EP2937258A1 - Traffic control system - Google Patents

Traffic control system Download PDF

Info

Publication number
EP2937258A1
EP2937258A1 EP15164796.3A EP15164796A EP2937258A1 EP 2937258 A1 EP2937258 A1 EP 2937258A1 EP 15164796 A EP15164796 A EP 15164796A EP 2937258 A1 EP2937258 A1 EP 2937258A1
Authority
EP
European Patent Office
Prior art keywords
tsr
train
measurement value
predicted
rainfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15164796.3A
Other languages
German (de)
French (fr)
Inventor
Satoshi Matsudo
Hirotake Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of EP2937258A1 publication Critical patent/EP2937258A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation

Definitions

  • the present invention relates to a traffic control system, and particularly relates to a train traffic control system configured to make train schedule adjustment based on predictions of train operations.
  • the train traffic control system monitors weather conditions in train operation areas by using measuring devices such as anemometers, rain gauges, seismometers, and snow gauges which are installed around railroad lines.
  • measuring devices such as anemometers, rain gauges, seismometers, and snow gauges which are installed around railroad lines.
  • Patent Literature 1 proposes a conventional technique of predicting train operation restrictions in consideration of weather by using the measurement values of measuring devices.
  • Patent Literature 1 the measurement values of the installed measuring devices can be predicted based on the weather forecast, and a disturbance in train operations at a certain time point in the future can be predicted as described above.
  • the technique described in Patent Literature 1 is capable of identifying time points and areas in which the speed restrictions are required according to a change in weather.
  • this technique is incapable of predicting train operations in consideration of a train diagram changed due to speed restrictions.
  • the present invention aims to provide a train traffic control system that predicts measurement values of each of measuring devices based on weather forecast, and makes a train operation prediction while presenting a change from a planned diagram to a predicted diagram according to speed restrictions.
  • the present invention has an objective to provide a train traffic control system capable of predicting train operations with high accuracy.
  • a traffic control system includes:
  • Fig. 19 is a hardware configuration diagram of a train traffic control system 100S which is an embodiment of the present invention.
  • the traffic control system 100S includes a storage apparatus 100T, an arithmetic processing apparatus 100R, and an input/output apparatus 100D.
  • the storage apparatus 100T stores various programs and files.
  • the arithmetic processing apparatus 100R performs reading/writing of the files stored in the storage apparatus 100T, execution of the programs, calculation, and control of the other apparatuses included in the traffic control system 100S.
  • the input/output apparatus 100D includes an input device 102D configured to receive input from outside, and a display device 101D configured to output information to outside.
  • an electric data reception processing function 111R acquires a wind velocity forecast information file 101T and a rainfall forecast information file 101J created by the weather forecast system 101S (Step 1).
  • the wind velocity forecast information file 101T and the rainfall forecast information file 101J indicate forecast values of the wind velocity and rainfall per unit time within each of districts managed by the weather forecast system.
  • Fig. 2 Detailed description is provided for the wind velocity forecast information file 101T by using Fig. 2 and for the rainfall forecast information file 101J by using Fig. 5 .
  • a measuring device prediction function 112R creates an anemometer prediction information storage table 112T and a rain-gauge prediction information storage table 114T (Step 2) from information in the wind velocity forecast information file 101T and the rainfall forecast information file 101J received by the electric data reception processing function 111R, by using a wind velocity information conversion constant table 111T and a rainfall information conversion constant table 113T, respectively.
  • the wind velocity information conversion constant table 111T and the rainfall information conversion constant table 113T are conversion tables in which the districts managed by the weather forecast system and measuring devices such as anemometers and rain gauges installed around railroad lines are associated with each other.
  • the anemometer prediction information storage table 112T and the rain-gauge prediction information storage table 114T indicate predicted measurement values per unit time of the measuring devices such as the anemometers and the rain gauges installed around the railroad lines.
  • Detailed description is provided for the wind velocity information conversion constant table 111T by using Fig. 3 , for the anemometer prediction information storage table 112T by using Fig. 4 , for the rainfall information conversion constant table 113T by using Fig. 6 , and for the rain-gauge prediction information storage table 114T by using Fig. 7 .
  • a TSR prediction information creation function 113R is activated (Step 3).
  • Fig. 2 illustrates a structure of a wind velocity forecast information file 200.
  • the wind velocity forecast information file 200 includes a district 201, a time 202, and wind velocity forecast information 203 which are managed by the weather forecast system.
  • the wind velocity forecast information 203 indicates a forecast value of a wind velocity in the district 201 at the time 202.
  • This information is fetched to the train traffic control system 100S from the weather forecast system.
  • District division in the district 201 is independent of control areas of the train traffic control system 100S. For this reason, the district 201 may be set such that the wind velocity forecast information can be extracted mainly for areas where the railroad lines are located. This may reduce unnecessary information and thereby lighten the load on a memory.
  • Fig. 3 illustrates information stored in a wind velocity information conversion constant table 300.
  • the wind velocity information conversion constant table 300 includes an anemometer 301 and an installation district 302.
  • the anemometer 301 indicates a facility administration number in the traffic control system 100S representing a facility installed around a railroad line.
  • the installation district 302 indicates a district in the wind velocity forecast information file 200 corresponding to an installation location of the anemometer 301.
  • Fig. 4 illustrates information stored in an anemometer prediction information storage table 400.
  • the anemometer prediction information storage table 400 includes an anemometer 401, a time 402, and wind velocity prediction information 403.
  • the anemometer 401 indicates the facility administration number in the traffic control system 100S corresponding to the anemometer 301 in the wind velocity information conversion constant table 300.
  • the time 402 indicates time points whose intervals may be determined based on minimum time intervals in the wind velocity forecast information file 200 acquired from the weather forecast system.
  • the wind velocity prediction information 403 indicates a predicted measurement value of a wind velocity that will be indicated by the anemometer 401 at the time 402.
  • the measuring device prediction function 112R creates the anemometer prediction information storage table 400 in Fig. 4 by using the wind velocity forecast information file 200 in Fig. 2 , and the wind velocity information conversion constant table 300 in Fig. 3 .
  • the measuring devices can be identified which are installed around the railroad lines located in specific districts managed by the weather forecast system. Then, the predicted measurement values that will be indicated by the identified measuring devices can be obtained from the weather forecast values in the specific districts. In this way, the predicted measurement values of the measuring devices (anemometers) in the traffic control system 100S can be obtained.
  • Fig. 5 illustrates a structure of a rainfall forecast information file 500.
  • the rainfall forecast information file 500 includes a district 501, a time 502, and rainfall forecast information 503 which are managed by the weather forecast system.
  • the rainfall forecast information 503 indicates a forecast value of a rainfall per unit time in the district 501 at the time 502. This information is fetched to the train traffic control system 100S from the weather forecast system. District division in the district 501 is independent of the control areas of the train traffic control system 100S. In addition, the district 501 may have no correspondence with the district 201 in the wind velocity forecast information file 200.
  • Fig. 6 illustrates information stored in a rainfall information conversion constant table 600.
  • the rainfall information conversion constant table 600 includes a rain gauge 601 and an installation district 602.
  • the rain gauge 601 indicates a facility administration number in the traffic control system 100S representing a facility installed around a railroad line.
  • the installation district 602 indicates a district in the rainfall forecast information file 500 corresponding to an installation location of the rain gauge 601.
  • Fig. 7 illustrates information stored in a rain-gauge prediction information storage table 700.
  • the rain-gauge prediction information storage table 700 includes a rain gauge 701, a time 702, rainfall prediction information 703, and rainfall sum prediction information 704.
  • the rain gauge 701 indicates the facility administration number in the traffic control system 100S corresponding to the rain gauge 601 in the rainfall information conversion constant table 600.
  • the time 702 indicates time points whose intervals may be determined based on minimum time intervals in the rainfall forecast information file 500 acquired from the weather forecast system.
  • the rainfall prediction information 703 indicates a predicted value of a rainfall per unit time that will be indicated by the rain gauge 701 at the time 702.
  • the rainfall sum prediction information 704 indicates a predicted value of a rainfall sum from a certain past time point to the time 702. Since both the rainfall per unit time and the rainfall sum are obtained, speed limits can be set with respect to these two types of rainfall values, respectively. Thus, more detailed predictions can be made.
  • the rainfall forecast information file 500 in Fig. 5 is converted to the rain-gauge prediction information storage table 700 in Fig. 7 by using the rainfall information conversion constant table 600 in Fig. 6 .
  • the rainfall forecast information in the specific districts acquired from the weather forecast system can be related to the measuring devices in the traffic control system 100S.
  • the predicted values of the rain gauges in the traffic control system 100S can be obtained.
  • Fig. 8 illustrates an example of a correlation between the control areas of the train traffic control system 100S and the information collection districts of the weather forecast system.
  • a management range of the weather forecast system includes wind velocity forecast districts and rainfall forecast districts independently, and reference anemometers and reference rain gauges in a management range of the train traffic control system 100S are located in these districts.
  • TSR control areas 801, 802, ... indicate minimum areas for TSR control in the train traffic control system 100S.
  • an arbitrary area may be set as the TSR control area in the train traffic control system 100S.
  • the corresponding anemometer and rain gauge are referred to in the process of determining whether or not to enforce a temporary speed restriction.
  • Fig. 9 illustrates a flowchart of the anemometer-induced TSR information creation processing 1131R.
  • the anemometer-induced TSR information creation processing 1131R includes: receiving information on time-series predicted values of the wind velocity of each anemometer obtained as a result of the anemometer measurement value prediction (900); determining whether or not there is a time slot when the predicted value of the wind velocity exceeds a TSR enforcement reference wind velocity by using the received information (910); and, for the time slot thus found, calculating a TSR enforcement time point (911) and a TSR termination time point (912) based on the prediction results of the preceding and following time slots.
  • TSR enforcement reference wind velocity reference wind velocities corresponding to respective temporary speed restrictions are set in advance in the TSR setting table 116T.
  • speed limits with respect to the wind velocity are to be set with a TSR of 0 km, i.e., a suspension of train operations if the wind velocity is 30 m/s or above, and with a TSR of 70 km if the wind velocity is 25 m/s or above. These speed limit conditions differ depending on the locations of the measuring devices.
  • the temporary speed restriction is set to be enforced when the predicted measurement value of the anemometer reaches or exceeds a predetermined value.
  • this wind velocity as the reference is denoted by the TSR enforcement reference wind velocity V max , the TSR enforcement time point T is calculated in accordance with the above expressions.
  • the temporary speed restriction is set to terminate if the wind velocity remain at or below a certain value for a predetermined monitoring period after the predicted measurement value of the anemometer falls to the certain value or below.
  • this wind velocity as the reference is denoted by the TSR termination reference wind velocity V min , the time point T s at which the predicted measurement value of the anemometer will reach V min , and the TSR termination time point T e are calculated in accordance with the above expressions.
  • T n Time point (H)
  • R n Rainfall (mm) per unit time at a time point
  • T n ⁇ n Change in rainfall per unit time (mm/H) between two given time points (T n to T n+1 )
  • R max TSR enforcement reference rainfall (mm)
  • X Elapsed period (H) from T n
  • T n Time point (H) R n : Rainfall (mm) per unit time at a time point T n L: Time interval (H) for rainfall information summation
  • S max TSR enforcement reference rainfall sum (mm)
  • S n ⁇ ⁇ T n R x ⁇ d x
  • T T n + ⁇ n ⁇ X
  • T s T n + X
  • the temporary speed restriction is set to terminate if the rainfall per unit time remains at or below a certain value for a predetermined monitoring period after the predicted measurement value of the rain gauge falls to the certain value or below.
  • this rainfall per unit time as the reference is denoted by the TSR termination reference rainfall R min , the time point T s at which the predicted measurement value of the rain gauge will reach R min and the TSR termination time point T e are calculated in accordance with the above expressions.
  • T n Time point (H)
  • R n Rainfall (mm) per unit time at a time point
  • T n L Time interval (H) for rainfall information summation
  • S min TSR termination reference rainfall sum (mm)
  • S n ⁇ ⁇ T n R x ⁇ d x
  • T s T n + ⁇ n ⁇ X
  • the rainfall sum S n for a predetermined period L until a given time point T n is calculated based on the received information.
  • the temporary speed restriction is set to terminate when S n falls to a predetermined value or below.
  • this rainfall sum as the reference is denoted by the TSR termination reference rainfall S min , the TSR termination time point T is calculated in accordance with the above expressions.
  • the termination monitoring period may be set to 0 minutes, and the temporary speed restriction may be terminated immediately after the predicted value of the measuring device falls to the TSR termination monitoring wind velocity or below.
  • the predicted value of the measuring device repeatedly varies up and down around the TSR enforcement reference value, i.e., repeatedly switches over between a state requiring a TSR enforcement and a state requiring no TSR enforcement at short intervals. Even in that case, if the TSR termination monitoring wind velocity and the TSR termination monitoring period are provided, predictions can be performed while avoiding frequent TSR enforcements and terminations.
  • the predicted value of the measuring device repeatedly varies up and down around the TSR enforcement reference value, i.e., repeatedly switches over between a state requiring a TSR enforcement and a state requiring no TSR enforcement at short intervals. Even in that case, if the TSR termination monitoring rainfall and the TSR termination monitoring period are provided, predictions can be performed while avoiding frequent TSR enforcements and terminations.
  • the example herein uses the rainfall per unit time, the same applies to the case of the rainfall sum.
  • the TSR prediction information table 115T illustrated in Fig. 13 is formed based on the TSR termination table 118T and the TSR enforcement reference wind velocity or rainfall.
  • the TSR enforcement reference wind velocity includes multiple levels of TSR enforcement (termination) reference wind velocities (m/s) presented in Fig. 15A , and set TSR values are specified for the respective predicted values of the wind velocity. The same applies to the rainfalls (not illustrated).
  • Fig. 13 illustrates information stored in a TSR prediction information table 1900.
  • the TSR control information 1902, 1903, and 1904 indicates information on temporary speed restrictions predicted in an area specified in the TSR control area 1901.
  • the TSR control information indicates a temporary speed restriction set for the predicted value of the wind velocity or rainfall, based on the anemometer prediction information storage table in Fig. 4 or the rain-gauge prediction information storage table in Fig. 7 , the TSR termination table 118T in Fig. 11 or 12 , and the TSR setting table 116T specified depending on the wind velocity value or rainfall value as in Fig. 15A .
  • the temporary speed restriction is set to vary depending on the wind velocity value as in Fig. 15A .
  • Figs. 15A-15C present a calculation example of a change in TSR settings in association with a particular anemometer.
  • Fig. 15A presents wind velocities used as TSR enforcement and termination conditions and various constants
  • Fig. 15B presents forecast results received from the weather forecast system
  • Fig. 15C presents TSR enforcement time points and termination time points calculated in the anemometer-induced TSR information creation processing 1131R.
  • the temporary speed restrictions are enforced such that a TSR of 230 km is enforced from 12:40 to 12:50, and a TSR of 120 km is enforced from 12:50 to 13:00, while the temporary speed restrictions are terminated such that the termination monitoring for the enforcement of the TSR of 0 km is started from 13:40, the TSR of 0 km is terminated at 14:00, the termination monitoring for the enforcement of the TSR of 70 km is started from 13:50, and the TSR of 70 km is terminated at 14:10.
  • Fig. 17 presents a planned diagram and predicted diagrams.
  • the horizontal axis indicates a time (a, b, c, d), the vertical axis indicates a distance (A, B), and sections surrounded by dotted lines indicate areas under bad weather, which are areas each requiring a temporary speed restriction.
  • a string 1 represents a planned diagram
  • a string 2 represents a predicted diagram with short-term weather considered
  • a string 3 represents a predicted diagram with weather change over time considered
  • each of dotted diagram strings represents a diagram string under the enforcement of a temporary speed restriction.
  • the arrival time point at the A spot is the time point b in the planned diagram, the time point c in the predicted diagram with short-term weather considered, and the time point d in the predicted diagram with weather change over time considered.
  • an accurate train operation prediction can be achieved with weather change over time and temporary speed restrictions considered.
  • Embodiment 2 description is provided for a method of making a proposal for preventing a train stop between stations on the basis of a prediction of the occurrence of a train operation suspension due to a weather factor.
  • this method is performed based on the diagram prediction information file 117T formed with the TSR prediction information in Embodiment 1 considered.
  • Fig. 18 is a flowchart of processing of creating proposal information for preventing a train stop between stations.
  • Step 1 whether there is a station in which the occurrence of an operation suspension is predicted, and a start time point and a termination time point of the predicted suspension, if any, are determined based on the diagram prediction information file 117T (Step 1). If there is an area where the occurrence of the operation suspension is predicted, trains scheduled to arrive at or pass through a suspension target station during a period from the start of the operation suspension to the termination time point thereof are extracted from the planned diagram (Step 2). Then, the following processing is performed for each of the extracted trains in order of the arrival time.
  • a preceding station located before the suspension target station in a train running direction is checked to find whether there is a platform at which the train can be stopped (Step 3). If there is a platform at which the train can be stopped, whether or not the platform is reserved for use is checked in a platform reservation table (Step 4). If the target platform is not reserved for use, a train operation plan using the platform is compared with the planned diagram. If the train is scheduled to pass through the station, emergency stop control information is created (Step 5). If the platform is different from the platform used in the planned diagram, platform change control information is created (Step 6). After the comparison with the planned diagram, the train is registered in the platform reservation table (Step 7), and departure suspension information is created (Step 8).
  • the train traffic control system 100S has been illustrated as the example.
  • the present invention is not limited to this, and may be implemented even if the arithmetic processing apparatus 100R and the storage apparatus 100T are united into a single unit. Moreover, the present invention is not only applicable to the traffic control system 100S but can also be used in a similar manner in any simulator environment for creating and checking a predicted diagram.
  • the foregoing elements, functions, processing units, processing means, and the like may be partly or entirely implemented by hardware such as integrated circuits thus designed, for example. Instead, the foregoing elements, functions, and the like may be implemented by software in such a manner that a processor interprets and executes programs which realize these functions.
  • the programs, and the information of the tables, files, and others for realizing these functions may be stored in a recording device such as a memory, a hard disk, or a solid state drive (SSD) or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD solid state drive
  • control lines, information lines and numbers considered to be necessary for the explanation are described above, which means that not all the control lines and information lines are needed for a product. In practice, almost all the elements may be considered to be connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In general, a diagram prediction function of a train traffic control system predicts how a basic diagram will be in the future based on current setting conditions such as train delays, facility malfunction, and speed restrictions. For this reason, an influence of a factor yet to happen at the time of the above calculation cannot be predicted until the factor occurs actually, which results in a delay in train schedule adjustment. To address this, a train traffic control system acquires wind velocity and rainfall forecast information from a weather forecast system, calculates expected time points for enforcing and terminating temporary speed restrictions, and adds future settings of the temporary speed restrictions to the processing by a train diagram prediction function. Thus, the system can improve the accuracy of train diagram predictions, and automatically create a plan for train schedule adjustment used for coping with predicted disturbances in the train diagram.
Figure imgaf001

Description

    TECHNICAL FIELD
  • The present invention relates to a traffic control system, and particularly relates to a train traffic control system configured to make train schedule adjustment based on predictions of train operations.
  • BACKGROUND ART
  • In a railway train traffic operation, it is necessary to operate trains while restricting normal train operations in view of the safety during bad weather. In such a case, for a certain period of time, speed restrictions according to the weather conditions are imposed on the normal running speeds of trains. Such restriction is called temporary speed restriction (also referred to as TSR). If the temporary speed restrictions are imposed, the trains run at lower speeds, and a train diagram planned in advance is disturbed. For this reason, a train dispatcher has a need to predict the temporary speed restrictions and make a plan for train schedule adjustment before the train diagram is disturbed.
  • The train traffic control system monitors weather conditions in train operation areas by using measuring devices such as anemometers, rain gauges, seismometers, and snow gauges which are installed around railroad lines. There has been known a conventional technique (Patent Literature 1) of predicting train operation restrictions in consideration of weather by using the measurement values of measuring devices.
  • For example, Patent Literature 1 discloses the technique of: obtaining predicted measurement values of the measuring devices based on weather forecast; predicting an inter-station area where a speed restriction will be imposed, if any of the predicted values exceeds a preset measurement value threshold; and presenting the prediction result to a train dispatcher.
  • CITATION LIST PATENT LITERATURE
    • [Patent Literature 1] Japanese Patent Application Publication No. 2013-203078
    SUMMARY OF INVENTION TECHNICAL PROBLEM
  • According to Patent Literature 1, the measurement values of the installed measuring devices can be predicted based on the weather forecast, and a disturbance in train operations at a certain time point in the future can be predicted as described above. In this way, the technique described in Patent Literature 1 is capable of identifying time points and areas in which the speed restrictions are required according to a change in weather. However, this technique is incapable of predicting train operations in consideration of a train diagram changed due to speed restrictions.
  • The present invention aims to provide a train traffic control system that predicts measurement values of each of measuring devices based on weather forecast, and makes a train operation prediction while presenting a change from a planned diagram to a predicted diagram according to speed restrictions.
  • The present invention has an objective to provide a train traffic control system capable of predicting train operations with high accuracy.
  • SOLUTION TO PROBLEM
  • According to an aspect of the present invention, a traffic control system includes:
    • a storage unit configured to store information acquired from outside, the information including district information and a weather forecast value in each of districts, and to store a first table in which each of the districts and a measuring device located within the district are associated with each other based on the acquired district information, and a second table in which a measurement value threshold for the measuring device is associated with a speed limit to which a normal speed of a train is limited; and
    • an arithmetic unit configured to perform processing of
      obtaining a predicted measurement value of the measuring device from the weather forecast value in the associated district by using the first table,
      if the predicted measurement value is found to reach or exceed the measurement value threshold based on the second table, selecting the measuring device indicating the predicted measurement value thus found, and predicting the speed limit in an area along a railroad line around which the selected measuring device is installed, and
      displaying a diagram indicating a future train operation prediction which is made based on the predicted speed limit.
    ADVANTAGEOUS EFFECTS OF INVENTION
  • According to an aspect of the present invention, it is possible to provide a train traffic control system capable of predicting train operations with high accuracy.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 which is made up of Figs. 1A and 1B is a functional configuration diagram of a traffic control system according to an embodiment.
    • Fig. 2 is an example of a wind velocity forecast information file.
    • Fig. 3 is an example of a wind velocity information conversion constant table.
    • Fig. 4 is an example of an anemometer prediction information storage table.
    • Fig. 5 is an example of a rainfall forecast information file.
    • Fig. 6 is an example of a rainfall information conversion constant table.
    • Fig. 7 is an example of a rain-gauge prediction information storage table.
    • Fig. 8 is a diagram illustrating a correlation between a management range of the train traffic control system and a management range of a weather forecast system.
    • Fig. 9 is a flowchart of anemometer-induced TSR information creation processing.
    • Fig. 10 is a flowchart of rain gauge-induced TSR information creation processing.
    • Fig. 11 is an example of an anemometer-induced TSR termination table.
    • Fig. 12 is an example of a rain gauge-induced TSR termination table.
    • Fig. 13 is an example of a TSR prediction information table.
    • Fig. 14 is an example of a TSR table.
    • Fig. 15 is an example of temporary speed restrictions changing over time according to a wind velocity.
    • Fig. 16 is an example of a change in a predicted wind velocity over time and a transition of temporary speed restriction settings.
    • Fig. 17 is an example of a planned diagram and a predicted diagram.
    • Fig. 18 is a flowchart of processing of creating proposal information for preventing a train stop between stations.
    • Fig. 19 is a hardware configuration diagram of the traffic control system.
    DESCRIPTION OF EMBODIMENTS
  • Hereinafter, embodiments are described by using the drawings.
  • [Embodiment 1]
  • Fig. 19 is a hardware configuration diagram of a train traffic control system 100S which is an embodiment of the present invention. The traffic control system 100S includes a storage apparatus 100T, an arithmetic processing apparatus 100R, and an input/output apparatus 100D. The storage apparatus 100T stores various programs and files. The arithmetic processing apparatus 100R performs reading/writing of the files stored in the storage apparatus 100T, execution of the programs, calculation, and control of the other apparatuses included in the traffic control system 100S. The input/output apparatus 100D includes an input device 102D configured to receive input from outside, and a display device 101D configured to output information to outside.
  • Fig. 1 which is made up of Figs. 1A and 1B is a functional configuration diagram of the train traffic control system 100S according to the present invention. The train traffic control system 100S is connected via a network to a weather forecast system 101S installed in the meteorological agency or the like and configured to provide a weather forecast, and controls train operations based on a train diagram formed in advance.
  • In the train traffic control system 100S, an electric data reception processing function 111R acquires a wind velocity forecast information file 101T and a rainfall forecast information file 101J created by the weather forecast system 101S (Step 1). The wind velocity forecast information file 101T and the rainfall forecast information file 101J indicate forecast values of the wind velocity and rainfall per unit time within each of districts managed by the weather forecast system. Detailed description is provided for the wind velocity forecast information file 101T by using Fig. 2 and for the rainfall forecast information file 101J by using Fig. 5.
  • A measuring device prediction function 112R creates an anemometer prediction information storage table 112T and a rain-gauge prediction information storage table 114T (Step 2) from information in the wind velocity forecast information file 101T and the rainfall forecast information file 101J received by the electric data reception processing function 111R, by using a wind velocity information conversion constant table 111T and a rainfall information conversion constant table 113T, respectively.
  • The wind velocity information conversion constant table 111T and the rainfall information conversion constant table 113T are conversion tables in which the districts managed by the weather forecast system and measuring devices such as anemometers and rain gauges installed around railroad lines are associated with each other. The anemometer prediction information storage table 112T and the rain-gauge prediction information storage table 114T indicate predicted measurement values per unit time of the measuring devices such as the anemometers and the rain gauges installed around the railroad lines. Detailed description is provided for the wind velocity information conversion constant table 111T by using Fig. 3, for the anemometer prediction information storage table 112T by using Fig. 4, for the rainfall information conversion constant table 113T by using Fig. 6, and for the rain-gauge prediction information storage table 114T by using Fig. 7.
  • The measuring device prediction function 112R obtains predicted values of future measurement values of the measuring devices. The measuring device prediction function 112R performs an anemometer measurement value prediction 1121R of obtaining a temporal change in a wind velocity value of each anemometer from the anemometer prediction information storage table 112T, and performs a rain gauge measurement value prediction 1122R of obtaining a temporal change in a rainfall value of each rain gauge from the rain-gauge prediction information storage table 114T.
  • After the creation of the measuring device prediction information storage tables 112T and 114T, a TSR prediction information creation function 113R is activated (Step 3).
  • After the measuring device prediction function 112R predicts the temporal changes in the measurement values of the measuring devices, the TSR prediction information creation function 113R calculates a TSR enforcement time point and a TSR termination time point. This calculation is made using the measuring device prediction information storage tables 112T and 114T and a TSR setting table 116T. In the TSR setting table 116T, train limited speeds are set corresponding to measurement value thresholds for the anemometer and the rain gauge. In other words, a temporary speed restriction to be imposed if a predicted measurement value exceeds its corresponding threshold is set. Figs. 11 and 12 illustrate details of the TSR setting table 116T. By using this table, the TSR prediction information creation function 113R can obtain the TSR enforcement time point and the TSR termination time point if any predicted measurement value exceeds its threshold.
  • The TSR prediction information creation function 113R performs anemometer-induced TSR information creation processing 1131R by calculating the enforcement and termination time points for a temporary speed restriction induced by each anemometer from the anemometer prediction information storage table 112T, and registering the calculation results in a TSR prediction information table 115T. The TSR prediction information creation function 113R performs rain gauge-induced TSR information creation processing 1132R by calculating the enforcement and termination time point for a temporary speed restriction induced by each rain gauge from the rain-gauge prediction information storage table 114T, and registering the calculation results in the TSR prediction information table 115T (Step 4).
  • A diagram control function 115R performs diagram prediction creation processing 116R by creating information on a predicted diagram in consideration of predictions of future temporary speed restrictions with reference to the TSR prediction information table 115T, and by registering the created predicted diagram information in a diagram prediction information file 117T (Step 5).
  • The display device 101D in the input/output apparatus 100D displays a predicted diagram based on the diagram prediction information file 117T (Step 6).
  • Fig. 2 illustrates a structure of a wind velocity forecast information file 200. The wind velocity forecast information file 200 includes a district 201, a time 202, and wind velocity forecast information 203 which are managed by the weather forecast system. The wind velocity forecast information 203 indicates a forecast value of a wind velocity in the district 201 at the time 202. This information is fetched to the train traffic control system 100S from the weather forecast system. District division in the district 201 is independent of control areas of the train traffic control system 100S. For this reason, the district 201 may be set such that the wind velocity forecast information can be extracted mainly for areas where the railroad lines are located. This may reduce unnecessary information and thereby lighten the load on a memory.
  • Fig. 3 illustrates information stored in a wind velocity information conversion constant table 300.
  • The wind velocity information conversion constant table 300 includes an anemometer 301 and an installation district 302. The anemometer 301 indicates a facility administration number in the traffic control system 100S representing a facility installed around a railroad line. The installation district 302 indicates a district in the wind velocity forecast information file 200 corresponding to an installation location of the anemometer 301.
  • Fig. 4 illustrates information stored in an anemometer prediction information storage table 400.
  • The anemometer prediction information storage table 400 includes an anemometer 401, a time 402, and wind velocity prediction information 403. The anemometer 401 indicates the facility administration number in the traffic control system 100S corresponding to the anemometer 301 in the wind velocity information conversion constant table 300. The time 402 indicates time points whose intervals may be determined based on minimum time intervals in the wind velocity forecast information file 200 acquired from the weather forecast system. The wind velocity prediction information 403 indicates a predicted measurement value of a wind velocity that will be indicated by the anemometer 401 at the time 402.
  • The measuring device prediction function 112R creates the anemometer prediction information storage table 400 in Fig. 4 by using the wind velocity forecast information file 200 in Fig. 2, and the wind velocity information conversion constant table 300 in Fig. 3. The measuring devices can be identified which are installed around the railroad lines located in specific districts managed by the weather forecast system. Then, the predicted measurement values that will be indicated by the identified measuring devices can be obtained from the weather forecast values in the specific districts. In this way, the predicted measurement values of the measuring devices (anemometers) in the traffic control system 100S can be obtained.
  • Fig. 5 illustrates a structure of a rainfall forecast information file 500.
  • The rainfall forecast information file 500 includes a district 501, a time 502, and rainfall forecast information 503 which are managed by the weather forecast system. The rainfall forecast information 503 indicates a forecast value of a rainfall per unit time in the district 501 at the time 502. This information is fetched to the train traffic control system 100S from the weather forecast system. District division in the district 501 is independent of the control areas of the train traffic control system 100S. In addition, the district 501 may have no correspondence with the district 201 in the wind velocity forecast information file 200.
  • Fig. 6 illustrates information stored in a rainfall information conversion constant table 600.
  • The rainfall information conversion constant table 600 includes a rain gauge 601 and an installation district 602. The rain gauge 601 indicates a facility administration number in the traffic control system 100S representing a facility installed around a railroad line. The installation district 602 indicates a district in the rainfall forecast information file 500 corresponding to an installation location of the rain gauge 601.
  • Fig. 7 illustrates information stored in a rain-gauge prediction information storage table 700.
  • The rain-gauge prediction information storage table 700 includes a rain gauge 701, a time 702, rainfall prediction information 703, and rainfall sum prediction information 704. The rain gauge 701 indicates the facility administration number in the traffic control system 100S corresponding to the rain gauge 601 in the rainfall information conversion constant table 600. The time 702 indicates time points whose intervals may be determined based on minimum time intervals in the rainfall forecast information file 500 acquired from the weather forecast system. The rainfall prediction information 703 indicates a predicted value of a rainfall per unit time that will be indicated by the rain gauge 701 at the time 702. The rainfall sum prediction information 704 indicates a predicted value of a rainfall sum from a certain past time point to the time 702. Since both the rainfall per unit time and the rainfall sum are obtained, speed limits can be set with respect to these two types of rainfall values, respectively. Thus, more detailed predictions can be made.
  • As is the case with the wind velocity, the rainfall forecast information file 500 in Fig. 5 is converted to the rain-gauge prediction information storage table 700 in Fig. 7 by using the rainfall information conversion constant table 600 in Fig. 6. The rainfall forecast information in the specific districts acquired from the weather forecast system can be related to the measuring devices in the traffic control system 100S. Thus, the predicted values of the rain gauges in the traffic control system 100S can be obtained.
  • Fig. 8 illustrates an example of a correlation between the control areas of the train traffic control system 100S and the information collection districts of the weather forecast system. A management range of the weather forecast system includes wind velocity forecast districts and rainfall forecast districts independently, and reference anemometers and reference rain gauges in a management range of the train traffic control system 100S are located in these districts. TSR control areas 801, 802, ... indicate minimum areas for TSR control in the train traffic control system 100S. Here, instead of the minimum area, an arbitrary area may be set as the TSR control area in the train traffic control system 100S. For each TSR control area, the corresponding anemometer and rain gauge are referred to in the process of determining whether or not to enforce a temporary speed restriction.
  • Fig. 9 illustrates a flowchart of the anemometer-induced TSR information creation processing 1131R. The anemometer-induced TSR information creation processing 1131R includes: receiving information on time-series predicted values of the wind velocity of each anemometer obtained as a result of the anemometer measurement value prediction (900); determining whether or not there is a time slot when the predicted value of the wind velocity exceeds a TSR enforcement reference wind velocity by using the received information (910); and, for the time slot thus found, calculating a TSR enforcement time point (911) and a TSR termination time point (912) based on the prediction results of the preceding and following time slots.
  • As the TSR enforcement reference wind velocity, reference wind velocities corresponding to respective temporary speed restrictions are set in advance in the TSR setting table 116T. For example, as presented in Fig. 15A, speed limits with respect to the wind velocity are to be set with a TSR of 0 km, i.e., a suspension of train operations if the wind velocity is 30 m/s or above, and with a TSR of 70 km if the wind velocity is 25 m/s or above. These speed limit conditions differ depending on the locations of the measuring devices.
  • Next, description is provided for a method of calculating a TSR enforcement time point according to a wind velocity and expressions for calculating a TSR enforcement time point according to a wind velocity.
    Tn: Time point (H)
    Fn: Predicted value of wind velocity (m/s) at a time point Tn
    α n: Change in wind velocity per unit time (m/s per hour) between two given time points (Tn to Tn+1)
    Vmax: TSR enforcement reference wind velocity (m/s)
    X: Elapsed period (H) from Tn
  • When Fn < Vmax < Fn+1, α n = F n + 1 - F n T n + 1 - T n
    Figure imgb0001
  • Then, the elapsed period X from the time point Tn until the wind velocity reaches the TSR enforcement reference wind velocity is expressed as: V max = F n + α n X
    Figure imgb0002
    X = V max - F n α n
    Figure imgb0003
  • Thus, the time point T at which the wind velocity will reach the TSR enforcement reference wind velocity is calculated as follows: T = T n + X
    Figure imgb0004
  • The temporary speed restriction is set to be enforced when the predicted measurement value of the anemometer reaches or exceeds a predetermined value. Provided that this wind velocity as the reference is denoted by the TSR enforcement reference wind velocity Vmax, the TSR enforcement time point T is calculated in accordance with the above expressions.
  • Next, description is provided for a method of calculating a TSR termination time point according to a wind velocity.
    Tn: Time point (H)
    Fn: Predicted measurement value of wind velocity (m/s) at a time point Tn
    α n: Change in wind velocity per unit time (m/s per hour) between two given time points (Tn to Tn+1)
    Vmin: TSR termination reference wind velocity (m/s)
    X: Elapsed period (H) after Tn (< N)
    L: Termination monitoring period (H)
  • When Fn+1 < Vmin < Fn, α n = F n + 1 - F n T n + 1 - T n < 0
    Figure imgb0005
    V min = F n + α n X
    Figure imgb0006
    X = V min - F n α n
    Figure imgb0007
  • Thus, the time point Ts at which the wind velocity will reach the TSR termination reference wind velocity is calculated as: T s = T n + X
    Figure imgb0008
  • An expected TSR termination time point Te is calculated as: T e = T s + L where the wind velocity F n should remain at or below V min from T s to T e
    Figure imgb0009
  • The temporary speed restriction is set to terminate if the wind velocity remain at or below a certain value for a predetermined monitoring period after the predicted measurement value of the anemometer falls to the certain value or below. Provided that this wind velocity as the reference is denoted by the TSR termination reference wind velocity Vmin, the time point Ts at which the predicted measurement value of the anemometer will reach Vmin, and the TSR termination time point Te are calculated in accordance with the above expressions.
  • Fig. 10 is a flowchart of the rain gauge-induced TSR information creation processing 1132R. The rain gauge-induced TSR information creation processing 1132R includes: receiving information on time-series predicted values of the rainfall of each rain gauge obtained as a result of the rain gauge measurement value prediction (1200) ; calculating a rainfall per unit time at each concerned time point or a rainfall sum within a certain period until the concerned time point based on the received information (1210); determining whether or not the rainfall per unit time or the rainfall sum exceeds a TSR enforcement reference rainfall based on the calculated result (1212); and, for a time slot when the above condition is met, calculating a TSR enforcement time point (1213) and a TSR termination time point (1214) based on the prediction results of the preceding and following time slots.
  • Here, the TSR enforcement reference rainfalls are set in advance in a program. As for rainfalls, the TSR enforcement reference rainfalls are set for both the rainfall per unit time and the rainfall sum. Thus, highly accurate predictions can be made.
  • Next, description is provided for a method of calculating a TSR enforcement time point according to a rainfall per unit time.
    Tn: Time point (H)
    Rn: Rainfall (mm) per unit time at a time point Tn
    α n: Change in rainfall per unit time (mm/H) between two given time points (Tn to Tn+1)
    Rmax: TSR enforcement reference rainfall (mm)
    X: Elapsed period (H) from Tn
  • When Rn < Rmax ≤ Rn+1, α n = R n + 1 - R n T n + 1 - T n
    Figure imgb0010
  • Then, the elapsed period X from the time point Tn until the rainfall per unit time reaches the TSR enforcement reference rainfall is expressed as: R max = R n + α n X
    Figure imgb0011
    X = R max - R n α n
    Figure imgb0012
  • Thus, the time point T at which the rainfall per unit time will reach the TSR enforcement reference rainfall is calculated as: T = T n + X
    Figure imgb0013
  • The temporary speed restriction is set to be enforced when the predicted measurement value of the rain gauge reaches or exceeds a predetermined value. Provided that this rainfall as the reference is denoted by the TSR enforcement reference rainfall Rmax, the TSR enforcement time point T is calculated in accordance with the above expressions.
  • Next, description is provided for a method of calculating a TSR enforcement time point according to a rainfall sum.
    Tn: Time point (H)
    Rn: Rainfall (mm) per unit time at a time point Tn
    L: Time interval (H) for rainfall information summation
    Sn: Rainfall sum (mm) for a period L until the time point Tn βn: Start time point (H) for calculation of a rainfall sum at the time point Tn
    β n = Tn - L
    Smax: TSR enforcement reference rainfall sum (mm) S n = β T n R x d x
    Figure imgb0014
  • When Sn < Smax < Sn+1, α n = S n + 1 - S n T n + 1 - T n = S n + 1 - S n N
    Figure imgb0015
    S max = S n + α n X
    Figure imgb0016
    X = S max - S n α n
    Figure imgb0017
  • Thus, the time point T at which the rainfall sum will reach the TSR enforcement reference rainfall is calculated as: T = T n + α n X
    Figure imgb0018
  • The rainfall sum Sn for a predetermined period L until a given time point Tn is calculated based on the received information. The temporary speed restriction is set to be enforced when Sn reaches or exceeds a predetermined value. Provided that this rainfall sum as the reference is denoted by the TSR enforcement reference rainfall sum Smax, the TSR enforcement time point T is calculated in accordance with the above expressions.
  • Next, description is provided for a method of calculating a TSR termination time point according to a rainfall per unit time.
    Tn: Time point (H)
    Rn: Rainfall (mm) per unit time at a time point Tn
    α n: Change in rainfall per unit time (mm/H) between two given time points (Tn to Tn+1)
    Rmin: TSR termination reference rainfall (mm)
    L: Termination monitoring period (H)
  • When Rn+1 < Rmin < Rn, α n = R n + 1 - R n T n + 1 - T n < 0
    Figure imgb0019
    R min = R n + α n X
    Figure imgb0020
    X = R min - F n α n
    Figure imgb0021
  • Thus, the time point Ts at which the rainfall per unit time will reach the TSR termination reference rainfall is calculated as: T s = T n + X
    Figure imgb0022
  • A TSR termination time point Te is calculated as: T e = T s + L where the rainfall per unit time R n should remain at or below R min from T s to T e
    Figure imgb0023
  • The temporary speed restriction is set to terminate if the rainfall per unit time remains at or below a certain value for a predetermined monitoring period after the predicted measurement value of the rain gauge falls to the certain value or below. Provided that this rainfall per unit time as the reference is denoted by the TSR termination reference rainfall Rmin, the time point Ts at which the predicted measurement value of the rain gauge will reach Rmin and the TSR termination time point Te are calculated in accordance with the above expressions.
  • Next, description is provided for a method of calculating a TSR termination time point according to a rainfall sum.
    Tn: Time point (H)
    Rn: Rainfall (mm) per unit time at a time point Tn
    L: Time interval (H) for rainfall information summation
    Sn: Rainfall sum (mm) for a period L until the time point Tn βn: Start time point (H) for calculation of a rainfall sum at the time point Tn
    β n = Tn - L
    Smin: TSR termination reference rainfall sum (mm) S n = β T n R x d x
    Figure imgb0024
  • When Sn+1 < Smin < Sn, α n = S n + 1 - S n T n + 1 - T n = S n + 1 - S n N
    Figure imgb0025
    S min = S n + α n X
    Figure imgb0026
    X = S min - S n α n
    Figure imgb0027
  • Thus, the time point Ts at which the rainfall sum will reach the TSR termination reference rainfall sum is calculated as: T s = T n + α n X
    Figure imgb0028
  • The rainfall sum Sn for a predetermined period L until a given time point Tn is calculated based on the received information. The temporary speed restriction is set to terminate when Sn falls to a predetermined value or below. Provided that this rainfall sum as the reference is denoted by the TSR termination reference rainfall Smin, the TSR termination time point T is calculated in accordance with the above expressions.
  • Hereinafter, description is provided for creation of a predicted diagram with TSR enforcements and terminations taken into account. The following description explains a TSR termination table 118T used for TSR terminations in addition to the TSR setting table 116T used for TSR enforcements. By use of the TSR termination table 118T, the predicted diagram can be formed with the TSR enforcements and terminations taken into account.
  • Fig. 11 is the TSR termination table 118T for the anemometers Fc1, Fc2, and so on.
  • An enforcement reference wind velocity 1701 differs among anemometers 1700. In this table, the enforcement reference wind velocity 1701, a TSR termination monitoring wind velocity 1702, and a TSR termination monitoring period 1703 are set for each of the measuring devices. For example, as for the anemometer Fc1, it is assumed that the temporary speed restriction is enforced when the predicted value of the wind velocity exceeds an enforcement reference wind velocity of 20 (m/s). In this case, if the anemometer Fc1 remains at or below a TSR termination monitoring wind velocity of 15 (m/s) for a TSR termination monitoring period of 20 minutes, the temporary speed restriction is terminated. Instead, the termination monitoring period may be set to 0 minutes, and the temporary speed restriction may be terminated immediately after the predicted value of the measuring device falls to the TSR termination monitoring wind velocity or below. However, there is a case where the predicted value of the measuring device repeatedly varies up and down around the TSR enforcement reference value, i.e., repeatedly switches over between a state requiring a TSR enforcement and a state requiring no TSR enforcement at short intervals. Even in that case, if the TSR termination monitoring wind velocity and the TSR termination monitoring period are provided, predictions can be performed while avoiding frequent TSR enforcements and terminations.
  • Fig. 12 illustrates a TSR termination table 118T for the rain gauges Rc1, Rc2, and so on.
  • An enforcement reference rainfall 1801 differs among rain gauges 1800. In this table, the enforcement reference rainfall 1801, a TSR termination monitoring rainfall 1802, and a TSR termination monitoring period 1803 are set for each of the measuring devices. For example, as for the rain gauge Rc1, it is assumed that a temporary speed restriction is enforced when the predicted value of the rainfall exceeds an enforcement reference rainfall of 15 (mm). In this case, if the rain gauge Rc1 remains at or below a TSR termination monitoring rainfall of 10 (mm) for a TSR termination monitoring period of 20 minutes, the temporary speed restriction is terminated. Instead, the termination monitoring period may be set to 0 minutes, and the temporary speed restriction may be terminated immediately after the predicted value of the measuring device falls to the TSR termination monitoring rainfall or below. However, there is a case where the predicted value of the measuring device repeatedly varies up and down around the TSR enforcement reference value, i.e., repeatedly switches over between a state requiring a TSR enforcement and a state requiring no TSR enforcement at short intervals. Even in that case, if the TSR termination monitoring rainfall and the TSR termination monitoring period are provided, predictions can be performed while avoiding frequent TSR enforcements and terminations. In addition, although the example herein uses the rainfall per unit time, the same applies to the case of the rainfall sum.
  • The TSR prediction information table 115T illustrated in Fig. 13 is formed based on the TSR termination table 118T and the TSR enforcement reference wind velocity or rainfall. The TSR enforcement reference wind velocity includes multiple levels of TSR enforcement (termination) reference wind velocities (m/s) presented in Fig. 15A, and set TSR values are specified for the respective predicted values of the wind velocity. The same applies to the rainfalls (not illustrated).
  • Fig. 13 illustrates information stored in a TSR prediction information table 1900.
  • The TSR prediction information table 1900 includes a TSR control area 1901, and TSR control information 1902, 1903, and 1904.
  • The TSR control area 1901 indicates minimum areas for TSR control in the train traffic control system 100S. The TSR control areas in the TSR control area 1901 correspond to 801 to 814 or 801, ... in Fig. 8.
  • The TSR control information 1902, 1903, and 1904 indicates information on temporary speed restrictions predicted in an area specified in the TSR control area 1901. The TSR control information indicates a temporary speed restriction set for the predicted value of the wind velocity or rainfall, based on the anemometer prediction information storage table in Fig. 4 or the rain-gauge prediction information storage table in Fig. 7, the TSR termination table 118T in Fig. 11 or 12, and the TSR setting table 116T specified depending on the wind velocity value or rainfall value as in Fig. 15A. The temporary speed restriction is set to vary depending on the wind velocity value as in Fig. 15A. Since the temporary speed restriction setting is classified into multiple TSR levels depending on an indication value of the measuring device, there is a possibility that two or more TSR enforcement conditions may be satisfied simultaneously for a particular time period in a particular area. In a time slot at which two or more conditions are satisfied simultaneously, the temporary speed restriction under the most severe condition is selected as a control target. For example, in the TSR control area 801, two levels of TSR control in the control information 1 and the control information 2 are established simultaneously for an hour from 15:00 to 16:00. In this case, the TSR of 0 km under the severer condition is selected as the control target for the hour from 15:00 to 16:00.
  • Fig. 14 presents time-series TSR settings in a TSR control area. An example presented herein is a TSR table 2000 in which a TSR 2001, a start time point 2002 and an end time point 2003 are set for the TSR control area 801. As in the TSR prediction information table 115T in Fig. 13, the TSR table 2000 is made only in consideration of the TSR settings according to the wind velocity without consideration of the TSR settings according to the rainfall. However, in consideration of the TSR prediction information tables 115T for both the rainfall and the wind velocity, the TSR table 2000 may be made by selecting the temporary speed restriction under the most severe conditions along a temporal axis.
  • As an example of calculating a TSR enforcement time point according to a wind velocity, Figs. 15A-15C present a calculation example of a change in TSR settings in association with a particular anemometer. Fig. 15A presents wind velocities used as TSR enforcement and termination conditions and various constants, Fig. 15B presents forecast results received from the weather forecast system, and Fig. 15C presents TSR enforcement time points and termination time points calculated in the anemometer-induced TSR information creation processing 1131R.
  • Fig. 16 illustrates an example of a forecast of a wind velocity change over time and a transition of TSR settings in an implementation example under the conditions specified in Figs. 15A-15C. In Fig. 16, the horizontal axis indicates a time and the vertical axis indicates a wind velocity value. Fig. 16 illustrates TSR enforcement start, TSR termination monitoring start, and TSR termination based on the predicted values of the wind velocity. Here, the temporary speed restrictions are enforced such that a TSR of 230 km is enforced from 12:40 to 12:50, and a TSR of 120 km is enforced from 12:50 to 13:00, while the temporary speed restrictions are terminated such that the termination monitoring for the enforcement of the TSR of 0 km is started from 13:40, the TSR of 0 km is terminated at 14:00, the termination monitoring for the enforcement of the TSR of 70 km is started from 13:50, and the TSR of 70 km is terminated at 14:10.
  • Fig. 17 presents a planned diagram and predicted diagrams. The horizontal axis indicates a time (a, b, c, d), the vertical axis indicates a distance (A, B), and sections surrounded by dotted lines indicate areas under bad weather, which are areas each requiring a temporary speed restriction. Here, a train is assumed to run from a B spot to an A spot. A string 1 represents a planned diagram, a string 2 represents a predicted diagram with short-term weather considered, a string 3 represents a predicted diagram with weather change over time considered, and each of dotted diagram strings represents a diagram string under the enforcement of a temporary speed restriction. If the train departs at the time point a from the B spot to the A spot, the arrival time point at the A spot is the time point b in the planned diagram, the time point c in the predicted diagram with short-term weather considered, and the time point d in the predicted diagram with weather change over time considered. Thus, an accurate train operation prediction can be achieved with weather change over time and temporary speed restrictions considered.
  • [Embodiment 2]
  • In Embodiment 2, description is provided for a method of making a proposal for preventing a train stop between stations on the basis of a prediction of the occurrence of a train operation suspension due to a weather factor. Here, this method is performed based on the diagram prediction information file 117T formed with the TSR prediction information in Embodiment 1 considered.
  • Fig. 18 is a flowchart of processing of creating proposal information for preventing a train stop between stations.
  • To begin with, whether there is a station in which the occurrence of an operation suspension is predicted, and a start time point and a termination time point of the predicted suspension, if any, are determined based on the diagram prediction information file 117T (Step 1). If there is an area where the occurrence of the operation suspension is predicted, trains scheduled to arrive at or pass through a suspension target station during a period from the start of the operation suspension to the termination time point thereof are extracted from the planned diagram (Step 2). Then, the following processing is performed for each of the extracted trains in order of the arrival time.
  • First, a preceding station located before the suspension target station in a train running direction is checked to find whether there is a platform at which the train can be stopped (Step 3). If there is a platform at which the train can be stopped, whether or not the platform is reserved for use is checked in a platform reservation table (Step 4). If the target platform is not reserved for use, a train operation plan using the platform is compared with the planned diagram. If the train is scheduled to pass through the station, emergency stop control information is created (Step 5). If the platform is different from the platform used in the planned diagram, platform change control information is created (Step 6). After the comparison with the planned diagram, the train is registered in the platform reservation table (Step 7), and departure suspension information is created (Step 8). If there is no platform satisfying required conditions, the check target station is changed to another preceding station, and the determinations as described above are iterated. After the creation of the information on all the target trains, a control proposal is presented to a train dispatcher by outputting the change information thus created to a display screen (Step 9).
  • It should be noted that the embodiments described above are just illustrated for the purpose of explaining the present invention, and there is no intention to limit the scope of the present invention to these embodiments. A person skilled in the art may be able to implement the present invention in various other ways without departing from the scope of the present invention. In addition, any of the elements of the embodiments may be modified by an addition of another element, a deletion, or a replacement with another element.
  • In the description of the embodiments, the train traffic control system 100S has been illustrated as the example.
  • However, the present invention is not limited to this, and may be implemented even if the arithmetic processing apparatus 100R and the storage apparatus 100T are united into a single unit. Moreover, the present invention is not only applicable to the traffic control system 100S but can also be used in a similar manner in any simulator environment for creating and checking a predicted diagram.
  • The foregoing elements, functions, processing units, processing means, and the like may be partly or entirely implemented by hardware such as integrated circuits thus designed, for example. Instead, the foregoing elements, functions, and the like may be implemented by software in such a manner that a processor interprets and executes programs which realize these functions. The programs, and the information of the tables, files, and others for realizing these functions may be stored in a recording device such as a memory, a hard disk, or a solid state drive (SSD) or a recording medium such as an IC card, an SD card, or a DVD.
  • Furthermore, the control lines, information lines and numbers considered to be necessary for the explanation are described above, which means that not all the control lines and information lines are needed for a product. In practice, almost all the elements may be considered to be connected to each other.
  • REFERENCE SIGNS LIST
    • 100S train traffic control system
    • 101S weather forecast system
    • 101T (200) wind velocity forecast information file
    • 101J (500) rainfall forecast information file
    • 111R electric data reception processing function
    • 112R measuring device prediction function
    • 113R TSR prediction information creation function
    • 115R diagram control function
    • 116R diagram prediction creation processing
    • 111T (300) wind velocity information conversion constant table
    • 112T (400) anemometer prediction information storage table
    • 113T (600) rainfall information conversion constant table
    • 114T (700) rain-gauge prediction information storage table 115T TSR prediction information table
    • 116T TSR setting table
    • 117T diagram prediction information file
    • 118T TSR termination table
    • 2000 TSR table

Claims (8)

  1. A traffic control system comprising:
    a storage unit configured to store information acquired from outside, the information including district information and a weather forecast value in each of districts, and to store a first table in which each of the districts and a measuring device located within the district are associated with each other based on the acquired district information, and a second table in which a measurement value threshold for the measuring device is associated with a speed limit to which a normal speed of a train is limited; and
    an arithmetic unit configured to perform processing of
    obtaining a predicted measurement value of the measuring device from the weather forecast value in the associated district by using the first table,
    if the predicted measurement value is found to reach or exceed the measurement value threshold based on the second table, selecting the measuring device indicating the predicted measurement value thus found, and predicting the speed limit in an area along a railroad line around which the selected measuring device is installed, and
    displaying a diagram indicating a future train operation prediction which is made based on the predicted speed limit.
  2. The traffic control system according to claim 1, wherein
    if the predicted measurement value falls below the measurement value threshold after reaching or exceeding the measurement value threshold once, the arithmetic unit obtains an enforcement time point and a termination time point for a train operation under the speed limit, and obtains a predicted time point at which a train is expected to pass a given spot in future if the train runs under the speed limit from the enforcement time point to the termination time point.
  3. The traffic control system according to claim 2, wherein
    the termination time point is set such that an enforcement of the speed limit is terminated when a predetermined time period passes after the predicted measurement value falls to a predetermined threshold or below.
  4. The traffic control system according to claim 1, wherein
    the measuring device is a rain gauge, and
    the predicted measurement value for the rain gauge is a value of a rainfall per unit time.
  5. The traffic control system according to claim 1 or 3, wherein
    the measuring device is a rain gauge, and
    the predicted measurement value for the rain gauge is a value of a rainfall sum wfor a predetermined time period.
  6. The traffic control system according to claim 1, wherein
    an arbitrary area is set as an area for the train operation under the speed limit.
  7. The traffic control system according to claim 1, wherein
    a plurality of the measurement value thresholds are provided.
  8. A traffic control apparatus comprising:
    a storage unit configured to store information acquired from outside, the information including district information and a weather forecast value in each of districts, and to store a first table in which each of the districts and a measuring device located within the district are associated with each other based on the acquired district information, and a second table in which a measurement value threshold for the measuring device is associated with a speed limit to which a normal speed of a train is limited; and
    an arithmetic unit configured to perform processing of
    obtaining a predicted measurement value of the measuring device from the weather forecast value in the associated district by using the first table,
    if the predicted measurement value is found to reach or exceed the measurement value threshold based on the second table, selecting the measuring device indicating the predicted measurement value thus found, and predicting the speed limit in an area along a railroad line around which the selected measuring device is installed, and
    displaying a diagram indicating a future train operation prediction which is made based on the predicted speed limit.
EP15164796.3A 2014-04-25 2015-04-23 Traffic control system Withdrawn EP2937258A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090823A JP6307335B2 (en) 2014-04-25 2014-04-25 Operation management system

Publications (1)

Publication Number Publication Date
EP2937258A1 true EP2937258A1 (en) 2015-10-28

Family

ID=53039727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15164796.3A Withdrawn EP2937258A1 (en) 2014-04-25 2015-04-23 Traffic control system

Country Status (3)

Country Link
EP (1) EP2937258A1 (en)
JP (1) JP6307335B2 (en)
AU (1) AU2015202135B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536546A (en) * 2015-01-29 2016-09-21 Hitachi Ltd Timetable estimation device and method
CN106250611A (en) * 2016-07-28 2016-12-21 中国路桥工程有限责任公司 Railway wind section strong wind meteorological disaster monitoring system
CN107054412A (en) * 2017-04-30 2017-08-18 中南大学 UAV Intelligent measurement and method for early warning and the system of a kind of bogies for railway vehicles ice and snow
CN107054411A (en) * 2017-04-30 2017-08-18 中南大学 A kind of Along Railway snow disaster unmanned plane snow depth intelligent measure and Forecasting Methodology and system
CN107215361A (en) * 2017-06-09 2017-09-29 湖南中车时代通信信号有限公司 Time-table display methods and device based on Locomotive Running Monitor System
CN107878512A (en) * 2016-12-15 2018-04-06 比亚迪股份有限公司 Train scheduling method and system
CN109733445A (en) * 2018-12-27 2019-05-10 中南大学 The distributed scheduling method based on multi-Agent System Model under emergency event
CN110171451A (en) * 2018-02-21 2019-08-27 阿尔斯通运输科技公司 For executing the method and system of the planning process of rail service
CN110936982A (en) * 2018-09-21 2020-03-31 比亚迪股份有限公司 Full-automatic train driving control method and device and unmanned train signal system
CN112788302A (en) * 2021-01-26 2021-05-11 张俊峰 Traffic road video monitoring system
CN114179873A (en) * 2022-02-15 2022-03-15 四川华睿兴科技有限公司 Multi-road multi-time-interval all-day train operation diagram automatic compilation method and system
CN115230777A (en) * 2022-06-21 2022-10-25 中国科学院自动化研究所 Scheduling policy adjustment method and device, electronic equipment and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576231B2 (en) * 2015-12-08 2019-09-18 公益財団法人鉄道総合技術研究所 Program and operation arrangement plan creation device
JP2020059318A (en) * 2018-10-05 2020-04-16 株式会社日立製作所 Operation management support system and operation management support device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203078A (en) 2012-03-27 2013-10-07 Hitachi Ltd Train rescheduling support device and method of supporting train rescheduling
GB2505378A (en) * 2011-06-10 2014-02-26 Hitachi Ltd Operation rescheduling support system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166465A (en) * 1994-12-12 1996-06-25 East Japan Railway Co Wind velocity prediction method and traffic means operating method based thereon
JP2002070029A (en) * 2000-08-31 2002-03-08 Dai Nippon Construction Risk decision of slope and measuring system and safety evaluation method of measuring works

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505378A (en) * 2011-06-10 2014-02-26 Hitachi Ltd Operation rescheduling support system
JP2013203078A (en) 2012-03-27 2013-10-07 Hitachi Ltd Train rescheduling support device and method of supporting train rescheduling

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536546A (en) * 2015-01-29 2016-09-21 Hitachi Ltd Timetable estimation device and method
CN106250611A (en) * 2016-07-28 2016-12-21 中国路桥工程有限责任公司 Railway wind section strong wind meteorological disaster monitoring system
CN107878512B (en) * 2016-12-15 2018-10-16 比亚迪股份有限公司 Train scheduling method and system
CN107878512A (en) * 2016-12-15 2018-04-06 比亚迪股份有限公司 Train scheduling method and system
CN107054412A (en) * 2017-04-30 2017-08-18 中南大学 UAV Intelligent measurement and method for early warning and the system of a kind of bogies for railway vehicles ice and snow
CN107054411A (en) * 2017-04-30 2017-08-18 中南大学 A kind of Along Railway snow disaster unmanned plane snow depth intelligent measure and Forecasting Methodology and system
CN107054412B (en) * 2017-04-30 2018-03-30 中南大学 UAV Intelligent measurement and method for early warning and the system of a kind of bogies for railway vehicles ice and snow
CN107215361B (en) * 2017-06-09 2018-12-28 湖南中车时代通信信号有限公司 Time-table display device based on Locomotive Running Monitor System
CN107215361A (en) * 2017-06-09 2017-09-29 湖南中车时代通信信号有限公司 Time-table display methods and device based on Locomotive Running Monitor System
CN110171451A (en) * 2018-02-21 2019-08-27 阿尔斯通运输科技公司 For executing the method and system of the planning process of rail service
CN110936982A (en) * 2018-09-21 2020-03-31 比亚迪股份有限公司 Full-automatic train driving control method and device and unmanned train signal system
CN109733445A (en) * 2018-12-27 2019-05-10 中南大学 The distributed scheduling method based on multi-Agent System Model under emergency event
CN112788302A (en) * 2021-01-26 2021-05-11 张俊峰 Traffic road video monitoring system
CN114179873A (en) * 2022-02-15 2022-03-15 四川华睿兴科技有限公司 Multi-road multi-time-interval all-day train operation diagram automatic compilation method and system
CN115230777A (en) * 2022-06-21 2022-10-25 中国科学院自动化研究所 Scheduling policy adjustment method and device, electronic equipment and storage medium
CN115230777B (en) * 2022-06-21 2024-01-16 中国科学院自动化研究所 Scheduling policy adjustment method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6307335B2 (en) 2018-04-04
AU2015202135B2 (en) 2016-06-23
AU2015202135A1 (en) 2015-11-12
JP2015209050A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
EP2937258A1 (en) Traffic control system
US20200070861A1 (en) Maintenance assistance system and maintenance assistance method for railroad ground equipment
US9466196B2 (en) Anomalous phenomena detector
US9284692B2 (en) Switch monitoring and railway line management
JPWO2018087811A1 (en) Transportation system, timetable proposal system and vehicle operation system
US20130197790A1 (en) Method and system for traffic performance analysis, network reconfiguration, and real-time traffic monitoring
EP3222489B1 (en) Railroad ground facility degradation estimation system and method therefor
JP5520203B2 (en) Congestion degree estimation device
CN110758476B (en) Train positioning method and system
EP2950293B1 (en) Method and apparatus for estimating an arrival time of a transportation vehicle
WO2014193518A1 (en) Adaptive weather interrogation system
EP3009324A1 (en) Traffic demand control device
JP2008189180A (en) Train operation management system
EP3289370B1 (en) Methods and systems for alerting a user to the presence of a fault in an electromechanical system in a railway infrastructure
KR102286329B1 (en) Method and system for managing traffic safety in tunnel road
KR101436422B1 (en) Variable speed limits system considering tunnel and operating method thereof
JP2011118521A (en) Traffic information calculation device, traffic system and computer program
JP5925229B2 (en) Equipment inspection order setting device and program
WO2017055838A1 (en) Method and system for predicting railway track quality
DeLaura et al. Initial assessment of wind forecasts for Airport Acceptance Rate (AAR) and Ground Delay Program (GDP) planning
CN107479112B (en) Dense fog prediction method, device and system
Saifuzzaman et al. Understanding incident impact on traffic variables to reduce false incident detection
JP7527739B2 (en) Lightning strike prediction system and power transmission accident prediction system using said system
Puangprakhon et al. Probe-based travel time decomposition using speed-time-distance approximation technique
US10878707B1 (en) Wake vortex separation determination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221101