilisateur est en outre configurée pour entrer d'autres données d'entrée dans l'ordinateur de plongée en poussant ou en tirant le dispositif d'entrée rotatif (2), dans lequel l'ordinateur de plongée comprend en outre un boîtier (10) sur lequel le dispositif d'entrée rotatif (2) est monté de manière rotative,
    caractérisé en ce que
    le dispositif d'entrée rotatif poussable (2) comprend un mécanisme de sollicitation (6) configuré pour appliquer une force de sollicitation prédéfinie au dispositif d'entrée rotatif (2) pour solliciter le dispositif d'entrée rotatif (2) dans une position non poussée, dans lequel la force de sollicitation est prédéfinie de manière à empêcher le déclenchement indésirable d'une opération de poussée par la pression de l'eau à la profondeur de plongée maximale,
    dans lequel l'ordinateur de plongée comprend en outre un couplage magnétique configuré pour coupler le boîtier (10) au dispositif d'entrée rotatif (2) de manière étanche.
  2. L'ordinateur de plongée (1) selon la revendication 1, dans lequel le dispositif d'entrée rotatif (2) est une roue.
  3. L'ordinateur de plongée (1) selon la revendication 1 ou 2, comprenant en outre un détecteur (4) configuré pour détecter un signal de détection provenant du dispositif d'entrée rotatif (2) indicatif des données d'entrée entrées par l'utilisateur.
  4. L'ordinateur de plongée (1) selon la revendication 3, dans lequel le détecteur (4) est configuré comme un élément du groupe constitué par :
    un codeur rotatif ;
    un codeur avec un signal de sortie indicatif d'angle et de sens de rotation ;
    un détecteur optique configuré pour détecter un signal de détection optique en tant que lumière provenant du dispositif d'entrée rotatif (2) ;
    un détecteur magnétique configuré pour détecter un signal de détection magnétique provenant d'au moins un élément magnétique faisant partie du dispositif d'entrée rotatif (2) ;
    un potentiomètre configuré pour détecter un signal indicatif d'une résistance électrique qui dépend d'un état rotatif du dispositif d'entrée rotatif (2).
  5. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 4, dans lequel l'unité d'entrée utilisateur est en outre configurée pour entrer d'autres données d'entrée dans l'ordinateur de plongée en poussant ou en tirant le dispositif d'entrée rotatif (2) le long d'un axe de rotation autour duquel le dispositif d'entrée rotatif (2) peut tourner.
  6. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 5, comprenant :
    un boîtier (10) sur lequel le dispositif d'entrée rotatif (2) est monté de manière rotative ;
    un joint (5), en particulier un joint torique, monté pour rendre étanche un espace entre le boîtier (10) et le dispositif d'entrée rotatif (2).
  7. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 6, comprenant un processeur (11) configuré pour traiter les données d'entrée entrées via l'unité d'entrée utilisateur pour déterminer les données de sortie à être affichée sur la base des données d'entrée traitées, dans lequel en particulier l'ordinateur de plongée (1) comprend un boîtier (10), dans lequel le processeur (11) est encapsulé dans le boîtier (10).
  8. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 7, dans lequel le processeur (11) est configuré pour incrémenter une valeur affichée, en particulier d'une ou plusieurs fractions de gaz respiratoire, lors de la rotation du dispositif d'entrée rotatif (2) dans un sens et pour décrémenter la valeur affichée lors de la rotation du dispositif d'entrée rotatif (2) dans le sens opposé.
  9. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 8, dans lequel le processeur (11) est configuré pour commuter entre une pluralité d'éléments de menu affichés en conformité avec une rotation du dispositif d'entrée rotatif (2), dans lequel en particulier le processeur (11) est configuré pour sélectionner un élément de menu, vers lequel le processeur (11) a commuté à la suite d'une rotation du dispositif d'entrée rotatif (2), en réponse à une opération de poussée ou une opération de tirage du dispositif d'entrée rotatif (2).
  10. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 9,
    dans lequel le processeur (11) est configuré pour commuter entre une pluralité d'éléments de menu affichés ou entre une pluralité d'écrans en réponse à une opération de poussée ou une opération de tirage du dispositif d'entrée rotatif (2), et/ou
    dans lequel le processeur (11) est configuré pour commuter entre une pluralité des écrans en conformité avec une rotation du dispositif d'entrée rotatif (2), et/ou
    dans lequel le processeur (11) est configuré pour activer une fonction de commutation sélectionnable parmi différentes fonctions de commutation en conformité avec une durée d'une opération de poussée ou d'une opération de tirage du dispositif d'entrée rotatif (2).
  11. L'ordinateur de plongée (1) selon l'une quelconque des revendications 1 à 10, configuré comme un ordinateur de plongée (7) montable sur un masque ou monté sur un masque.
  12. Un procédé de fonctionnement d'un ordinateur de plongée (1) pour afficher des données de sortie à un utilisateur, dans lequel le procédé comprend
    l'entrée des données d'entrée dans l'ordinateur de plongée (1) en actionnant un dispositif d'entrée rotatif (2) de l'ordinateur de plongée (1), dans lequel le dispositif d'entrée rotatif (2) est monté de manière rotative sur un boîtier (10) de l'ordinateur de plongée,
    l'entrée des autres données d'entrée dans l'ordinateur de plongée en poussant ou en tirant le dispositif d'entrée rotatif (2),
    caractérisé en ce que
    le dispositif d'entrée rotatif poussable (2) comprend un mécanisme de sollicitation (6) configuré pour appliquer une force de sollicitation prédéfinie au dispositif d'entrée rotatif (2) pour solliciter le dispositif d'entrée rotatif (2) dans une position non poussée, dans lequel la force de sollicitation est prédéfinie de manière à empêcher le déclenchement indésirable d'une opération de poussée par la pression de l'eau à la profondeur de plongée maximale,
    dans lequel le boîtier (10) est couplé au dispositif d'entrée rotatif (2) avec un couplage magnétique de l'ordinateur de plongée de manière étanche.
  13. Le procédé selon la revendication 12, dans lequel le procédé comprend l'affichage de données de sortie pendant une plongée.
  14. Le procédé selon la revendication 13, dans lequel le procédé comprend l'affichage de données de sortie lorsque l'ordinateur de plongée (1) est situé dans une atmosphère d'air.
EP15162567.0A 2014-04-07 2015-04-07 Ordinateur de plongée contrôlable de manière intuitive Active EP2937276B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1406248.3A GB2524977B (en) 2014-04-07 2014-04-07 Intuitive operable dive computer

Publications (2)

Publication Number Publication Date
EP2937276A1 EP2937276A1 (fr) 2015-10-28
EP2937276B1 true EP2937276B1 (fr) 2022-08-31

Family

ID=50776951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15162567.0A Active EP2937276B1 (fr) 2014-04-07 2015-04-07 Ordinateur de plongée contrôlable de manière intuitive

Country Status (2)

Country Link
EP (1) EP2937276B1 (fr)
GB (1) GB2524977B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266052A (zh) * 2020-09-29 2021-01-26 华帝股份有限公司 一种设置滤芯剩余使用量的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362153A (en) * 1966-02-01 1968-01-09 Couronnes Boninchi S A Fab De Water resistant push piece for diver's watch
US5299179A (en) * 1992-02-07 1994-03-29 Smh Management Services Ag Pushpiece for a diver's timepiece
EP1571506A1 (fr) * 2004-03-03 2005-09-07 ETA SA Manufacture Horlogère Suisse Dispositif électronique à affichage analogique de l'historique d'au moins une grandeur mesurée par un capteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899204A (en) * 1993-11-17 1999-05-04 Cochran Consulting, Inc. Dive computer with wrist activation
CA2398698A1 (fr) * 2000-06-23 2002-01-03 Comsonics, Inc. Masque de plongee avec systeme informatique integre
DE102008058131A1 (de) * 2008-11-14 2010-05-20 Tjorven Fitz Kommunikations-, Informations- und Ortungssystem für Taucher
DE202011101153U1 (de) * 2011-05-27 2011-07-06 WIKA Alexander Wiegand SE & Co. KG, 63911 Tauchgehäuse und Tauchinformationssystem
CN203490644U (zh) * 2013-10-09 2014-03-19 天津市新众誉科技有限公司 一种计算机用集成防水键盘

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362153A (en) * 1966-02-01 1968-01-09 Couronnes Boninchi S A Fab De Water resistant push piece for diver's watch
US5299179A (en) * 1992-02-07 1994-03-29 Smh Management Services Ag Pushpiece for a diver's timepiece
EP1571506A1 (fr) * 2004-03-03 2005-09-07 ETA SA Manufacture Horlogère Suisse Dispositif électronique à affichage analogique de l'historique d'au moins une grandeur mesurée par un capteur

Also Published As

Publication number Publication date
GB2524977A (en) 2015-10-14
GB2524977B (en) 2020-01-22
EP2937276A1 (fr) 2015-10-28
GB201406248D0 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
TWI324712B (en) Electronic diving watch with analog display
JP5047690B2 (ja) プログラム可能なディスプレイを有するダイビングコンピュータ
KR100998406B1 (ko) 아날로그 디스플레이를 가지는 전자잠수시계
JP2020098643A (ja) 多次元トラックパッド
US10417826B2 (en) Information input method in 3D immersive environment
CN102971035B (zh) 用于呼吸设备的用户界面
AT510385B1 (de) Berührungssensitives display und methode zur bedienung eines tauchcomputers
CA2537767A1 (fr) Systeme et methode pour explorer une interface utilisateur de dispositif mobile avec un dispositif de detection directionnelle
JP2006236355A (ja) メニュー画面を表示する端末機においてメニューナビゲーションを制御する装置及び方法
EP2937276B1 (fr) Ordinateur de plongée contrôlable de manière intuitive
CN110688020A (zh) 触笔的基于触摸的输入
SE532215C2 (sv) Skyddsmetod och säkerhetsanordning vid SCUBA-dykning
JPWO2009044670A1 (ja) 入力装置及びこれを搭載した電子機器
EP2073111A3 (fr) Appareil et procédé de navigation de menu
TW200821900A (en) Tactile display locking and marker system
CN111158506B (zh) 具有剪切力反馈的触笔
US10971027B2 (en) System and method for improving safety when operating aircraft in reduced- or modified-visibility conditions
JP2012053897A (ja) 少なくとも3つの次元を有する空間においてナビゲートするための独立型のデバイス、システム、および方法
WO2002071174A3 (fr) Dispositif d'affichage de donnees
CN203689177U (zh) 直按式旋钮温控器
CN112068696A (zh) Vr头盔、晶体交互系统及方法
KR20170105670A (ko) 수압 및 잠수 시간에 따른 경고 출력 장치
WO2016075364A1 (fr) Commutateur rotatif
US7040580B1 (en) Automatic activation device for deploying a parachute and methods thereof
EP3020131B1 (fr) Panneau de commande pour aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160415

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHNSON OUTDOORS INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180904

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220331

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1515119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015080543

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1515119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015080543

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230419

Year of fee payment: 9

Ref country code: FR

Payment date: 20230425

Year of fee payment: 9

Ref country code: DE

Payment date: 20230427

Year of fee payment: 9

Ref country code: CH

Payment date: 20230502

Year of fee payment: 9

26N No opposition filed

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230425

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230407