EP2933502B1 - Digital hydraulic drive system - Google Patents

Digital hydraulic drive system Download PDF

Info

Publication number
EP2933502B1
EP2933502B1 EP15000306.9A EP15000306A EP2933502B1 EP 2933502 B1 EP2933502 B1 EP 2933502B1 EP 15000306 A EP15000306 A EP 15000306A EP 2933502 B1 EP2933502 B1 EP 2933502B1
Authority
EP
European Patent Office
Prior art keywords
control
drive system
valve
actuator
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15000306.9A
Other languages
German (de)
French (fr)
Other versions
EP2933502A1 (en
Inventor
Christian Stauch
Joachim Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Fluidtechnik GmbH
Original Assignee
Hydac Fluidtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Fluidtechnik GmbH filed Critical Hydac Fluidtechnik GmbH
Publication of EP2933502A1 publication Critical patent/EP2933502A1/en
Application granted granted Critical
Publication of EP2933502B1 publication Critical patent/EP2933502B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0426Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling the number of pumps or parallel valves switched on
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components

Definitions

  • the invention relates to a digital hydraulic drive system having the features in the preamble of claim 1.
  • Linjama et al. used an optimal control approach for a system of digital flow control units (DFCU) in Linjama, M .; Huova, M .; Boström, P .; Laamanen, A .; Siivonen, L .; Morel, L .; Waiden, M .; Vilenius, M .: Design and Implementation of an Energy Saving Digital Hydraulic Control System.
  • DFCU digital flow control units
  • a DFCU is a group of switching valves in parallel, which allows a quantized adjustment of the volumetric flow by selectively switching the individual valves.
  • An in-depth look at this technology will be made in Linjama, M .; Laamanen, A .; Vilenius, M .: Is it time for digital hydraulics? In: Proc. 8th Scandinavian Int'l Conf. Fluid Power (SICFP'03), Tampere University of Technology, 2003, pp. 347-366 , The aforementioned optimal control approach was used for a differential cylinder which is driven by DFCUs based on the principle of the resolved control edge.
  • the present invention seeks to further improve the known solutions while maintaining their advantages, a functionally reliable control for a digital hydraulic drive system, that a high control quality is achieved with low computational complexity, so that too insofar as the costs of the desired regulation are reduced.
  • the flatness-based sequence control uses the volume flows as a manipulated variable and that as the valve device to be configured a digital hydraulic full bridge circuit using pulse width modulated valve units (PWM) and / or pulse-code-modulated valve units (PCM) and / or or digital volume flow units (DFCU) is used.
  • PWM pulse width modulated valve units
  • PCM pulse-code-modulated valve units
  • DFCU digital volume flow units
  • a control method is provided which is particularly suitable for Use by using quick-change valves (pulse width modulation) and / or parallel valves (digital flow control unit).
  • the additional degree of freedom inherent in the principle of the dissolved control edge is used to control the pressure drop across the respective valve or valve group in the return flow and thus prevent cavitation and emptying of the reservoirs.
  • Further criteria for the use of this additional degree of freedom are described by Bindel et al. ( Bindel, R .; Nitsche, R .; Rothfuss, R .; Zeitz, M .: Flatness-based control of a hydraulic drive with two valves for a large manipulator. In: at-Automatmaschinestechnik, Vol. 48 (2000), No. 3, pp. 124-131 ), which use this additional degree of freedom to control a manipulator joint with 3/2-Wegeservoventilen.
  • the considered digital hydraulic drive system consists of a hydrostatic constant motor 10 with hydropneumatic damping accumulators 12 at both terminals 14, 16.
  • the control is effected by separate valve units or valve groups 18 of a valve device 20 at the inlet and outlet ports 14, 16 of the engine 10.
  • Die Fig. 1a, 1b show two possible embodiments of such a drive solution with dissolved control edge.
  • resolved control edges one understands technical language, in that each control edge of a conventional proportional directional control valve is released via at least one valve with at least one basic and / or one switching position. A valve with, for example, five control edges is thus replaceable over at least five switching valves.
  • very small, temporally very fast-switching switching valves are used in the manner of 2/2-way switching valves (see. Fig. 1c ).
  • the motor 10 is connected to a pressure supply source with the supply pressure p S and to a tank or return to the tank pressure p T.
  • a full bridge is shown, which allows a four-quadrant operation.
  • the system off Fig. 1b can only be operated in two quadrants, since the volume flow at both ports 14, 16 can only flow in one direction. Nevertheless, both circuits are suitable for control with resolved control edge, since in both cases, the volume flows at the terminals 14, 16 can be specified independently.
  • the focus of the present invention is on the full bridge circuit Fig. 1 a and the Fig. 2 ,
  • the presented design method is divided into two parts: a flatness-based follow-up control, which uses the volume flows as control variables and a lower-level control of the volume flow, which depends on the valve configuration. According to this division, the mathematical models for the drive 10 and the valve units 18, 20 are given below in detail.
  • J is the rotor inertia
  • dd is the coefficient of viscous friction
  • is the load torque
  • p 1 and p 2 are the pressures at the engine ports 14, 16
  • V M is the displacement of the engine.
  • the load torque ⁇ is not understood as a system variable, but as a time-variant parameter, ie it is assumed that the controller design is known. In the absence of knowledge of the load torque, a load observer may be employed in the controller implementation.
  • the volume flows entering the attenuation memories 12 are denoted by q A, 1 and q A, 2 , the leakage coefficient of the motor 10 by G.
  • V i is the gas volumes of the memories 12
  • p 0, i the bias pressures
  • V 0, i the total volumes and n the polytropic exponent are the polytropic exponent.
  • valve units 18 of the valve device 20 are described below from a control point of view closer. Since, as already mentioned at the beginning, the proposed approach to the design of a sequence control for different valve configurations is valid, two types of digital hydraulic full bridge circuit ( Fig. 1c, 2nd ) discussed by way of example. In both cases, the dynamics of valves 18 and valve solenoids are neglected.
  • the supply pressure and the tank pressure are respectively denoted by p s and p t .
  • the pressure-volume flow characteristics of the DFCUs are represented by the coefficient K DFCU .
  • the switching indices ⁇ i, s , ⁇ i, t ⁇ ⁇ 0,1,2, ..., 2 m -1 ⁇ determine the switching state of the m-bit DFCUs.
  • ⁇ i, s and ⁇ i, t designate the duty cycle of the respective valves 18 connected to the pressure or fluid supply and tank.
  • the coefficient K PWM determines a linear approximation of the relationship between volume flow and duty cycle.
  • the model of the drive presented above represents a non-linear multi-variable system.
  • the control of such systems often exceeds the possibilities of simple PID controller. This applies in particular to the follow-up regulation.
  • the so-called differential flatness is a system feature that facilitates not only the design of the controller but also the analysis and sizing of a system as well as the planning of suitable reference trajectories.
  • differential flatness implies the existence of a so-called flat output.
  • This (virtual) output is generally a function of system sizes and their time derivatives.
  • a central feature of the flatness is that the trajectories of all system quantities, including the manipulated variables, are uniquely determined by the trajectories of the flat output, while these can in turn be freely specified. This implies that the desired system behavior can be given in the form of trajectories for the components of a flat output.
  • the resulting control task is then limited to ensuring the trajectory sequence of the flat output, which in turn is facilitated by the fact that the manipulated variables can be calculated directly from the components of the flat output.
  • the flatness property is also retained when the valve models according to the formulas (7) and (8) are taken into account, since the manipulated variables ⁇ i, s / t and ⁇ i, s / t directly from the volume flows q i and the pressures p i are calculated, which in turn can be calculated from the flat output y by means of formula (11).
  • the flatness property is not limited exclusively to digital hydraulic drives, but can be transferred to all systems having the structure (6). This also applies to hydraulic linear drives such as differential cylinders, provided that the first component of the flat output y is replaced by the cylinder position.
  • valve control is explained in more detail.
  • the design of the flatness-based sequence control is based on three steps. First, suitable reference trajectories must be set for the flat output y. Subsequently, the control laws for the follow-up control are determined. Finally, the setpoint flows calculated by the slave controller are used as input for valve control.
  • the pertinent valve control is as a functional block in the Fig. 3 represented there and (9), (10), since this function block is associated with the formulas (9) and (10) described above.
  • the barrier p min can be used for the pressure cavitation (especially at Load changes) or to prevent the drop of the accumulator pressure below the biasing pressure p 0 .
  • the reference of the lower of the two pressures p 1 (t) and p 2 (t) at any time p min Consequently, by a suitable compromise between pressure drop and bias pressure, the throttle losses can be reduced.
  • This task involves two steps: First, the system is exactly linearized by a static feedback. This step again benefits from the flatness property in that it is always possible to exactly linearize a flat system by quasistatic feedback (cf. Delaleau, E .; Rudolph, J .: Control of flat systems by quasi-static feedback of generalized states. In: Int'l J. Control, Vol. 71 (1998), No. 5, pp. 745-765 ). It should be emphasized that the linearization by feedback in no way represents an approximation, but only a compensation of the nonlinearities. Since the resulting system is linear with respect to a new (virtual) input, a linear controller is sufficient to ensure the error dynamics.
  • G 2 x 1 2 V M V M x 3 - J x 2 - d x 1 - ⁇
  • the slave controller is described by equations (19) and (21) (cf. Fig. 3 ).
  • the pertinent formulas for the respective function blocks are expressed in numbers and in brackets.
  • the first function block 30 relates to the generation of trajectories.
  • the second function block 32 symbolizes the controller or controller.
  • the third functional block 34 refers to the linearizing feedback and the function block 36 is intended to relate to the estimator. Otherwise, the previously introduced reference quantities and reference numerals for the Fig. 3 used.
  • an observer 36 can be used, which will be explained in more detail below.
  • the controller design from the previous section is based on the knowledge of the load torque ⁇ . Such knowledge can be based either on a measurement or a very accurate knowledge of the underlying process. However, if these conditions are not met, an observer-based load estimate can be used.
  • V ⁇ 2 be used to estimate both the angular velocity ⁇ and the load torque ⁇ .
  • V ⁇ 1 V 0 p 0 1 n p 1 - 1 n - V ⁇ 1 .
  • this error dynamics can easily be made asymptotically stable by choosing suitable observer gains l i, j . If the volume flows q 1 and q 2 are not known exactly, which is often the case in the application, the error dynamics are carried out non-autonomously with the errors q 1 and q 2 as excitation. This affects the usability of the estimator, especially in the case of digital hydraulic systems, in which the deviations by the switching operations of the valves 18 represent a highly dynamic excitation. Remedy can be provided by taking an additional measurement of the angular velocity w.
  • a full bridge with 6-bit DFCUs ( Fig. 7 ) used as bridge resistors for driving.
  • the DFCUs consist of modified HYDAC WS08W valves with switching times of 5 ms and downstream apertures with diameters of 0.45 mm, 0.62 mm, 0.9 mm, 1.28 mm, 1, 83 mm and 3 mm.
  • the simulation models of the valves 18 form the mechanical valve piston dynamics, a simple magnetic model of the first order with saturation and a subordinate current control.
  • the bridge resistors consist of valve groups 18 of the same type, driven by a 50 Hz PWM signal.
  • the Redlich Kwong Soave provided by AMESim Gas model ( Soave, G .: Equilibrium constants from a modified Redlich-Kwong equation of state. In: Chem. Eng. Sci., Vol. 27 (1972), No. 6, pp. 1197-1203 ) was used to simulate the damping memory 12.
  • the applied motor model 10 again corresponds to equation (1).
  • the reference trajectory of the angular velocity w comprises three operating point changes.
  • the engine 10 is accelerated from standstill to 900 min -1 , then braked to 100 min -1 and finally reversed to -600 min -1 .
  • the results of the simulation of the DFCU bridge are in the Fig. 4a, 4b, 4c represented, wherein in the x-direction, the time is plotted in seconds and in the Fig. 4a in y-direction, the angular velocity w with the unit 1 / min.
  • the pressure in the unit bar is indicated in the y-direction.
  • the curves are smoothed and, in particular, the jagged courses in the Fig. 4b and 4c are then smoothed out accordingly.
  • the influence of the load estimator is through Fig. 6 clarified.
  • the strongly fluctuating graphs refer to simulation values without load observers.
  • the present invention relates to a flatness-based follow-up control for a digital hydraulic drive, based on the principle of the resolved control edge.
  • the presented control strategies avoid the distinction of operating modes and the resulting switching between such modes.
  • the additional degree of freedom associated with the second manipulated variable is used to set the minimum pressure at the motor terminals 14, 16. In this way, the emptying of the damping memory 12 and cavitation can be prevented. In addition, the pressure losses can be limited to the necessary minimum when using a variable supply.
  • a load estimator is used as shown to determine the load torque ⁇ on the motor shaft of the constant velocity motor 10.
  • n n polytropic [1] m Number of DFCU valves [1] p 1 , p 2 pressures [Pa] p 0.1 p 0.2 Memory boost pressures [Pa] p s , p t Supply, tank pressure [Pa] q 1 , q 2 Volume flows at the actuator connections [m 3 / s] q 1, A , q 2, A Storage volume flow [m 3 / s] V 1 , V 2 storage volume [m 3 ] V 0.1 , V 0.2 Total Speichervolumesn [m 3 ] V M Suction volume of the constant motor [m 3 ] v 1 , v 2 Feedback variables misc.
  • x (x 1 , x 2 , x 3 ) T state variables misc.
  • y (y 1 , y 2 ) T Flat outlet misc. ⁇ i, s / t PWM duty cycle [1] ⁇ i, s / t DFCU switching indexes [1] ⁇ load torque [Nm] ⁇ angular velocity [Rad / s]

Description

Die Erfindung betrifft ein digitalhydraulisches Antriebssystem mit den Merkmalen im Oberbegriff von Anspruch 1.The invention relates to a digital hydraulic drive system having the features in the preamble of claim 1.

Obwohl der breite Einsatz von digitalhydraulischen Systemen in der industriellen Anwendung nach wie vor Gegenstand kontroverser Diskussionen ( Scheidl, R.; Linjama, M.; Schmidt, S.: Is the future of fluid power digital? In: Proc. IME J. Syst. Contr. Eng., Bd. 226 (2012), Nr. 6, S. 721-723 ) innerhalb der Fachwelt ist, gibt es bereits einige erfolgreiche Realisierungen solcher Systeme. Deren Umsetzung erfordert jedoch oftmals einen erhöhten Aufwand im Bereich der Steuerung und Regelung. Jüngere Arbeiten auf diesem Gebiet machen Gebrauch von nichtlinearen modellbasierten Regelungsverfahren. Hießl et al. verwendeten einen Gleitregime-Ansatz für die Regelung eines Gleichgangzylinders mit schnell schaltenden 3/2-Wegeventilen ( Hießl, A.; Plöckinger, A.; Winkler, B.; Scheidl, R.: Sliding mode control for digital hydraulic applications. In: Laamanen, A.; Linjama, M. (Hrsg.): Proc. 5th Workshop Digital Fluid Power (DFP12), Oktober 2012, S. 15-26 ). Die Ventilansteuerung erfolgt mittels PWM-Signalen, ein charakteristisches Merkmal für eine Untergruppe der digitalhydraulischen Systeme ( Linjama, M.: Digital fluid power - State of the art. In: Proc. 12th Scandinavian Int'l Conf. Fluid Power (SICFP'11), Mai 2011, S. 331-353 ).Although the widespread use of digital hydraulic systems in industrial applications remains the subject of controversial discussions ( Scheidl, R .; Linjama, M .; Schmidt, S .: Is the future of fluid power digital? In: Proc. IME J. Syst. Contr. Eng., Vol. 226 (2012), No. 6, pp. 721-723 ) within the professional world, there are already some successful implementations of such systems. Their implementation, however, often requires an increased effort in the field of control and regulation. Recent work in this area makes use of non-linear model-based control methods. Hießl et al. used a slip regime approach for the control of a synchronous cylinder with fast switching 3/2-way valves ( Hießl, A .; Plöckinger, A .; Winkler, B .; Scheidl, R .: Sliding mode control for digital hydraulic applications. In: Laamanen, A .; Linjama, M. (ed.): Proc. 5th Workshop Digital Fluid Power (DFP12), October 2012, pp. 15-26 ). Valve control takes place by means of PWM signals, a characteristic feature for a subgroup of digital hydraulic systems ( Linjama, M .: Digital fluid power - State of the art. In: Proc. 12th Scandinavian Int'l Conf. Fluid Power (SICFP'11), May 2011, pp. 331-353 ).

Fortgeschrittene Regelungsmethoden finden auch in einer weiteren wichtigen Untergruppe der digitalhydraulischen Systeme Anwendung. Linjama et al. verwendeten einen Optimalregelungsansatz für ein System von digital flow control units (DFCU) in Linjama, M.; Huova, M.; Boström, P.; Laamanen, A.; Siivonen, L.; Morel, L.; Waidén, M.; Vilenius, M.: Design and implementation of energy saving digital hydraulic control system. In: Vilenius, J.; Koskimies, K. T.; Uusi-Heikkilä, J. (Hrsg.): Proc. 10th Scandinavian Int'l Conf. Fluid Power (SICFP'07), Bd. 2 (2007), S. 341-359 . Eine DFCU ist eine Gruppe von Schaltventilen in Parallelschaltung, die eine quantisierte Einstellung des Volumenstroms durch selektives Schalten der einzelnen Ventile erlaubt. Eine vertiefte Betrachtung dieser Technologie erfolgt in Linjama, M.; Laamanen, A.; Vilenius, M.: Is it time for digital hydraulics? In: Proc. 8th Scandinavian Int'l Conf. Fluid Power (SICFP'03), Tampere University of Technology, 2003, S. 347-366 . Der erwähnte Optimalregelungsansatz wurde verwendet für einen Differentialzylinder, der mittels DFCUs basierend auf dem Prinzip der aufgelösten Steuerkante angesteuert wird.Advanced control methods are also used in another important subgroup of digital hydraulic systems. Linjama et al. used an optimal control approach for a system of digital flow control units (DFCU) in Linjama, M .; Huova, M .; Boström, P .; Laamanen, A .; Siivonen, L .; Morel, L .; Waiden, M .; Vilenius, M .: Design and Implementation of an Energy Saving Digital Hydraulic Control System. In: Vilenius, J .; Koskimies, KT; Uusi-Heikkilä, J. (ed.): Proc. 10th Scandinavian Int'l Conf. Fluid Power (SICFP'07), Vol. 2 (2007), pp. 341-359 , A DFCU is a group of switching valves in parallel, which allows a quantized adjustment of the volumetric flow by selectively switching the individual valves. An in-depth look at this technology will be made in Linjama, M .; Laamanen, A .; Vilenius, M .: Is it time for digital hydraulics? In: Proc. 8th Scandinavian Int'l Conf. Fluid Power (SICFP'03), Tampere University of Technology, 2003, pp. 347-366 , The aforementioned optimal control approach was used for a differential cylinder which is driven by DFCUs based on the principle of the resolved control edge.

Das Prinzip der "Aufgelösten Steuerkanten" ist ein Konzept, bei dem die Volumenströme an den Anschlüssen eines hydraulischen Aktuators (wie z.B. ein Zylinder oder Motor) unabhängig voneinander eingestellt werden können. Im Vergleich mit konventionellen servohydraulischen Systemen eröffnen sie ein Potential zur Energieeinsparung durch die Reduktion des Gegendrucks. Ein Überblick über dieses Prinzip wird in Eriksson, B.; Palmberg, J.-O.: Individual metering fluid power systems: Challenges and opportunities. In: Proc. IME J. Syst. Contr. Eng., Bd. 225 (2011), Nr. 2, S. 196-211 gegeben.The principle of "dissolved control edges" is a concept in which the volume flows at the connections of a hydraulic actuator (such as a cylinder or motor) can be adjusted independently of each other. Compared with conventional servo-hydraulic systems, they offer potential for saving energy by reducing the backpressure. An overview of this principle will be found in Eriksson, B .; Palmberg, J.-O .: Individual metering fluid power systems: Challenges and opportunities. In: Proc. IME J. Syst. Contr. Eng., Vol. 225 (2011), No. 2, pp. 196-211 given.

Was die Qualität der jeweils eingesetzten Regelung anbelangt, lassen die bekannten Lösungen jedoch noch Wünsche offen und häufig ist für eine zeitnahe Regelung von Aktuatorsystemen der rechentechnisch benötigte Aufwand zu hoch.As far as the quality of the respectively used control is concerned, however, the known solutions still leave something to be desired, and frequently the expenditure required for computation is too high for a timely control of actuator systems.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die bekannten Lösungen unter Beibehalten ihrer Vorteile, eine funktionssichere Regelung für ein digitalhydraulisches Antriebssystem zu schaffen, dahingehend weiter zu verbessern, dass eine hohe Regelungsqualität erreicht ist bei geringem rechentechnischen Aufwand, so dass auch insoweit die Kosten der angestrebten Regelung reduziert sind.Based on this prior art, the present invention seeks to further improve the known solutions while maintaining their advantages, a functionally reliable control for a digital hydraulic drive system, that a high control quality is achieved with low computational complexity, so that too insofar as the costs of the desired regulation are reduced.

Der Artikel Kock, F., et al.: Flatness-based high frequency control of a hydraulic actuator. In: J. Dynamic Systems, Bd. 134 (2012), Nr. 2, S. 021003 (7 Seit en) beschreibt ein digitalhydraulisches Antriebssystem, bestehend aus einem Aktuator sowie mindestens einer unabhängig betätigbaren Ventileinrichtung für die Ansteuerung der Volumenströme in den Zu- und/oder Abströmanschlüssen des Aktuators, wobei eine flachheitsbasierte Folgeregelung eingesetzt ist und eine unterlagerte Steuerung zum Einsatz kommt, die von der Konfiguration der Ventileinrichtung abhängt.The item Kock, F., et al .: Flatness-based high frequency control of a hydraulic actuator. In: J. Dynamic Systems, Vol. 134 (2012), No. 2, p. 021003 (7 p en) describes a digital hydraulic drive system consisting of an actuator and at least one independently operable valve device for controlling the volume flows in the supply and / or Abströmanschlüssen the actuator, a flatness-based follow-up control is used and a lower-level control is used, which is used by the Configuration of the valve device depends.

Eine dahingehende Aufgabe löst ein digitalhydraulisches Antriebssystem gemäß der Merkmalsausgestaltung des Patentanspruches 1 in seiner Gesamtheit.This object is achieved by a digital hydraulic drive system according to the feature configuration of claim 1 in its entirety.

Gemäß dem Kennzeichen von Anspruch 1 ist vorgesehen, dass die flachheitsbasierte Folgeregelung die Volumenströme als Stellgröße verwendet und dass als zu konfigurierende Ventileinrichtung eine digitalhydraulische Vollbrückenschaltung unter Einsatz von pulsweitenmodulierten Ventileinheiten (PWM) und/oder von Puls-Code-modulierten Ventileinheiten (PCM) und/oder von digitalen Volumenstromeinheiten (DFCU) zum Einsatz kommt.According to the characterizing part of claim 1, it is provided that the flatness-based sequence control uses the volume flows as a manipulated variable and that as the valve device to be configured a digital hydraulic full bridge circuit using pulse width modulated valve units (PWM) and / or pulse-code-modulated valve units (PCM) and / or or digital volume flow units (DFCU) is used.

Dadurch, dass eine flachheitsbasierte Folgeregelung eingesetzt ist, die die Volumenströme als Stellgröße verwendet, und eine unterlagerte Steuerung zum Einsatz kommt, die von der Konfiguration der Ventileinrichtung abhängt, ist ein Regelungsverfahren geschaffen, das sich insbesondere zur Verwendung unter Einsatz von Schnellschaltventilen (Pulsweitenmodulation) und/oder Parallelventilen (digital flow control unit) eignet.The fact that a flatness-based follow-up control is used, which uses the volume flows as a manipulated variable, and a subordinate control is used, which depends on the configuration of the valve device, a control method is provided which is particularly suitable for Use by using quick-change valves (pulse width modulation) and / or parallel valves (digital flow control unit).

Gemäß der vorliegenden erfindungsgemäßen Lösung wird der dem Prinzip der aufgelösten Steuerkante inhärente zusätzliche Freiheitsgrad dazu verwendet, den Druckabfall am jeweiligen Ventil oder einer Ventilgruppe im Rückstrom zu steuern und damit Kavitation sowie ein Entleeren der Speicher zu verhindern. Weitere Kriterien für die Verwendung dieses zusätzlichen Freiheitsgrads sind bei Bindel et al. ( Bindel, R.; Nitsche, R.; Rothfuß, R.; Zeitz, M.: Flachheitsbasierte Regelung eines hydraulischen Antriebs mit zwei Ventilen für einen Großmanipulator. In: at-Automatisierungstechnik, Bd. 48 (2000), Nr. 3, S. 124-131 ) zu finden, die diesen zusätzlichen Freiheitsgrad zur Regelung eines Manipulator-Gelenks mit 3/2-Wegeservoventilen nutzen.According to the present inventive solution, the additional degree of freedom inherent in the principle of the dissolved control edge is used to control the pressure drop across the respective valve or valve group in the return flow and thus prevent cavitation and emptying of the reservoirs. Further criteria for the use of this additional degree of freedom are described by Bindel et al. ( Bindel, R .; Nitsche, R .; Rothfuss, R .; Zeitz, M .: Flatness-based control of a hydraulic drive with two valves for a large manipulator. In: at-Automatisierungstechnik, Vol. 48 (2000), No. 3, pp. 124-131 ), which use this additional degree of freedom to control a manipulator joint with 3/2-Wegeservoventilen.

Weitere vorteilhafte Ausführungsbeispiele des digitalhydraulischen Antriebssystems sind Gegenstand der Unteransprüche. Bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Lösung wird innerhalb des Reglerentwurfs eine beobachtergestützte Lastabschätzung für den jeweils eingesetzten Aktuator durchgeführt.Further advantageous embodiments of the digital hydraulic drive system are the subject of the dependent claims. In a particularly preferred embodiment of the solution according to the invention, an observer-based load estimation for the respective actuator used is carried out within the controller design.

Im Folgenden wird die erfindungsgemäße Lösung anhand der Zeichnung näher erläutert. Dabei zeigen in prinzipieller und nicht maßstäblicher Darstellung die

Fig. 1a, 1b, 1c
mit üblichen hydraulischen Schaltsymbolen versehen verschiedene Antriebssystemkonzepte, einmal in der Art einer Vollbrücke (Fig. 1a) und einmal eine Ansteuerung im Zweiquadrantenbetrieb über den Zu- und Ablauf des Aktuators (Fig. 1 b) sowie gemäß der Darstellung nach der Fig. 1c verschiedene digital ansteuerbare hydraulische Schalt- und Steuerventile, die an die Stelle der einstellbaren Drosseln in den Fig. 1a, 1b treten;
Fig. 2
vergleichbar den Darstellungen nach den Fig. 1a und 1b die wesentlichen Komponenten eines digitalhydraulischen Antriebssystems mit vorgeschalteter Ventileinrichtung;
Fig. 3
den grundsätzlichen Aufbau einer Regelungsstruktur zum Regeln des digitalhydraulischen Antriebssystems;
Fig. 4a, 4b, 4c
in der Art von Graphen Angaben über das Regelungsverhalten unter Einsatz von DFCU-Ventilen;
Fig. 5a, 5b, 5c
in der Art von Graphen Angaben über das Regelungsverhalten unter Einsatz von PWM-Ventilen;
Fig. 6a, 6b, 6c, 6d
Auswertegraphen betreffend einen Systemvergleich, einmal unter Einsatz eines Lastschätzers und einmal ohne Lastschätzer; und
Fig. 7
in der Art eines hydraulischen Schaltplanes eine digitalhydraulische Ansteuerungseinrichtung als 6 BitVollbrücke konzipiert.
In the following, the solution according to the invention is explained in more detail with reference to the drawing. This show in principle and not to scale representation of the
Fig. 1a, 1b, 1c
with conventional hydraulic symbols provided different drive system concepts, once in the manner of a full bridge ( Fig. 1a ) and once a two-quadrant drive via the inlet and outlet of the actuator ( Fig. 1 b) and as shown in the Fig. 1c various digitally controlled hydraulic Switching and control valves, which replace the adjustable chokes in the Fig. 1a, 1b to step;
Fig. 2
comparable to the representations after the Fig. 1a and 1b the essential components of a digital hydraulic drive system with upstream valve device;
Fig. 3
the basic structure of a control structure for controlling the digital hydraulic drive system;
Fig. 4a, 4b, 4c
in the manner of graphs information on the control behavior using DFCU valves;
Fig. 5a, 5b, 5c
in the manner of graphs information about the control behavior using PWM valves;
Fig. 6a, 6b, 6c, 6d
Evaluation graphs relating to a system comparison, once using a load estimator and once without load estimator; and
Fig. 7
designed in the manner of a hydraulic circuit diagram, a digital hydraulic control device as a 6 bit full bridge.

Das betrachtete digitalhydraulische Antriebssystem besteht aus einem hydrostatischen Konstantmotor 10 mit hydropneumatischen Dämpfungsspeichern 12 an beiden Anschlüssen 14, 16. Die Ansteuerung erfolgt durch separate Ventileinheiten oder Ventilgruppen 18 einer Ventileinrichtung 20 an den Zu- und Abstromanschlüssen 14, 16 des Motors 10. Die Fig. 1a, 1b zeigen zwei mögliche Ausführungen einer solchen Antriebslösung mit aufgelöster Steuerkante. Unter "aufgelösten Steuerkanten" versteht man fachsprachlich, dass jede Steuerkante eines herkömmlichen Proportional-Wegeventils über zumindest ein Ventil mit zumindest einer Grund- und/oder einer Schaltstellung aufgelöst wird. Ein Ventil mit beispielsweise fünf Steuerkanten ist somit über zumindest fünf Schaltventile ersetzbar. Vorzugsweise werden sehr kleine, zeitlich sehr schnellschaltende Schaltventile eingesetzt in der Art von 2/2-Wege-Schaltventilen (vgl. Fig. 1c). Der Motor 10 ist an eine Druckversorgungsquelle mit dem Versorgungsdruck pS sowie an einen Tank- oder Rücklauf mit dem Tankdruck pT angeschlossen.The considered digital hydraulic drive system consists of a hydrostatic constant motor 10 with hydropneumatic damping accumulators 12 at both terminals 14, 16. The control is effected by separate valve units or valve groups 18 of a valve device 20 at the inlet and outlet ports 14, 16 of the engine 10. Die Fig. 1a, 1b show two possible embodiments of such a drive solution with dissolved control edge. By "resolved control edges" one understands technical language, in that each control edge of a conventional proportional directional control valve is released via at least one valve with at least one basic and / or one switching position. A valve with, for example, five control edges is thus replaceable over at least five switching valves. Preferably, very small, temporally very fast-switching switching valves are used in the manner of 2/2-way switching valves (see. Fig. 1c ). The motor 10 is connected to a pressure supply source with the supply pressure p S and to a tank or return to the tank pressure p T.

In der Fig. 1a ist eine Vollbrücke dargestellt, die einen Vierquadrantenbetrieb erlaubt. Das System aus Fig. 1b kann hingegen nur in zwei Quadranten betrieben werden, da der Volumenstrom an beiden Anschlüssen 14, 16 nur in eine Richtung fließen kann. Dennoch eignen sich beide Schaltungen für eine Ansteuerung mit aufgelöster Steuerkante, da in beiden Fällen die Volumenströme an den Anschlüssen 14, 16 unabhängig voneinander vorgegeben werden können. Der Fokus der vorliegenden Erfindung liegt jedoch auf der Vollbrückenschaltung nach Fig. 1 a und der Fig. 2. Um der Flexibilität möglicher Schaltungskonzepte dennoch Rechnung zu tragen, wird die vorgestellte Entwurfsmethode in zwei Teile geteilt: eine flachheitsbasierte Folgeregelung, die die Volumenströme als Stellgrößen verwendet und eine unterlagerte Steuerung des Volumenstroms, die von der Ventilkonfiguration abhängt. Entsprechend dieser Aufteilung werden im Folgenden die mathematischen Modelle für den Antrieb 10 und die Ventileinheiten 18, 20 im Einzelnen angegeben.In the Fig. 1a a full bridge is shown, which allows a four-quadrant operation. The system off Fig. 1b however, can only be operated in two quadrants, since the volume flow at both ports 14, 16 can only flow in one direction. Nevertheless, both circuits are suitable for control with resolved control edge, since in both cases, the volume flows at the terminals 14, 16 can be specified independently. However, the focus of the present invention is on the full bridge circuit Fig. 1 a and the Fig. 2 , However, in order to take the flexibility of possible circuit concepts into account, the presented design method is divided into two parts: a flatness-based follow-up control, which uses the volume flows as control variables and a lower-level control of the volume flow, which depends on the valve configuration. According to this division, the mathematical models for the drive 10 and the valve units 18, 20 are given below in detail.

Zunächst soll das Aktuatormodell prinzipiell vorgestellt werden.First, the actuator model will be presented in principle.

Der hydrostatische Motor 10 wird als System erster Ordnung J ω ˙ + + τ V M p 1 p 2 = 0

Figure imgb0001
modelliert, wobei J das Rotorträgheitsmoment, dd den Koeffizienten der viskosen Reibung, τ das Lastmoment, p1 und p2 die Drücke an den Motoranschlüssen 14, 16 und VM das Schluckvolumen des Motors bezeichnen. Es sei angemerkt, dass das Lastmoment τ nicht als Systemgröße, sondern als zeitvarianter Parameter aufgefasst wird, d.h. es wird beim Reglerentwurf als bekannt vorausgesetzt. In Ermangelung der Kenntnis des Lastmoments kann ein Lastbeobachter in der Reglerimplementierung eingesetzt werden.The hydrostatic motor 10 is called a first order system J ω ˙ + dw + τ - V M p 1 - p 2 = 0
Figure imgb0001
where J is the rotor inertia, dd is the coefficient of viscous friction, τ is the load torque, p 1 and p 2 are the pressures at the engine ports 14, 16 and V M is the displacement of the engine. It should be noted that the load torque τ is not understood as a system variable, but as a time-variant parameter, ie it is assumed that the controller design is known. In the absence of knowledge of the load torque, a load observer may be employed in the controller implementation.

Die Bilanzierung der Volumenströme an den Motoranschlüssen 14, 16 liefert q 1 q A , 1 V M ω G p 1 p 2 = 0

Figure imgb0002
q 2 q A , 2 + V M ω + G p 1 p 2 = 0
Figure imgb0003
The balancing of the volume flows at the motor connections 14, 16 supplies q 1 - q A . 1 - V M ω - G p 1 - p 2 = 0
Figure imgb0002
- q 2 - q A . 2 + V M ω + G p 1 - p 2 = 0
Figure imgb0003

Die Volumenströme, die in die Dämpfungsspeicher 12 gehen, werden mit qA,1 und qA,2 bezeichnet, der Leckagebeiwert des Motors 10 mit G. Für die beiden Speicher 12 werden einfache nichtlineare Modelle erster Ordnung p ˙ i V i , n p i q A , i = 0 mit i = 1 , 2

Figure imgb0004
basierend auf der Polytropengleichung p 0 , i V 0 , i n p i V i n = 0 mit i = 1 , 2
Figure imgb0005
verwendet, wobei mit Vi die Gasvolumina der Speicher 12, mit p0,i die Vorspanndrücke, mit V0,i die Gesamtvolumina und mit n der Polytropenexponent bezeichnet sind.The volume flows entering the attenuation memories 12 are denoted by q A, 1 and q A, 2 , the leakage coefficient of the motor 10 by G. For the two memories 12, simple first-order non-linear models are designated p ˙ i V i - . n p i q A . i = 0 with i = 1 . 2
Figure imgb0004
based on the polytope equation p 0 . i V 0 . i n - p i V i n = 0 with i = 1 . 2
Figure imgb0005
where V i is the gas volumes of the memories 12, p 0, i the bias pressures, V 0, i the total volumes and n the polytropic exponent.

Folglich lässt sich das Gesamtmodell des Antriebs (Fig. 5) in der Form J ω ˙ + + τ V M p 1 p 2 = 0

Figure imgb0006
V 0 , 1 p 0 , 1 1 n p ˙ 1 n p 1 1 + 1 n q 1 V M ω G p 1 p 2 = 0
Figure imgb0007
V 0 , 2 p 0 , 2 1 n p ˙ 2 n p 2 1 + 1 n q 2 + V M ω + G p 1 p 2 = 0
Figure imgb0008
schreiben.Consequently, the overall model of the drive ( Fig. 5 ) in the shape J ω ˙ + dw + τ - V M p 1 - p 2 = 0
Figure imgb0006
V 0 . 1 p 0 . 1 1 n p ˙ 1 - n p 1 1 + 1 n q 1 - V M ω - G p 1 - p 2 = 0
Figure imgb0007
V 0 . 2 p 0 . 2 1 n p ˙ 2 - n p 2 1 + 1 n - q 2 + V M ω + G p 1 - p 2 = 0
Figure imgb0008
write.

Die Ventileinheiten 18 der Ventileinrichtung 20 werden nachfolgend aus regelungstechnischer Sicht heraus näher beschrieben. Da, wie bereits zu Beginn erwähnt, der vorgestellte Ansatz zum Entwurf einer Folgeregelung für verschiedene Ventilkonfigurationen Gültigkeit besitzt, werden zwei Typen von digitalhydraulischer Vollbrückenschaltung (Fig. 1c, 2) exemplarisch diskutiert. In beiden Fällen werden die Dynamiken von Ventilen 18 und Ventilmagneten vernachlässigt. Eine DFCU-Vollbrücke kann dann wie folgt modelliert werden: q i = σ i , s 2 m 1 K DFCU p s p i sgn p s p i σ i , t 2 m 1 K DFCU p i p t sgn p i p t mit i = 1 , 2

Figure imgb0009
The valve units 18 of the valve device 20 are described below from a control point of view closer. Since, as already mentioned at the beginning, the proposed approach to the design of a sequence control for different valve configurations is valid, two types of digital hydraulic full bridge circuit ( Fig. 1c, 2nd ) discussed by way of example. In both cases, the dynamics of valves 18 and valve solenoids are neglected. A full-bridge DFCU can then be modeled as follows: q i = σ i . s 2 m - 1 K DFCU p s - p i sgn p s - p i - σ i . t 2 m - 1 K DFCU p i - p t sgn p i - p t with i = 1 . 2
Figure imgb0009

Der Versorgungsdruck und der Tankdruck werden jeweils mit ps und pt bezeichnet. Die Druck-Volumenstromcharakteristik der DFCUs werden durch den Koeffizienten KDFCU repräsentiert. Die Schaltindizes σi,s, σi,t ∈ {0,1,2,...,2m -1} bestimmen den Schaltzustand der m-bit DFCUs.The supply pressure and the tank pressure are respectively denoted by p s and p t . The pressure-volume flow characteristics of the DFCUs are represented by the coefficient K DFCU . The switching indices σ i, s , σ i, t ∈ {0,1,2, ..., 2 m -1} determine the switching state of the m-bit DFCUs.

Die Vollbrücke mit PWM-gesteuerten Ventilen 18 wird in ähnlicher Weise modelliert: q i = κ i , s K PWM p s p i sgn p s p i κ i , s K PWM p i p t sgn p i p t mit i = 1 , 2

Figure imgb0010
The full bridge with PWM controlled valves 18 is modeled in a similar way: q i = κ i . s K PWM p s - p i sgn p s - p i - κ i . s K PWM p i - p t sgn p i - p t with i = 1 . 2
Figure imgb0010

In diesem Fall bezeichnen κi,s und κi,t den Tastgrad der jeweils mit der Druck- oder Fluid-Versorgung und Tank verbundenen Ventile 18. Der Beiwert KPWM bestimmt eine lineare Näherung der Beziehung zwischen Volumenstrom und Tastgrad.In this case, κ i, s and κ i, t designate the duty cycle of the respective valves 18 connected to the pressure or fluid supply and tank. The coefficient K PWM determines a linear approximation of the relationship between volume flow and duty cycle.

Um Kurzschlussströme zu vermeiden, ist jeweils immer nur ein Volumenstrompfad in jedem Brückenzweig aktiv. Eine Unterscheidung basierend auf dem Vorzeichen des angeforderten Volumenstroms qi liefern die Steuerungsgleichungen σ i , s = 2 m 1 + q i K DFCU p s p i , 0 , q i > 0 q i 0 ,

Figure imgb0011
σ i , t = 0 , 2 m 1 + q i K DFCU p i p t , q i > 0 q i 0 ,
Figure imgb0012
und κ i , s = q i K PWM p s p i 0 , , q i > 0 q i 0 , κ i , t = 0 q i K PWM p s p i , q i > 0 q i 0 .
Figure imgb0013
In order to avoid short-circuit currents, only one volumetric current path is active in each bridge branch. A distinction based on the sign of the requested volume flow q i is provided by the control equations σ i . s = 2 m - 1 + q i K DFCU p s - p i . 0 . q i > 0 q i 0 .
Figure imgb0011
σ i . t = 0 . - 2 m - 1 + q i K DFCU p i - p t . q i > 0 q i 0 .
Figure imgb0012
and κ i . s = q i K PWM p s - p i 0 . . q i > 0 q i 0 . κ i . t = 0 q i K PWM p s - p i . q i > 0 q i 0 ,
Figure imgb0013

Das vorstehend vorgestellte Modell des Antriebs stellt ein nichtlineares Mehrgrößensystem dar. Die Regelung solcher Systeme übersteigt oftmals die Möglichkeiten einfacher PID-Regler. Dies gilt insbesondere für die Folgeregelung. Die so gennante differentielle Flachheit ist eine Systemeigenschaft, die nicht nur den Reglerentwurf sondern auch die Analyse und die Dimensionierung eines Systems sowie die Planung geeigneter Referenztrajektorien erleichtert.The model of the drive presented above represents a non-linear multi-variable system. The control of such systems often exceeds the possibilities of simple PID controller. This applies in particular to the follow-up regulation. The so-called differential flatness is a system feature that facilitates not only the design of the controller but also the analysis and sizing of a system as well as the planning of suitable reference trajectories.

Die Eigenschaft der differentiellen Flachheit bedingt die Existenz eines sogenannten Flachen Ausgangs. Dieser (virtuelle) Ausgang ist im Allgemeinen eine Funktion der Systemgrößen und ihrer Zeitableitungen. Eine zentrale Eigenschaft der Flachheit ist, dass die Trajektorien aller Sytemgrößen einschließlich der Stellgrößen durch die Trajektorien des flachen Ausgangs eindeutig bestimmt sind, während diese wiederum frei vorgegeben werden können. Dies impliziert, dass das gewünschte Systemverhalten in Form von Trajektorien für die Komponenten eines flachen Ausgangs vorgegeben werden kann. Die resultierende Regelungsaufgabe beschränkt sich dann darauf, die Trajektorienfolge des flachen Ausgangs sicherzustellen, was wiederum dadurch erleichtert wird, dass sich die Stellgrößen unmittelbar aus den Komponenten des flachen Ausgangs berechnen lassen.The property of differential flatness implies the existence of a so-called flat output. This (virtual) output is generally a function of system sizes and their time derivatives. A central feature of the flatness is that the trajectories of all system quantities, including the manipulated variables, are uniquely determined by the trajectories of the flat output, while these can in turn be freely specified. This implies that the desired system behavior can be given in the form of trajectories for the components of a flat output. The resulting control task is then limited to ensuring the trajectory sequence of the flat output, which in turn is facilitated by the fact that the manipulated variables can be calculated directly from the components of the flat output.

Das betrachtete Modell des Antriebs weist die Eigenschaft der differentiellen Flachheit auf. Ein flacher Ausgang y besteht aus der Winkelgeschwindigkeit y1 = ω und dem Summendruck y2 = p1 + p2 an den Motoranschlüssen 14, 16. Unter Verwendung der bereits vorgestellten Modellgleichungen betreffend das Aktuatormodell kann jede Systemgröße durch den flachen Ausgang y und seine Zeitableitungen ausgedrückt werden: ω = y 1

Figure imgb0014
p 1 = 1 2 V M V M y 2 + J y ˙ 1 + d y 1 + τ
Figure imgb0015
p 2 = 1 2 V M V M y 2 J y ˙ 1 d y 1 τ
Figure imgb0016
q 1 = V 0 , 1 p 0 , 1 1 n n 2 V M 1 n V M y ˙ 2 + J y ¨ 1 + d y ˙ 1 + τ ˙ V M y 2 + J y ˙ 1 + d y 1 + τ 1 + 1 n + V M y 1 + G V M J y ˙ 1 + d y 1 + τ
Figure imgb0017
q 2 = V 0 , 2 p 0 , 2 1 n n 2 V M 1 n V M y ˙ 2 J y ¨ 1 d y ˙ 1 τ ˙ V M y 2 J y ˙ 1 d y 1 τ 1 + 1 n + V M y 1 + G V M J y ˙ 1 + d y 1 + τ
Figure imgb0018
The considered model of the drive has the property of differential flatness. A flat output y consists of the angular velocity y 1 = ω and the sum pressure y 2 = p 1 + p 2 at the motor terminals 14, 16. Using the already presented model equations concerning the actuator model, any system size can be represented by the flat output y and its time derivatives be expressed: ω = y 1
Figure imgb0014
p 1 = 1 2 V M V M y 2 + J y ˙ 1 + d y 1 + τ
Figure imgb0015
p 2 = 1 2 V M V M y 2 - J y ˙ 1 - d y 1 - τ
Figure imgb0016
q 1 = V 0 . 1 p 0 . 1 1 n n 2 V M - 1 n V M y ˙ 2 + J y ¨ 1 + d y ˙ 1 + τ ˙ V M y 2 + J y ˙ 1 + d y 1 + τ 1 + 1 n + V M y 1 + G V M J y ˙ 1 + d y 1 + τ
Figure imgb0017
q 2 = - V 0 . 2 p 0 . 2 1 n n 2 V M - 1 n V M y ˙ 2 - J y ¨ 1 - d y ˙ 1 - τ ˙ V M y 2 - J y ˙ 1 - d y 1 - τ 1 + 1 n + V M y 1 + G V M J y ˙ 1 + d y 1 + τ
Figure imgb0018

Es sei angemerkt, dass die Flachheitseigenschaft auch erhalten bleibt, wenn die Ventilmodelle nach den Formeln (7) und (8) berücksichtigt werden, da die Stellgrößen σi,s/t und κi,s/t direkt aus den Volumenströmen qi und den Drücken pi berechnet werden, welche wiederum mittels Formel (11) aus dem flachen Ausgang y berechnet werden können. Zur Wahrung der Flexibilität und der Übersichtlichkeit wird der Reglerentwurf dennoch auf der Basis des Aktuatormodells nach Formel (6) durchgeführt. Die Flachheitseigenschaft beschränkt sich nicht exklusiv auf digitalhydraulische Antriebe, sondern lässt sich auf alle Systeme übertragen, die die Struktur (6) aufweisen. Dies gilt auch für hydraulische Linearantriebe wie z.B. Differentialzylinder, sofern die erste Komponente des flachen Ausgangs y durch die Zylinderposition ersetzt wird.It should be noted that the flatness property is also retained when the valve models according to the formulas (7) and (8) are taken into account, since the manipulated variables σ i, s / t and κ i, s / t directly from the volume flows q i and the pressures p i are calculated, which in turn can be calculated from the flat output y by means of formula (11). To maintain the flexibility and the clarity of the controller design is still performed on the basis of the actuator model according to formula (6). The flatness property is not limited exclusively to digital hydraulic drives, but can be transferred to all systems having the structure (6). This also applies to hydraulic linear drives such as differential cylinders, provided that the first component of the flat output y is replaced by the cylinder position.

Im Folgenden wird ohne Beschränkung allgemeiner Grundsätze davon ausgegangen, dass keine Leckage am Motor 10 auftritt, d.h. G = 0. Darüber hinaus werden die Vorspannbedingungen beider Speicher 12 als gleich angenommen: V0,1 = V0,2 = V0 und p0,1 = p0,2 = p0.Hereinafter, without limiting general principles, it is assumed that no leakage occurs at the motor 10, ie, G = 0. Moreover, the bias conditions of both memories 12 are assumed to be equal: V 0.1 = V 0.2 = V 0 and p 0 , 1 = p 0.2 = p 0 .

Im Folgenden wird die Flachheitsbasierte Folgeregelung näher erläutert. Dabei beruht der Entwurf der Flachheitsbasierten Folgeregelung auf drei Schritten. Zunächst müssen geeignete Referenztrajektorien für den flachen Ausgang y festgelegt werden. Anschließend werden die Regelgesetze für die Folgeregelung ermittelt. Schließlich werden die vom Folgeregler berechneten Sollvolumenströme als Eingang für die Ventilsteuerung verwendet. Die dahingehende Ventilsteuerung ist als Funktionsblock in der Fig. 3 dargestellt und dort mit (9), (10) bezeichnet, da dieser Funktionsblock den vorstehend beschriebenen Formeln (9) und (10) zugeordnet ist.In the following, the flatness-based follow-up control is explained in more detail. The design of the flatness-based sequence control is based on three steps. First, suitable reference trajectories must be set for the flat output y. Subsequently, the control laws for the follow-up control are determined. Finally, the setpoint flows calculated by the slave controller are used as input for valve control. The pertinent valve control is as a functional block in the Fig. 3 represented there and (9), (10), since this function block is associated with the formulas (9) and (10) described above.

Ein wesentlicher Vorteil des flachheitsbasierten Entwurfs ist, dass eine Unterscheidung verschiedener Betriebsmodi und das Umschalten zwischen diesen nicht notwendig ist. Da die Sollvolumenströme analytisch aus den Referenztrajektorien und den gemessenen Größen berechnet werden können, ist die einzige notwendige Unterscheidung jene des Vorzeichens dieser Sollvolumenströme, wie bereits in den Stellgesetzen (9) und (10) dargelegt. Im Vollbrückensytem nach der Fig. 1a wird das jeweils eine Verbindungsventil einer Gruppe 18 zur Versorgung für positive Volumenströme und das jeweils weitere Verbindungsventil einer weiteren Gruppe 18 zum Tank für negative Volumenströme verwendet. Im zweiten Beispiel nach der Fig. 1b ergibt sich eine Stellgrößenbeschränkung durch die Tatsache, dass nur positive Volumenströme realisiert werden können. Dies kann bei der Generierung geeigneter Solltrajektorien berücksichtigt werden, wie beispielsweise in von Löwis, J.; Rudolph, J.: Real-time trajectory generation for flat systems with constraints. In: Nonlinear and Adaptive Control, Springer: Berlin, Heidelberg, 2003, S. 385-394 beschrieben.An essential advantage of the flatness-based design is that it is not necessary to distinguish between different modes of operation and switch between them. Since the nominal volume flows can be calculated analytically from the reference trajectories and the measured variables, the only necessary distinction is that of the sign of these nominal volume flows, as already explained in the laws (9) and (10). In Vollbrückensytem after the Fig. 1a is used in each case a connecting valve of a group 18 for supplying positive volume flows and the respective further connecting valve of another group 18 to the tank for negative volume flows. In the second example after the Fig. 1b This results in a manipulated variable restriction due to the fact that only positive volume flows can be realized. This can be taken into account in the generation of suitable target trajectories, such as in Löwis, J .; Rudolph, J .: Real-time trajectory generation for flat systems with constraints. In: Nonlinear and Adaptive Control, Springer: Berlin, Heidelberg, 2003, pp. 385-394 described.

Im Folgenden wird der Einsatz der Referenztrajektorien näher beschrieben. Der erste Schritt beim Entwurf einer Folgeregelung ist die Vorgabe des gewünschten Systemverhaltens in Form von Referenztrajektorien für den flachen Ausgang y. Abgesehen von Einschränkungen technologischer Natur, wie z.B. Stellgrößenbeschränkungen, können diese Trajektorien frei und definitionsgemäß unabhängig voneinander vorgegeben werden. Wie am vorliegenden Beispiel demonstriert wird, mag es dennoch Vorteile mit sich bringen, eine künstliche Abhängigkeit dieser Trajektorien einzuführen.The use of the reference trajectories will be described in more detail below. The first step in the design of a sequence control is the specification of the desired system behavior in the form of reference trajectories for the flat output y. Apart from limitations of a technological nature, such as manipulated variable constraints, these trajectories can be free and be defined independently by definition. As demonstrated by the present example, it may nevertheless be advantageous to introduce an artificial dependence of these trajectories.

Die Trajektorie für die erste Komponente des flachen Ausgangs y, in Form der Winkelgeschwindigkeit ω, ergibt sich unmittelbar aus der Steuerungsaufgabe. Ein Arbeitspunktwechsel von ω0 zu ωf in der Übergangszeit tf ließe sich beispielsweise durch eine polynomiale Referenztrajektorie der Form t y 1 , r t = ω 0 + ω f ω 0 t 3 t f 3 10 15 t t f + 6 t 2 t f 2

Figure imgb0019
realisieren. Schließlich bleibt mit der Festlegung der Trajektorie des Summendrucks ein zweiter Freiheitsgrad. Durch die Wahl t y 2 , r t = 2 p min + J y ˙ 1 , t t + d y 1 , r t + τ t ,
Figure imgb0020
werden die Trajektorien der Drücke t p 1 , r t = p min + 1 2 1 + sgn J y ˙ 1 , r t + d y 1 , r t + τ t J y ˙ 1 , r t + d y 1 , r t + τ t t p 2 , r t = p min 1 2 1 sgn J y ˙ 1 , r t + d y 1 , r t + τ t J y ˙ 1 , r t + d y 1 , r t + τ t
Figure imgb0021
durch pmin, nach unten beschränkt während gleichzeitig die benötigte Antriebsdruckdifferenz p1-p2 bereitgestellt wird, d.h. die Gleichung (6a) wird durch die Referenztrajektorien erfüllt. Folglich kann die Schranke pmin für den Druck dazu verwendet werden, Kavitation (insbesondere bei Lastwechseln) oder auch den Abfall des Speicherdrucks unter den Vorspanndruck p0 zu verhindern. Darüberhinaus entspricht die Referenz des niedrigeren der beiden Drücke p1(t) und p2(t) jederzeit pmin. Folglich können durch einen geeigneten Kompromiss zwischen Druckabfall und Vorspanndruck die Drosselverluste verringert werden.The trajectory for the first component of the flat output y, in the form of the angular velocity ω, results directly from the control task. An operating point change from ω 0 to ω f in the transition time t f could be, for example, a polynomial reference trajectory of the form t y 1 . r t = ω 0 + ω f - ω 0 t 3 t f 3 10 - 15 t t f + 6 t 2 t f 2
Figure imgb0019
realize. Finally, with the determination of the trajectory of the total pressure remains a second degree of freedom. By choice t y 2 . r t = 2 p min + J y ˙ 1 . t t + d y 1 . r t + τ t .
Figure imgb0020
become the trajectories of the pressures t p 1 . r t = p min + 1 2 1 + sgn J y ˙ 1 . r t + d y 1 . r t + τ t J y ˙ 1 . r t + d y 1 . r t + τ t t p 2 . r t = p min - 1 2 1 - sgn J y ˙ 1 . r t + d y 1 . r t + τ t J y ˙ 1 . r t + d y 1 . r t + τ t
Figure imgb0021
limited by p min , while at the same time the required driving pressure difference p 1 -p 2 is provided, ie the equation (6a) is satisfied by the reference trajectories. Consequently, the barrier p min can be used for the pressure cavitation (especially at Load changes) or to prevent the drop of the accumulator pressure below the biasing pressure p 0 . In addition, the reference of the lower of the two pressures p 1 (t) and p 2 (t) at any time p min . Consequently, by a suitable compromise between pressure drop and bias pressure, the throttle losses can be reduced.

Im nächsten Schritt werden die einzelnen Regelgesetze für die Folgeregelung hergeleitet. Ziel dabei ist es, dass die Folgefehler e1 = y1 - y1,r und e2 = y2 - y2,r asymptotisch gegen Null konvergieren. Dazu wird eine lineare Fehlerdynamik e ¨ 1 + k 1 , 2 e ˙ 1 + k 1 , 1 e 1 + k 1 , 0 t 0 t e 1 d t = 0 e ˙ 2 + k 2 , 1 e 2 + k 2 , 0 t 0 t e 2 d t = 0

Figure imgb0022
zugewiesen, mit Ki,j > 0 und k10 < k1,2k1,1. Diese Aufgabe umfasst zwei Schritte: Zunächst wird das System durch eine statische Rückführung exakt linearisiert. Dieser Schritt profitiert erneut von der Flachheitseigenschaft insofern, dass es immer möglich ist, ein flaches System durch eine quasistatische Rückführung exakt zu linearisieren (vgl. Delaleau, E.; Rudolph, J.: Control of flat systems by quasi-static feedback of generalized states. In: Int'l J. Control, Bd. 71 (1998), Nr. 5, S. 745-765 ). Es sei betont, dass die Linearisierung durch Rückführung in keiner Weise eine Approximation darstellt, sondern lediglich eine Kompensation der Nichtlinearitäten. Da das resultierende System linear bezüglich eines neuen (virtuellen) Eingangs ist, genügt ein linearer Regler zur Sicherstellung der Fehlerdynamik.In the next step, the individual control laws for the follow-up regulation are derived. The goal here is that the following errors e 1 = y 1 -y 1, r and e 2 = y 2 -y 2, r converge asymptotically to zero. This is a linear error dynamics e ¨ 1 + k 1 . 2 e ˙ 1 + k 1 . 1 e 1 + k 1 . 0 t 0 t e 1 d t ~ = 0 e ˙ 2 + k 2 . 1 e 2 + k 2 . 0 t 0 t e 2 d t ~ = 0
Figure imgb0022
assigned, with K i, j > 0 and k 10 <k 1.2 k 1.1 . This task involves two steps: First, the system is exactly linearized by a static feedback. This step again benefits from the flatness property in that it is always possible to exactly linearize a flat system by quasistatic feedback (cf. Delaleau, E .; Rudolph, J .: Control of flat systems by quasi-static feedback of generalized states. In: Int'l J. Control, Vol. 71 (1998), No. 5, pp. 745-765 ). It should be emphasized that the linearization by feedback in no way represents an approximation, but only a compensation of the nonlinearities. Since the resulting system is linear with respect to a new (virtual) input, a linear controller is sufficient to ensure the error dynamics.

Eine Zustandsdarstellung des Systems (6) bzgl. des Eingangs (q1,q2) lautet x ˙ 1 = x 2

Figure imgb0023
x ˙ 2 = d j x 2 τ ˙ J + n V M J V 0 p 0 1 n g 1 x q 1 V M x 1 + g 2 x q 2 V M x 1
Figure imgb0024
x ˙ 3 = n V 0 p 0 1 n g 1 x q 1 V M x 1 g 2 x q 2 V M x 1
Figure imgb0025
mit dem Zustand x = (x1, x2, x3)T = (y1, y1, y2)T und g 1 x = 1 2 V M V M x 3 + J x 2 + d x 1 + τ 1 + 1 n ,
Figure imgb0026
g 2 x = 1 2 V M V M x 3 J x 2 d x 1 τ 1 + 1 n .
Figure imgb0027
A state representation of the system (6) with respect to the input (q 1 , q 2) reads x ˙ 1 = x 2
Figure imgb0023
x ˙ 2 = - d j x 2 - τ ˙ J + n V M J V 0 p 0 1 n G 1 x q 1 - V M x 1 + G 2 x q 2 - V M x 1
Figure imgb0024
x ˙ 3 = n V 0 p 0 1 n G 1 x q 1 - V M x 1 - G 2 x q 2 - V M x 1
Figure imgb0025
with the state x = (x 1 , x 2 , x 3 ) T = (y 1 , y 1 , y 2 ) T and G 1 x = 1 2 V M V M x 3 + J x 2 + d x 1 + τ 1 + 1 n .
Figure imgb0026
G 2 x = 1 2 V M V M x 3 - J x 2 - d x 1 - τ 1 + 1 n ,
Figure imgb0027

Die Rückführung q 1 = J V 0 p 0 1 n n V M v 1 + V M J v 2 + d J x 2 + τ ˙ J 2 g 1 x + V M x 1

Figure imgb0028
q 2 = J V 0 p 0 1 n n V M v 1 V M J v 2 + d J x 2 + τ ˙ J 2 g 2 x + V M x 1
Figure imgb0029
The return q 1 = J V 0 p 0 1 n n V M v 1 + V M J v 2 + d J x 2 + τ ˙ J 2 G 1 x + V M x 1
Figure imgb0028
q 2 = J V 0 p 0 1 n n V M v 1 - V M J v 2 + d J x 2 + τ ˙ J 2 G 2 x + V M x 1
Figure imgb0029

linearisiert das System (17) bzgl. des neuen (virtuellen) Eingangs v = (v1, v2 ): x ˙ 1 = x 2 , x ˙ 2 = v 1 , x ˙ 3 = v 2 .

Figure imgb0030
the system (17) linearizes with respect to the new (virtual) input v = (v 1, v 2 ): x ˙ 1 = x 2 . x ˙ 2 = v 1 . x ˙ 3 = v 2 ,
Figure imgb0030

Schließlich führt die Anwendung der Regelgesetze v 1 = y ¨ 1 , r k 1 , 2 y ˙ 1 y ˙ 1 , r k 1 , 1 y 1 y 1 , r k 1 , 0 t 0 t y 1 y 1 , r d t

Figure imgb0031
v 2 = y ˙ 2 , r k 2 , 1 y 2 y 2 , r k 2 , 0 t 0 t y 2 y 2 , r d t
Figure imgb0032
auf die Fehlerdynamik. In Summe wird der Folgeregler durch die Gleichungen (19) und (21) beschrieben (vgl. Fig. 3). In der Fig. 3 sind die einschlägigen Formeln für die jeweiligen Funktionsblöcke in Zahlen ausgedrückt und in Klammern gesetzt. Dabei betrifft der erste Funktionsblock 30 die Generierung von Trajektorien. Der zweite Funktionsblock 32 symbolisiert den Controller oder Regler. Der dritte Funktionsblock 34 bezieht sich auf die linearisierende Rückführung, und der Funktionsblock 36 soll den Schätzer betreffen. Ansonsten werden die bisher eingeführten Bezugsgrößen und Bezugszeichen auch für die Fig. 3 eingesetzt.Finally, the application of the rule laws v 1 = y ¨ 1 . r - k 1 . 2 y ˙ 1 - y ˙ 1 . r - k 1 . 1 y 1 - y 1 . r - k 1 . 0 t 0 t y 1 - y 1 . r d t ~
Figure imgb0031
v 2 = y ˙ 2 . r - k 2 . 1 y 2 - y 2 . r - k 2 . 0 t 0 t y 2 - y 2 . r d t ~
Figure imgb0032
on the error dynamics. In sum, the slave controller is described by equations (19) and (21) (cf. Fig. 3 ). In the Fig. 3 the pertinent formulas for the respective function blocks are expressed in numbers and in brackets. The first function block 30 relates to the generation of trajectories. The second function block 32 symbolizes the controller or controller. The third functional block 34 refers to the linearizing feedback and the function block 36 is intended to relate to the estimator. Otherwise, the previously introduced reference quantities and reference numerals for the Fig. 3 used.

Zusätzlich kann ein Beobachter 36 zum Einsatz kommen, was im Folgenden näher erläutert wird.In addition, an observer 36 can be used, which will be explained in more detail below.

Der Reglerentwurf aus dem voranstehenden Abschnitt beruht auf der Kenntnis des Lastmoments τ. Eine solche Kenntnis kann entweder auf einer Messung oder einer sehr genauen Kenntnis des zugrunde liegenden Prozesses beruhen. Falls diese Bedingungen jedoch nicht zutreffen, kann eine beobachtergestützte Lastschätzung verwendet werden.The controller design from the previous section is based on the knowledge of the load torque τ. Such knowledge can be based either on a measurement or a very accurate knowledge of the underlying process. However, if these conditions are not met, an observer-based load estimate can be used.

Sofern nur die Drücke p1 und p2 gemessen werden, kann ein Beobachter der Form ω ^ ˙ = d J ω ^ 1 J τ ^ + V M J p 1 p 2 + I 1 , 1 V ˜ 1 + I 1 , 2 V ˜ 2

Figure imgb0033
V ^ ˙ = q ^ 1 V M ω ^ + I 2 , 1 V ˜ 1 + I 2 , 2 V ˜ 2
Figure imgb0034
V ^ ˙ 2 = q ^ 2 + V M ω ^ + I 3 , 1 V ˜ 1 + I 3 , 2 V ˜ 2
Figure imgb0035
τ ^ ˙ = I 4 , 1 V ˜ 1 + I 4 , 2 V ˜ 2
Figure imgb0036
dazu verwendet werden, sowohl die Winkelgeschwindigkeit ω als auch das Lastmoment τ zu schätzen. Im Folgenden werden die geschätzten Größen durch ein "Dach" und Schätzfehler durch eine "Tilde" gekennzeichnet (e.g. ω̃ = (ω - ω̂). Zwar bringt die Verwendung der Speichervolumina V1 und V2 als Zustandsvariablen die nichtlineare Aufschaltung der Schätzfehler V ˜ 1 = V 0 p 0 1 n p 1 1 n V ^ 1 , V ˜ 2 = V 0 p 0 1 n p 2 1 n V ^ 2
Figure imgb0037
basierend auf den Druckmessungen mit sich, allerdings führt sie auf eine lineare Schätzfehlerdynamik ω ˜ ˙ V ˜ ˙ 1 V ˜ ˙ 2 τ ˜ ˙ = d J I 1 , 1 I 1 , 2 1 J V M I 2 , 1 I 2 , 2 0 V M I 3 , 1 I 3 , 2 0 0 I 4 , 1 I 4 , 2 0 ω ˜ V ˜ 1 V ˜ 2 τ ˜ + 0 q ˜ 1 q ˜ 2 0
Figure imgb0038
If only the pressures p 1 and p 2 are measured, an observer of the form ω ^ ˙ = - d J ω ^ - 1 J τ ^ + V M J p 1 - p 2 + I 1 . 1 V ~ 1 + I 1 . 2 V ~ 2
Figure imgb0033
V ^ ˙ = q ^ 1 - V M ω ^ + I 2 . 1 V ~ 1 + I 2 . 2 V ~ 2
Figure imgb0034
V ^ ˙ 2 = - q ^ 2 + V M ω ^ + I 3 . 1 V ~ 1 + I 3 . 2 V ~ 2
Figure imgb0035
τ ^ ˙ = I 4 . 1 V ~ 1 + I 4 . 2 V ~ 2
Figure imgb0036
be used to estimate both the angular velocity ω and the load torque τ. In the following, the estimated quantities are indicated by a "roof" and estimation errors by a "tilde" (eg ω = (ω-ω).) Although the use of the storage volumes V 1 and V 2 as state variables brings about the non-linear switching of the estimation errors V ~ 1 = V 0 p 0 1 n p 1 - 1 n - V ^ 1 . V ~ 2 = V 0 p 0 1 n p 2 - 1 n - V ^ 2
Figure imgb0037
based on the pressure measurements, but it leads to a linear estimation error dynamics ω ~ ˙ V ~ ˙ 1 V ~ ˙ 2 τ ~ ˙ = - d J - I 1 . 1 - I 1 . 2 - 1 J - V M - I 2 . 1 - I 2 . 2 0 V M - I 3 . 1 - I 3 . 2 0 0 - I 4 . 1 - I 4 . 2 0 ω ~ V ~ 1 V ~ 2 τ ~ + 0 q ~ 1 - q ~ 2 0
Figure imgb0038

Diese Fehlerdynamik kann für q̃1, q̃2 = 0 durch die Wahl geeigneter Beobachterverstärkungen li,j leicht asymptotisch stabil gestaltet werden. Falls die Volumenströme q1 und q2 nicht exakt bekannt sind, was in der Anwendung häufig der Fall ist, wird die Fehlerdynamik nicht-autonom mit den Fehlern q̃1 und q̃2 als Anregung durchgeführt. Dies beeinträchtigt die Verwendbarkeit des Schätzers, speziell im Fall digitalhydraulischer Systeme, bei denen die Abweichungen durch die Umschaltvorgänge der Ventile 18 eine hochdynamische Anregung darstellen. Abhilfe kann geschaffen werden durch Heranziehen einer zusätzlichen Messung der Winkelgeschwindigkeit w. In diesem Fall kann die Lastschätzung mittels des linearen Beobachters ω ^ ˙ = d J ω ^ 1 J τ ^ + V M J p 1 p 2 + I 1 ω ˜

Figure imgb0039
τ ^ ˙ = I 2 ω ˜
Figure imgb0040
erfolgen. Es ergibt sich die Schätzfehlerdynamik ω ˜ ˙ τ ˜ ˙ = d J I 1 1 J I 2 0 ω ˜ τ ˜ ,
Figure imgb0041
die für jede Wahl l 1 > d J , l 2 < 0
Figure imgb0042
asymptotisch stabil ist. Fig. 3 verdeutlicht die Struktur des insoweit geschlossenen Regelkreises.For q 1 , q 2 = 0, this error dynamics can easily be made asymptotically stable by choosing suitable observer gains l i, j . If the volume flows q 1 and q 2 are not known exactly, which is often the case in the application, the error dynamics are carried out non-autonomously with the errors q 1 and q 2 as excitation. This affects the usability of the estimator, especially in the case of digital hydraulic systems, in which the deviations by the switching operations of the valves 18 represent a highly dynamic excitation. Remedy can be provided by taking an additional measurement of the angular velocity w. In this case, the load estimation by means of the linear observer ω ^ ˙ = - d J ω ^ - 1 J τ ^ + V M J p 1 - p 2 + I 1 ω ~
Figure imgb0039
τ ^ ˙ = I 2 ω ~
Figure imgb0040
respectively. The result is the estimation error dynamics ω ~ ˙ τ ~ ˙ = - d J - I 1 - 1 J - I 2 0 ω ~ τ ~ .
Figure imgb0041
the for every choice l 1 > - d J . l 2 < 0
Figure imgb0042
asymptotically stable. Fig. 3 illustrates the structure of the extent closed loop.

Zwei Varianten des betrachteten digitalhydraulischen Systems wurden mit dem Simulationsprogramm AMESim simuliert, um die vorgeschlagene Folgeregelung zu illustrieren. Im ersten Fall wird eine Vollbrücke mit 6Bit-DFCUs (Fig. 7) als Brückenwiderständen zur Ansteuerung verwendet. Die DFCUs bestehend aus modifizierten HYDAC WS08W Ventilen mit Schaltzeiten von 5 ms und nachgeschalteten Blenden mit den Durchmessern 0,45 mm, 0,62 mm, 0,9 mm, 1,28 mm, 1, 83 mm und 3 mm. Die Simulationsmodelle der Ventile 18 bilden die mechanische Ventilkolbendynamik, ein einfaches Magnetmodell erster Ordnung mit Sättigung sowie einer unterlagerten Stromregelung. Im zweiten Beispiel bestehen die Brückenwiderstände aus Ventilgruppen 18 desselben Typs, die durch ein 50 Hz PWM-Signal angesteuert werden. Das von AMESim bereitgestellte Redlich-Kwong-Soave Gasmodell ( Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. In: Chem. Eng. Sci., Bd. 27 (1972), Nr. 6, S. 1197-1203 ) wurde zur Simulation der Dämpfungsspeicher 12 verwendet. Das zum Einsatz kommende Motormodell 10 entspricht wiederum Gleichung (1). Die verwendeten physikalischen Parameter können der nachfolgenden Tabelle entnommen werden. Die Reglerparameter wurden zu k1,0 = 8000 s-3, k1,1 =1280 s-2, k1,2 = 64 s-1, k2,0 = 400 s-2 und k2,1 = 40 s-1 gewählt. Tabelle: Physikalische Systemparameter tcA Parameter Symbol Wert Einheit Rotorträgheitsmoment J 2.35·10-2 Kgm2 Motordämpfungskoeffizient d 3.18·10-2 Nms Schluckvolumen VM 2.4·10-6 m3rad Speichervolumen V0 1·10-4 m3 Speichervorspanndruck p0 1.5·106 Pa Two variants of the considered digital hydraulic system were simulated with the simulation program AMESim to illustrate the proposed sequence control. In the first case, a full bridge with 6-bit DFCUs ( Fig. 7 ) used as bridge resistors for driving. The DFCUs consist of modified HYDAC WS08W valves with switching times of 5 ms and downstream apertures with diameters of 0.45 mm, 0.62 mm, 0.9 mm, 1.28 mm, 1, 83 mm and 3 mm. The simulation models of the valves 18 form the mechanical valve piston dynamics, a simple magnetic model of the first order with saturation and a subordinate current control. In the second example, the bridge resistors consist of valve groups 18 of the same type, driven by a 50 Hz PWM signal. The Redlich Kwong Soave provided by AMESim Gas model ( Soave, G .: Equilibrium constants from a modified Redlich-Kwong equation of state. In: Chem. Eng. Sci., Vol. 27 (1972), No. 6, pp. 1197-1203 ) was used to simulate the damping memory 12. The applied motor model 10 again corresponds to equation (1). The physical parameters used can be found in the following table. The controller parameters became k 1.0 = 8000 s -3 , k 1.1 = 1280 s -2 , k 1.2 = 64 s -1 , k 2.0 = 400 s -2 and k 2.1 = 40 s -1 is selected. Table: Physical system parameters tcA parameters symbol value unit Rotor inertia J 2.35 · 10 -2 Kgm 2 Motor damping coefficient d 3.18 · 10 -2 nms displacement V M 2.4 · 10 -6 m 3 rad storage volume V 0 1 · 10 -4 m 3 Memory bias pressure p 0 1.5 · 10 6 Pa

Die Referenztrajektorie der Winkelgeschwindigkeit w umfasst drei Arbeitspunktwechsel. Zunächst wird der Motor 10 aus dem Stillstand auf 900 min-1 beschleunigt, dann auf 100 min-1 gebremst und schließlich erfolgt eine Reversierung auf -600 min-1. Die Ergebnisse der Simulation der DFCU-Brücke sind in den Fig. 4a, 4b, 4c dargestellt, wobei in x-Richtung die Zeit in Sekunden aufgetragen ist und in der Fig. 4a in y-Richtung die Winkelgeschwindigkeit w mit der Einheit 1/min. In den Fig. 4b und 4c ist in y-Richtung der Druck in der Einheit bar angegeben. In Blickrichtung auf die Fig. 4a gesehen ist rechts oben ein Detailausschnitt wiedergegeben, aus dem Graphen nach der Fig. 4a. Sofern im Regelmodell Referenztrajektorien zum Einsatz kommen, sind die Kurvenverläufe geglättet und insbesondere die gezackten Verläufe in den Fig. 4b und 4c sind dann entsprechend weggeglättet.The reference trajectory of the angular velocity w comprises three operating point changes. First, the engine 10 is accelerated from standstill to 900 min -1 , then braked to 100 min -1 and finally reversed to -600 min -1 . The results of the simulation of the DFCU bridge are in the Fig. 4a, 4b, 4c represented, wherein in the x-direction, the time is plotted in seconds and in the Fig. 4a in y-direction, the angular velocity w with the unit 1 / min. In the Fig. 4b and 4c the pressure in the unit bar is indicated in the y-direction. In the direction of the Fig. 4a Seen on the top right is a detail shown, from the graph after the Fig. 4a , If reference trajectories are used in the control model, the curves are smoothed and, in particular, the jagged courses in the Fig. 4b and 4c are then smoothed out accordingly.

Es ist ferner zu sehen, dass das System der Referenztrajektorie der Winkelgeschwindigkeit sehr gut folgen kann. In der Detailansicht sind kleinere Oszillationen zu erkennen, die durch die nicht-idealen Umschaltvorgänge der Ventile 18 entstehen. Wie der Darstellung der Druckverläufe entnommen werden kann, führen Abweichungen von den Referenztrajektorien zu einer leichten Verletzung der unteren Schranke pmin. Folglich ist die Berücksichtigung eines Sicherheitsposlters bei der Festlegung dieser Schranke empfehlenswert. Diese Abweichungen haben ihren Ursprung in der vereinfachten Modellierung der Ventile sowie in der beschränkten Bandbreite der Regler. Fig. 5a, 5b, 5c zeigen die Simulationsergebnisse für das PWMgesteuerte System. Während auf den Drucksignalen deutlich größere Oszillationen zu erkennen sind, ähnelt das Folgeverhalten der Winkelgeschwindigkeit ω jenem aus dem DFCU-System. Was die Bezeichnung der x- und y-Koordinaten anbelangt sowie die weiter getroffenen Ausführungen entspricht die Fig. 5a der Fig. 4a und die Fig. 5b und 5c den Fig. 4b bzw. 4c.It can also be seen that the system of reference trajectory can follow the angular velocity very well. In the detailed view smaller oscillations can be seen, which are caused by the non-ideal switching operations of the valves 18. As can be seen from the representation of the pressure curves, deviations from the reference trajectories lead to a slight violation of the lower barrier p min . Consequently, it is advisable to consider a safety footprint when defining this barrier. These deviations have their origin in the simplified modeling of the valves and in the limited bandwidth of the controllers. Fig. 5a, 5b, 5c show the simulation results for the PWM controlled system. While significantly larger oscillations can be seen on the pressure signals, the follow-up behavior of the angular velocity ω is similar to that of the DFCU system. As far as the designation of the x- and y-coordinates is concerned, as well as the further statements correspond to the Fig. 5a of the Fig. 4a and the Fig. 5b and 5c the Fig. 4b or 4c.

Der Einfluss des Lastschätzers wird durch Fig. 6 verdeutlicht. Das DFCU-System wurde mit einem plötzlichen Lastwechsel innerhalb 100 ms von 0 Nm nach 20 Nm bei t=2s und von 20 Nm nach 0 Nm bei t=3s simuliert. Die Beobachterparameter wurden zu l1 =2000 s-1 und l2 = -2.35 104 Nm s-1 gewählt. Es zeigt sich, dass die Abweichungen der Winkelgeschwindigkeit von ihrer Referenztrajektorie von 18% auf 2% deutlich reduziert werden können durch Verwendung des Lastbeobachters. Zudem zeigt sich, dass die Referenztrajektorie für den Summendruck ohne die Lastschätzung nicht korrekt berechnet werden kann (vgl. Gleichung (13)). Aus diesem Grund verletzt der Druck p2 die untere Schranke bei pmin = 20 bar dauerhaft. Im Gegensatz dazu vermeidet das beobachtergestützte System solche Verletzungen der Beschränkung abgesehen von Spitzen aufgrund der dynamischen Beschränkungen des Systems. Die stark schwankend gezeichneten Verläufe betreffen Simulationswerte ohne Lastbeobachter.The influence of the load estimator is through Fig. 6 clarified. The DFCU system was simulated with a sudden load change within 100 ms from 0 Nm to 20 Nm at t = 2s and from 20 Nm to 0 Nm at t = 3s. The observer parameters were chosen to be l 1 = 2000 s -1 and l 2 = -2.35 10 4 Nm s -1 . It can be seen that the deviations of the angular velocity from its reference trajectory from 18% to 2% can be significantly reduced by using the load observer. It also shows that the reference trajectory for the total pressure can not be calculated correctly without the load estimate (see equation (13)). For this reason, the pressure p 2 permanently violates the lower barrier at p min = 20 bar. In contrast, the observer-based system avoids such violations of limitation other than spikes due to the dynamic limitations of the system. The strongly fluctuating graphs refer to simulation values without load observers.

Die vorgestellte Erfindung betrifft eine flachheitsbasierte Folgeregelung für einen digitalhydraulischen Antrieb, basierend auf dem Prinzip der aufgelösten Steuerkante. Die vorgestellten Regelungsstrategien vermeiden die Unterscheidung von Betriebsmodi und daraus resultierendem Umschalten zwischen solchen Modi. Der zusätzliche Freiheitsgrad, der mit der zweiten Stellgröße einhergeht, wird dazu verwendet, den Minimaldruck an den Motoranschlüssen 14, 16 festzulegen. Auf diese Weise kann das Entleeren der Dämpfungsspeicher 12 und Kavitation verhindert werden. Darüber hinaus können die Druckverluste bei Verwendung einer variablen Versorgung auf das notwendige Minimum beschränkt werden. Ein Lastschätzer wird wie aufgezeigt verwendet, um das Lastmoment τ an der Motorwelle des Konstantmotors 10 zu bestimmen. Nomenklatur Variable Bedeutungsinhalt Einheit d Koeffizient der viskosen Reibung [N/m2] G Leckagebeiwert des Motors [m4/kg·s] J Rotorträgheitsmoment [kgm2] KDFCU DFCU Koeffizient m 4 / kg m

Figure imgb0043
KpWM PWM Ventil-Koeffizient m 4 / kg m
Figure imgb0044
Ki,j Reglerparameter s i + j 4
Figure imgb0045
Ki,j Beobachterverstärkungen misc. nn Polytropenexponent [1] m Anzahl der DFCU-Ventile [1] p1, p2 Drücke [Pa] p0,1 p0,2 Speicherladedrücke [Pa] ps, pt Versorgungs-, Tankdruck [Pa] q1, q2 Volumenströme an den Aktuatoranschlüssen [m3/s] q1,A, q2,A Speichervol umenströem [m3/s] V1, V2 Speichervolumen [m3] V0,1, V0,2 Gesamt-Speichervolumesn [m3] VM Schluckvolumen des Konstantmotors [m3] v1, v2 Rückführgrößen misc. x = (x1, x2, x3)T Zustandsvariablen misc. y = (y1, y2)T Flacher Ausgang misc. κi,s/t PWM Tastgrad [1] σi,s/t DFCU Schaltindizes [1] τ Lastmoment [Nm] ω Winkelgeschwindigkeit [rad/s] The present invention relates to a flatness-based follow-up control for a digital hydraulic drive, based on the principle of the resolved control edge. The presented control strategies avoid the distinction of operating modes and the resulting switching between such modes. The additional degree of freedom associated with the second manipulated variable is used to set the minimum pressure at the motor terminals 14, 16. In this way, the emptying of the damping memory 12 and cavitation can be prevented. In addition, the pressure losses can be limited to the necessary minimum when using a variable supply. A load estimator is used as shown to determine the load torque τ on the motor shaft of the constant velocity motor 10. nomenclature variable meaning contents unit d Coefficient of viscous friction [N / m 2 ] G Leakage factor of the motor [M4 / kg · s] J Rotor inertia [kgm 2 ] KDFCU DFCU coefficient m 4 / kg m
Figure imgb0043
KpWM PWM valve coefficient m 4 / kg m
Figure imgb0044
K i, j controller parameters s i + j - 4
Figure imgb0045
K i, j observers reinforcements misc. n n polytropic [1] m Number of DFCU valves [1] p 1 , p 2 pressures [Pa] p 0.1 p 0.2 Memory boost pressures [Pa] p s , p t Supply, tank pressure [Pa] q 1 , q 2 Volume flows at the actuator connections [m 3 / s] q 1, A , q 2, A Storage volume flow [m 3 / s] V 1 , V 2 storage volume [m 3 ] V 0.1 , V 0.2 Total Speichervolumesn [m 3 ] V M Suction volume of the constant motor [m 3 ] v 1 , v 2 Feedback variables misc. x = (x 1 , x 2 , x 3 ) T state variables misc. y = (y 1 , y 2 ) T Flat outlet misc. κ i, s / t PWM duty cycle [1] σ i, s / t DFCU switching indexes [1] τ load torque [Nm] ω angular velocity [Rad / s]

Claims (8)

  1. A digital hydraulic drive system consisting of
    - an actuator and
    - at least one independently operable valve device (20) for the control of the volumetric flows in the inflow and/or outflow connections (14, 16) of the actuator,
    flatness-based follow-up regulation being used and a secondary control being employed which is dependent upon the configuration of the valve device (20), characterised in that the flatness-based follow-up regulation uses the volumetric flows as the control variable and that a digital hydraulic full bridge circuit using pulse width-modulated valve units (PWM) and/or pulse code-modulated valve units (PCM) and/or digital volumetric flow units (DFCU) is used as the valve device (20) to be configured.
  2. The drive system according to Claim 1, characterised in that for the implementation of the flatness-based follow-up regulation reference trajectories for a flat output (y) are first of all established, then the regulating laws for the follow-up regulation are determined and then the target volumetric flows calculated by a follow-up regulator are used as the input for the valve control.
  3. The drive system according to Claim 1 or 2, characterised in that the flatness-based follow-up regulation is based on the principle of the resolution control edge.
  4. The drive system according to any of the preceding claims, characterised in that the actuator is a fixed displacement motor (10) and that the control of the fixed displacement motor (10) takes place in four quadrant operation.
  5. The drive system according to any of the preceding claims, characterised in that the additional degree of freedom inherent to the principle of the resolution control edge is used to control the decrease in pressure at the respective valve of the valve device (20) in the return flow.
  6. The drive system according to any of the preceding claims, characterised in that the actuator is a fixed displacement motor (10) and that the flat output (y) that forms part of the design is determined from the angular velocity (co) of the fixed displacement motor (10) as the actuator and the total pressure (p1 + p2) at its fluid-conveying motor connections (14, 16).
  7. The drive system according to any of the preceding claims, characterised in that the regulator is designed with knowledge of a load reference value and that a monitor-supported load assessment is used for this purpose.
  8. The drive system according to any of the preceding claims, characterised in that the load assessment takes place by means of a linear monitor.
EP15000306.9A 2014-03-01 2015-02-03 Digital hydraulic drive system Active EP2933502B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014003084.9A DE102014003084A1 (en) 2014-03-01 2014-03-01 Digital hydraulic drive system

Publications (2)

Publication Number Publication Date
EP2933502A1 EP2933502A1 (en) 2015-10-21
EP2933502B1 true EP2933502B1 (en) 2017-08-16

Family

ID=52473725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15000306.9A Active EP2933502B1 (en) 2014-03-01 2015-02-03 Digital hydraulic drive system

Country Status (2)

Country Link
EP (1) EP2933502B1 (en)
DE (1) DE102014003084A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217337A1 (en) * 2018-10-10 2020-04-16 Festo Se & Co. Kg Movement device, tire handling device and method for operating a fluidic actuator
CN109441904B (en) * 2018-12-26 2020-07-14 燕山大学 Digital valve bank PWM and PCM composite control device and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021000A1 (en) * 2010-05-12 2011-11-17 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Method for controlling a friction clutch
DE102012006219A1 (en) * 2012-03-27 2013-10-02 Robert Bosch Gmbh Method and hydraulic control arrangement for controlling a consumer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2933502A1 (en) 2015-10-21
DE102014003084A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
DE3207392C2 (en) Device for self-adapting position control of an actuator
EP2579112B1 (en) Regulating device
EP0431287A1 (en) Process for optimised operation of two or more compressors in parallel or series operation
DE102017213650A1 (en) Method for controlling a hydraulic system, control unit for a hydraulic system and hydraulic system
DE10261727A1 (en) Control system in fuzzy logic for a wheel of a motor vehicle and method for implementing a fuzzy logic unit for such a wheel of a motor vehicle
DE102011007083A1 (en) A method of controlling the positioning of an actuator with a wave gear
EP0998700A2 (en) Method for generating connecting paths which can be used for guiding a vehicle to a predetermined target path
EP2933502B1 (en) Digital hydraulic drive system
DE4342057A1 (en) Optimum control of electrohydraulic force servo
DE102019210003A1 (en) Real-time capable trajectory planning for axial piston pumps in swash plate design with systematic consideration of system restrictions
EP2304515A1 (en) Control arrangement having a pressure limiting valve
DE102016214708A1 (en) Continuous valve unit, hydraulic axis and method for operating a hydraulic axis
DE102018206114A1 (en) Method for driving a valve and corresponding device
DE1523535C3 (en) Self-adapting control loop
DE102018211738A1 (en) Real-time control strategy for hydraulic systems with systematic consideration of actuation (rate) and condition size restrictions
DE10034789B4 (en) Method and device for compensating the non-linear behavior of the air system of an internal combustion engine
DE602006000731T2 (en) Auto-adaptive adjustment device for position control of actuators in a drive system by means of sliding mode method and corresponding operating method
DE19528253C2 (en) Method and device for avoiding controller instabilities in surge limit controls when operating turbomachines with controllers with high proportional gain
DE102020213262A1 (en) Method for operating a hydraulic drive
DE102009051514A1 (en) Control device i.e. microcontroller, for controlling pressure of volume of gas stream i.e. compressed air, has combination device providing actual actuating variable to actuating unit to adjust initial-pressure to pre-set reference-pressure
WO2009003643A1 (en) Method and device for adjusting a regulating device
EP3165801A1 (en) Method and device for controlling a solenoid valve
DE102008038484B4 (en) State control system for controlling a control variable of a device, in particular a pneumatic welding tongs
DE102008001311A1 (en) Method for operating controller, particularly for controlling internal combustion engine, involves limiting output signal of controller as correcting variable on pre-determined position limits by integral element
DE102016209387A1 (en) Method for setting a setting law for a sliding mode controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160316

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015001645

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015001645

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 919350

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230207

Year of fee payment: 9

Ref country code: DE

Payment date: 20230228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231214

Year of fee payment: 10

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10