EP2935549B1 - Method for removing fat and/or oil stains - Google Patents
Method for removing fat and/or oil stains Download PDFInfo
- Publication number
- EP2935549B1 EP2935549B1 EP13803053.1A EP13803053A EP2935549B1 EP 2935549 B1 EP2935549 B1 EP 2935549B1 EP 13803053 A EP13803053 A EP 13803053A EP 2935549 B1 EP2935549 B1 EP 2935549B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- arginine
- sri
- fabric
- stain
- stain removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 60
- 239000004475 Arginine Substances 0.000 claims description 58
- 239000000203 mixture Substances 0.000 claims description 57
- 239000004744 fabric Substances 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000004094 surface-active agent Substances 0.000 claims description 18
- -1 arginine compound Chemical class 0.000 claims description 17
- 238000002203 pretreatment Methods 0.000 claims description 17
- 239000003945 anionic surfactant Substances 0.000 claims description 9
- FCBUKWWQSZQDDI-UHFFFAOYSA-N rhamnolipid Chemical compound CCCCCCCC(CC(O)=O)OC(=O)CC(CCCCCCC)OC1OC(C)C(O)C(O)C1OC1C(O)C(O)C(O)C(C)O1 FCBUKWWQSZQDDI-UHFFFAOYSA-N 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000010936 aqueous wash Methods 0.000 claims description 2
- 229960003121 arginine Drugs 0.000 description 56
- 102000004190 Enzymes Human genes 0.000 description 26
- 108090000790 Enzymes Proteins 0.000 description 26
- 229940088598 enzyme Drugs 0.000 description 26
- 108010055059 beta-Mannosidase Proteins 0.000 description 18
- 238000005406 washing Methods 0.000 description 18
- 102000004882 Lipase Human genes 0.000 description 16
- 108090001060 Lipase Proteins 0.000 description 16
- 239000004367 Lipase Substances 0.000 description 15
- 235000019421 lipase Nutrition 0.000 description 15
- 102100032487 Beta-mannosidase Human genes 0.000 description 12
- 238000009472 formulation Methods 0.000 description 12
- 108010087558 pectate lyase Proteins 0.000 description 11
- 239000003876 biosurfactant Substances 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 239000003599 detergent Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 230000002538 fungal effect Effects 0.000 description 6
- 239000002888 zwitterionic surfactant Substances 0.000 description 6
- 108010065511 Amylases Proteins 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- 241000193830 Bacillus <bacterium> Species 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 239000002280 amphoteric surfactant Substances 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108010084185 Cellulases Proteins 0.000 description 4
- 102000005575 Cellulases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 108010064785 Phospholipases Proteins 0.000 description 4
- 102000015439 Phospholipases Human genes 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229940025131 amylases Drugs 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 3
- 241001480714 Humicola insolens Species 0.000 description 3
- 108020002496 Lysophospholipase Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 3
- 241000223258 Thermomyces lanuginosus Species 0.000 description 3
- 235000015278 beef Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 235000015220 hamburgers Nutrition 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 241000194103 Bacillus pumilus Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 241000223198 Humicola Species 0.000 description 2
- 102100037611 Lysophospholipase Human genes 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 2
- 229940110377 dl- arginine Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000001924 fatty-acyl group Chemical group 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 229940094506 lauryl betaine Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 210000002374 sebum Anatomy 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- TUXHHVJPGQUPCF-DYVFJYSZSA-N (-)-Spiculisporic acid Chemical compound CCCCCCCCCC[C@H](C(O)=O)[C@]1(C(O)=O)CCC(=O)O1 TUXHHVJPGQUPCF-DYVFJYSZSA-N 0.000 description 1
- ZTOKUMPYMPKCFX-CZNUEWPDSA-N (E)-17-[(2R,3R,4S,5S,6R)-6-(acetyloxymethyl)-3-[(2S,3R,4S,5S,6R)-6-(acetyloxymethyl)-3,4,5-trihydroxyoxan-2-yl]oxy-4,5-dihydroxyoxan-2-yl]oxyoctadec-9-enoic acid Chemical compound OC(=O)CCCCCCC/C=C/CCCCCCC(C)O[C@@H]1O[C@H](COC(C)=O)[C@@H](O)[C@H](O)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COC(C)=O)O1 ZTOKUMPYMPKCFX-CZNUEWPDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- KKMIHKCGXQMFEU-UHFFFAOYSA-N 2-[dimethyl(tetradecyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O KKMIHKCGXQMFEU-UHFFFAOYSA-N 0.000 description 1
- AMRBZKOCOOPYNY-QXMHVHEDSA-N 2-[dimethyl-[(z)-octadec-9-enyl]azaniumyl]acetate Chemical compound CCCCCCCC\C=C/CCCCCCCC[N+](C)(C)CC([O-])=O AMRBZKOCOOPYNY-QXMHVHEDSA-N 0.000 description 1
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228215 Aspergillus aculeatus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 241001328122 Bacillus clausii Species 0.000 description 1
- 241000006382 Bacillus halodurans Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- AFWTZXXDGQBIKW-UHFFFAOYSA-N C14 surfactin Natural products CCCCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 AFWTZXXDGQBIKW-UHFFFAOYSA-N 0.000 description 1
- 101100468275 Caenorhabditis elegans rep-1 gene Proteins 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102100024023 Histone PARylation factor 1 Human genes 0.000 description 1
- 101001047783 Homo sapiens Histone PARylation factor 1 Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 102000011720 Lysophospholipase Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101100238610 Mus musculus Msh3 gene Proteins 0.000 description 1
- 241000194105 Paenibacillus polymyxa Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 102100035200 Phospholipase A and acyltransferase 4 Human genes 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000006448 Phospholipases A1 Human genes 0.000 description 1
- 102000006447 Phospholipases A2 Human genes 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000577556 Pseudomonas wisconsinensis Species 0.000 description 1
- 241000187561 Rhodococcus erythropolis Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001292348 Salipaludibacillus agaradhaerens Species 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- TUXHHVJPGQUPCF-UHFFFAOYSA-N Spiculisporic acid Natural products CCCCCCCCCCC(C(O)=O)C1(C(O)=O)CCC(=O)O1 TUXHHVJPGQUPCF-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- JEHBDHQRPICJAX-AFEZEDKISA-N acetic acid;(z)-n,n-dimethyloctadec-9-en-1-amine Chemical compound CC(O)=O.CCCCCCCC\C=C/CCCCCCCCN(C)C JEHBDHQRPICJAX-AFEZEDKISA-N 0.000 description 1
- UBNVDFUEPGQZQS-UHFFFAOYSA-N acetic acid;n,n-dimethyldodecan-1-amine Chemical compound CC([O-])=O.CCCCCCCCCCCC[NH+](C)C UBNVDFUEPGQZQS-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- WOJPVXQAVGCDIA-UHFFFAOYSA-N dimethyl(tetradecyl)azanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCN(C)C WOJPVXQAVGCDIA-UHFFFAOYSA-N 0.000 description 1
- SVPZZFICGCRINB-UHFFFAOYSA-N dodecoxymethyl(dimethyl)azanium;acetate Chemical compound CC([O-])=O.CCCCCCCCCCCCOC[NH+](C)C SVPZZFICGCRINB-UHFFFAOYSA-N 0.000 description 1
- CXRIYAIXOLRMST-UHFFFAOYSA-M dodecyl(dimethyl)sulfanium;acetate Chemical compound CC([O-])=O.CCCCCCCCCCCC[S+](C)C CXRIYAIXOLRMST-UHFFFAOYSA-M 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 102220049163 rs35498994 Human genes 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- NJGWOFRZMQRKHT-UHFFFAOYSA-N surfactin Natural products CC(C)CCCCCCCCCC1CC(=O)NC(CCC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CC(O)=O)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-UHFFFAOYSA-N 0.000 description 1
- NJGWOFRZMQRKHT-WGVNQGGSSA-N surfactin C Chemical compound CC(C)CCCCCCCCC[C@@H]1CC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)O1 NJGWOFRZMQRKHT-WGVNQGGSSA-N 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- RJSZFSOFYVMDIC-UHFFFAOYSA-N tert-butyl n,n-dimethylcarbamate Chemical compound CN(C)C(=O)OC(C)(C)C RJSZFSOFYVMDIC-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/33—Amino carboxylic acids
Definitions
- This invention relates to fabric stain removal methods for ambient-active fat/oil based stains, particularly but not exclusively as a pre-treatment or direct application.
- aqueous substrate cleaning is performed at cold or ambient temperatures. These temperatures are a challenge for fat/oil stain removal technology which relies on water temperatures of 40 - 70 degrees. In the case of modern washing machines, stain removal mainly relies largely on the heating of water above ambient temperatures in the washing machine. This accounts for a large proportion of the laundry related greenhouse gas footprint which needs reducing for environmental reasons.
- the objective of the invention is the removal of fabric stains from stained fabric, where the fabric stains comprise fat/oil.
- the invention provides a method for removing a stain comprising fat/oil from a stained fabric, comprising the step of applying to the stain, a fabric stain removal composition comprising an arginine compound and a surfactant.
- the invention provides a method of the first aspect of the invention, wherein the step of applying the fabric stain removal composition is a pre-treatment step using a pre-treatment device, wherein the pre-treatment device comprises (i) a storage chamber storing said fabric stain removal composition and (ii) a dispenser for locally applying said fabric stain removal composition to a stain on a fabric.
- the invention provides use of arginine compound, preferably in combination with a surfactant, in the removal of oil/fat stains from a stained fabric, preferably in the removal of fat stains, at ambient temperatures.
- the removal of oil/fat stains at low temperatures is radically improved and so offers improved laundry cleaning in regions where ambient washing occurs out of habit or necessity. Improved washing performance at lower temperatures is generally desirable but increased low temperature performance may also help inhibit the adoption of hot water washing in these countries, a rising trend as standards of living increase and more people are able to afford washing machines.
- the invention provides stain removal performance of fat based soil and/or stains in an ambient temperature cleaning processes (with low temperature wash liquor) without serious consideration to the temperature sensitivity of ingredients during storage.
- the formulation can therefore be designed more freely, on the basis of other considerations.
- substrate includes fabric, and clothing and other surfaces such as cutlery, crockery and other domestic hard surfaces.
- arginine compound is intended to include any suitable arginine compound, including stereoisomeric and racemic forms, derivatives, and substituted derivative and mixtures thereof.
- ambient-active is intended to mean less that 25 degrees Celcius and preferably 22 degrees Celcius or less, more preferably 15 degrees or less but always greater than 1 degree Celcius and "active" means effective in achieving stain removal.
- stain removal is means removal as measured in terms of Remission units or a Remission index. For a visible (by the human eye) effect, effective stain removal is represented by remission equal to or greater than 2 Remission units and preferably greater or equal to 5 units.
- wt% means “% by weight”. Unless specified otherwise, all percentages mentioned herein are by weight calculated relative to the total composition.
- the stain may comprise oil or fat, preferably fat. However, it is often found that other biological material may be included in the stain.
- the method of the invention preferably comprises an aqueous washing process. Accordingly it is preferred that the method comprises the step of adding water to the composition to form an aqueous wash liquor
- the method comprises localised application of the composition to a stain or stained area of the fabric.
- the method may be pre-treatment method, and be followed by a subsequent aqueous washing step. Pre-treatment steps may take place without further addition of any water (beyond any contained in the composition).
- the pre-treatment process may comprise the step of soaking the substrate in an aqueous solution to which the treatment composition has been added.
- the second step of the method of the invention may be a 'main' wash and may be a manual washing process or a washing process in a washing machine.
- the second step may use any suitable detergent composition.
- this detergent composition comprises one or more surfactants and/or other functional ingredients, adjuncts etc. as described below.
- the method of the invention is less than 90 minutes in duration, more preferably less than 60 minutes and most preferably less than 30 minutes.
- the pre-treatment step is preferably less than 5 minutes, and more preferably less than 2 minutes.
- the pre-treatment device may be by any suitable device such as roll-on applicator or tube, sprays, aerosols, pastes, a pump-operated dispenser or the like.
- the pre-treatment device may comprise a scrubbing member having brush, bristles, tufts, projections, embossments etc or any combination thereof to further aid application of the detergent composition to a substrate.
- the treatment composition is ambient-active. Accordingly, the temperature of the wash liquor step of aqueous washing process is therefore less than 40 °C and preferably less than 30 °C and more preferably less than 25 °C and more preferably less than or equal to 22 °C further more preferably 15°C or less at all times during the washing but excluding drying. Encouraging low temperature wash liquor is advantageous environmentally and financially.
- the treatment composition of the invention and/or any detergent composition used subsequently may comprise any of the following ingredients.
- compositions may comprise enzymes.
- the enzymes are preferably present at 0.001 - 5%wt more preferably 0.01 - 3%.
- Enzymes may be from animal, vegetable, bacterial origin (derived from bacteria) or fungal origin (derived from fungus) however enzymes from bacterial origin are preferred. Chemically modified or protein engineered mutants are included. Genes encoding such enzymes can be transferred from one host to a preferred expression production host which may or may not be the same as the original host.
- the term "enzyme” includes enzyme variants (produced, for example, by recombinant techniques) are included. Examples of such enzyme variants are disclosed, e.g., in EP 251,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist-Brocades NV).
- the one or more enzymes preferably comprise a protease.
- Preferred proteases are serine proteases or metallo proteases, preferably an alkaline microbial protease or a trypsin-like protease.
- protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
- the one or more enzymes preferably comprises an amylase.
- Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included.
- Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
- amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International IncCommercially available amylases include StainzymeTM (Novozymes).
- the one or more enzymes preferably comprise a lipase and in such cases, the preferred lipases include first wash lipases which comprise a polypeptide having an amino acid sequence which has at least 90 percent sequence identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109 and compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid within 15 A of E1 or Q249 with a positively charged amino acid; and may further comprise:
- lipases include lipases from Humicola (synonym Thermomyces ), e.g. from other H. lanuginosa ( T. lanuginosus ) strains or from H. insolens, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes, P. cepacia, P. stutzeri, P. fluorescens, Pseudomonas sp. strain SD 705 ( WO 95/06720 and WO 96/27002 ), P. wisconsinensis, a Bacillus lipase, e.g. from B.
- subtilis ( Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360 ), B. stearothermophilus ( JP 64/744992 ) or B. pumilus ( WO 91/16422 ).
- lipase enzymes include LipolaseTM and Lipolase UltraTM, and the Bacterial enzyme, Lipomax ® ex Genecor. This is a bacterially derived Lipase, of variant M21L of the lipase of Pseudomonas alcaligenes as described in WO 94/25578 to Gist-Brocades (M.M.M.J. Cox, H.B.M. Lenting, L.J.S.M. Mulleners and J.M. van der Laan).
- the one or more enzymes preferably comprise a phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
- phospholipase is an enzyme which has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
- phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
- lysophospholipase or phospholipase B
- Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
- the one or more enzymes preferably comprise a cutinase. classified in EC 3.1.1.74.
- the cutinase used according to the invention may be of any origin.
- Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- the one or more enzymes preferably comprise a cellulase preferably including those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g.
- the one or more enzymes preferably comprise a peroxidase/oxidase are especially of bacterial origin. Chemically modified or protein engineered mutants are included.
- An example of an oxidative bacterium is, but not limited to, are Aeromonas sp wherefrom oxidases can be sourced.
- the one or more enzymes preferably comprise a pectate lyase (also called polygalacturonate lyases):
- pectate lyases include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis ( Nasser et al. (1993) FEBS Letts. 335:319-326 ) and Bacillus sp. YA-14 ( Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949 ).
- the pectate lyase comprises the pectate lyase disclosed in Heffron et al., (1995) Mol. Plant-Microbe Interact. 8: 331-334 and Henrissat et al., (1995) Plant Physiol. 107: 963-976 .
- pectatel lyases are disclosed in WO 99/27083 and WO 99/27084 .
- pectate lyases derived from Bacillus licheniformis
- US patent no. 6,284,524 which document is hereby incorporated by reference
- pectate lyase variants are disclosed in WO 02/006442 , especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference).
- alkaline pectate lyases include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
- the one or more enzymes preferably comprise a Mannanase:
- mannanases include mannanases of bacterial and fungal origin.
- the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus ( WO 94/25576 ).
- WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al., Appl. Environ. Microbiol., Vol.56, No. 11, pp.
- JP-A-03047076 discloses a beta-mannanase derived from Bacillus sp.
- JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
- JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta-mannosidase.
- JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001.
- a purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164 .
- WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
- mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619 .
- Bacillus sp. mannanases concerned in the Examples in WO 99/64619 .
- Examples of commercially available mannanases include MannawayTM available from Novozymes A/S Denmark.
- the enzyme and any perfume/fragrance or pro-fragrance present may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme and pro-fragrance and/or other segregation within the product.
- the enzymes may be provided as an enzyme system.
- the surfactant may be a synthetic surfactant or a biosurfactant which is mircrobially synthesized e.g. from bacteria, fungi or other microbe.
- the biosurfactant preferably comprises a microbially-derived biosurfactant.
- it comprises a glycolipid biosurfactant which may be a rhamnolipid or sophorolipid or trehalolipid or a mannosylerythritol lipid (MEL).
- MEL mannosylerythritol lipid
- the biosurfactant may advantageously comprise a cellobiose, peptide based biosurfactants, lipoproteins and lipopeptides e.g. surfactin, fatty acids e.g.
- corynomucolic acids preferably with hydrocarbon chain C12-C14
- phospholipids e.g. Phosphatidylethanolamine produced by Rhodococcus erythropolis grown on n-alkane resulted in the lowering of interfacial tension between water and hexadecane to less than 1 mN m-1 and CMC of 30 mg L-1 (Kretschner et al., 1982) and Spiculisporic acid; polymeric biosurfactants including emulsan, liposan, mannoprotein and polysaccharide-protein complexes.
- the biosurfactant comprises a rhamnolipid.
- the surfactant may be present by weight in the compositions at a level of from 3 to 85% by weight, preferably from 3 to 60% by weight, more preferably from 3 to 40% by weight, most preferably from 3 to 35% by weight.
- the anionic surfactant is present at a level of from 0.1 to 95% by weight, preferably from 1 to 50% by weight, more preferably from 1.5 to 25% by weight based on total weight of surfactants present.
- the surfactant is an anionic surfactant.
- Anionic surfactants are defined herein as amphiphilic molecules comprising one or more functional groups that exhibit a net anionic charge when in aqueous solution at the normal wash pH of between 6 and 11.
- Preferred anionic biosurfactants are rhamnolipds and lactonic forms of sophorolipids. Biosurfactants which are not expressed biologically in anionic form but have been modified to provide/improve anionic properties are included in the invention.
- Preferred synthetic anionic surfactants are the alkali metal salts of organic sulphur reaction products having in their molecular structure an alkyl radical containing from about 6 to 24 carbon atoms and a radical selected from the group consisting of sulphonic and sulphuric acid ester radicals.
- anionic surfactant hereinafter described can be used, such as alkyl ether sulphates, soaps, fatty acid ester sulphonates, alkyl benzene sulphonates, sulphosuccinate esters, primary alkyl sulphates, olefin sulphonates, paraffin sulphonates and organic phosphate; preferred anionic surfactants are the alkali and alkaline earth metal salts of fatty acid carboxylates, fatty alcohol sulphates, preferably primary alkyl sulfates, more preferably they are ethoxylated, for example alkyl ether sulfates; and alkylbenzene sulfonates or mixtures thereof.
- Amphoteric surfactants and/or zwitterionic surfactants may be present in the compositions according to the invention.
- the pH of the wash liquor is preferably of between 6 and 10.
- an amphoteric or zwitterionic surfactant is present at a level of from 0.1 to 20% by weight, more preferably from 0.25 to 15% by weight, even more preferably from 0.5 to 10% by weight.
- Suitable zwitterionic surfactants are exemplified as those which can be broadly described as derivatives of aliphatic quaternary ammonium, sulfonium and phosphonium compounds with one long chain group having about 8 to about 18 carbon atoms and at least one water solubilizing radical selected from the group consisting of sulfate, sulfonate, carboxylate, phosphate or phosphonate.
- R 1 (R 2 ) x Y + R 3 Z - wherein R 1 contains an alkyl, alkenyl or hydroxyalkyl group with 8 to 18 carbon atoms, from 0 to 10 ethylene-oxy groups or from 0 to 2 glyceryl units; Y is a nitrogen, sulfur or phosphorous atom; R 2 is an alkyl or hydroxyalkyl group with 1 to 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorous atom; R 3 is an alkyl or hydroxyalkyl group with 1 to 5 carbon atoms and Z is a radical selected from the group consisting of sulfate, sulfonate, carboxylate, phosphate or phosphonate.
- Preferred amphoteric surfactants are amine oxides, for example coco dimethyl amine oxide.
- Preferred zwitterionic surfactants are betaines, and especially amidobetaines.
- Preferred betaines are C 8 to C 18 alkyl amidoalkyl betaines, for example coco amido betaine. These may be included as co-surfactants, preferably present in an amount of from 0 to 10 wt %, more preferably 1 to 5 wt %, based on the weight of the total composition.
- Preferred amphoteric or zwitterionic surfactants for incorporation in the composition according to the present invention are betaine surfactants. Examples of these are mentioned in the following list.
- the sulfatobetaines such as 3-(dodecyldimethylammonium)-1-propane sulfate; and 2-(cocodimethylammonium)-1-ethane sulfate.
- the sulfobetaines such as: 3-(dodecyldimethyl-ammonium)-2-hydroxy-1-propane sulfonate; 3-(tetradecyl-dimethylammonium)-1-propane sulfonate; 3-(C 12 -C 14 alkyl-amidopropyldimethylammonium)-2-hydroxy-1-propane sulfonate; and 3-(cocodimethylammonium)-1-propane sulfonate.
- the carboxybetaines such as (dodecyldimethylammonium) acetate (also known as lauryl betaine); (tetradecyldimethylammonium) acetate (also known as myristyl betaine); (cocodimethylammonium) acetate (also known as coconut betaine); (oleyldimethylammonium) acetate (also known as oleyl betaine); (dodecyloxymethyldimethylammonium) acetate; and (cocoamidopropyldimethylammonium) acetate (also known as cocoamido-propyl betaine or CAPB).
- dodecyldimethylammonium acetate also known as lauryl betaine
- tetradecyldimethylammonium) acetate also known as myristyl betaine
- cocodimethylammonium) acetate also known as coconut betaine
- oleyldimethylammonium
- the sulfoniumbetaines such as: (dodecyldimethylsulfonium) acetate; and 3-(cocodimethyl-sulfonium)-1-propane sulfonate.
- the phosphoniumbetaines such as 4-(trimethylphosphonium)-1-hexadecane sulfonate; 3-(dodecyldimethylphosphonium)-1-propanesulfonate; and 2-(dodecyldimethylphosphonium)-1-ethane sulfate.
- compositions according to the present invention preferably comprise carboxybetaines or sulphobetaines as amphoteric or zwitterionic surfactants, or mixtures thereof. Especially preferred is lauryl betaine.
- compositions may further comprise, colorants, pearlisers and/or opacifiers, and shading dye.
- detergent formulations according to the invention were tested to determine their ability to treat i.e. remove beef fat stains from cotton fabric.
- Test Mixture according to the invention Composition A 5 mg/L 100 ⁇ l Arginine dilution* 20 ⁇ l Distilled water 60 ⁇ l *Arginine diluted to the following mg/ml concentrations in distilled water: 0.16, 0.32, 0.64, 1.28, 2.56, 5.12 and 10.24.
- Control Mixture Compostion A 5 mg/L 100 ⁇ l Distilled water 100 ⁇ l
- Stain removal is measured in terms of Remission units or a Remission index. For a visible (by the human eye) effect, effective stain removal is preferably represented by remission equal to or greater than 2 Remission units and more preferably greater or equal to 5 units.
- figure 1 is a Graph displaying the average SRI for replicates 1-4 from Table 1 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- the tergotometer (SR Lab Instruments) allows a scaled reproduction of larger agitator type washers. This device was used to assess the cleaning activity of arginine on different fat-based stained cloth in Composition A.
- Arginine was applied using two different approaches: (i) by including it in the formulation containing wash mixture or (ii) pre-treating the cloth with a solution of arginine before washing.
- the volume was made up to 500 ml with demineralised water.
- the volume was made up to 500 ml with demineralised water.
- the volume was made up to 500 ml with demineralised water.
- Table 2 Tergotometerassay using CS46B stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Table 2 is a Bar chart displaying the average SRI for replicates 1-4 from Table 2 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 3 Tergotometerassay using CS46B stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Results of Table 3 are shown in Figure 3 : a Bar chart displaying the average SRI for replicates 1-4 from Table 3 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 4 Tergotometerassay using Lard & Violet Dye stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Results of table 4 are shown in Figure 4 : a Bar chart displaying the average SRI for replicates 1-4 from Table 4 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 5 Tergotometerassay using Lard & Violet Dye stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Table 5 The results of table 5 are shown in Figure 5 : a Bar chart displaying the average SRI for replicates 1-4 from Table 5 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 6 Tergotometerassay using Hamburger Grease & Violet Dye stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Table 6 The results of table 6 are shown in Figure 6 : a Bar chart displaying the average SRI for replicates 1-4 from Table 6 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 7 Tergotometerassay using Hamburger Grease & Violet Dye stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
- Table 7 The results of table 7 are shown in Figure 7 : a Bar chart displaying the average SRI for replicates 1-4 from Table 7 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- Table 8 Tergo-O-tometer assay using Artificial Sebum stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergo-O-tometer pot).
- Table 8 The results of table 8 are shown in Figure 8 : a Bar chart displaying the average SRI for replicates 1-4 from Table 8 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration.
- arginine improves removal of the fat-based stains tested.
- Pre-treatment of the stained cloth with arginine prior to washing in a surfactant containing composition A also improves stain removal.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Cosmetics (AREA)
Description
- This invention relates to fabric stain removal methods for ambient-active fat/oil based stains, particularly but not exclusively as a pre-treatment or direct application.
-
DE 19 42 236 A1 ,US 3 707 505 A ,US 5 306 444 A ,EP 2 305 785 A1 ,US 2010/0261631 A1 ,US 2006/0100115 A1 , andWO 95/03389 A1 - In many climates and in developing countries, aqueous substrate cleaning is performed at cold or ambient temperatures. These temperatures are a challenge for fat/oil stain removal technology which relies on water temperatures of 40 - 70 degrees. In the case of modern washing machines, stain removal mainly relies largely on the heating of water above ambient temperatures in the washing machine. This accounts for a large proportion of the laundry related greenhouse gas footprint which needs reducing for environmental reasons.
- The objective of the invention is the removal of fabric stains from stained fabric, where the fabric stains comprise fat/oil.
- In a first aspect, the invention provides a method for removing a stain comprising fat/oil from a stained fabric, comprising the step of applying to the stain, a fabric stain removal composition comprising an arginine compound and a surfactant.
- In a second aspect, the invention provides a method of the first aspect of the invention, wherein the step of applying the fabric stain removal composition is a pre-treatment step using a pre-treatment device, wherein the pre-treatment device comprises (i) a storage chamber storing said fabric stain removal composition and (ii) a dispenser for locally applying said fabric stain removal composition to a stain on a fabric.
- In a third aspect, the invention provides use of arginine compound, preferably in combination with a surfactant, in the removal of oil/fat stains from a stained fabric, preferably in the removal of fat stains, at ambient temperatures.
- With the invention, the removal of oil/fat stains at low temperatures is radically improved and so offers improved laundry cleaning in regions where ambient washing occurs out of habit or necessity. Improved washing performance at lower temperatures is generally desirable but increased low temperature performance may also help inhibit the adoption of hot water washing in these countries, a rising trend as standards of living increase and more people are able to afford washing machines. The invention provides stain removal performance of fat based soil and/or stains in an ambient temperature cleaning processes (with low temperature wash liquor) without serious consideration to the temperature sensitivity of ingredients during storage. The formulation can therefore be designed more freely, on the basis of other considerations.
- As used herein, the term "substrate" includes fabric, and clothing and other surfaces such as cutlery, crockery and other domestic hard surfaces.
- As used herein, the term "arginine compound" is intended to include any suitable arginine compound, including stereoisomeric and racemic forms, derivatives, and substituted derivative and mixtures thereof.
- The term "ambient-active" is intended to mean less that 25 degrees Celcius and preferably 22 degrees Celcius or less, more preferably 15 degrees or less but always greater than 1 degree Celcius and "active" means effective in achieving stain removal.
- As used herein "stain removal" is means removal as measured in terms of Remission units or a Remission index. For a visible (by the human eye) effect, effective stain removal is represented by remission equal to or greater than 2 Remission units and preferably greater or equal to 5 units.
- As used herein, the abbreviation "wt%" means "% by weight". Unless specified otherwise, all percentages mentioned herein are by weight calculated relative to the total composition.
- The stain may comprise oil or fat, preferably fat. However, it is often found that other biological material may be included in the stain.
- The method of the invention preferably comprises an aqueous washing process. Accordingly it is preferred that the method comprises the step of adding water to the composition to form an aqueous wash liquor
- Preferably the method comprises localised application of the composition to a stain or stained area of the fabric. The method may be pre-treatment method, and be followed by a subsequent aqueous washing step. Pre-treatment steps may take place without further addition of any water (beyond any contained in the composition). Alternatively or additionally, the pre-treatment process may comprise the step of soaking the substrate in an aqueous solution to which the treatment composition has been added.
- The second step of the method of the invention may be a 'main' wash and may be a manual washing process or a washing process in a washing machine. The second step may use any suitable detergent composition. Preferably this detergent composition comprises one or more surfactants and/or other functional ingredients, adjuncts etc. as described below.
- In the case of pre-treatment according to the invention, subsequent steps may not require further application of the arginine compound.
- Preferably the method of the invention is less than 90 minutes in duration, more preferably less than 60 minutes and most preferably less than 30 minutes. In pre-treatment embodiments, the pre-treatment step is preferably less than 5 minutes, and more preferably less than 2 minutes.
- The pre-treatment device may be by any suitable device such as roll-on applicator or tube, sprays, aerosols, pastes, a pump-operated dispenser or the like. The pre-treatment device may comprise a scrubbing member having brush, bristles, tufts, projections, embossments etc or any combination thereof to further aid application of the detergent composition to a substrate.
- Preferably the treatment composition is ambient-active. Accordingly, the temperature of the wash liquor step of aqueous washing process is therefore less than 40 °C and preferably less than 30 °C and more preferably less than 25 °C and more preferably less than or equal to 22 °C further more preferably 15°C or less at all times during the washing but excluding drying. Encouraging low temperature wash liquor is advantageous environmentally and financially.
- The treatment composition of the invention and/or any detergent composition used subsequently may comprise any of the following ingredients.
- Compositions may comprise enzymes. The enzymes are preferably present at 0.001 - 5%wt more preferably 0.01 - 3%.
- Enzymes may be from animal, vegetable, bacterial origin (derived from bacteria) or fungal origin (derived from fungus) however enzymes from bacterial origin are preferred. Chemically modified or protein engineered mutants are included. Genes encoding such enzymes can be transferred from one host to a preferred expression production host which may or may not be the same as the original host. As used herein the term "enzyme" includes enzyme variants (produced, for example, by recombinant techniques) are included. Examples of such enzyme variants are disclosed, e.g., in
EP 251,446 WO 91/00345 EP 525,610 WO 94/02618 - The one or more enzymes preferably comprise a protease. Preferred proteases are serine proteases or metallo proteases, preferably an alkaline microbial protease or a trypsin-like protease.
- Commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).
- The one or more enzymes preferably comprises an amylase. Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in
GB 1,296,839 WO 95/026397 WO 00/060060 - Commercially available amylases are Duramyl™, Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International IncCommercially available amylases include Stainzyme™ (Novozymes).
- The one or more enzymes preferably comprise a lipase and in such cases, the preferred lipases include first wash lipases which comprise a polypeptide having an amino acid sequence which has at least 90 percent sequence identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109 and compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid within 15 A of E1 or Q249 with a positively charged amino acid; and may further comprise:
- (I) a peptide addition at the C-terminal;
- (II) a peptide addition at the N-terminal;
- (III) the following limitations:
- i. comprises a negatively charged amino acid in position E210 of said wild-type lipase;
- ii. comprises a negatively charged amino acid in the region corresponding to positions 90-101 of said wild-type lipase; and
- iii. comprises a neutral or negatively charged amino acid at a position corresponding to N94 of said wild-type lipase; and/or
- iv. has a negative charge or neutral charge in the region corresponding to positions 90-101 of said wild-type lipase; and
- iv. mixtures thereof.
- These are available under the Lipex™ brand from Novozymes. A similar enzyme from Novozymes but believed to fall outside of the above definition has been disclosed by Novozymes under the name Lipoclean™ and this is also preferred.
- Other possible lipases include lipases from Humicola (synonym Thermomyces), e.g. from other H. lanuginosa (T. lanuginosus) strains or from H. insolens, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes, P. cepacia, P. stutzeri, P. fluorescens, Pseudomonas sp. strain SD 705 (
WO 95/06720 WO 96/27002 JP 64/744992 WO 91/16422 - Commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, and the Bacterial enzyme, Lipomax ® ex Genecor. This is a bacterially derived Lipase, of variant M21L of the lipase of Pseudomonas alcaligenes as described in
WO 94/25578 - The one or more enzymes preferably comprise a phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids. Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
- The one or more enzymes preferably comprise a cutinase. classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- The one or more enzymes preferably comprise a cellulase preferably including those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in
US 4,435,307 ,US 5,648,263 ,US 5,691,178 ,US 5,776,757 ,WO 89/09259 WO 96/029397 WO 98/012307 - The one or more enzymes preferably comprise a peroxidase/oxidase are especially of bacterial origin. Chemically modified or protein engineered mutants are included. An example of an oxidative bacterium is, but not limited to, are Aeromonas sp wherefrom oxidases can be sourced.
- The one or more enzymes preferably comprise a pectate lyase (also called polygalacturonate lyases): Examples of pectate lyases include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al. (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949). Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971) J. Bacteriol. 108:166-174), B. polymyxa (Nagel and Vaughn (1961) Arch. Biochem. Biophys. 93:344-352), B. stearothermophilus (Karbassi and Vaughn (1980) Can. J. Microbiol. 26:377-384), Bacillus sp. (Hasegawa and Nagel (1966) J. Food Sci. 31:838-845) and Bacillus sp. RK9 (Kelly and Fogarty (1978) Can. J. Microbiol. 24:1164-1172) have also been described. Any of the above, as well as divalent cation-independent and/or thermostable pectate lyases, may be used in practicing the invention. In preferred embodiments, the pectate lyase comprises the pectate lyase disclosed in Heffron et al., (1995) Mol. Plant-Microbe Interact. 8: 331-334 and Henrissat et al., (1995) Plant Physiol. 107: 963-976. Specifically contemplated pectatel lyases are disclosed in
WO 99/27083 WO 99/27084 US patent no. 6,284,524 (which document is hereby incorporated by reference). Specifically contemplated pectate lyase variants are disclosed inWO 02/006442 WO 02/006442 - The one or more enzymes preferably comprise a Mannanase: Examples of mannanases (EC 3.2.1.78) include mannanases of bacterial and fungal origin. In a specific embodiment the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (
WO 94/25576 WO 93/24622 JP-A-03047076 JP-A-63056289 JP-A-63036775 JP-A-08051975 WO 97/11164 WO 91/18974 WO 99/64619 WO 99/64619 - The enzyme and any perfume/fragrance or pro-fragrance present may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme and pro-fragrance and/or other segregation within the product. The enzymes may be provided as an enzyme system.
- The surfactant may be a synthetic surfactant or a biosurfactant which is mircrobially synthesized e.g. from bacteria, fungi or other microbe. The biosurfactant preferably comprises a microbially-derived biosurfactant. Preferably it comprises a glycolipid biosurfactant which may be a rhamnolipid or sophorolipid or trehalolipid or a mannosylerythritol lipid (MEL). Alternatively, the biosurfactant may advantageously comprise a cellobiose, peptide based biosurfactants, lipoproteins and lipopeptides e.g. surfactin, fatty acids e.g. corynomucolic acids (preferably with hydrocarbon chain C12-C14), phospholipids e.g. Phosphatidylethanolamine produced by Rhodococcus erythropolis grown on n-alkane resulted in the lowering of interfacial tension between water and hexadecane to less than 1 mN m-1 and CMC of 30 mg L-1 (Kretschner et al., 1982) and Spiculisporic acid; polymeric biosurfactants including emulsan, liposan, mannoprotein and polysaccharide-protein complexes.
- Preferably the biosurfactant comprises a rhamnolipid.
- The surfactant may be present by weight in the compositions at a level of from 3 to 85% by weight, preferably from 3 to 60% by weight, more preferably from 3 to 40% by weight, most preferably from 3 to 35% by weight.
- Preferably the anionic surfactant is present at a level of from 0.1 to 95% by weight, preferably from 1 to 50% by weight, more preferably from 1.5 to 25% by weight based on total weight of surfactants present.
- Preferably the surfactant is an anionic surfactant.
- Anionic surfactants are defined herein as amphiphilic molecules comprising one or more functional groups that exhibit a net anionic charge when in aqueous solution at the normal wash pH of between 6 and 11.
- Preferred anionic biosurfactants are rhamnolipds and lactonic forms of sophorolipids. Biosurfactants which are not expressed biologically in anionic form but have been modified to provide/improve anionic properties are included in the invention.
- Preferred synthetic anionic surfactants are the alkali metal salts of organic sulphur reaction products having in their molecular structure an alkyl radical containing from about 6 to 24 carbon atoms and a radical selected from the group consisting of sulphonic and sulphuric acid ester radicals.
- Although any anionic surfactant hereinafter described can be used, such as alkyl ether sulphates, soaps, fatty acid ester sulphonates, alkyl benzene sulphonates, sulphosuccinate esters, primary alkyl sulphates, olefin sulphonates, paraffin sulphonates and organic phosphate; preferred anionic surfactants are the alkali and alkaline earth metal salts of fatty acid carboxylates, fatty alcohol sulphates, preferably primary alkyl sulfates, more preferably they are ethoxylated, for example alkyl ether sulfates; and alkylbenzene sulfonates or mixtures thereof.
- Amphoteric surfactants and/or zwitterionic surfactants may be present in the compositions according to the invention. For amphoteric the pH of the wash liquor is preferably of between 6 and 10. Preferably an amphoteric or zwitterionic surfactant is present at a level of from 0.1 to 20% by weight, more preferably from 0.25 to 15% by weight, even more preferably from 0.5 to 10% by weight.
- Suitable zwitterionic surfactants are exemplified as those which can be broadly described as derivatives of aliphatic quaternary ammonium, sulfonium and phosphonium compounds with one long chain group having about 8 to about 18 carbon atoms and at least one water solubilizing radical selected from the group consisting of sulfate, sulfonate, carboxylate, phosphate or phosphonate. A general formula for these compounds is:
R1(R2)xY+R3Z-
wherein R1 contains an alkyl, alkenyl or hydroxyalkyl group with 8 to 18 carbon atoms, from 0 to 10 ethylene-oxy groups or from 0 to 2 glyceryl units; Y is a nitrogen, sulfur or phosphorous atom; R2 is an alkyl or hydroxyalkyl group with 1 to 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorous atom; R3 is an alkyl or hydroxyalkyl group with 1 to 5 carbon atoms and Z is a radical selected from the group consisting of sulfate, sulfonate, carboxylate, phosphate or phosphonate. - Preferred amphoteric surfactants are amine oxides, for example coco dimethyl amine oxide. Preferred zwitterionic surfactants are betaines, and especially amidobetaines. Preferred betaines are C8 to C18 alkyl amidoalkyl betaines, for example coco amido betaine. These may be included as co-surfactants, preferably present in an amount of from 0 to 10 wt %, more preferably 1 to 5 wt %, based on the weight of the total composition.
- Preferred amphoteric or zwitterionic surfactants for incorporation in the composition according to the present invention are betaine surfactants. Examples of these are mentioned in the following list.
The sulfatobetaines, such as 3-(dodecyldimethylammonium)-1-propane sulfate; and 2-(cocodimethylammonium)-1-ethane sulfate.
The sulfobetaines, such as: 3-(dodecyldimethyl-ammonium)-2-hydroxy-1-propane sulfonate; 3-(tetradecyl-dimethylammonium)-1-propane sulfonate; 3-(C12-C14 alkyl-amidopropyldimethylammonium)-2-hydroxy-1-propane sulfonate; and 3-(cocodimethylammonium)-1-propane sulfonate. - The carboxybetaines, such as (dodecyldimethylammonium) acetate (also known as lauryl betaine); (tetradecyldimethylammonium) acetate (also known as myristyl betaine); (cocodimethylammonium) acetate (also known as coconut betaine); (oleyldimethylammonium) acetate (also known as oleyl betaine); (dodecyloxymethyldimethylammonium) acetate; and (cocoamidopropyldimethylammonium) acetate (also known as cocoamido-propyl betaine or CAPB).
- The sulfoniumbetaines, such as: (dodecyldimethylsulfonium) acetate; and 3-(cocodimethyl-sulfonium)-1-propane sulfonate.
- The phosphoniumbetaines, such as 4-(trimethylphosphonium)-1-hexadecane sulfonate; 3-(dodecyldimethylphosphonium)-1-propanesulfonate; and 2-(dodecyldimethylphosphonium)-1-ethane sulfate.
- The compositions according to the present invention preferably comprise carboxybetaines or sulphobetaines as amphoteric or zwitterionic surfactants, or mixtures thereof. Especially preferred is lauryl betaine.
- Further optional ingredients include additional surfactants e.g non ionic and cationic surfactants, viscosity modifiers, foam boosting agents, preservatives (e.g. bactericides), pH buffering agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents and ironing aids. The compositions may further comprise, colorants, pearlisers and/or opacifiers, and shading dye. Fluorescent Agents
- The invention will now be further described with reference to the following nonlimiting examples.
- All values throughout are wt%/.
-
Ingredient % by weight Non-ionic surfactant Neodol 25-7 6.2 Anionic surfactant LAS acid 11.8 Anionic surfactant SLES 3EO 6.5 Lauric Fatty Acid P5908 5.2 Glycerol 5.0 Monopropylene Glycol 9.0 Citric acid 3.9 Minors 2.0 Water balance to 100 - Wherein:
Neodol 25-7 ex.Shell = C12-C15 alcohol 7-ethoxylate
LAS acid = C10-C14 alkyl benzene sulphonic acid;
SLES = C12-C13 alcohol 3-ethoxylate sulphate, Na salt: = sodium lauryl ether sulphate (with on average 3 ethylene oxide groups); - In this example, detergent formulations according to the invention were tested to determine their ability to treat i.e. remove beef fat stains from cotton fabric.
-
- CS46B (Beef fat, coloured) stained cloth (Testfabrics Inc.) was hole punched into discs and transferred to 300 µl 96 well plates.
- Composition A
- DL-Arginine (Sigma Cat No. 11020, EC Number: 230-571-3)
-
- The stained cloth was pre-rinsed (before adding to the well plates) to remove any residual free stain:
- 200 µl of distilled water was added to each well
- Plates shaken at 900 rpm for 10 mins
- water removed
- Add washing mixtures as follows:
Test Mixture according to the invention:Composition A 5 mg/L 100 µl Arginine dilution* 20 µl Distilled water 60 µl *Arginine diluted to the following mg/ml concentrations in distilled water: 0.16, 0.32, 0.64, 1.28, 2.56, 5.12 and 10.24.
Control Mixture:Compostion A 5 mg/L 100 µl Distilled water 100 µl - Reactions were incubated at 22 degrees for 1 hour with shaking at 900 rpm.
- The cloth was rinsed by adding 200 µl of distilled water to each well followed by shaking at 900 rpm for 5 minutes. The liquor was then removed. This procedure was repeated four consecutive times.
- The cloth was dried for 3 hours at 40 degrees
- After drying, the stain plates were digitally scanned and their deltaE measured. This value is used to express cleaning effect and is defined as the colour difference between a white cloth and that of the stained cloth after being washed. Mathematically, the definition of deltaE is:
-
- The higher the SRI the cleaner the cloth, SRI = 100 (white). "Stain removal" is measured in terms of Remission units or a Remission index. For a visible (by the human eye) effect, effective stain removal is preferably represented by remission equal to or greater than 2 Remission units and more preferably greater or equal to 5 units.
- Table 1: End-point stain removal assays using CS46B stained cloth treated with a range of arginine concentrations in MTS24 formulation. Four replicates were performed in parallel on the same 96 well plate. The plates were scanned and the SRI values calculated
Rep 1Rep 2 Rep 3 Rep 4 Average Arginine (mg/ml) SRI SRI SRI SRI SRI STDEV 0.0 65.6 64.2 66.1 64.0 65.0 1.0 0.16 72.5 72.0 70.0 72.5 71.7 1.2 0.32 74.8 73.3 74.2 74.8 74.3 0.7 0.64 75.9 75.3 72.7 74.9 74.7 1.4 1.28 77.1 76.2 76.3 76.3 76.5 0.4 2.56 78.1 76.4 77.5 78.8 77.7 1.0 5.12 80.2 79.6 81.8 81.6 80.8 1.0 10.24 81.6 81.9 82.7 81.8 82.0 0.5 - The results of table 1 are shown in
figure 1 which is a Graph displaying the average SRI for replicates 1-4 from Table 1 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - These results demonstrate that arginine removes the CS46B stain in dose dependent manner
- The tergotometer (SR Lab Instruments) allows a scaled reproduction of larger agitator type washers. This device was used to assess the cleaning activity of arginine on different fat-based stained cloth in Composition A.
- Stained Cloth:
- CS46B (Beef fat, coloured) (Testfabrics Inc.)
- Hamburger Grease & Violet Dye (Warwick Equest)
- Lard & Violet Dye (Warwick Equest)
- Artificial Sebum & Carbon Black Dye (in house)
- Composition A (+) surfactants (-) enzymes
- DL-Arginine (Sigma Cat No. 11020, EC Number: 230-571-3)
- Two 10 X 10 cm pieces of the same stained cloth were added to each Tergotometer pot. Two pieces of 10 X 10 cm unstained, white cloth was also added to each Tergotometer pot to simulate a typical washing load. Arginine was applied using two different approaches: (i) by including it in the formulation containing wash mixture or (ii) pre-treating the cloth with a solution of arginine before washing.
- Stained cloths were transferred into 1 litre Tergotometer pots containing:
100 mg/ml Arginine (pH 8.0) 50 ml (10 mg/ml), 5 ml (1 mg/ml) Compostion A 0.57 ml French Hardness (50X) 10 ml - The volume was made up to 500 ml with demineralised water.
- Wash conditions: 1 hour at 22 C
- Stained cloths were pre-treated by soaking in solutions of 1 mg/ml or 10 mg/ml arginine in water (pH 8.0) for 5 mins before being transferred to Tergotometer pots containing:
Composition A 0.57 ml French Hardness (50X) 10 ml - The volume was made up to 500 ml with demineralised water.
- Wash conditions: 1 hour at 22 C
- Stained cloths were transferred into 1 litre Tergotometerpots containing:
Composition A 0.57 ml French Hardness (50X) 10 ml - The volume was made up to 500 ml with demineralised water.
- Wash conditions: 1 hour at 22 C
- After washing the cloths were rinsed for 5 X 2 mins in demineralised water and air dried over night.
- When fully dry, the cloths were digitally scanned, their delta E measured and SRI calculated as described previously.
-
- The higher the SRI the cleaner the cloth, SRI = 100 (white).
- Table 2: Tergotometerassay using CS46B stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 72.56 71.82 70.61 68.99 71.00 1.56 1 mg/ml Arginine 86.32 85.63 85.08 85.97 85.75 89.30 10 mg/ml Arginine 88.92 89.50 89.06 89.73 89.30 0.38 - The results of table 2 are shown in
Figure 2 which is a Bar chart displaying the average SRI for replicates 1-4 from Table 2 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 3: Tergotometerassay using CS46B stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 68.99 70.61 71.82 72.56 71.00 1.56 1 mg/ml Arginine 79.89 80.10 80.12 80.48 80.15 0.25 10 mg/ml Arginine 82.93 82.38 85.36 85.12 83.95 1.51 - Results of Table 3 are shown in
Figure 3 : a Bar chart displaying the average SRI for replicates 1-4 from Table 3 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 4: Tergotometerassay using Lard & Violet Dye stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 47.64 46.13 45.05 46.57 46.35 1.07 1 mg/ml Arginine 53.36 51.01 51.29 52.52 52.05 1.09 10 mg/ml Arginine 57.04 55.22 55.84 54.21 55.58 1.18 - Results of table 4 are shown in
Figure 4 : a Bar chart displaying the average SRI for replicates 1-4 from Table 4 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 5: Tergotometerassay using Lard & Violet Dye stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 47.64 46.13 45.05 46.57 46.35 1.07 1 mg/ml Arginine 55.22 51.50 52.23 53.22 53.04 1.62 10 mg/ml Arginine 58.83 57.98 56.74 57.23 57.70 0.91 - The results of table 5 are shown in
Figure 5 : a Bar chart displaying the average SRI for replicates 1-4 from Table 5 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 6: Tergotometerassay using Hamburger Grease & Violet Dye stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 52.27 48.89 51.46 52.38 51.25 1.62 1 mg/ml Arginine 55.73 58.45 52.90 54.31 55.35 2.37 10 mg/ml Arginine 63.48 57.45 60.10 58.56 59.90 2.62 - The results of table 6 are shown in
Figure 6 : a Bar chart displaying the average SRI for replicates 1-4 from Table 6 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 7: Tergotometerassay using Hamburger Grease & Violet Dye stained cloth pre-treated with 1 mg/ml and 10 mg/ml arginine and then washed in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergotometerpot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 52.27 48.89 51.46 52.38 51.25 1.62 1 mg/ml Arginine 56.90 55.56 55.83 57.61 56.47 0.95 10 mg/ml Arginine 58.83 57.99 59.84 56.97 58.41 1.22 - The results of table 7 are shown in
Figure 7 : a Bar chart displaying the average SRI for replicates 1-4 from Table 7 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - Table 8: Tergo-O-tometer assay using Artificial Sebum stained cloth washed with 1 mg/ml and 10 mg/ml arginine in MTS24 formulation. 4 replicates were performed in parallel (2 X replicate per Tergo-O-tometer pot).
SRI(1) SRI(2) SRI(3) SRI(4) Average SRI STDEV (-) Arginine 66.83 64.97 63.22 65.35 65.09 1.49 1 mg/ml Arginine 85.76 82.26 87.81 83.84 84.92 2.40 10 mg/ml Arginine 91.43 86.41 87.89 85.95 87.92 2.48 - The results of table 8 are shown in
Figure 8 : a Bar chart displaying the average SRI for replicates 1-4 from Table 8 vs arginine concentration. Error bars display standard deviation between the four replicates for each concentration. - The inclusion of arginine improves removal of the fat-based stains tested. Pre-treatment of the stained cloth with arginine prior to washing in a surfactant containing composition A also improves stain removal.
Claims (8)
- A method for removing a stain comprising fat/oil from a stained fabric, comprising the step of applying to the stain, a fabric stain removal composition comprising an arginine compound and a surfactant.
- A method according to claim 1, wherein the surfactant comprises an anionic surfactant.
- A method according to claim 2, where the surfactant comprises a rhamnolipid.
- A method according to any preceding claim, wherein said fabric stain removal composition is ambient-active.
- A method according to any preceding claim comprising the step of adding water to the fabric stain removal composition to form an aqueous wash liquor.
- A method according to any of claims 1 to 4 comprising localised application to a stain comprising fat/oil on a stained fabric, of the fabric stain removal composition as defined in claims 1-4.
- A method according to any preceding claim wherein the step of applying the fabric stain removal composition is a pre-treatment step using a pre-treatment device, wherein the pre-treatment device comprises (i) a storage chamber storing the fabric stain removal composition as defined in any of claims 1-4 and (ii) a dispenser for locally applying said fabric stain removal composition to a stain on a fabric.
- Use of an arginine compound in the removal of an oil/fat stain from a stained fabric at ambient temperatures, preferably in combination with surfactant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13803053.1A EP2935549B1 (en) | 2012-12-20 | 2013-12-13 | Method for removing fat and/or oil stains |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12198568 | 2012-12-20 | ||
PCT/EP2013/076514 WO2014095617A1 (en) | 2012-12-20 | 2013-12-13 | Stain removal compositions |
EP13803053.1A EP2935549B1 (en) | 2012-12-20 | 2013-12-13 | Method for removing fat and/or oil stains |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2935549A1 EP2935549A1 (en) | 2015-10-28 |
EP2935549B1 true EP2935549B1 (en) | 2018-09-26 |
Family
ID=47519903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13803053.1A Active EP2935549B1 (en) | 2012-12-20 | 2013-12-13 | Method for removing fat and/or oil stains |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2935549B1 (en) |
CN (1) | CN104903433A (en) |
BR (1) | BR112015013067B1 (en) |
WO (1) | WO2014095617A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014221889B4 (en) * | 2014-10-28 | 2023-12-21 | Henkel Ag & Co. Kgaa | Detergents with mannosylerythritol lipid, enhancing the cleaning performance of detergents through mannosylerythritol lipid, and washing processes using mannosylerythritol lipid |
MX2018007870A (en) | 2015-12-31 | 2018-11-09 | Colgate Palmolive Co | Cleansing compositions. |
CN108219677A (en) * | 2017-12-06 | 2018-06-29 | 王建东 | A kind of tableware dryer and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1942236A1 (en) * | 1969-08-20 | 1971-03-04 | Henkel & Cie Gmbh | Enzymatic washing agents and detergents |
JPS5014651B1 (en) * | 1969-12-30 | 1975-05-29 | ||
CA2049728A1 (en) * | 1990-08-24 | 1992-02-25 | Kenji Kitamura | Washing composition capable of preventing and ameliorating skin irritation |
DE4324396A1 (en) * | 1993-07-21 | 1995-01-26 | Henkel Kgaa | Detergents with high wettability |
MXPA02003138A (en) * | 1999-09-22 | 2002-09-30 | Procter & Gamble | A handheld liquid container. |
WO2004061071A1 (en) * | 2002-12-27 | 2004-07-22 | Kao Corporation | Detergent composition |
MX2010002897A (en) * | 2007-09-14 | 2010-04-01 | Procter & Gamble | Compositions for treating fabric. |
CN101878290B (en) * | 2007-11-28 | 2013-11-13 | 花王株式会社 | Biofilm-removing agent |
EP2305785A1 (en) * | 2009-10-02 | 2011-04-06 | Unilever N.V. | Use of a carboxylic or amino compound as cleaning aid for hard surfaces and method of cleaning such hard surfaces |
-
2013
- 2013-12-13 WO PCT/EP2013/076514 patent/WO2014095617A1/en active Application Filing
- 2013-12-13 CN CN201380067688.9A patent/CN104903433A/en active Pending
- 2013-12-13 BR BR112015013067-4A patent/BR112015013067B1/en active IP Right Grant
- 2013-12-13 EP EP13803053.1A patent/EP2935549B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
BR112015013067A2 (en) | 2017-07-11 |
BR112015013067B1 (en) | 2021-11-30 |
EP2935549A1 (en) | 2015-10-28 |
WO2014095617A1 (en) | 2014-06-26 |
CN104903433A (en) | 2015-09-09 |
BR112015013067A8 (en) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3341459B1 (en) | Detergent compositions with lipase and biosurfactant | |
CN101501183B (en) | Bacteria cultures and compositions comprising bacteria cultures | |
EP2596088B1 (en) | Detergent compositions comprising biosurfactant and enzyme | |
EP2756063B1 (en) | Detergent compositions comprising surfactant and enzyme | |
EP2935549B1 (en) | Method for removing fat and/or oil stains | |
EP3344765B1 (en) | Liquid detergency composition comprising lipase and protease | |
EP3158044B1 (en) | Enzyme treatment composition | |
CN105887421B (en) | The system of sequential enzyme delivery | |
CN104884598B (en) | Enzyme-treated composition | |
AU2002231607B2 (en) | Reduction of malodour from laundry | |
US6794350B2 (en) | Reduction of malodor from laundry | |
EP3158046B1 (en) | Stain treatment compositions | |
AU2002231607A1 (en) | Reduction of malodour from laundry | |
WO2015193204A1 (en) | Enzyme treatment composition | |
CA2438510C (en) | Reduction of malodor from laundry | |
EP3341460A1 (en) | Liquid detergency composition comprising protease and non-protease enzyme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150528 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17Q | First examination report despatched |
Effective date: 20170906 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1046058 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013044250 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181227 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1046058 Country of ref document: AT Kind code of ref document: T Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013044250 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181213 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
26N | No opposition filed |
Effective date: 20190627 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181213 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180926 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013044250 Country of ref document: DE Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220127 AND 20220202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231211 Year of fee payment: 11 Ref country code: FR Payment date: 20231221 Year of fee payment: 11 Ref country code: DE Payment date: 20231214 Year of fee payment: 11 |