EP2934924A1 - Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts - Google Patents

Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts

Info

Publication number
EP2934924A1
EP2934924A1 EP13785362.8A EP13785362A EP2934924A1 EP 2934924 A1 EP2934924 A1 EP 2934924A1 EP 13785362 A EP13785362 A EP 13785362A EP 2934924 A1 EP2934924 A1 EP 2934924A1
Authority
EP
European Patent Office
Prior art keywords
motor vehicle
roll angle
current
sensor
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13785362.8A
Other languages
English (en)
French (fr)
Inventor
Dieter Ammon
Claus-Michael Hainbuch
Magnus Rau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2934924A1 publication Critical patent/EP2934924A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/52Pressure in tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9123Active Body Control [ABC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll

Definitions

  • the invention relates to a method for combined determination of a current roll angle of a motor vehicle and a current road-bank of a curvy road section traveled by the motor vehicle and a device for combined determination of this instantaneous roll angle and this current road-bank.
  • the invention further relates to a motor vehicle with such a device.
  • ABS Active Body Control
  • Suspension systems which also allow the possibility of selective adjustment of pitch and roll angles in addition to a conventional suspension and damping function.
  • a roll is called thereby a rotary motion of a motor vehicle about its longitudinal axis.
  • Such a rolling motion can result when driving through a curved roadway section through the motor vehicle when the motor vehicle tilts outward due to the centrifugal forces occurring at a certain roll angle.
  • the thereby adjusting roll angle depends on a lateral acceleration of the motor vehicle whose center of gravity, the
  • ABS Active Body Control
  • the chassis with suitable actuators, for example in the manner of height-adjustable struts, be provided, which connect the vehicle frame height adjustable each with the wheels of the motor vehicle, so that a certain roll angle of the motor vehicle can be adjusted.
  • a curved roadway section may be inclined outwardly with respect to its curve curvature, for example, for dewatering rainwater striking the road surface or the like. to facilitate.
  • the roadway may also be inclined inwards in the direction of the curve, also in the manner of a so-called curve elevation, in order to make it easier for the motor vehicle to drive on the curved roadway section. This means, however, that in each case the roadway bank of the roadway relative to the horizontal reference plane in the control of a chassis of the
  • Motor vehicle must be considered to set an optimal roll angle of the motor vehicle.
  • DE 10 2010 046 317 A1 describes a method for adjusting the spatial position of a roll axis about which the motor vehicle is rotatable about a predetermined roll angle.
  • a spatial desired position of the position of the roll axis is first determined in a first step and then in a second Step determines a lateral acceleration of the motor vehicle.
  • a desired bank of the motor vehicle and a desired transverse storage of the motor vehicle is determined as a function of the lateral acceleration, so that when setting the desired bank and the desired transverse storage a shift of
  • Roll axis is effected in the desired position.
  • at least one actuator of an active chassis device of the motor vehicle is adjusted accordingly.
  • at least one actuator for influencing the transverse movement of the motor vehicle is adjusted in such a way that the motor vehicle additionally assumes the desired transverse deposit determined in the preceding step.
  • Transverse acceleration can be determined for example with the aid of a camera system mounted on the motor vehicle, which is the curved to be traveled
  • Lane section in the apron of the motor vehicle optically detected and analyzed to determine the expected lateral acceleration.
  • A1 describes a method for determining the roll angle of a motor vehicle with at least one device for determining the yaw rate or a variable correlated therewith and a device for determining the yaw rate
  • the roll angle is determined using the yaw rate or a magnitude correlated therewith and the specific roll stiffness of the vehicle.
  • Wankwinkels a motor vehicle and a current road-bank of a motor vehicle driven on the curved road section indicate. It is also an object of the present invention to provide an apparatus for determining such a current road bank.
  • the invention is based on the general idea when driving on a
  • a horizontal reference plane means a plane perpendicular to a direction vector of the gravitational acceleration; Relative to this reference plane, the roadway section traveled by the motor vehicle can be inclined in the transverse direction.
  • the inventive method can be carried out in a simple manner in a motor vehicle, as determined by the built-in motor vehicle chassis data and lateral dynamics data for a variety of purposes by default and transmitted, for example, to a built-in motor vehicle control unit, the control unit based on these data different
  • Vehicle components in particular the chassis, the motor vehicle controls.
  • the method according to the invention can be carried out in real time in a motor vehicle, in particular in a control unit (ECU) or the like installed in the motor vehicle, so that these data are based on the instantaneous road bank angle determined by the method according to the invention or the instantaneous vehicle roll angle optionally be taken into account in the control of the chassis of the motor vehicle or other vehicle components.
  • ECU control unit
  • the chassis data includes a current tire roll angle of the tires of the motor vehicle and / or a current one
  • Chassis roll angle of the chassis of the motor vehicle can be determined by means of a suitable sensor installed on the spring struts of the chassis. Alternatively, however, it can also be thought that the determination of the chassis roll angle takes place without such a sensor, for example, if by means of the control unit, the struts of the chassis for
  • the set chassis roll angle can also be read directly from the control unit, which controls the struts of the chassis.
  • the tire roll angle of the tires of the motor vehicle which in particular a wheel load change between the left and right tires of the motor vehicle and Depending on a tire pressure-dependent stiffness of the tire and therefore can be determined by means of suitable, built on the tires of the motor vehicle (tire pressure) sensors.
  • the lateral dynamics data comprise a momentary lateral acceleration of the motor vehicle.
  • Transverse acceleration of the motor vehicle can be determined by means of an acceleration sensor installed in the motor vehicle.
  • the method according to the invention may comprise two successive process steps S1 and S2.
  • the invention also relates to an apparatus for combined determination of a current vehicle roll angle of a motor vehicle and a current road bank of a curvilinear road section traveled by the motor vehicle.
  • the device according to the invention comprises a control unit which can be brought into communication with a transverse acceleration sensor, a yaw rate sensor and a speed sensor of the motor vehicle for the transmission of a respective measured instantaneous lateral acceleration or instantaneous speed to the control unit.
  • the control unit according to the invention determines from chassis data and lateral dynamics data, which the instantaneous lateral acceleration or instantaneous speed of the motor vehicle, using the method according to the invention, the instantaneous vehicle roll angle of the motor vehicle and the current road-bank of the curvy road section traveled by the motor vehicle.
  • the invention also relates to a motor vehicle with a previously explained
  • Yaw rate or a current speed of the motor vehicle are in communication.
  • Fig. 1 is a rough schematic flow diagram of the invention
  • Fig. 2 shows a motor vehicle with a device according to the invention for adjusting the
  • Curve slope of a motor vehicle wherein the figure 2a shows a plan view and Figure 2b shows a rear view of the motor vehicle.
  • 1 shows a flowchart of the method according to the invention in a roughly schematic manner, according to which, in a first step S1, an instantaneous roll angle ⁇ ⁇ of the motor vehicle 1 relative to a horizontal reference plane 21 (see FIG. 2b) and in a subsequent step S2 the instantaneous road-surface bank angle ⁇ ⁇ of the curved roadway section 20 currently being traveled by the motor vehicle 1 is determined relative to the reference plane 21.
  • the horizontal reference plane 21 is over the direction vector g of
  • Motor vehicle 1 built lateral acceleration sensor 3 can be determined.
  • ⁇ p A (1 / g) (a y sensor - v x d / dt ⁇ )
  • d / dt ⁇ is the yaw rate of the motor vehicle 1, which can be determined by means of a yaw rate sensor 5.
  • Transverse acceleration a y sensor can be filtered by means of a suitable low-pass filter to filter out unwanted high-frequency interference (for example, due to bumps in the roadway section 20 just traveled).
  • the acceleration sensor 3 in the motor vehicle with respect to a vehicle longitudinal direction L of the motor vehicle as far as possible on the front of the vehicle is arranged (see Fig. 2a).
  • step S2 based on the roll angle ⁇ ⁇ calculated in step S1, the relationship is now determined
  • ⁇ PFB ⁇ PA - w - ⁇ ⁇ calculate the required road bank angle ⁇ p FB .
  • w is a momentary chassis roll angle set in the chassis of the motor vehicle and ⁇ p R is a tire roll angle of the tires 13, 14 of the motor vehicle.
  • ⁇ p R is a tire roll angle of the tires 13, 14 of the motor vehicle.
  • q> R 0.
  • the instantaneous chassis roll angle w can be determined by means of suitable sensors 2.
  • the tire roll angle ⁇ ⁇ can also be determined by means of suitable sensors 4.
  • a height difference Ay
  • This height difference Ay may depend on a different wheel load of the left and right tires 13, 14 of the motor vehicle 1 and a different, tire pressure-dependent stiffness of the left and right tires 13, 14.
  • the sensors 4 can therefore tire pressure sensors for measuring the individual
  • Tire pressure in the tires 13, 14 include.
  • FIG. 2a shows motor vehicle 1 in a plan view
  • FIG. 2b in a rear view.
  • the motor vehicle 1 comprises a control unit 8 and an acceleration sensor 3, a yaw rate sensor 5, and a speed sensor 6, which in each case with the
  • Control unit 8 are in communication.
  • the motor vehicle 10 comprises a chassis device which can be controlled by the control device 8 and which can be designed in the manner of an electro-hydraulically active chassis.
  • the chassis device comprises four actuators 11, 12 designed as height-adjustable struts, wherein each actuator 13, 14 of the motor vehicle 10 is assigned an actuator 11, 12.
  • a certain roll angle ⁇ ⁇ can be adjusted to the motor vehicle 10.
  • an air-spring-based chassis with a closed pressure supply.
  • the air is pumped in a closed circuit of an air reservoir in the air spring and vice versa, which is a very fast retraction and extension of Suspension struts for setting the desired curve inclination in the chassis of the motor vehicle allows.
  • a hydraulically adjustable undercarriage known as "ACTIVE CURVE SYSTEM” can be used, which operates with a belt-driven hydraulic pump and an oil tank in the engine compartment as well as a valve block and active stabilizers Has front and rear axle.
  • ACTIVE CURVE SYSTEM Such a hydraulic suspension device can also be used to set the desired curve inclination in the motor vehicle.
  • Acceleration sensor 3 the current sensor lateral acceleration a y , the
  • Speed sensor 6 the current speed v x and the yaw rate sensor 5 of the motor vehicle 1, the current yaw rate d / dt ⁇ to the control unit 8.
  • the control unit 8 a control unit 9 (ECU) and one with the
  • Control unit 9 in communication connection storage unit 10 include.
  • the control unit 9 and the memory unit 10 may be formed in the manner of a conventional microcontroller, wherein the person skilled in numerous technical implementation possibilities are known.
  • control unit 8 the inventive method is performed using the above-mentioned input parameters (instantaneous speed of the motor vehicle v x , yaw rate d / dt ⁇ , current sensor lateral acceleration a y sensor ).
  • the control unit 8 according to step S1 of
  • Motor vehicle 1 calculated. From the instantaneous vehicle roll angle ⁇ ⁇ , according to step S2, the current road-bank angle (p F E) of the curved roadway section 20 currently being traveled is calculated.
  • the device 7 can have suitable chassis sensors 2, which have the respective instantaneous height X
  • the tire roll angle ⁇ p R can also be determined by means of the (tire pressure) sensors 4.
  • Input parameters an optimal target roll angle w So u to be calculated in the spring struts 11, 12 of the chassis of the motor vehicle 1 to be set when driving on the curved lane section 20 on the occupants of the
  • the calculation of the desired roll angle w So n initially takes place independently of the current roadway cem slope cp FB .
  • the calculation of the desired roll angle w S0 ii can be carried out, for example, by the control unit 9 of the control unit 8.
  • the height-adjustable struts 11, 12 can be controlled by the control unit 8, so that the desired desired roll angle w So n in the chassis of the motor vehicle 1 sets. Since in such a simplified calculation of the desired roll angle w S oii the current road-bank angle cp FB is disregarded, it makes sense, this means of the invention

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum kombinierten Bestimmen eines momentanen Fahrzeug-Wankwinkels (φ Α) eines Kraftfahrzeugs und einer momentanen Fahrbahn-Querneigung (φ ) eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts (20), gemäß welchem die momentane Fahrbahn-Querneigung (φ ) und der momentane Fahrzeug-Wankwinkel aus Fahrwerk-Daten und Querdynamik-Daten des Kraftfahrzeugs (1) bestimmt werden.

Description

Verfahren zum kombinierten Bestimmen eines momentanen Wankwinkels eines Kraftfahrzeugs und einer momentanen Fahrbahn-Querneigung eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts
Die Erfindung betrifft ein Verfahren zum kombinierten Bestimmen eines momentanen Wankwinkels eines Kraftfahrzeugs und einer momentanen Fahrbahn-Querneigung eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts sowie eine Vorrichtung zum kombinierten Bestimmen dieses momentanen Wankwinkels und dieser momentanen Fahrbahn-Querneigung. Die Erfindung betrifft ferner ein Kraftfahrzeug mit einer solchen Vorrichtung.
Unter dem Begriff„Active Body Control (ABC)" sind elektro-hydraulisch aktive
Fahrwerkssysteme bekannt, welche neben einer herkömmlichen Federungs- und Dämpfungsfunktion auch die Möglichkeit des gezielten Einstellens von Nick- und Wankwinkeln erlauben. Als Wanken bezeichnet man dabei eine Drehbewegung eines Kraftfahrzeugs um seine Längsachse. Eine solche Wankbewegung kann sich beim Befahren eines kurvenförmigen Fahrbahnabschnitts durch das Kraftfahrzeug ergeben, wenn sich das Kraftfahrzeug aufgrund der auftretenden Fliehkräfte um einen bestimmten Wankwinkel nach außen neigt. Der sich dabei einstellende Wankwinkel hängt von einer Querbeschleunigung des Kraftfahrzeugs, dessen Schwerpunkthöhe, dem
Fahrwerksaufbau des Kraftfahrzeugs sowie von dessen Geschwindigkeit ab.
Die beim Befahren des kurvenförmigen Fahrbahnabschnitts auftretenden
Zentrifugalkräfte werden von Insassen des Kraftfahrzeugs häufig als unangenehm empfunden und können daher zu einer erheblichen Reduzierung des Fahrkomforts führen. Eine Möglichkeit, die Komfort-mindernde Wirkung von solchen unerwünschten Querkräften auf die Insassen des Kraftfahrzeugs zu reduzieren, besteht darin, in dem Kraftfahrzeug mittels„Active Body Control (ABC)" eine Neigetechnik zu realisieren, wie sie schon seit geraumer Zeit bei Schienenfahrzeugen zum Einsatz kommt. Durch Verwendung einer derartigen Neigetechnik ist es möglich, dass sich das Kraft- bzw. Schienenfahrzeug beim Befahren eines kurvenförmigen Fahrbahn- bzw.
Schienenabschnitts nicht fliehkraftbedingt nach außen, sondern durch entsprechende Ansteuerung eines Fahrwerks des Kraftfahrzeugs in die entgegengesetzte Richtung, also nach innen, neigt. Hierzu kann das Fahrwerk mit geeigneten Aktoren, beispielsweise in der Art von höhenverstellbaren Federbeinen, versehen sein, welche den Fahrzeugrahmen jeweils mit den Rädern des Kraftfahrzeugs höhenverstellbar verbinden, so dass ein bestimmter Wankwinkel des Kraftfahrzeugs eingestellt werden kann.
Da die beim Befahren des kurvenförmigen Fahrbahnabschnitts auftretenden Fliehkräfte von verschiedenen Faktoren wie z.B. einer Fahrbahnkrümmung des Fahrbahnabschnitts oder der momentanen Geschwindigkeit abhängen, muss auch der im Sinne einer Neigetechnik an dem Fahrwerk des Kraftfahrzeugs einzustellende Wankwinkel in Abhängigkeit von diesen Parametern bestimmt werden, um bei den Insassen des Kraftfahrzeugs einen möglichst hohen Fahrtkomfort sicherzustellen. Um einen maximalen Fahrkomfort zu erzielen, kann es erforderlich sein, bei der Einstellung eines bestimmten Wankwinkels im Kraftfahrzeug auch eine momentane Fahrbahn-Querneigung des von dem Kraftfahrzeug gerade befahrenen kurvenförmigen Fahrbahnabschnitts zu berücksichtigen. Denn häufig ist die von dem Kraftfahrzeug befahrene Fahrbahn in ihrer Querrichtung bezüglich eines als Referenz dienenden Richtungsvektors der Schwerkraft, welcher eine horizontale Ebene der Erdoberfläche definiert, nicht horizontal ausgerichtet, sondern relativ zu dieser "horizontalen Referenz-Ebene" geneigt. Insbesondere kann ein gekrümmter Fahrbahn-Abschnitt bezüglich seiner Kurvenkrümmung nach außen geneigt sein, beispielsweise um ein Entwässern von auf die Fahrbahnoberfläche treffendem Regenwasser o.ä. zu erleichtern. Umgekehrt kann die Fahrbahn auch Art einer sogenannten Kurvenüberhöhung in der Kurvenrichtung nach innen geneigt sein, um dem Kraftfahrzeug das Befahren des kurvenförmigen Fahrbahnabschnitts zu erleichtern. Dies bedeutet jedoch, dass in jedem Fall die Fahrbahn-Querneigung der Fahrbahn relativ zu der horizontalen Referenz- Ebene bei der Ansteuerung eines Fahrwerks des
Kraftfahrzeugs zur Einstellung eines optimalen Wankwinkels des Kraftfahrzeugs berücksichtigt werden muss.
Die DE 10 2010 046 317 A1 beschreibt ein Verfahren zum Einstellen der räumlichen Lage einer Wankachse, um welche das Kraftfahrzeug um einen vorbestimmten Wankwinkel drehbar ist. Gemäß dem Verfahren wird zunächst in einem ersten Schritt eine räumliche Soll-Lage der Position der Wankachse festgelegt und anschließend in einem zweiten Schritt eine Querbeschleunigung des Kraftfahrzeugs bestimmt. In einem dritten Schritt wird schließlich eine Soll-Querneigung des Kraftfahrzeugs und eine Soll-Querablage des Kraftfahrzeugs in Abhängigkeit von der Querbeschleunigung ermittelt, so dass bei Einstellen der Soll-Querneigung und der Soll-Querablage eine Verlagerung der
Wankachse in die Soll-Lage bewirkt wird. Um sicherzustellen, dass das Kraftfahrzeug die im vorangehenden Schritt ermittelte Soll-Querneigung einnimmt, wird wenigstens ein Aktuator einer aktiven Fahrwerks-Vorrichtung des Kraftfahrzeugs entsprechend eingestellt. Zusätzlich wird wenigstens ein Aktuator zum Beeinflussen der Querbewegung des Kraftfahrzeugs derart eingestellt, dass das Kraftfahrzeug zusätzlich auch die im vorangehenden Schritt ermittelte Soll-Querablage einnimmt. Die zu erwartende
Querbeschleunigung kann beispielsweise mit Hilfe eines am Kraftfahrzeug angebrachten Kamerasystems ermittelt werden, welches den zu befahrenen kurvenförmigen
Fahrbahnabschnitt im Vorfeld des Kraftfahrzeugs optisch erfasst und zur Bestimmung der zu erwartenden Querbeschleunigung analysiert.
Die DE 10 2006 018 978 A1 beschreibt ein Verfahren zur Bestimmung des Wankwinkels eines Kraftfahrzeugs mit zumindest einer Vorrichtung zum Bestimmen der Gierrate oder einer damit korrelierten Größe sowie einer Vorrichtung zum Bestimmen der
Fahrzeuggeschwindigkeit und einem gegebenenfalls nach vorne gerichteten
Kamerasystem. Der Wankwinkel wird unter Verwendung der Gierrate oder einer damit korrelierten Größe und der spezifischen Wank-Federsteifigkeit des Fahrzeugs bestimmt.
Es ist eine Aufgabe der vorliegenden Erfindung, eine verbesserte Ausführungsform für ein Verfahren zum kombinierten Bestimmen eines momentanen
Wankwinkels eines Kraftfahrzeugs und einer momentanen Fahrbahn-Querneigung eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts anzugeben. Es ist ebenso eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Bestimmen einer solchen momentanen Fahrbahn-Querneigung anzugeben.
Oben genannte Aufgabe wird gelöst durch den Gegenstand der unabhängigen
Ansprüche. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen
Ansprüche.
Die Erfindung beruht auf dem allgemeinen Gedanken, beim Befahren eines
kurvenförmigen Fahrbahn-Abschnitts sowohl den gesamten momentanen Fahrzeug- Wankwinkel des Kraftfahrzeugs relativ zu einer horizontalen Referenz-Ebene als auch eine momentane Fahrbahn-Querneigung des von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts relativ zur horizontalen Referenz-Ebene aus
Fahrwerk-Daten und Querdynamik-Daten des den Fahrbahn-Abschnitt befahrenen Kraftfahrzeugs zu bestimmen. Mit horizontaler Referenz-Ebene ist dabei, wie bereits erläutert, eine senkrecht zu einem Richtungsvektor der Erdbeschleunigung verlaufende Ebene gemeint; relativ zu dieser Referenzebene kann der vom Kraftfahrzeug befahrene Fahrbahnabschnitt in Querrichtung geneigt sein.
Das erfindungsgemäßen Verfahren kann auf einfache Weise in einem Kraftfahrzeug zum durchgeführt werden, da mittels der in dem Kraftfahrzeug verbauten Sensorik Fahrwerk- Daten und auch Querdynamik-Daten für verschiedenste Zwecke standardmäßig ermittelt und beispielsweise an ein in dem Kraftfahrzeug verbautes Steuergerät übermittelt werden, wobei das Steuergerät basierend auf diesen Daten verschiedene
Fahrzeugkomponenten, insbesondere das Fahrwerk, des Kraftfahrzeugs ansteuert.
Das erfindungsgemäße Verfahren kann Echtzeit in einem Kraftfahrzeug, insbesondere in einem im Kraftfahrzeug verbauten Steuergerät (ECU) o.ä., durchgeführt werden, so dass basierend auf der mittels des erfindungsgemäßen Verfahrens bestimmten momentanen Fahrbahn-Querneigung bzw. des momentanen Fahrzeug-Wankwinkels diese Daten gegebenenfalls bei der Ansteuerung des Fahrwerks des Kraftfahrzeugs oder weiterer Fahrzeugkomponenten berücksichtigt werden können.
In einer bevorzugten Ausführungsform umfassen die Fahrwerk-Daten einen momentanen Reifen-Wankwinkel der Reifen des Kraftfahrzeugs oder/und einen momentanen
Fahrwerk-Wankwinkel des Fahrwerks des Kraftfahrzeugs. Der momentane Fahrwerk- Wankwinkel kann mittels eines geeigneten, an den Federbeinen des Fahrwerks verbauten Sensors bestimmt werden. Alternativ dazu kann aber auch daran gedacht sein, dass die Bestimmung des Fahrwerk-Wankwinkels ohne eine solche Sensorik erfolgt, beispielsweise wenn mittels des Steuergeräts die Federbeine des Fahrwerks zum
Einstellen eines bestimmten Fahrzeug-Wankwinkels direkt angesteuert werden. In diesem Fall kann der eingestellte Fahrwerk-Wankwinkel auch direkt von dem Steuergerät ausgelesen werden, welches die Federbeine des Fahrwerks ansteuert. Entsprechendes gilt für den Reifen-Wankwinkel der Reifen des Kraftfahrzeugs, welcher insbesondere von einer Radlaständerung zwischen den linken und rechten Reifen des Kraftfahrzeugs sowie einer Reifendruck-abhängigen Steifigkeit der Reifen abhängen und daher mittels geeigneter, an den Reifen des Kraftfahrzeugs verbauten (Reifendruck-)Sensoren ermittelt werden kann. Gemäß dieser Ausführungsform umfassen die Querdynamik-Daten eine momentane Querbeschleunigung des Kraftfahrzeugs. Die momentane
Querbeschleunigung des Kraftfahrzeugs kann dabei mittels eines im Kraftfahrzeug verbauten Beschleunigungssensors bestimmt werden.
In einer besonders bevorzugten Ausführungsform kann das erfindungsgemäße Verfahren zwei aufeinander folgende Verfahrensschritte S1 und S2 umfassen. In dem ersten Verfahrensschritt S1 wird der momentane Fahrzeug-Wankwinkel φΑ aus der momentanen Querbeschleunigung ay, der momentanen Geschwindigkeit vx und der momentanen Giergeschwindigkeit d/dt ψ des Kraftfahrzeugs gemäß der Beziehung φΑ = (1/g) (ay - vx d/dt ψ) berechnet. In einem zweiten Schritt S2 wird dann die momentane Fahrbahn- Querneigung (9FB) aus dem in Schritt S1 berechneten momentanen Fahrzeug- Wankwinkel (<pA), einem momentanen Fahrwerk-Wankwinkel (w) und einem momentanen Reifen-Wankwinkel (q>R) gemäß der Beziehung φΡΒ = φΑ - - <pR berechnet.
In einer besonders bevorzugten Ausführungsform kann daran gedacht sein, dass die Bestimmung der momentanen Fahrbahn-Querneigung unter Verwendung von GPS- basiertem Kartenmaterial des befahrenen kurvenförmigen Fahrbahnabschnitts im
Zusammenspiel mit einem GPS-Empfänger zur Bestimmung der momentanen Fahrzeug- Position des Kraftfahrzeugs erfolgt. Da selbst in modernem Kartenmaterial Informationen zu lokalen Fahrbahn-Querneigungen nicht oder nur mit geringer Genauigkeit vorhanden sind, kann eine derartige Verwendung in erster Linie nur in ergänzender Weise bei der erfindungsgemäßen Bestimmung der momentanen Fahrbahn-Querneigung erfolgen.
Die Erfindung betrifft auch eine Vorrichtung zum kombinierten Bestimmen eines momentanen Fahrzeug-Wankwinkels eines Kraftfahrzeugs und einer momentanen Fahrbahn- Querneigung eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts. Die erfindungsgemäße Vorrichtung umfasst ein Steuergerät, welches mit einem Querbeschleunigungssensor, einem Gierraten-Sensor und einem Geschwindigkeitssensor des Kraftfahrzeugs zur Übermittlung einer jeweils gemessenen momentanen Querbeschleunigung bzw. momentanen Geschwindigkeit an das Steuergerät in Kommunikationsverbindung bringbar ist. Das Steuergerät bestimmt erfindungsgemäß aus Fahrwerk-Daten und Querdynamik-Daten, welche die momentanen Querbeschleunigung bzw. momentane Geschwindigkeit des Kraftfahrzeugs umfassen, unter Anwendung des erfindungsgemäßen Verfahrens den momentanen Fahrzeug-Wankwinkel des Kraftfahrzeugs und die momentane Fahrbahn-Querneigung des von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahn-Abschnitts.
Die Erfindung betrifft auch ein Kraftfahrzeug mit einer vorangehend erläuterten
Vorrichtung sowie mit einem Querbeschleunigungssensor, einem Gierraten-Sensor und einem Geschwindigkeitssensor, welche jeweils mit dem Steuergerät zur Übermittlung einer gemessenen momentanen Querbeschleunigung, einer momentanen
Giergeschwindigkeit bzw. einer momentanen Geschwindigkeit des Kraftfahrzeugs in Kommunikationsverbindung stehen.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
Dabei zeigen, jeweils schematisch:
Fig. 1 ein grobschematisches Ablaufschema des erfindungsgemäßen
Verfahrens,
Fig. 2 ein Kraftfahrzeug mit einer erfindungsgemäßen Vorrichtung zum Einstellen der
Kurvenneigung eines Kraftfahrzeugs, wobei die Figur 2a eine Draufsicht und die Figur 2b eine Rückansicht des Kraftfahrzeugs zeigt. In der Figur 1 ist ein Ablaufschema des erfindungsgemäßen Verfahrens grobschematisch dargestellt, gemäß welchem in einem ersten Schritt S1 zunächst ein momentaner Wankwinkel φΑ des Kraftfahrzeugs 1 relativ zu einer horizontalen Referenz-Ebene 21 (vgl. Fig. 2b) und in einem anschließenden Schritt S2 die momentane Fahrbahn-Querneigung φΡ des von dem Kraftfahrzeug 1 gerade befahrenen kurvenförmigen Fahrbahnabschnitts 20 relativ zur Referenz-Ebene 21 bestimmt wird.
Die horizontale Referenz-Ebene 21 ist dabei über den Richtungsvektor g der
Schwerkraft festgelegt, welcher sich in orthogonaler Richtung zu der Referenz-Ebene 21 erstreckt.
Zur Berechnung des Wankwinkels φΑ ist eine Kenntnis der momentanen Geschwindigkeit vx des Kraftfahrzeugs 1 erforderlich, welche mittels eines in dem Kraftfahrzeug 1 verbauten Geschwindigkeitssensors 6 bestimmt werden kann. Des Weiteren ist zur Berechnung des Wankwinkels φΑ auch eine Kenntnis der momentanen
Querbeschleunigung ay Sensor erforderlich, welche wiederum mittels eines in dem
Kraftfahrzeug 1 verbauten Querbeschleunigungssensors 3 bestimmbar ist.
In der vom Querbeschleunigungssensor 3 gemessenen Querbeschleunigung ay Se sorsind gemäß der Gleichung
_ bensor _ Λ Λ _ _ . „ _■
ay = ay cos φΑ + g sin φΑ schwerkraftbedingte sog. "g-Anteile" enthalten. In obiger Gleichung ist g die
Erdbeschleunigung und ay die Querbeschleunigung ohne g-Anteil. Für kleine Wankwinkel φΑ last sich diese Gleichung mittels Taylor-Entwicklung wie folgt vereinfachen: a _y Sensor _ - a _y + . g _ φΑ
Aus der dem Fachmann bekannten und die Fahrdynamik eine Kraftfahrzeugs
beschreibenden Beziehung a^ensor = d/dt Vy + v d (ft ψ folgt für kleine Geschwindigkeitsänderungen (d/dt vy » 0) durch Kombination mit der obigen Gleichung:
<pA = (1/g) (ay Sensor - vx d/dt ψ)
Aus dieser Gleichung lässt sich also der Wankwinkel φΑ berechnen. Dabei ist d/dt ψ die Giergeschwindigkeit des Kraftfahrzeugs 1 , die mittels eines Gierraten-Sensors 5 bestimmt werden kann.
Durch die Verwendung verschiedener Indizes y und x soll dabei zum Ausdruck gebracht werden, dass ein Richtungsvektor der momentanen Querbeschleunigung ay Sensor (in Y- Richtung) in eine zu dem entsprechenden Richtungsvektor der momentanen
Geschwindigkeit vx des Kraftfahrzeugs (in X-Richtung) orthogonale Richtung weist (vgl. auch Figur 2a). Die Z-Richtung verläuft orthogonal sowohl zur X- als auch zur Y-Richtung.
Die Sensor-Ausgangsdaten des Beschleunigungssensors 3, also die momentane
Querbeschleunigung ay Sensor, kann mittels eines geeigneten Tiefpass-Filters gefiltert werden, um unerwünschte hochfrequente Störungen (beispielsweise aufgrund von Unebenheiten in dem gerade befahrenen Fahrbahn-Abschnitt 20) auszufiltern.
Vorteilhafterweise ist der Beschleunigungssensor 3 in dem Kraftfahrzeug bezüglich einer Fahrzeug-Längsrichtung L des Kraftfahrzeugs möglichst weit vorne am Kraftfahrzeug angeordnet (vgl. Fig.2a).
In Schritt S2 wird nun basierend auf dem in Schritt S1 berechneten Wankwinkel φΑ über den Zusammenhang
<PFB = <PA - w - φρ die gesuchte Fahrbahn-Querneigung <pFB berechnen. Dabei ist w ein in dem Fahrwerk des Kraftfahrzeugs eingestellter momentane Fahrwerks-Wankwinkel und <pR ein Reifen- Wankwinkel der Reifen 13, 14 des Kraftfahrzeugs. In einer vereinfachten Variante kann der Reifen-Wankwinkel φκ auch vernachlässigt werden (q>R = 0). Zur Durchführung von Schritt S2 kann der momentane Fahrwerk-Wankwinkel w mittels geeigneter Sensoren 2 bestimmt werden. Diese Sensoren können eine momentane Höhe Xi, xr der den linken bzw. rechten Reifen 13, 14 des Kraftfahrzeugs 1 zugeordneten, höhenverstellbaren Federbeinen 11, 12 bestimmen, so dass aus einem Höhen- Unterschied Δχ =l Xi - xr l der momentanen Höhe x, der linken Federbeine 11 relativ zu einer momentanen Höhe xr der rechten Federbeine 12 der momentane Fahrwerk- Wankwinkel w bestimmt werden kann.
In analoger Weise kann auch der Reifen-Wankwinkel φκ mittels geeigneter Sensoren 4 bestimmt werden. Hierzu kann mittels solcher Sensoren 4 ein Höhen-Unterschied Ay =| y, - yr | einer momentanen Höhe y,, yr der linken Reifen 13 relativ zu den rechten Reifen 14 ermittelt werden. Dieser Höhenunterschied Ay kann von einer unterschiedlichen Radlast der linken und rechten Reifen 13, 14 des Kraftfahrzeugs 1 sowie einer unterschiedlichen, Reifendruck-abhängigen Steifigkeit der linken bzw. rechten Reifen 13, 14 abhängen. Die Sensoren 4 können daher Reifendruck-Sensoren zur Messung des individuellen
Reifendrucks in den Reifen 13, 14 umfassen.
In der Darstellung der Figur 2 ist nun das Kraftfahrzeug 1 mit einer erfindungsgemäßen Vorrichtung 7 zur Durchführung des erfindungsgemäßen Verfahrens gezeigt. Die Figur 2a zeigt das Kraftfahrzeug 1 dabei in einer Draufsicht, die Figur 2b in einer Rückansicht. Das Kraftfahrzeug 1 umfasst ein Steuergerät 8 sowie einen Beschleunigungssensor 3, einen Gierratensensor 5, und einen Geschwindigkeitssensor 6, welche jeweils mit dem
Steuergerät 8 in Kommunikationsverbindung stehen.
Das Kraftfahrzeug 10 umfasst eine von dem Steuergerät 8 ansteuerbare Fahrwerk- Vorrichtung, die in der Art eines elektro-hydraulisch aktiven Fahrwerks ausgebildet sein kann. Die Fahrwerk-Vorrichtung umfasst vier als höhenverstellbare Federbeine ausgebildete Aktoren 11 , 12 wobei jedem Rad 13, 14 des Kraftfahrzeugs 10 ein Aktor 11 , 12 zugeordnet ist. Durch ein individuelles Einstellen der Stellhöhe der Aktoren 11, 12 kann ein bestimmter Wankwinkel φΑ an dem Kraftfahrzeug 10 eingestellt werden.
Alternativ zur vorangehend beschriebenen elektro-hydraulischen Fahrwerk-Vorrichtung kann auch ein luftfeder-basiertes Fahrwerk mit geschlossener Druckversorgung verwendet werden. In einem solchen luftfeder-basierten Fahrwerk wird zum Verstellen der Federbeine die Luft in einem geschlossenen Kreislauf von einem Luftspeicher in die Luftfeder und umgekehrt gepumpt, was ein sehr schnelles Ein- und Ausfahren der Federbeine zum Einstellen der Soll-Kurvenneigung im Fahrwerk des Kraftfahrzeugs ermöglicht.
In einer weiteren Alternative zum elektro-hydraulisch aktiven Fahrwerk kann ein unter dem Begriff "ACTIVE CURVE SYSTEM" bekanntes, hydraulisch verstellbares Fahrwerk zum Einsatz kommen, welches mit einer riemengetriebenen Hydraulikpumpe arbeitet und einen Ölbehälter im Motorraum sowie je einen Ventil-Block und aktive Stabilisatoren an Vorder- und Hinterachse aufweist. Auch eine solche hydraulische Fahrwerk-Vorrichtung lässt sich zur Einstellung der Soll-Kurvenneigung im Kraftfahrzeug verwenden.
Zur Durchführung des erfindungsgemäßen Verfahrens übermittelt der
Beschleunigungssensor 3 die momentane Sensor-Querbeschleunigung ay, der
Geschwindigkeitssensor 6 die momentane Geschwindigkeit vx und der Gierratensensor 5 des Kraftfahrzeugs 1 die momentane Giergeschwindigkeit d/dt ψ an das Steuergerät 8. Das Steuergerät 8 kann eine Steuerungseinheit 9 (ECU) und eine mit der
Steuerungseinheit 9 in Kommunikationsverbindung stehende Speichereinheit 10 umfassen. Die Steuerungseinheit 9 und die Speichereinheit 10 können in der Art eines herkömmlichen Mikrokontrollers ausgebildet sein, wobei dem Fachmann zahlreiche technische Realisierungsmöglichkeiten bekannt sind.
In dem Steuergerät 8 wird unter Verwendung der oben genannten Eingangsparameter (momentane Geschwindigkeit des Kraftfahrzeugs vx, Giergeschwindigkeit d/dt ψ, momentane Sensor-Querbeschleunigung ay Sensor) das erfindungsgemäße Verfahren durchgeführt. Von dem Steuergerät 8 wird hierzu gemäß Schritt S1 des
erfindungsgemäßen Verfahrens der momentane Fahrzeug-Wankwinkel φΑ des
Kraftfahrzeugs 1 berechnet. Aus dem momentanen Fahrzeug-Wankwinkel φΑ wird gemäß Schritt S2 die momentane Fahrbahn-Querneigung (pFE) des gerade befahrenen kurvenförmigen Fahrbahn-Abschnitts 20 berechnet.
Zur Ermittlung des momentanen Fahrwerk-Wankwinkel w im Rahmen der Durchführung von Schritt S2 kann die erfindungsgemäße Vorrichtung 7 geeignete Fahrwerk-Sensoren 2 aufweisen, welche die jeweilige momentane Höhe X| ,xr der höhenverstellbaren
Federbeine 11, 12 ermitteln, so dass das Steuergerät 8 aus dem Höhen-Unterschied Δχ =| Xi - xr | der momentanen Höhe X| der den beiden linken Reifen 13 zugeordneten Federbeine 11 relativ zu der momentanen Höhe xr der den beiden rechten Reifen 14 zugeordneten Federbeine 12 den momentanen Fahrwerk-Wankwinkel w bestimmen kann. In analoger Weise kann auch der Reifen-Wankwinkel <pR mittels der (Reifendruck- )Sensoren 4 bestimmt werden.
In einer weiterbildenden Variante kann auch daran gedacht sein, den momentanen Fahrwerk-Wankwinkel w nicht wie vorangehend erläutert mittels einer geeigneten Sensorik 2 zu bestimmen; vielmehr kann gemäß dieser Alternative auch daran gedacht sein, mittels eines geeigneten Verfahrens, beispielsweise in Abhängigkeit von bestimmten Eingangsparametern wie z.B. der momentanen Querbeschleunigung ay Sensor und der momentanen Geschwindigkeit vx des Kraftfahrzeugs 1 und einer momentanen Fahrbahn- Krümmung K des gerade befahrenen Fahrbahn-Abschnitts 20 aus diesen
Eingangsparametern einen optimalen Soll-Wankwinkel wSou zu berechnen, der in den Federbeinen 11 , 12 des Fahrwerks des Kraftfahrzeugs 1 eingestellt werden soll, um beim Befahren des kurvenförmigen Fahrbahn-Abschnitts 20 auf die Insassen des
Kraftfahrzeugs 1 wirkende Querkräfte zu verringern und somit den Fahrtkomfort für die Insassen zu erhöhen. Die Berechnung des Soll-Wankwinkels wSon erfolgt dabei zunächst unabhängig von der momentanen Fahrbahn-Quemeigung cpFB. Die Berechnung des Soll- Wankwinkels wS0ii kann beispielsweise von der Steuerungseinheit 9 des Steuergeräts 8 durchgeführt werden. Die höhenverstellbaren Federbeine 11, 12 können dabei von dem Steuergerät 8 angesteuert werden, so dass sich der gewünschte Soll-Wankwinkel wSon in dem Fahrwerk des Kraftfahrzeugs 1 einstellt. Da bei einer solchen, vereinfachten Berechnung des Soll-Wankwinkels wSoii die momentane Fahrbahn-Querneigung cpFB unberücksichtigt bleibt, bietet es sich an, diese mittels des erfindungsgemäßen
Verfahrens zu berechnen und bei der Einstellung des Fahrwerk-Wankwinkels wSon durch die Federbeine 11 , 12 des Fahrwerks zu berücksichtigen.

Claims

Patentansprüche
Verfahren zum kombinierten Bestimmen eines momentanen Fahrzeug- Wankwinkels (φΑ) eines Kraftfahrzeugs (1) und einer momentanen Fahrbahn- Querneigung (cpFB) eines von dem Kraftfahrzeug (1) befahrenen kurvenförmigen Fahrbahnabschnitts (20),
gemäß welchem die momentane Fahrbahn-Querneigung (<pFB) und der momentane Fahrzeug-Wankwinkel (φΑ) aus Fahrwerk-Daten und Querdynamik-Daten des Kraftfahrzeugs (1) bestimmt werden.
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
- die Fahrwerk-Daten einen momentanen Fahrwerk-Wankwinkel (w) eines Fahrwerks des Kraftfahrzeugs (1) umfassen,
- die Fahrwerk-Daten einen momentanen Reifen-Wankwinkel (cpR) der Reifen (13, 14) des Kraftfahrzeugs (1) umfassen,
- die Querdynamik-Daten eine momentane Querbeschleunigung (ay Sensor) des Kraftfahrzeugs (1) umfassen,
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
das Verfahren die folgenden Schritte umfasst:
S1) Berechnen des momentanen Fahrzeug-Wankwinkel (<pA) aus der momentanen Querbeschleunigung (ay Sensor), der momentanen Geschwindigkeit (vx) und der momentanen Giergeschwindigkeit (d/dt ψ) des Kraftfahrzeugs (1) gemäß folgender Beziehung:
<pA = (1/g) (ay Sensor - vx d/dt ψ) S2) Berechnen der momentanen Fahrbahn-Querneigung (cpFB) aus dem in Schritt S1 berechneten momentanen Fahrzeug-Wankwinkel (φΑ), einem momentanen Fahrwerk-Wankwinkel (w) und einem momentanen Reifen-Wankwinkel (cpR) gemäß folgender Beziehung: φΡΒ = φΑ - w - <pR.
Vorrichtung (7) zum kombinierten Bestimmen eines momentanen Fahrzeug- Wankwinkels (φΑ) eines Kraftfahrzeugs (1) und einer momentanen Fahrbahn- Querneigung (cpFB) eines von dem Kraftfahrzeug (1) befahrenen kurvenförmigen Fahrbahnabschnitts (20),
- mit einem Steuergerät (8), welches mit einem Querbeschleunigungssensor (3), einem Gierraten-Sensor (5) und einem Geschwindigkeitssensor (6) des Kraftfahrzeugs (1) zur Übermittlung einer jeweils gemessenen momentanen Querbeschleunigung bzw. momentanen Geschwindigkeit an das Steuergerät in Kommunikationsverbindung bringbar ist,
- wobei das Steuergerät (8) aus Fahrwerk-Daten und Querdynamik-Daten, welche die momentanen Querbeschleunigung (ay Sensor) bzw. momentane Geschwindigkeit (vx) des Kraftfahrzeugs (1) umfassen, unter Anwendung des Verfahrens nach einem der vorhergehenden Ansprüche den momentanen Fahrzeug-Wankwinkel (φΑ) des Kraftfahrzeugs (1) und die momentane Fahrbahn-Querneigung (<pFB) des von dem Kraftfahrzeug (1) befahrenen kurvenförmigen Fahrbahn-Abschnitts (20) bestimmt.
Kraftfahrzeug (1),
- mit einer Vorrichtung (7) nach Anspruch 4,
- mit einem Querbeschleunigungssensor (3), einem Gierraten-Sensor (5) und einem Geschwindigkeitssensor (6), welche jeweils mit dem Steuergerät (8) zur Übermittlung einer gemessenen momentanen Querbeschleunigung (ay), einer momentanen Giergeschwindigkeit (d/dt ψ) bzw. momentanen Geschwindigkeit (vy) des Kraftfahrzeugs (1) in Kommunikationsverbindung stehen.
EP13785362.8A 2012-12-20 2013-10-31 Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts Withdrawn EP2934924A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012024971A DE102012024971A1 (de) 2012-12-20 2012-12-20 Verfahren zum kombinierten Bestimmen eines momentanen Wankwinkels eines Kraftfahrzeugs und einer momentanen Fahrbahn-Querneigung eines von dem Kraftfahrzeug befahrenen kurvenförmigen Fahrbahnabschnitts
PCT/EP2013/003286 WO2014094933A1 (de) 2012-12-20 2013-10-31 Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts

Publications (1)

Publication Number Publication Date
EP2934924A1 true EP2934924A1 (de) 2015-10-28

Family

ID=48607979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13785362.8A Withdrawn EP2934924A1 (de) 2012-12-20 2013-10-31 Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts

Country Status (5)

Country Link
US (1) US9849886B2 (de)
EP (1) EP2934924A1 (de)
CN (1) CN104853941A (de)
DE (1) DE102012024971A1 (de)
WO (1) WO2014094933A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024970A1 (de) * 2012-12-20 2013-07-04 Daimler Ag Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
JP5996572B2 (ja) * 2014-03-27 2016-09-21 本田技研工業株式会社 車体のロール角推定装置
DE102016204018A1 (de) * 2016-03-11 2017-09-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Querneigung einer Fahrbahn
DE102016206101A1 (de) * 2016-04-12 2017-10-12 Zf Friedrichshafen Ag Verfahren zur Ermittlung der Querbeschleunigung eines Kraftfahrzeugs
CN109470496B (zh) * 2018-10-11 2021-06-08 中南大学 列车车体瞬态剧烈振动致振动舒适性的评估方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446658A (en) * 1994-06-22 1995-08-29 General Motors Corporation Method and apparatus for estimating incline and bank angles of a road surface
JP3855441B2 (ja) 1998-03-06 2006-12-13 トヨタ自動車株式会社 車体ロール評価値演算装置
US6631317B2 (en) * 2001-10-01 2003-10-07 Ford Global Technologies, Inc. Attitude sensing system for an automotive vehicle
US7676307B2 (en) 2001-11-05 2010-03-09 Ford Global Technologies System and method for controlling a safety system of a vehicle in response to conditions sensed by tire sensors related applications
US6556908B1 (en) * 2002-03-04 2003-04-29 Ford Global Technologies, Inc. Attitude sensing system for an automotive vehicle relative to the road
US6804584B2 (en) * 2002-03-20 2004-10-12 Ford Global Technologies, Llc Method for determining the roll angle of a vehicle using an estimation of road bank angle
DE10220575A1 (de) 2002-05-08 2003-12-04 Bayerische Motoren Werke Ag Verfahren zur Erkennung einer Steilwandkurve an einem in eine solche Kurve hineinbewegten Fahrzeug
US6718248B2 (en) * 2002-06-19 2004-04-06 Ford Global Technologies, Llc System for detecting surface profile of a driving road
US7003389B2 (en) * 2002-08-01 2006-02-21 Ford Global Technologies, Llc System and method for characterizing vehicle body to road angle for vehicle roll stability control
US7079928B2 (en) * 2002-08-01 2006-07-18 Ford Global Technologies, Llc System and method for determining a wheel departure angle for a rollover control system with respect to road roll rate and loading misalignment
DE102004035578A1 (de) 2004-07-22 2006-02-16 Daimlerchrysler Ag Stabilisierungsvorrichtung und Verfahren zur Fahrstabilisierung eines Fahrzeugs
US7715965B2 (en) * 2004-10-15 2010-05-11 Ford Global Technologies System and method for qualitatively determining vehicle loading conditions
US7590481B2 (en) * 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
JP4534944B2 (ja) 2005-10-07 2010-09-01 トヨタ自動車株式会社 乗り物
US7600826B2 (en) * 2005-11-09 2009-10-13 Ford Global Technologies, Llc System for dynamically determining axle loadings of a moving vehicle using integrated sensing system and its application in vehicle dynamics controls
US7788007B2 (en) * 2006-01-12 2010-08-31 Gm Global Technology Operations, Inc. Roll stability indicator for vehicle rollover control
DE102006018978A1 (de) 2006-04-25 2007-11-08 Adc Automotive Distance Control Systems Gmbh Verfahren zur Bestimmung des Wankwinkels
KR20090107334A (ko) * 2008-04-08 2009-10-13 주식회사 만도 차량용 제동제어장치와 현가제어장치 간의 데이터통신을 통한 차고제어장치 및 그 제어방법
US20090299579A1 (en) * 2008-05-28 2009-12-03 Hac Aleksander B Kinematic-based method of estimating the absolute roll angle of a vehicle body
US20090299546A1 (en) * 2008-05-28 2009-12-03 Hac Aleksander B Dynamic-based method of estimating the absolute roll angle of a vehicle body
DE102010046317A1 (de) 2010-09-23 2012-03-29 Audi Ag Verfahren zum Einstellen der räumlichen Lage der Wankachse eines Kraftwagens
WO2014179638A1 (en) * 2013-05-02 2014-11-06 GM Global Technology Operations LLC Integrated bank and roll estimation using a three-axis inertial-measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014094933A1 *

Also Published As

Publication number Publication date
DE102012024971A1 (de) 2013-07-04
CN104853941A (zh) 2015-08-19
US20160001783A1 (en) 2016-01-07
WO2014094933A1 (de) 2014-06-26
US9849886B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
EP2934966B1 (de) Verfahren zum bestimmen einer soll-kurvenneigung eines kraftfahrzeugs beim befahren eines kurvenförmigen fahrbahnabschnitts
DE102015011517B3 (de) Verfahren zum Bestimmen einer aktuellen Niveaulage eines Fahrzeugs
DE112005003154B4 (de) Steuerung für eine aktive Frontlenkung für eine Fahrzeugstabilitätsverbesserung
WO2014094933A1 (de) Verfahren zum kombinierten bestimmen eines momentanen wankwinkels eines kraftfahrzeugs und einer momentanen fahrbahn-querneigung eines von dem kraftfahrzeug befahrenen kurvenförmigen fahrbahnabschnitts
EP1700777B2 (de) Aufhängung für eine Fahrerkabine eines Nutzfahrzeuges und Verfahren zu deren Steuerung
EP3323699B1 (de) Verfahren und vorrichtung zur steuerung oder regelung einer fahrerhauslagerung eines kraftfahrzeugs
DE102008053008A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE102011007608A1 (de) Verfahren und System zur aktiven Fahrwerksregelung
DE102008006051B4 (de) Feder-Dämpfersystem und Verfahren zur Steuerung oder Regelung des Feder- und/oder Dämpferverhaltens einer Feder-Dämpfereinrichtung eines einspurigen Kraftfahrzeugs
DE102012010553B4 (de) Verfahren zur Steuerung eines aktiven Fahrwerks
DE102012024980A1 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung und eines Lenkwinkel-Korrekturwerts eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
DE102008052132A1 (de) Verfahren und Vorrichtung zum Verbessern des Fahrverhaltens eines Kraftfahrzeugs
DE102012024989A1 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
EP2797805B1 (de) Vorrichtung für einen eine hinterachslenkung aufweisenden kraftwagen und verfahren zum betreiben eines kraftwagens
DE102012009882B4 (de) Verfahren zur Steuerung eines aktiven Fahrwerks
DE102012024984A1 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs
DE102010029947A1 (de) Verfahren zur Ansteuerung eines aktiven oder semiaktiven vertikaldynamischen Systems in der Radaufhängung eines Fahrzeugs
DE102004007549A1 (de) Verfahren zum Betrieb eines aktiven Fahrwerksystems
DE102012024985B4 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
DE102012024983A1 (de) Verfahren zum Auswerten eines mittels eines optischen Detektionssystems eines Kraftfahrzeugs erzeugten Bildes eines Vorfeldes des Kraftfahrzeugs
DE102019213969B4 (de) Verfahren und Vorrichtung zur Anpassung des Fahrwerks eines Kraftfahrzeuges sowie Steuergerät
DE102018007057A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs mit einer aktiv steuerbaren Hinterachslenkung und mit einer aktiv steuerbaren Fahrwerkvorrichtung
DE102012024988A1 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
DE102012024986A1 (de) Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
DE102012008383A1 (de) Verfahren und Vorrichtung zur Beeinflussung einer Fahrlage eines Kraftfahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180904