EP2930723B1 - Device and method for processing a wire - Google Patents

Device and method for processing a wire Download PDF

Info

Publication number
EP2930723B1
EP2930723B1 EP15162545.6A EP15162545A EP2930723B1 EP 2930723 B1 EP2930723 B1 EP 2930723B1 EP 15162545 A EP15162545 A EP 15162545A EP 2930723 B1 EP2930723 B1 EP 2930723B1
Authority
EP
European Patent Office
Prior art keywords
wire
oven
annealing
coating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15162545.6A
Other languages
German (de)
French (fr)
Other versions
EP2930723A3 (en
EP2930723A2 (en
Inventor
Gerald Pascher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P & F Maschinenbau GmbH
P & F Maschb GmbH
Original Assignee
P & F Maschinenbau GmbH
P & F Maschb GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by P & F Maschinenbau GmbH, P & F Maschb GmbH filed Critical P & F Maschinenbau GmbH
Publication of EP2930723A2 publication Critical patent/EP2930723A2/en
Publication of EP2930723A3 publication Critical patent/EP2930723A3/en
Application granted granted Critical
Publication of EP2930723B1 publication Critical patent/EP2930723B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas

Definitions

  • the invention relates to a method and a device for processing a wire, in particular an aluminum wire, wherein in a coating device for applying at least one layer of a coating on the wire at least one layer of a coating material is applied to the wire and the applied layer then in a baking oven for Drying or curing of the applied layer is dried or hardened, wherein the wire before the application of the layer and recrystallization of the wire through a separate from the baking oven annealing furnace, which is arranged in the wire conveying direction in front of the baking oven and is arranged for recrystallization of the wire promoted becomes.
  • the invention relates both to the preparation of a previously drawn wire on a coating and the application of the coating, wherein the wire is an uncoated bare wire, the metal structure is distorted due to the plastic deformation of the wire during the drawing, so that it has a corresponding reduced extensibility or Has tensile strength.
  • one or more coating materials may be applied to the wire in multiple layers and / or as a coating composition. Suitable coating materials are any lacquers or synthetic resins which are conventionally used in the coating or enameling of wires, in particular polyester imide (PEI) and / or polyamide imide (PAI).
  • the baking oven (often referred to as a coating oven, kiln, or "curing oven”) is designed to dry and cure the coating.
  • In-line annealing of copper wires in thermally heated tube annealing (or profiles), which uses inert gases such as water vapor (or nitrogen), is currently taking place in enamel wire systems. are flowed through.
  • tube annealing are for example in the EP 0 448 999 A2 and the DE 31 18 839 A1 shown.
  • the heat input into the wire takes place in such tube annealing convective on the proper movement of the wire through the inert gas atmosphere, heat radiation between Glührohrinnenwand and wire, and finally via heat conduction between Glührohrinnenwand and standing in direct contact with this wire (grinding wire).
  • the heat input through heat conduction is dominant.
  • the contact between the wire and the tube wall is even required in this case to provide the necessary heat transfer rates at the high throughput speeds.
  • the abrasion and the damage of the copper wire surface by the contact with the tube wall are very small.
  • the steam takes over the function as a protective gas against oxidation of the copper and at the same time the cleaning of drawing agent residues of the previously drawn bare wire.
  • Attempts to anneal aluminum wires with such glow tube systems have repeatedly failed.
  • Aluminum has a much lower melting point (660 ° C) than copper (1083 ° C) and is much softer due to the material. Direct contact of the rapidly moving aluminum wire with the glow tube inner wall leads at temperatures corresponding to massive abrasion and damage to the wire surface, and ultimately to the timely blockage of the glow tubes.
  • this describes CN 102074308 A a device and a process for producing painted aluminum wires, wherein the annealing of the unpainted wires and the curing after the application of the paint is carried out in one and the same furnace.
  • the problem here is that for physical and thermodynamic reasons, however, these processes require different wire temperatures to complete them. Since both the soft-to-glow wire traces (ie, the tracks or sections of the wire in the oven) and the wire tracks to be coated forcibly have the same residence time in the oven at the same furnace conditions, but now form almost the same temperature profiles along the individual wire tracks.
  • the JP H05-325684 A shows a painting process for copper wires with an annealing furnace, wherein the still soft wire is painted after annealing and used for curing of the wire itself heat energy emitted.
  • the CN 103000313 A shows a vertical painting machine in which a wire is conveyed from a unwinding by a glow, a paint container and a separate baking oven.
  • the CN 103258600 A relates to a painting process for aluminum wires, wherein the wires are annealed in a three-layer process with different temperatures. Subsequently, a primer layer and a lacquer layer is applied directly to the wire and cured in a baking oven.
  • JP S59-28530 A a manufacturing process for painted copper or aluminum wires, wherein the drawn wire is continuously passed through an inline annealing system and annealed at a constant coating speed. After the annealing furnace, the wire is coated with varnish, which is then cured in its own baking oven.
  • the method should also largely avoid detrimental to the process safety heating of solvent vapors and at the same time reduce the energy consumption associated with the process or the device.
  • the invention provides that the wire in the annealing furnace is conveyed by a substantially self-contained flow of a hot gas, in particular a circulating air flow.
  • the annealing furnace is preferably designed for convective heating of the wire by means of a heated in a substantially closed circuit heated gas, in particular by means of hot air.
  • the annealing furnace (or simply called annealer) is preferably designed for non-contact heating of the wire, so that even a wire made of a material with a relatively low softening temperature is not damaged in the annealing furnace.
  • the annealing furnace is provided separately from the stoving means in this context means that the annealing furnace is spatially and thermally separated from the stoving furnace and has an independent heat supply, in particular an independent heating element or an independent heat generating unit.
  • the arrangement of the annealing furnace in the wire conveying direction before the baking oven is of course independent of the geometric arrangement of the two ovens and merely means that in the course of producing a coated wire, a portion of the wire to be processed first passes the annealing furnace, ie is conveyed through the annealing furnace, before the same section passes the baking oven.
  • the annealing furnace is adjusted in terms of the temperature generated in the annealing furnace or the temperature profile to which the wire is exposed, so that an optimal recrystallization of the metal structure of the wire is achieved.
  • the recrystallization takes place, as is known, above a temperature dependent on the wire material, which can be suitably selected by the person skilled in the art, and the annealing furnace can be adjusted accordingly.
  • the wire is preferably coated after the last exit from the annealing furnace and before the first entry into the stoving furnace.
  • the separate ovens allows a high wire entry temperature into the annealing furnace because no solvent vapors are to be feared, and the wire does not need to be cooled after drawing. Due to the closed flow or the circulating air, the annealing furnace has a particularly low process air discharge as well as a lower fresh air supply required compared with a furnace which is set up for drying a wire coating. The otherwise necessary heating of the fresh air supplied can therefore be omitted, at least for the most part, which reduces the energy consumption associated with the method or device.
  • the annealing furnace allows a separate annealing process of the wire with higher transport rates than in the subsequent baking oven. The flow of the hot gas may be directed against the wire conveying direction. The higher transport rates in the annealing furnace are achieved by a higher temperature level and, in particular in the case of a flow directed counter to the direction of the wire feed, by better convective heat transfer by means of suitable flow guidance.
  • the annealing furnace is controllable independently of the baking oven for setting different temperature profiles and corresponding wire temperatures.
  • the energy consumption associated with the generation of the respective temperature profile can be optimized in this case to the respective task of the furnace.
  • the wire is heated in the baking oven to a relatively lower wire temperature than in the annealing furnace. Accordingly, during operation, the average temperature in the annealing furnace is advantageously higher than the average temperature in the stoving furnace. Due to the temperature difference between baking oven and annealing furnace different wire temperatures can be achieved in the two ovens even at the same wire speed, ie with the same amount of wire carried out. Due to the lower temperature in the baking oven, temperature losses during the coating of the wire can be reduced and thus the energy consumption can be further reduced overall.
  • the lower temperatures in the baking oven are also advantageous in terms of process reliability, since thus excessive heating of the solvent vapors produced during drying is avoided. Due to the higher wire temperature in the annealing furnace, which may be above a suitable or permissible for the drying of a coating temperature, a much better recrystallization and thus better softness and extensibility (higher elongation at break) of the wire can be achieved.
  • the wire temperature can, for example, in the annealing furnace above 360 ° C, in particular between 380 and 480 ° C, and / or in the baking oven below 360 ° C, in particular between 280 and 320 ° C.
  • the wire is conveyed through the annealing furnace at least twice, preferably between four and fifteen times, in particular approximately ten times, a significantly improved cleaning of the wire can be achieved in addition to the recrystallization. Due to the multiple implementation by the correspondingly hot annealing furnace, for example, drawing agent residues are burned in layers of the wire. In this way, a suitable cleaning of the wire can be achieved even at wire temperatures below 450 ° C, so that a higher energy efficiency compared to a cleaning in one step at temperatures above 450 ° C is achieved.
  • the coating material can be applied directly to the wire, ie the coating material intended for insulating the wire is applied directly to the metallic surface of the wire.
  • a primer or comparable adhesive bonding layers can be dispensed with, so that the finished wire advantageously has a comparatively higher temperature resistance of the coating and higher thermal class.
  • the wire between the two ovens i. between the annealing furnace and the baking oven
  • a Nachspannvorraum in particular via a pneumatic dancer
  • the post-tensioning device can compensate for voltage differences due to wire temperature differences and improves the smooth and trouble-free conveyance of the wire from the annealing furnace and into the stoving furnace.
  • Wire drawing distorts the metal texture of the wire due to plastic deformation. It increases its strength and hardness, while the extensibility deteriorates massively.
  • the wire In order to fulfill the mechanical-technological requirements relevant to the post-processing of the wire, the wire must again become “soft", which requires a reshaping of the microstructure. For this purpose, the wire must be heated accordingly.
  • Fig. 1 The graph shown is plotted on the abscissa, the wire temperature T and on the ordinate the achieved "softness" or extensibility R of the wire.
  • the drawn curve R (T) schematically represents the relationship between the wire temperature T and the extensibility R.
  • the indicated temperatures T1, T2, T3 show approximately the optimum temperature T1 for the curing of a wire coating, the optimum temperature T2 for recrystallization of the wire (corresponding to the formation of a homogeneous microstructure and thus the maximum achievable extensibility R) and the optimum temperature T3 for cleaning off drawing agent residues from the freshly drawn wire.
  • the temperature T1 would be approximately between 280 ° and 320 ° C, the temperature T2 between 380 and 400 ° C and the temperature T3 between 450 and 480 ° C.
  • Fig. 2 a production line for producing a coated wire is shown, wherein the wire is pulled in drawing machines 1, then conveyed through the annealing furnace 2 several times.
  • the thin wire usually passes to the drawing machine 1 via pulleys in an electrically heated tube annealing, which allows the heating of the copper wire via thermal radiation, but above all by direct wall contact via heat conduction.
  • An annealing process with direct wall contact can not be used, for example, with aluminum wires, since compared to copper much lower softening temperatures are present and the wire would therefore be massively damaged.
  • Such wires ie wires with relatively low softening temperatures, can be heated for annealing, for example with hot moving air; This method is non-contact and the occurring, for example, in the case of Aludrähten oxidation in contrast to copper wires is not a problem because it is self-passivating.
  • the wire is heated accordingly in the annealing furnace 2 with hot moving air (see. Fig. 4 ).
  • the heat-treated wire is fed via deflection rollers of the coating device 3, for example in the form of a lacquerware, at the Einbrennofeneintritt where the liquid paint is applied to the wire at ambient temperature.
  • the dissolved polymers in the paints subsequently crosslink chemically after application and characterize the actual curing process of the paint.
  • the paint is applied via conically shaped wiping nozzles, which are continuously fed by means of a pump pump with fresh paint. There, a paint film with a preset thickness is evenly applied to the wire surface. Due to limited adhesion of the liquid paint on the wire, the application of the paint required for the desired insulating layer thickness must be done in several steps.
  • the enameled wire is guided in up to 24 tracks via two grooved deflecting rollers between the lacquerware at the oven inlet and the radiator end through the stoving oven 4.
  • air is circulated in the currently used practically worldwide painting process within the furnace, while the wire passes through the machine in a straight line against the air flow.
  • the solvents contained in the coating film are evaporated, discharged into the direct environment and transported away until the remaining polymer finally "crosslinks" or hardens on the wire surface due to the high temperatures (450-700 ° C.).
  • a temperature profile is generated, with which a drying and subsequent curing of the applied layer is achieved.
  • the wire is cooled in cooling devices 5. Between the annealing furnace 2 and the baking oven 3, the wire via pneumatic dancer 6 (see. Fig. 3 ), which tension the wire and compensate for temperature-induced voltage fluctuations. The completely coated finished wire is finally fed to the Wicklervorraumen 7, which wind the wire on rollers 8.
  • Fig. 4 schematically shows a longitudinal section parallel to the wire conveying direction 9 through the annealing furnace 2. On an inlet side 10 of the uncooled bare wire is introduced into the annealing furnace 2.
  • a high wire inlet temperature enables a small temperature loss or a small necessary heat input and an optimal recrystallization of the wire 14.
  • the flow of the hot circulating air in the annealing furnace 2 along a closed circuit is indicated by the arrows 11, 12.
  • the hot air in the wire transport region 13 flows counter to the wire conveying direction 9 (cf. Fig. 5 ) to allow optimum heat convection and thus maximum heat transfer from the hot air to the wire. Due to the high temperature of the hot air, residues 15 on the bare wire, eg drawing agent residues, can be removed or burned off in layers.
  • the successive removal of the residues 15 from the wire 14 is in Fig. 6 shown schematically, wherein the three wire cross sections 16 each show a different progress of the ablation.
  • the uppermost wire cross section 17 shows the wire 14 before the first pass through the annealing furnace 2, wherein all remaining after pulling on the wire 14 residues 15 are still present;
  • the mean wire cross section 18 shows the wire after five passes, whereby already the majority of the residues 15 could be removed;
  • the lowermost wire section 19 shows the completely cleaned wire 14 after the tenth pass through the annealing furnace 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Verarbeitung eines Drahtes, insbesondere eines Aluminiumdrahtes, wobei in einer Beschichtungsvorrichtung zum Aufbringen zumindest einer Schicht einer Beschichtung auf den Draht zumindest eine Schicht eines Beschichtungsmaterials auf den Draht aufgebracht wird und die aufgebrachte Schicht anschließend in einem Einbrennofen zum Trocknen oder Aushärten der aufgebrachten Schicht getrocknet bzw. ausgehärtet wird, wobei der Draht vor dem Aufbringen der Schicht und zur Rekristallisation des Drahtes durch einen von dem Einbrennofen separaten Glühofen, welcher in Drahtförderrichtung vor dem Einbrennofen angeordnet ist und zur Rekristallisation des Drahtes eingerichtet ist, gefördert wird.The invention relates to a method and a device for processing a wire, in particular an aluminum wire, wherein in a coating device for applying at least one layer of a coating on the wire at least one layer of a coating material is applied to the wire and the applied layer then in a baking oven for Drying or curing of the applied layer is dried or hardened, wherein the wire before the application of the layer and recrystallization of the wire through a separate from the baking oven annealing furnace, which is arranged in the wire conveying direction in front of the baking oven and is arranged for recrystallization of the wire promoted becomes.

Insbesondere betrifft die Erfindung sowohl die Vorbereitung eines zuvor gezogenen Drahtes auf eine Beschichtung als auch die Aufbringung der Beschichtung, wobei der Draht ein unbeschichteter Blankdraht ist, dessen Metallgefüge aufgrund der plastischen Verformung des Drahtes beim Ziehen verzerrt ist, so dass er eine entsprechend herabgesetzte Dehnbarkeit bzw. Zugfestigkeit aufweist. Bei der Beschichtung können eines oder mehrere Beschichtungsmaterialien in mehreren Schichten und/oder als Beschichtungszusammensetzung auf den Draht aufgebracht werden. Als Beschichtungsmaterialien kommen beliebige Lacke bzw. Kunstharze in Frage, welche üblicherweise bei der Beschichtung bzw. Emaillierung von Drähten verwendet werden, insbesondere Polyesterimid (PEI) und/oder Polyamidimid (PAI). Der Einbrennofen (häufig auch als Beschichtungsofen, Brennofen oder engl. "Curing Oven" bezeichnet) ist zum Trocknen und Aushärten der Beschichtung eingerichtet. Dabei werden im Lackfilm enthaltene Lösungsmittel verdunstet, in die direkte Umgebung ausgetragen und abtransportiert, bis das verbleibende Polymer schließlich an der Drahtoberfläche "vernetzt" bzw. aushärtet. Nach Aufbringung der letzten Schicht der Beschichtung wird der Draht üblicherweise gekühlt und zu einer Wicklervorrichtung zur Abnahme des Fertigdrahtes gefördert.In particular, the invention relates both to the preparation of a previously drawn wire on a coating and the application of the coating, wherein the wire is an uncoated bare wire, the metal structure is distorted due to the plastic deformation of the wire during the drawing, so that it has a corresponding reduced extensibility or Has tensile strength. In the coating, one or more coating materials may be applied to the wire in multiple layers and / or as a coating composition. Suitable coating materials are any lacquers or synthetic resins which are conventionally used in the coating or enameling of wires, in particular polyester imide (PEI) and / or polyamide imide (PAI). The baking oven (often referred to as a coating oven, kiln, or "curing oven") is designed to dry and cure the coating. In the process, solvents contained in the paint film are evaporated, discharged into the direct environment and transported away until the remaining polymer finally "crosslinks" or hardens on the wire surface. After application of the last layer of the coating, the wire is usually cooled and conveyed to a winder device for removal of the finished wire.

Derzeit erfolgt bei Lackdrahtanlagen das Inline-Glühen von Kupferdrähten in thermisch beheizten Rohrglühen (bzw. Profilen), welche mit Schutzgasen wie Wasserdampf (bzw. mit Stickstoff) durchströmt sind. Derartige Rohrglühen sind beispielsweise in der EP 0 448 999 A2 und der DE 31 18 839 A1 gezeigt. Der Wärmeeintrag in den Draht erfolgt bei solchen Rohrglühen konvektiv über die Eigenbewegung des Drahtes durch die Schutzgasatmosphäre, über Wärmestrahlung zwischen Glührohrinnenwand und Draht, und schlussendlich über Wärmeleitung zwischen Glührohrinnenwand und mit dieser in direktem Kontakt stehenden Draht (schleifender Draht). Der Wärmeeintrag durch Wärmeleitung ist dabei dominant. Der Kontakt zwischen Draht und Rohrwand ist in diesem Fall sogar erforderlich, um bei den hohen Durchlaufgeschwindigkeiten überhaupt die erforderlichen Wärmetransportraten zu schaffen. Der Abrieb und die Beschädigung der Kupferdrahtoberfläche durch den Kontakt mit der Rohrwand sind sehr gering. Der Wasserdampf übernimmt die Funktion als Schutzgas gegen Oxidation des Kupfers und zugleich der Abreinigung von Ziehmittelrückständen des zuvor gezogenen Blankdrahtes. Versuche, Aluminiumdrähte mit solchen Glührohrsystemen zu glühen sind immer wieder gescheitert. Aluminium besitzt einen wesentlich geringeren Schmelzpunkt (660°C) als Kupfer (1083°C) und ist materialbedingt viel weicher. Ein direkter Kontakt des schnell bewegten Aluminiumdrahtes mit der Glührohrinnenwand führt bei entsprechenden Temperaturen zu massivem Abrieb und Beschädigung der Drahtoberfläche, und schlussendlich zur zeitnahen Verstopfung der Glührohre. Aufgrund der großen Länge üblicher Glührohre (∼15m) und deren vergleichsweise kleinen Durchmessern (25 mm) ist ein Kontakt zwischen Draht und Rohrwand nahezu unvermeidlich. Aluminium weist hinzu im Vergleich zu Kupfer zwar eine geringere Rekristallisationstemperatur, allerdings auch eine geringere Wärmeleitfähigkeit auf. Bei den hohen Durchlaufgeschwindigkeiten der Aluminiumdrähte wären zu deren Aufheizprozess entsprechend hohe Glührohrtemperaturen erforderlich, was einen störungsfreien Produktionsbetrieb unmöglich machen würde.Beim herkömmlichen Prozessverfahren zur Beschichtung von Aluminiumdrähten in Lackdrahtanlagen wird daher zumeist versucht, wesentliche Prozesse wie ein Rekristallisationsglühen des Drahtmetalls, eine thermische Reinigung der Drahtmetalloberfläche von fest haftenden organischen Ziehmittelrückständen und ein Einbrennen der Lackfilme in ein und demselben Ofen zu realisieren. Beispielsweise beschreibt die CN 102074308 A eine Vorrichtung und ein Verfahren zur Herstellung lackierter Aluminiumdrähte, wobei das Glühen der unlackierten Drähte und das Aushärten nach dem Aufbringen des Lacks in ein und demselben Ofen vorgenommen wird. Das Problem dabei ist nun, dass diese Prozesse aus physikalischen und thermodynamischen Gründen zu ihrer vollständigen Abwicklung jedoch unterschiedliche Drahttemperaturen erfordern. Da sowohl die weich zu glühenden Drahtspuren (d.h. die Bahnen oder Abschnitte des Drahtes im Ofen) als auch die zu beschichtenden Drahtspuren zwangsweise dieselbe Verweilzeit im Ofen bei denselben Ofenbedingungen aufweisen, bilden sich längs der einzelnen Drahtspuren nun aber nahezu die gleichen Temperaturprofile aus. Die verschiedenen Prozesse können deshalb prozesstechnisch nicht in Einklang gebracht werden: bei dieser Form der Prozessabwicklung erfolgt die Erstbeschichtung der Aluminiumdrähte oft an nicht vollständig rekristallisierten Blankdrähten mit stark veränderlicher Weichheit und daraus folgend mit nicht vollständig abgereinigten Ziehmittelbelägen. Um dennoch ein Mindestmaß an Rekristallisation zu erzielen muss die Temperatur im Ofen höher sein als für die Trocknung eigentlich geeignet. Außerdem muss zum Abtransport der verdunsteten Lösungsmittel die Luft im Ofen ständig getauscht und daher kühle Zuluft ständig neu erhitzt werden. Von dem damit verbundenen Energieaufwand abgesehen führen die nicht zu kontrollierenden Weichheitsunterschiede zwischen den einzelnen Drahtspuren zu unterschiedlichen Drahtzugspannungen, welche wiederum Drahtrisse und Produktionsausfall bedingen können. Durch die unzureichende thermische Reinigung der Blankdrahtspuren folgt außerdem zumeist eine unzureichende Haftung des Lackes auf der Drahtoberfläche. Um die Haftfähigkeit des Lackes zu gewährleisten, wird daher meistens noch vor dem Aufbringen des eigentlichen Beschichtungslackes eine sogenannte "Primerbeschichtung" als Klebeschnittstelle aufgetragen. Unabhängig vom Mehraufwand weisen die "Primer"-Lacke sehr niedrige Wärmeklassen auf, wodurch die Anwendbarkeit des Fertigdrahtes in oft thermisch belasteten Spulen und Wicklungen automatisch limitiert ist. Ein solcher Aluminiumlackdraht ist damit nur begrenzt einsetzbar und damit aber auch begrenzt nachgefragt. Wenn umgekehrt eine höhere Temperatur im Ofen eingestellt wird, um eine bessere Rekristallisation und Reinigung zu erzielen, werden die beschichteten Spuren zwangsweise überbrannt, was zu einem nicht korrekt eingebrannten Draht und ebenfalls minderer Beschichtungsqualität führt.In-line annealing of copper wires in thermally heated tube annealing (or profiles), which uses inert gases such as water vapor (or nitrogen), is currently taking place in enamel wire systems. are flowed through. Such tube annealing are for example in the EP 0 448 999 A2 and the DE 31 18 839 A1 shown. The heat input into the wire takes place in such tube annealing convective on the proper movement of the wire through the inert gas atmosphere, heat radiation between Glührohrinnenwand and wire, and finally via heat conduction between Glührohrinnenwand and standing in direct contact with this wire (grinding wire). The heat input through heat conduction is dominant. The contact between the wire and the tube wall is even required in this case to provide the necessary heat transfer rates at the high throughput speeds. The abrasion and the damage of the copper wire surface by the contact with the tube wall are very small. The steam takes over the function as a protective gas against oxidation of the copper and at the same time the cleaning of drawing agent residues of the previously drawn bare wire. Attempts to anneal aluminum wires with such glow tube systems have repeatedly failed. Aluminum has a much lower melting point (660 ° C) than copper (1083 ° C) and is much softer due to the material. Direct contact of the rapidly moving aluminum wire with the glow tube inner wall leads at temperatures corresponding to massive abrasion and damage to the wire surface, and ultimately to the timely blockage of the glow tubes. Due to the large length of conventional glow tubes (~15m) and their relatively small diameters (25 mm), contact between wire and tube wall is almost inevitable. Although aluminum has a lower recrystallization temperature than copper, it also has a lower thermal conductivity. At the high throughput speeds of the aluminum wires corresponding to high heating tube temperatures would be required for their heating process, which would make trouble-free production operation impossible. In the conventional process method for coating aluminum wires in enameled wire plants, therefore, attempts are made mostly essential processes such as recrystallization annealing of the wire metal, a thermal cleaning of the wire metal surface of firmly adhering organic drawing agent residues and baking of the To realize paint films in one and the same furnace. For example, this describes CN 102074308 A a device and a process for producing painted aluminum wires, wherein the annealing of the unpainted wires and the curing after the application of the paint is carried out in one and the same furnace. The problem here is that for physical and thermodynamic reasons, however, these processes require different wire temperatures to complete them. Since both the soft-to-glow wire traces (ie, the tracks or sections of the wire in the oven) and the wire tracks to be coated forcibly have the same residence time in the oven at the same furnace conditions, but now form almost the same temperature profiles along the individual wire tracks. The various processes can therefore not be reconciled in terms of process technology: in this form of process development, the initial coating of the aluminum wires is often carried out on incompletely recrystallized bare wires with greatly variable softness and consequently with not completely cleaned out liner coatings. In order to still achieve a minimum of recrystallization, the temperature in the oven must be higher than actually suitable for drying. In addition, for the removal of the evaporated solvent, the air in the oven must be constantly replaced and therefore cooling fresh air constantly be reheated. Apart from the associated energy expenditure, the softness differences between the individual wire traces, which can not be controlled, lead to different wire tensile stresses, which in turn can cause wire tears and production losses. Due to the insufficient thermal cleaning of the bare-wire traces also usually follows an insufficient adhesion of the paint on the wire surface. In order to ensure the adhesion of the paint, a so-called "primer coating" is therefore usually applied as an adhesive interface even before applying the actual coating paint. Regardless of the extra effort, the "primer" coatings have very low heat classes, which automatically limits the applicability of the finished wire in often thermally loaded coils and windings. Such an aluminum enameled wire is so limited use and thus limited demand. Conversely, if a higher temperature is set in the oven to better To achieve recrystallization and cleaning, the coated traces are forcibly burned, resulting in improperly baked wire and also lower coating quality.

Die JP H05-325684 A zeigt ein Lackierverfahren für Kupferdrähte mit einem Glühofen, wobei der noch weiche Draht nach dem Glühen lackiert wird und zum Aushärten vom Draht selbst abgegebene Wärmeenergie verwendet wird.The JP H05-325684 A shows a painting process for copper wires with an annealing furnace, wherein the still soft wire is painted after annealing and used for curing of the wire itself heat energy emitted.

Die CN 103000313 A zeigt eine vertikale Lackiermaschine, bei der ein Draht von einer Abspuleinrichtung durch eine Glüheinrichtung, einen Farbbehälter und einen separaten Einbrennofen gefördert wird.The CN 103000313 A shows a vertical painting machine in which a wire is conveyed from a unwinding by a glow, a paint container and a separate baking oven.

Die CN 103258600 A betrifft ein Lackierverfahren für Aluminiumdrähte, wobei die Drähte in einem dreischichtigen Verfahren mit unterschiedlichen Temperaturen geglüht werden. Anschließend wird eine Grundierungsschicht und eine Lackschicht direkt auf den Draht aufgebracht und in einem Einbrennofen ausgehärtet.The CN 103258600 A relates to a painting process for aluminum wires, wherein the wires are annealed in a three-layer process with different temperatures. Subsequently, a primer layer and a lacquer layer is applied directly to the wire and cured in a baking oven.

Schließlich zeigt die JP S59-28530 A ein Herstellungsverfahren für lackierte Kupfer- oder Aluminiumdrähte, wobei der gezogene Draht mit konstanter Lackiergeschwindigkeit kontinuierlich durch ein Inline-Glühsystem hindurchgeführt und geglüht wird. Nach dem Glühofen wird der Draht mit Lack beschichtet, welcher anschließend in einem eigenen Einbrennofen ausgehärtet wird.Finally, the shows JP S59-28530 A a manufacturing process for painted copper or aluminum wires, wherein the drawn wire is continuously passed through an inline annealing system and annealed at a constant coating speed. After the annealing furnace, the wire is coated with varnish, which is then cured in its own baking oven.

Demnach ist es Aufgabe der Erfindung, ein Verfahren der eingangs angeführten Art zu schaffen, mit welchem ein hochqualitativer Draht mit höchster Weichheit, prozesssicher und insbesondere ohne produktwertmindernde Primer als Klebeschnittstelle hergestellt werden kann. Das Verfahren soll weiters eine für die Prozesssicherheit abträgliche Erhitzung von Lösungsmitteldämpfen weitgehend vermeiden und zugleich den mit dem Verfahren bzw. der Vorrichtung verbundenen Energieverbrauch senken.Accordingly, it is an object of the invention to provide a method of the initially mentioned kind, with which a high-quality wire with the highest softness, process reliability and in particular without product value-reducing primer can be produced as an adhesive interface. The method should also largely avoid detrimental to the process safety heating of solvent vapors and at the same time reduce the energy consumption associated with the process or the device.

Zur Lösung dieser Aufgabe ist erfindungsgemäß vorgesehen, dass der Draht im Glühofen durch eine im Wesentlichen in sich geschlossene Strömung eines heißen Gases, insbesondere eine Umluftströmung, gefördert wird. Dementsprechend wird bei der Vorrichtung der eingangs angeführten Art die gestellte Aufgabe dadurch gelöst, dass der Glühofen vorzugsweise zur konvektiven Erwärmung des Drahtes mittels eines in einem im Wesentlichen geschlossenen Kreislauf bewegten erhitzten Gases, insbesondere mittels Heißluft, eingerichtet ist. Der Glühofen (oder einfach Glüher bzw. engl. "Annealer" genannt) ist vorzugsweise zur berührungslosen Erhitzung des Drahtes eingerichtet, so dass auch ein Draht aus einem Material mit einer relativ geringen Erweichungstemperatur im Glühofen nicht beschädigt wird. Dass der Glühofen separat vom Einbrennofen vorgesehen ist bedeutet in diesem Zusammenhang, dass der Glühofen räumlich und thermisch von dem Einbrennofen getrennt ist und eine unabhängige Wärmezuführung, insbesondere ein eigenständiges Heizelement bzw. eine eigenständige Wärmeerzeugungseinheit, aufweist. Die Anordnung des Glühofens in Drahtförderrichtung vor dem Einbrennofen ist selbstverständlich unabhängig von der geometrischen Anordnung der beiden Öfen und bedeutet lediglich, dass im Zuge der Herstellung eines beschichteten Drahtes ein Abschnitt des zu verarbeitenden Drahts zunächst den Glühofen passiert, d.h. durch den Glühofen gefördert wird, bevor derselbe Abschnitt den Einbrennofen passiert. Der Glühofen ist hinsichtlich der im Glühofen erzeugten Temperatur bzw. des Temperaturprofils, welchem der Draht ausgesetzt ist, so eingestellt, dass eine optimale Rekristallisation des Metallgefüge des Drahtes erzielt wird. Die Rekristallisation findet bekanntlich oberhalb einer vom Drahtmaterial abhängigen Temperatur statt, welche vom Fachmann in Kenntnis dieses Zwecks geeignet ausgewählt und der Glühofen entsprechend eingestellt werden kann. Der Draht wird vorzugsweise nach dem letzten Austritt aus dem Glühofen und vor dem ersten Eintritt in den Einbrennofen beschichtet. Durch den separaten Glühofen können die Prozessbedingungen und die erzielte Wärmeübertragung in den beiden Öfen, d.h. Einbrennofen und Glühofen, unabhängig und auf die jeweilige Aufgabe optimiert eingestellt werden. Ein weiterer Vorteil der getrennten Öfen ist, dass dadurch eine hohe Drahteintrittstemperatur in den Glühofen ermöglicht wird, weil kein Lösungsmitteldämpfe zu befürchten sind, und der Draht nach dem Ziehen nicht noch gekühlt werden muss. Durch die geschlossene Strömung bzw. die Umluft weist der Glühofen einen besonders geringer Prozessluftaustrag sowie eine - im Vergleich zu einem Ofen, welcher zur Trocknung einer Drahtbeschichtung eingerichtet ist - geringere erforderliche Frischluftzufuhr auf. Die ansonsten notwendige Erhitzung der zugeführten Frischluft kann daher zumindest größtenteils entfallen, was den mit dem Verfahren bzw. der Vorrichtung verbundenen Energieverbrauch senkt. Außerdem ermöglicht der Glühofen einen separaten Glühprozess des Drahts mit höheren Transportraten als im nachfolgenden Einbrennofen. Die Strömung des heißen Gases kann der Drahtförderrichtung entgegen gerichtet sein. Die höheren Transportraten im Glühofen werden durch ein höheres Temperaturniveau und - insbesondere bei entgegen der Drahtförderrichtung gerichteter Strömung - durch besseren konvektiven Wärmeübergang mittels geeigneter Strömungsführung erreicht.To achieve this object, the invention provides that the wire in the annealing furnace is conveyed by a substantially self-contained flow of a hot gas, in particular a circulating air flow. Accordingly, in the device of the type mentioned, the stated object is achieved in that the annealing furnace is preferably designed for convective heating of the wire by means of a heated in a substantially closed circuit heated gas, in particular by means of hot air. The annealing furnace (or simply called annealer) is preferably designed for non-contact heating of the wire, so that even a wire made of a material with a relatively low softening temperature is not damaged in the annealing furnace. The fact that the annealing furnace is provided separately from the stoving means in this context means that the annealing furnace is spatially and thermally separated from the stoving furnace and has an independent heat supply, in particular an independent heating element or an independent heat generating unit. The arrangement of the annealing furnace in the wire conveying direction before the baking oven is of course independent of the geometric arrangement of the two ovens and merely means that in the course of producing a coated wire, a portion of the wire to be processed first passes the annealing furnace, ie is conveyed through the annealing furnace, before the same section passes the baking oven. The annealing furnace is adjusted in terms of the temperature generated in the annealing furnace or the temperature profile to which the wire is exposed, so that an optimal recrystallization of the metal structure of the wire is achieved. The recrystallization takes place, as is known, above a temperature dependent on the wire material, which can be suitably selected by the person skilled in the art, and the annealing furnace can be adjusted accordingly. The wire is preferably coated after the last exit from the annealing furnace and before the first entry into the stoving furnace. Through the separate annealing furnace, the process conditions and the heat transfer achieved in the two furnaces, ie baking oven and annealing furnace, can be set independently and optimized for the respective task. Another advantage of the separate ovens is that it allows a high wire entry temperature into the annealing furnace because no solvent vapors are to be feared, and the wire does not need to be cooled after drawing. Due to the closed flow or the circulating air, the annealing furnace has a particularly low process air discharge as well as a lower fresh air supply required compared with a furnace which is set up for drying a wire coating. The otherwise necessary heating of the fresh air supplied can therefore be omitted, at least for the most part, which reduces the energy consumption associated with the method or device. In addition, the annealing furnace allows a separate annealing process of the wire with higher transport rates than in the subsequent baking oven. The flow of the hot gas may be directed against the wire conveying direction. The higher transport rates in the annealing furnace are achieved by a higher temperature level and, in particular in the case of a flow directed counter to the direction of the wire feed, by better convective heat transfer by means of suitable flow guidance.

Weiters ist es günstig, wenn der Glühofen unabhängig vom Einbrennofen zur Einstellung unterschiedlicher Temperaturprofile und entsprechender Drahttemperaturen steuerbar ist. Der mit der Erzeugung des jeweiligen Temperaturprofils verbundene Energieverbrauch kann in diesem Fall auf die jeweilige Aufgabe des Ofens optimiert werden.Furthermore, it is advantageous if the annealing furnace is controllable independently of the baking oven for setting different temperature profiles and corresponding wire temperatures. The energy consumption associated with the generation of the respective temperature profile can be optimized in this case to the respective task of the furnace.

Dabei ist es besonders vorteilhaft, wenn der Draht im Einbrennofen auf eine vergleichsweise niedrigere Drahttemperatur erhitzt wird als im Glühofen. Dementsprechend ist im Betrieb die mittlere Temperatur im Glühofen günstiger Weise höher als die mittlere Temperatur im Einbrennofen. Aufgrund des Temperaturunterschieds zwischen Einbrennofen und Glühofen können in den beiden Öfen auch bei gleicher Drahtgeschwindigkeit, d.h. bei gleicher durchgeführter Drahtmenge, unterschiedliche Drahttemperaturen erzielt werden. Wegen der geringeren Temperatur im Einbrennofen können Temperaturverluste während der Beschichtung des Drahtes reduziert und somit der Energieverbrauch insgesamt weiter gesenkt werden. Außerdem können bei den geringeren Temperaturen beim Einbrennen verbesserte Isolationseigenschaften des Fertigdrahtes, insbesondere ein geforderter idealer Tangens-Delta-Wert zur Erzielung minimaler dielektrischer Verluste erreicht werden im Vergleich zu Drähten, deren Beschichtungen bei zu hohen Temperaturen getrocknet und ausgehärtet wurden. Schließlich sind die niedrigeren Temperaturen im Einbrennofen auch hinsichtlich der Prozesssicherheit vorteilhaft, da somit eine übermäßige Erhitzung der bei der Trocknung entstehenden Lösungsmitteldämpfe vermieden wird. Aufgrund der höheren Drahttemperatur im Glühofen, welche oberhalb einer für das Trocknen einer Beschichtung geeigneten oder zulässigen Temperatur liegen kann, kann eine wesentlich bessere Rekristallisation und damit besserer Weichheit bzw. Dehnbarkeit (höhere Bruchdehnung) des Drahtes erzielt werden. Die Drahttemperatur kann beispielsweise im Glühofen oberhalb von 360°C, insbesondere zwischen 380 und 480°C, und/oder im Einbrennofen unterhalb von 360°C, insbesondere zwischen 280 und 320°C, liegen.It is particularly advantageous if the wire is heated in the baking oven to a relatively lower wire temperature than in the annealing furnace. Accordingly, during operation, the average temperature in the annealing furnace is advantageously higher than the average temperature in the stoving furnace. Due to the temperature difference between baking oven and annealing furnace different wire temperatures can be achieved in the two ovens even at the same wire speed, ie with the same amount of wire carried out. Due to the lower temperature in the baking oven, temperature losses during the coating of the wire can be reduced and thus the energy consumption can be further reduced overall. In addition, at the lower temperatures during firing improved insulation properties of the finished wire, In particular, a required ideal tangent delta value for achieving minimal dielectric losses can be achieved in comparison to wires whose coatings have been dried and cured at excessively high temperatures. Finally, the lower temperatures in the baking oven are also advantageous in terms of process reliability, since thus excessive heating of the solvent vapors produced during drying is avoided. Due to the higher wire temperature in the annealing furnace, which may be above a suitable or permissible for the drying of a coating temperature, a much better recrystallization and thus better softness and extensibility (higher elongation at break) of the wire can be achieved. The wire temperature can, for example, in the annealing furnace above 360 ° C, in particular between 380 and 480 ° C, and / or in the baking oven below 360 ° C, in particular between 280 and 320 ° C.

Wenn der Draht zumindest zweimal, vorzugsweise zwischen vier und 15 Mal, insbesondere etwa zehnmal, durch den Glühofen gefördert wird kann zusätzlich zur Rekristallisation eine deutlich verbesserte Reinigung des Drahtes erzielt werden. Aufgrund der mehrfachen Durchführung durch den entsprechend heißen Glühofen werden beispielsweise Ziehmittelrückstände schichtweise vom Draht abgebrannt. Auf diese Weise kann eine geeignete Reinigung des Drahtes auch bei Drahttemperaturen unterhalb von 450°C erzielt werden, so dass eine höhere Energieeffizienz im Vergleich zu einer Reinigung in einem Schritt bei Temperaturen oberhalb von 450°C erreicht wird. Aufgrund der im Glühofen im Vergleich zu bekannten Verfahren höheren Temperatur kann zugleich eine bessere Reinigung und somit bessere Haftung des Lacks auf der Drahtoberfläche sowie - wegen der Reaktion mit einer praktisch belagsfreien Oberfläche - eine bessere Selbstpassivierung durch Oxidation im Falle eines Aluminiumdrahtes erzielt werden.If the wire is conveyed through the annealing furnace at least twice, preferably between four and fifteen times, in particular approximately ten times, a significantly improved cleaning of the wire can be achieved in addition to the recrystallization. Due to the multiple implementation by the correspondingly hot annealing furnace, for example, drawing agent residues are burned in layers of the wire. In this way, a suitable cleaning of the wire can be achieved even at wire temperatures below 450 ° C, so that a higher energy efficiency compared to a cleaning in one step at temperatures above 450 ° C is achieved. Due to the higher temperature in the annealing furnace in comparison to known methods, better cleaning and thus better adhesion of the lacquer to the wire surface as well as a better self-passivation by oxidation in the case of an aluminum wire can be achieved because of the reaction with a virtually surface free surface.

Vorteilhafter Weise kann das Beschichtungsmaterial direkt auf den Draht aufgebracht werden, d.h. das zur Isolation des Drahtes vorgesehene Beschichtungsmaterial wird direkt auf die metallische Oberfläche des Drahts aufgebracht. Die Verwendung eines Primers oder vergleichabrer Haftvermittlungsschichten kann entfallen, so dass der Fertigdraht vorteilhafter Weise eine vergleichsweise höhere Temperaturbeständigkeit der Beschichtung und höherer Wärmeklasse aufweist.Advantageously, the coating material can be applied directly to the wire, ie the coating material intended for insulating the wire is applied directly to the metallic surface of the wire. The usage a primer or comparable adhesive bonding layers can be dispensed with, so that the finished wire advantageously has a comparatively higher temperature resistance of the coating and higher thermal class.

Es hat sich zudem als günstig herausgestellt, wenn der Draht zwischen den beiden Öfen, d.h. zwischen dem Glühofen und dem Einbrennofen, über eine Nachspannvorrichtung, insbesondere über einen pneumatischen Tänzer, zum Nachspannen des Drahtes gefördert wird. Bei der vorliegenden Vorrichtung kann dementsprechend in Drahtförderrichtung nach dem Einbrennofen und vor dem Glühofen eine Nachspannvorrichtung zum Nachspannen des Drahtes angeordnet sein. Die Nachspannvorrichtung kann Spannungsunterschieden aufgrund der Drahttemperaturunterschiede kompensieren und verbessert die gleichmäßige und störungsfreie Förderung des Drahtes aus dem Glühofen und in den Einbrennofen.It has also been found to be beneficial if the wire between the two ovens, i. between the annealing furnace and the baking oven, is conveyed via a Nachspannvorrichtung, in particular via a pneumatic dancer, for tensioning the wire. In the present device may accordingly be arranged in the wire conveying direction after the baking oven and before the annealing furnace, a tensioning device for tensioning the wire. The post-tensioning device can compensate for voltage differences due to wire temperature differences and improves the smooth and trouble-free conveyance of the wire from the annealing furnace and into the stoving furnace.

Die Erfindung wird nachfolgend anhand von besonders bevorzugten Ausführungsbeispielen, auf die sie jedoch nicht beschränkt sein soll, und unter Bezugnahme auf die Zeichnungen noch weiter erläutert. In den Zeichnungen zeigen dabei im Einzelnen:

  • Fig. 1 ein schematisches Diagramm des Zusammenhangs zwischen einer Drahttemperatur und der damit erzielten Dehnbarkeit des Drahtes;
  • Fig. 2 eine schaubildliche Darstellung einer Drahtbeschichtungsanlage mit einem Einbrennofen und einem Glühofen;
  • Fig. 3 einen pneumatischen Tänzer gemäß Fig. 2;
  • Fig. 4 eine schematische Schnittdarstellung durch den Glühofen gemäß Fig. 2;
  • Fig. 5 eine schematische Schnittdarstellung eines Drahtes im Längsschnitt während der Erhitzung im Glühofen; und
  • Fig. 6 schematisch mehrere Querschnitte des Drahtes nach einer unterschiedlichen Anzahl von Durchführungen durch den Glühofen.
The invention will be explained below with reference to particularly preferred embodiments, to which it should not be limited, and with reference to the drawings. The drawings show in detail:
  • Fig. 1 a schematic diagram of the relationship between a wire temperature and the resulting extensibility of the wire;
  • Fig. 2 a perspective view of a wire coating plant with a baking oven and an annealing furnace;
  • Fig. 3 a pneumatic dancer according to Fig. 2 ;
  • Fig. 4 a schematic sectional view through the annealing furnace according to Fig. 2 ;
  • Fig. 5 a schematic sectional view of a wire in longitudinal section during the heating in the annealing furnace; and
  • Fig. 6 schematically several cross sections of the wire after a different number of passes through the annealing furnace.

Beim Drahtziehen wird das Metallgefüge des Drahtes aufgrund der plastischen Verformung verzerrt. Dabei nehmen seine Festigkeit und Härte zu, während sich die Dehnbarkeit massiv verschlechtert. Zur Erfüllung der für die Nachbearbeitung des Drahtes relevanten mechanisch-technologischen Anforderungen muss der Draht wieder "weich" werden, was eine Neuumformung des Gefüges bedingt. Dazu muss der Draht entsprechend aufgeheizt werden. In dem in Fig. 1 dargestellten Diagramm ist auf der Abszisse die Drahttemperatur T und auf der Ordinate die erreichte "Weichheit" bzw. Dehnbarkeit R des Drahtes aufgetragen. Die eingezeichnete Kurve R(T) stellt schematisch den Zusammenhang zwischen der Drahttemperatur T und der Dehnbarkeit R dar. Die eingezeichneten Temperaturen T1, T2, T3 zeigen dabei ungefähr die optimale Temperatur T1 für die Aushärtung einer Drahtbeschichtung, die optimale Temperatur T2 zur Rekristallisation des Drahtes (entsprechend der Bildung einer homogenen Mikrostruktur und damit der maximalen erzielbaren Dehnbarkeit R) und die optimale Temperatur T3 zur Abreinigung von Ziehmittelrückständen von dem frisch gezogenen Draht. Im Fall einer Aluminiumdrahtbeschichtung wäre die Temperatur T1 beispielsweise ungefähr zwischen 280° und 320°C, die Temperatur T2 zwischen 380 und 400°C und die Temperatur T3 zwischen 450 und 480°C.Wire drawing distorts the metal texture of the wire due to plastic deformation. It increases its strength and hardness, while the extensibility deteriorates massively. In order to fulfill the mechanical-technological requirements relevant to the post-processing of the wire, the wire must again become "soft", which requires a reshaping of the microstructure. For this purpose, the wire must be heated accordingly. In the in Fig. 1 The graph shown is plotted on the abscissa, the wire temperature T and on the ordinate the achieved "softness" or extensibility R of the wire. The drawn curve R (T) schematically represents the relationship between the wire temperature T and the extensibility R. The indicated temperatures T1, T2, T3 show approximately the optimum temperature T1 for the curing of a wire coating, the optimum temperature T2 for recrystallization of the wire (corresponding to the formation of a homogeneous microstructure and thus the maximum achievable extensibility R) and the optimum temperature T3 for cleaning off drawing agent residues from the freshly drawn wire. For example, in the case of an aluminum wire coating, the temperature T1 would be approximately between 280 ° and 320 ° C, the temperature T2 between 380 and 400 ° C and the temperature T3 between 450 and 480 ° C.

In Fig. 2 ist eine Produktionsstrecke zur Herstellung eines beschichteten Drahtes gezeigt, wobei der Draht in Ziehmaschinen 1 gezogen, anschließend mehrmals durch den Glühofen 2 gefördert wird. Bei Kupferdähten gelangt der dünn gezogene Draht üblicherweise nach der Ziehmaschine 1 über Umlenkrollen in eine elektrisch beheizte Rohrglühe, welche die Aufheizung des Kupferdrahtes über Wärmestrahlung, aber vor allem durch direkten Wandkontakt über Wärmeleitung ermöglicht. Ein Glühverfahren mit direktem Wandkontakt kann allerdings z.B. bei Aluminiumdrähten nicht angewendet werden, da im Vergleich zu Kupfer weitaus geringere Erweichungstemperaturen vorliegen und der Draht dabei daher massiv beschädigt werden würde. Solche Drähte, d.h. Drähte mit relativ geringen Erweichungstemperaturen, können zum Glühen z.B. mit heißer bewegter Luft aufgeheizt werden; dieses Verfahren ist berührungslos und die z.B. im Fall von Aludrähten auftretende Oxidation stellt im Gegensatz zu Kupferdrähten kein Problem dar, da diese selbstpassivierend ist. Bei der in Fig. 2 gezeigten Produktionsstrecke wird der Draht dementsprechend im Glühofen 2 mit heißer bewegter Luft aufgeheizt (vgl. Fig. 4).In Fig. 2 a production line for producing a coated wire is shown, wherein the wire is pulled in drawing machines 1, then conveyed through the annealing furnace 2 several times. In copper wires, the thin wire usually passes to the drawing machine 1 via pulleys in an electrically heated tube annealing, which allows the heating of the copper wire via thermal radiation, but above all by direct wall contact via heat conduction. An annealing process with direct wall contact, however, can not be used, for example, with aluminum wires, since compared to copper much lower softening temperatures are present and the wire would therefore be massively damaged. Such wires, ie wires with relatively low softening temperatures, can be heated for annealing, for example with hot moving air; This method is non-contact and the occurring, for example, in the case of Aludrähten oxidation in contrast to copper wires is not a problem because it is self-passivating. At the in Fig. 2 shown production line, the wire is heated accordingly in the annealing furnace 2 with hot moving air (see. Fig. 4 ).

Nach Austritt aus dem Glühofen 2 wird der wärmebehandelte Draht über Umlenkrollen der Beschichtungsvorrichtung 3, z.B. in Form eines Lackgeschirrs, am Einbrennofeneintritt zugeführt, wo der flüssige Lack bei Umgebungstemperatur auf den Draht aufgebracht wird. Die gelösten Polymere in den Lacken vernetzen nachfolgend chemisch nach der Applikation und charakterisieren den eigentlichen Härtungsvorgang des Lackes. Die Lackaufbringung erfolgt über konisch geformte Abstreifdüsen, die mittels Förderpumpe kontinuierlich mit frischem Lack beschickt werden. Dort wird ein Lackfilm mit voreingestellter Dicke gleichmäßig auf die Drahtoberfläche aufgetragen. Aufgrund begrenzter Haftfähigkeit des Flüssiglackes am Draht muss die Aufbringung der für die gewünschte Isolierschichtdicke erforderlichen Lackmenge in mehreren Teilschritten erfolgen. Dazu wird der Lackdraht in bis zu 24 Spuren über zwei gerillte Umlenkrollen zwischen Lackgeschirr am Ofeneintritt und dem Kühlerende durch den Einbrennofen 4 geführt. Zur Trocknung des polymeren Flüssigfilms wird bei dem derzeit praktisch weltweit eingesetzten Lackierprozess innerhalb des Ofens heiße Prozessluft im Umluftbetrieb geführt, während der Draht entgegen der Luftströmung die Maschine geradlinig durchläuft. Während dieser konvektiven Trocknung werden die im Lackfilm enthaltenen Lösungsmittel verdunstet, in die direkte Umgebung ausgetragen und abtransportiert, bis das verbleibende Polymer aufgrund der hohen Temperaturen (450-700°C) schließlich an der Drahtoberfläche "vernetzt" bzw. aushärtet. Im Einbrennofen 4 wird dabei ein Temperaturprofil erzeugt, mit dem eine Trocknung und anschließende Aushärtung der aufgebrachten Schicht erzielt wird. Zwischen den einzelnen Beschichtungsdurchgängen wird der Draht in Kühlvorrichtungen 5 gekühlt. Zwischen dem Glühofen 2 und dem Einbrennofen 3 wird der Draht über pneumatische Tänzer 6 (vgl. Fig. 3) geführt, welche den Draht nachspannen und temperaturbedingte Spannungsschwankungen kompensieren. Der vollständig beschichtete Fertigdraht wird abschließend den Wicklervorrichtungen 7 zugeführt, welche den Draht auf Rollen 8 aufwickeln.After leaving the annealing furnace 2, the heat-treated wire is fed via deflection rollers of the coating device 3, for example in the form of a lacquerware, at the Einbrennofeneintritt where the liquid paint is applied to the wire at ambient temperature. The dissolved polymers in the paints subsequently crosslink chemically after application and characterize the actual curing process of the paint. The paint is applied via conically shaped wiping nozzles, which are continuously fed by means of a pump pump with fresh paint. There, a paint film with a preset thickness is evenly applied to the wire surface. Due to limited adhesion of the liquid paint on the wire, the application of the paint required for the desired insulating layer thickness must be done in several steps. For this purpose, the enameled wire is guided in up to 24 tracks via two grooved deflecting rollers between the lacquerware at the oven inlet and the radiator end through the stoving oven 4. For drying the polymeric liquid film hot process air is circulated in the currently used practically worldwide painting process within the furnace, while the wire passes through the machine in a straight line against the air flow. During this convective drying, the solvents contained in the coating film are evaporated, discharged into the direct environment and transported away until the remaining polymer finally "crosslinks" or hardens on the wire surface due to the high temperatures (450-700 ° C.). In the baking oven 4 while a temperature profile is generated, with which a drying and subsequent curing of the applied layer is achieved. Between the individual coating passes, the wire is cooled in cooling devices 5. Between the annealing furnace 2 and the baking oven 3, the wire via pneumatic dancer 6 (see. Fig. 3 ), which tension the wire and compensate for temperature-induced voltage fluctuations. The completely coated finished wire is finally fed to the Wicklervorrichtungen 7, which wind the wire on rollers 8.

Fig. 4 zeigt schematisch einen Längsschnitt parallel zur Drahtförderrichtung 9 durch den Glühofen 2. Auf einer Eintrittseite 10 wird der ungekühlte Blankdraht in den Glühofen 2 eingeführt. Fig. 4 schematically shows a longitudinal section parallel to the wire conveying direction 9 through the annealing furnace 2. On an inlet side 10 of the uncooled bare wire is introduced into the annealing furnace 2.

Eine hohe Drahteintrittstemperatur ermöglicht einen geringen Temperaturverlust bzw. eine geringe notwendige Wärmezufuhr und eine optimale Rekristallisation des Drahtes 14. Die Strömung der heißen Umluft im Glühofen 2 entlang eines geschlossenen Kreislaufs wird durch die Pfeile 11, 12 angezeigt. Dabei strömt die Heißluft im Drahttransportbereich 13 entgegen der Drahtförderrichtung 9 (vgl. Fig. 5) um eine optimale Wärmekonvektion und damit eine maximale Wärmeübertragung von der Heißluft auf den Draht zu ermöglichen. Durch die hohe Temperatur der Heißluft können Rückstände 15 auf dem Blankdraht, z.B. Ziehmittelrückstände, schichtweise abgetragen bzw. abgebrannt werden. Da der Draht 14 im Glühofen 2 noch unbeschichtet ist, treten keine Emissionen wie etwa beim Trocknen einer Lackierung auf, so dass die Heißluft von der Eintrittseite 10 gemäß dem Pfeil 11 parallel zum Drahttransportbereich 13 zirkuliert und wiederverwendet werden kann. Ein Luftaustausch kann weitgehend unterbleiben. Die abgetragenen Rückstände können von der umgewälzten Heißluft abgetrennt werden.A high wire inlet temperature enables a small temperature loss or a small necessary heat input and an optimal recrystallization of the wire 14. The flow of the hot circulating air in the annealing furnace 2 along a closed circuit is indicated by the arrows 11, 12. In this case, the hot air in the wire transport region 13 flows counter to the wire conveying direction 9 (cf. Fig. 5 ) to allow optimum heat convection and thus maximum heat transfer from the hot air to the wire. Due to the high temperature of the hot air, residues 15 on the bare wire, eg drawing agent residues, can be removed or burned off in layers. Since the wire 14 in the annealing furnace 2 is still uncoated, there are no emissions such as when painting a paint, so that the hot air from the inlet side 10 can be circulated and reused parallel to the wire transporting area 13 according to the arrow 11. An air exchange can largely be omitted. The removed residues can be separated from the circulated hot air.

Die sukzessive Abtragung der Rückstände 15 vom Draht 14 ist in Fig. 6 schematisch dargestellt, wobei die drei gezeigten Drahtquerschnitte 16 jeweils einen unterschiedlichen Fortschritt der Abtragung zeigen. Der oberste Drahtquerschnitt 17 zeigt den Draht 14 vor dem ersten Durchlauf durch den Glühofen 2, wobei noch sämtliche nach dem Ziehen am Draht 14 verbliebenen Rückstände 15 vorhanden sind; der mittlere Drahtquerschnitt 18 zeigt den Draht nach fünf Durchläufen, wobei bereits der größte Teil der Rückstände 15 abgetragen werden konnte; und der unterste Drahtquerschnitt 19 zeigt den vollständig gereinigten Draht 14 nach dem zehnten Durchlauf durch den Glühofen 2.The successive removal of the residues 15 from the wire 14 is in Fig. 6 shown schematically, wherein the three wire cross sections 16 each show a different progress of the ablation. The uppermost wire cross section 17 shows the wire 14 before the first pass through the annealing furnace 2, wherein all remaining after pulling on the wire 14 residues 15 are still present; the mean wire cross section 18 shows the wire after five passes, whereby already the majority of the residues 15 could be removed; and the lowermost wire section 19 shows the completely cleaned wire 14 after the tenth pass through the annealing furnace 2.

Im Glühofen herrscht beispielsweise eine Lufttemperatur der Umluft von 650°C. Die folgende Tabelle zeigt die Zugfestigkeit des Drahtes anhand der Dehnung (in Prozent) bis zum Bruch nach jedem Durchlauf durch den Glühofen 2: Durchlauf 1 34,1 % Durchlauf 2 37,7 % Durchlauf 3 37,8 % Durchlauf 4 36,7 % Durchlauf 5 38,2 % Durchlauf 6 37,2 % Durchlauf 7 38,3 % Durchlauf 8 37,8 % Durchlauf 9 36,4 % Durchlauf 10 37,6 % In the annealing furnace, for example, there is an air temperature of circulating air of 650 ° C. The following table shows the tensile strength of the wire based on the elongation (in percent) until break after each pass through the annealing furnace 2: Pass 1 34.1% Pass 2 37.7% Pass 3 37.8% Pass 4 36.7% Pass 5 38.2% Pass 6 37.2% Pass 7 38.3% Pass 8 37.8% Pass 9 36.4% Pass 10 37.6%

Die folgende Tabelle zeigt beispielhaft eine Folge von Durchläufen durch den Einbrennofen 4 zum Einbrennen der Lackfilme mit dem jeweils zuvor aufgebrachten Beschichtungsmaterial und der Zugfestigkeit des Drahtes nach dem Durchlauf: Durchlauf 1 Polyesterimid 37,9 % Durchlauf 2 Polyesterimid 37,7 % Durchlauf 3 Polyesterimid 38,1 % Durchlauf 4 Polyesterimid 38,5 % Durchlauf 5 Polyesterimid 37,8 % Durchlauf 6 Polyesterimid 37,3 % Durchlauf 7 Polyesterimid 38,4 % Durchlauf 8 Polyesterimid 37,9 % Durchlauf 9 Polyesterimid 38,2 % Durchlauf 10 Polyesterimid 38,8 % Durchlauf 11 Polyesterimid 37,8 % Durchlauf 12 Polyesterimid 37,1 % Durchlauf 13 Polyesterimid 38,5 % Durchlauf 14 Polyesterimid 38,0 % Durchlauf 15 Polyamidimid 38,9 % Durchlauf 16 Polyamidimid 38,1 % Durchlauf 17 Polyamidimid 38,7 % Durchlauf 18 Polyamidimid 40,3 % The following table shows by way of example a sequence of passes through the baking oven 4 for baking the paint films with the respective previously applied coating material and the tensile strength of the wire after the pass: Pass 1 polyesterimide 37.9% Pass 2 polyesterimide 37.7% Pass 3 polyesterimide 38.1% Pass 4 polyesterimide 38.5% Pass 5 polyesterimide 37.8% Pass 6 polyesterimide 37.3% Pass 7 polyesterimide 38.4% Pass 8 polyesterimide 37.9% Pass 9 polyesterimide 38.2% Pass 10 polyesterimide 38.8% Pass 11 polyesterimide 37.8% Pass 12 polyesterimide 37.1% Pass 13 polyesterimide 38.5% Pass 14 polyesterimide 38.0% Pass 15 polyamide-imide 38.9% Pass 16 polyamide-imide 38.1% Pass 17 polyamide-imide 38.7% Pass 18 polyamide-imide 40.3%

Claims (10)

  1. Method for processing a wire (14), in particular an aluminium wire, at least one coat of a coating material being applied to the wire (14) and the applied coat subsequently being dried and/or cured in a stoving oven (4), the wire (14) being conveyed through an annealing oven (2) that is separate from the stoving oven (4) before the coat is applied and in order to recrystallise the wire (14), characterised in that the wire (14) is conveyed in the annealing oven (2) by means of a substantially self-contained flow of a hot gas, in particular a flow of recirculated air.
  2. Method according to claim 1, characterised in that the flow of the hot gas is oriented counter to the wire-conveying direction (9).
  3. Method according to either claim 1 or claim 2, characterised in that the wire (14) is heated to a comparatively lower wire temperature (T) in the stoving oven (4) than in the annealing oven (2).
  4. Method according to any of the preceding claims, characterised in that the wire (14) is conveyed through the annealing oven (2) at least twice, preferably between two and 15 times, in particular approximately ten times.
  5. Method according to any of the preceding claims, characterised in that the coating material is applied directly to the wire (14).
  6. Method according to any of the preceding claims, characterised in that the wire (14) is conveyed between the two ovens (2, 4) by means of a re-tensioning device (6) for re-tensioning the wire (14).
  7. Device for processing a drawn wire (14), in particular an aluminium wire, comprising a coating device (3) for applying at least one coat of a coating to the wire (14), and comprising a stoving oven (4) for drying and/or curing the applied coat, an annealing oven (2) that is separate from the stoving oven (4) being provided, being arranged upstream of the stoving oven (4) in the wire-conveying direction (9) and being designed for recrystallising the wire (14), characterised in that the annealing oven (2) is designed for convectively heating the wire (14) by means of a heated gas that is moved in a substantially closed loop, in particular by means of hot air.
  8. Device according to claim 7, characterised in that the annealing oven (2) can be controlled independently of the stoving oven (4) in order to set different temperature profiles and corresponding wire temperatures (T).
  9. Device according to either claim 7 or claim 8, characterised in that, during operation, the average temperature in the annealing oven (2) is higher than the average temperature in the stoving oven (4).
  10. Device according to any of claims 7 to 9, characterised in that a re-tensioning device (6) for re-tensioning the wire (14) is arranged upstream of the stoving oven (4) and downstream of the annealing oven (2) in the wire-conveying direction (9).
EP15162545.6A 2014-04-07 2015-04-07 Device and method for processing a wire Not-in-force EP2930723B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50263/2014A AT515617B1 (en) 2014-04-07 2014-04-07 Method and device for processing a wire

Publications (3)

Publication Number Publication Date
EP2930723A2 EP2930723A2 (en) 2015-10-14
EP2930723A3 EP2930723A3 (en) 2015-11-11
EP2930723B1 true EP2930723B1 (en) 2018-12-12

Family

ID=53008273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15162545.6A Not-in-force EP2930723B1 (en) 2014-04-07 2015-04-07 Device and method for processing a wire

Country Status (3)

Country Link
EP (1) EP2930723B1 (en)
AT (1) AT515617B1 (en)
ES (1) ES2719980T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366038A (en) * 2020-11-02 2021-02-12 浙江涌金线材股份有限公司 Enameled wire processing technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637748A (en) * 2018-12-06 2019-04-16 广东新中南电缆有限公司 A kind of cable copper wire preparation process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136430C (en) * 1963-09-25
US4521173A (en) * 1981-04-29 1985-06-04 Phelps Dodge Magnet Wire Co. Apparatus for manufacturing magnet wire
DE3118830C2 (en) * 1981-05-12 1983-05-11 MAG Maschinen und Apparatebau GmbH, 8055 Graz "Plant for enamelled wire production using the inline process"
JPS5928530A (en) 1982-08-09 1984-02-15 Fujikura Ltd Manufacture of enameled wire
DE4010306C2 (en) * 1990-03-30 1999-06-10 Mag Masch App Process and device for the production of enamelled wires with melting resins
JPH05325684A (en) * 1992-05-21 1993-12-10 Hitachi Cable Ltd Manufacture of enamel wire
JPH0928530A (en) * 1995-07-18 1997-02-04 Dainippon Printing Co Ltd Information display and exhibition device using hologram
CN1212260C (en) * 2001-05-24 2005-07-27 中国科学院电工研究所 High-temperature superconductive cable winding machine
CN102074308B (en) * 2010-11-16 2012-12-19 诸暨露笑特种线有限公司 System and process for producing enamelled aluminium wires
CN103000313A (en) * 2011-09-14 2013-03-27 吴江市神州机械有限公司 Small vertical enameling machine
CN103258600A (en) * 2012-02-16 2013-08-21 宜春德源欣茂铝业有限公司 Enameling method of motor 180-stage polyesterimide enameled round aluminum wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366038A (en) * 2020-11-02 2021-02-12 浙江涌金线材股份有限公司 Enameled wire processing technology

Also Published As

Publication number Publication date
EP2930723A3 (en) 2015-11-11
AT515617B1 (en) 2016-04-15
AT515617A1 (en) 2015-10-15
EP2930723A2 (en) 2015-10-14
ES2719980T3 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
EP2236217B1 (en) Method and device for coating metallic tubes or other long components with limited cross-section
EP2726802A1 (en) Method for heating a shaped component for a subsequent press hardening operation and continuous furnace for regionally heating a shaped component preheated to a predetermined temperature to a higher temperature
AT524874B1 (en) Continuous furnace for aluminum strips
EP2930723B1 (en) Device and method for processing a wire
CH664529A5 (en) METHOD FOR SHELLING ROD-SHAPED METALLIC MOLDED BODIES WITH THERMOPLASTIC PLASTIC.
EP3010646A1 (en) Method for coating a surface of an electrically non-conductive substrate with powder coatings
WO2013020977A1 (en) Device for coating electrically conductive wires
WO2009074344A1 (en) Cooling apparatus and method for cooling objects from a coating device
EP0467320B1 (en) Method of making coatings for wires
EP0023238B1 (en) Method and device for manufacturing varnish-insulated winding wire, in particular thick wires
DE4028198C2 (en)
DE1652395B2 (en) Process and device for the continuous enamel coating of wire
EP2466237B1 (en) Infra-red drying system
DE2843895A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF ELECTRIC LEAD WIRES, IN PARTICULAR PROFILED STRONG WIRE, INSULATED WITH ULTRAVIOLET RADIATION
DE4010306C2 (en) Process and device for the production of enamelled wires with melting resins
DE1554943A1 (en) Method and apparatus for bonding synthetic resin to metal
AT318037B (en) Production line for the insulation of wires or the like. with high-percentage paints
EP0157737A1 (en) Process for the production of a metal-synthetic-composite
EP1384523A1 (en) Process for continuously and chromate free coating a pipe in a fluidized bed
EP3648975A1 (en) Method for laminating a metal tape and method for producing a tape-form composite material
DE102010053980B4 (en) deck oven
DE102004033260A1 (en) Radiation induced curing of paint, in particular UV curable paints on vehicle body parts, uses radiant heater for heating paint and further radiation emitter to induce curing of paint layer
DE19535680A1 (en) Process for coating metallic strips on one or both sides with extruded, thermosetting synthetic resin
WO2003054869A1 (en) Substrate treatment device
DE102007021653B4 (en) coating plant

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 13/06 20060101AFI20151006BHEP

17P Request for examination filed

Effective date: 20160511

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015007165

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01B0013060000

Ipc: F27B0009100000

RIC1 Information provided on ipc code assigned before grant

Ipc: F27B 9/10 20060101AFI20180420BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007165

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2719980

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007165

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015007165

Country of ref document: DE

26N No opposition filed

Effective date: 20190913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1076574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150407

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212