EP2923529A1 - Scheibe mit elektrischem anschlusselement und kompensatorplatten - Google Patents

Scheibe mit elektrischem anschlusselement und kompensatorplatten

Info

Publication number
EP2923529A1
EP2923529A1 EP13739210.6A EP13739210A EP2923529A1 EP 2923529 A1 EP2923529 A1 EP 2923529A1 EP 13739210 A EP13739210 A EP 13739210A EP 2923529 A1 EP2923529 A1 EP 2923529A1
Authority
EP
European Patent Office
Prior art keywords
compensator
electrically conductive
connection element
conductive structure
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13739210.6A
Other languages
English (en)
French (fr)
Other versions
EP2923529B1 (de
Inventor
Mitja Rateiczak
Bernhard Reul
Klaus SCHMALBUCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47594294&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2923529(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to PL13739210T priority Critical patent/PL2923529T3/pl
Priority to EP13739210.6A priority patent/EP2923529B1/de
Publication of EP2923529A1 publication Critical patent/EP2923529A1/de
Application granted granted Critical
Publication of EP2923529B1 publication Critical patent/EP2923529B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • the invention relates to a disc with an electrical connection element, an economical and environmentally friendly method for their production and their use.
  • the invention further relates to a disc with an electrical connection element for vehicles with electrically conductive structures such as heating conductors or antenna conductors.
  • the electrically conductive structures are usually connected via soldered electrical connection elements with the on-board electrical system. Due to different thermal expansion coefficients of the materials used, mechanical stresses occur during manufacture and during operation, which can load the disks and cause the disk to break.
  • Lead-containing solders have a high ductility, which can compensate occurring mechanical stresses between the electrical connection element and the disc by plastic deformation.
  • the Directive is collectively referred to as the ELV (End of Life Vehicles).
  • the goal is to eliminate extremely problematic components from the products as a result of the massive expansion of disposable electronics.
  • the substances involved are lead, mercury, cadmium and chromium. This includes, among other things, the enforcement of lead-free solders in electrical applications on glass and the introduction of appropriate replacement products for this purpose.
  • Such connection elements expand when heated hardly and compensate the resulting voltages.
  • EP 1 942 703 A2 discloses an electrical connection element on panes of vehicles, wherein the difference of the coefficients of thermal expansion of the pane and the electrical connection element is ⁇ 5 ⁇ 10 -6 / ° C. and the connection element contains predominantly titanium, in order to ensure sufficient mechanical stability and processability
  • the surplus of solder mass emerges from the space between the connection element and the electrically conductive structure, the surplus solder mass causes high mechanical stresses in the glass pane, and these mechanical stresses eventually lead to breakage of the pane Titanium is poorly solderable.This leads to a poor adhesion of the connection element to the disc.
  • the connection element must also be connected to the on-board electrical system via an electrically conductive material, such as copper, for example by welding badly weldable.
  • EP 2 408 260 A1 describes the use of iron-nickel or iron-nickel-cobalt alloys such as Kovar or Invar which have a low coefficient of thermal expansion (CTE).
  • CTE coefficient of thermal expansion
  • Invar has such a low thermal expansion coefficient that overcompensation of these mechanical stresses occurs. This leads to compressive stresses in the glass or tensile stresses in the alloy, which, however, are classified as uncritical.
  • connection elements made of copper which were used in conjunction with lead-containing solder masses are not suitable for soldering with the known lead-free solder masses on glass due to their high expansion coefficient.
  • iron or titanium connectors have a lower coefficient of expansion and are compatible with lead-free solder alloys, these materials are much less forgeable.
  • the service life of the for the production of the connection elements required tools, which leads to an increase in production costs.
  • the boundary conditions of the soldering process have to be varied again and again with changing materials and shapes of the connection elements.
  • Various connection elements also have a different mechanical robustness with respect to peel-off forces. A standardization would therefore be desirable to ensure consistent mechanical stability and the same soldering behavior.
  • the object of the present invention is to provide a disk with electrical connection element as well as an economical and environmentally friendly method for their production, wherein critical stresses in the disc are avoided and the manufacturing process is simplified by standardization of the soldering process, regardless of the material and the shape of the connection element ,
  • the object of the present invention is achieved by a disc with at least one connection element with Kompensatorplatten.
  • the disc comprises at least one substrate with an electrically conductive structure on at least a portion of the substrate, at least one compensator plate on at least a portion of the conductive structure, at least one electrical connection element on at least a portion of the Kompensatorplatte and a lead-free solder mass, the Kompensatorplatte over at least connects a contact surface with at least a portion of the electrically conductive structure.
  • the difference of the thermal expansion coefficients of the substrate and the Kompensatorplatten is less than 5 x 10 ⁇ 6 / ° C and the connecting element contains copper.
  • the thermal expansion coefficient of the compensator plates is preferably between 9 ⁇ 10 -6 / ° C. and 13 ⁇ 10 -6 / ° C., more preferably between 10 ⁇ 10 -6 / ° C. and 12 ⁇ 10 -6 / ° C., very particularly preferably of 10 x 10 "6 / ° C and 11 x 10 " 6 / ° C in a temperature range of 0 ° C to 300 ° C.
  • connection element is soldered by means of the lead-free solder mass without Kompensatorplatte directly on the electrically conductive structure of the substrate, whereby damage occurs in the substrate in temperature cycling tests. Such damage can not be observed on the disc according to the invention, since the compensator compensates for the stresses occurring.
  • the material of the compensator plates is chosen so that the difference of the coefficients of thermal expansion of the substrate and the compensator plates is less than 5 ⁇ 10 -6 / ° C.
  • the substrate and the compensator plates expand to the same degree upon heating and damage the Furthermore, copper-containing materials are generally easy to form, as is the case in the prior art connection elements, which are also used in connection with lead-free solder masses On the other hand, tool life is considerably higher when forming copper-containing connecting elements tion costs with regard to the forming process.
  • the steel or titanium connection elements which can be soldered according to the prior art with lead-free solder materials have a significantly higher electrical resistance in comparison with the common copper-containing connection elements.
  • the compensator plates form the contact base for Connection elements and other fasteners of all kinds and thus serve not only as a compensator but also as an adapter.
  • the conditions at the soldering point remain constant and the soldering process does not have to be adapted even when changing the shapes and materials of the connection elements.
  • the mechanical conditions remain constant at the solder joint, so that the peel forces are independent of the shape of the connection element.
  • the number of compensator plates used depends on the geometry of the connection element. If the connection element is to be connected to the electrically conductive structure only via a surface, a compensator plate on the side of the connection element which is to be contacted with the electrically conductive structure is sufficient.
  • the electrical connection element is electrically conductively connected to the electrically conductive structure via a first compensator plate and a second compensator plate.
  • the connection element may, for example, be in the form of a bridge, wherein the connection element has two feet, between which lies a raised portion which does not directly contact the electrically conductive structure in a planar manner.
  • the connection element can both have a simple bridge shape and comprise more complex bridge shapes. The two feet of the connecting element lie on the top of each one Kompensatorplatte.
  • the compensator plates have on their underside contact surfaces, with which they are applied over the entire surface of the electrically conductive structure.
  • the compensator plates and the contact surfaces have no corners. Such a design causes both a uniform tensile stress distribution without maximum values at the corners and a uniform solder distribution.
  • the compensator plates include titanium, iron, nickel, cobalt, molybdenum, copper, zinc, tin, manganese, niobium and / or chromium and / or alloys thereof.
  • the compensator plates preferably contain a chromium-containing steel with a chromium content of greater than or equal to 10.5% by weight.
  • Other alloying ingredients like molybdenum, Manganese or niobium lead to improved corrosion resistance or altered mechanical properties, such as tensile strength or cold workability.
  • the compensator plates according to the invention preferably contain at least 66.5 wt .-% to 89.5 wt .-% iron, 10.5 wt .-% to 20 wt .-% chromium, 0 wt .-% to 1 wt .-% carbon , 0 wt .-% to 5 wt .-% nickel, 0 wt .-% to 2 wt .-% manganese, 0 wt .-% to 2.5 wt .-% molybdenum, 0 wt .-% to 2 wt % Niobium and 0% to 1% titanium by weight.
  • the compensator plates may additionally contain admixtures of other elements, including vanadium, aluminum and nitrogen.
  • the compensator plates contain at least 73% by weight to 89.5% by weight iron, 10.5% by weight to 20% by weight chromium, 0% by weight to 0.5% by weight carbon , 0 wt .-% to 2.5 wt .-% nickel, 0 wt .-% to 1 wt .-% manganese, 0 wt .-% to 1.5 wt .-% molybdenum, 0 wt .-% bis 1 wt .-% of niobium and 0 wt .-% to 1 wt .-% of titanium.
  • admixtures of other elements may also be included, including vanadium, aluminum and nitrogen.
  • the compensator plates most preferably contain at least 77 wt% to 84 wt% iron, 16 wt% to 18.5 wt% chromium, 0 wt% to 0, 1 wt% carbon, 0 wt .-% to 1 wt .-% manganese, 0 wt .-% to 1 wt .-% niobium, 0 wt .-% to 1.5 wt .-% molybdenum and 0 wt .-% to 1 wt. -% titanium.
  • the compensator plates may additionally contain admixtures of other elements, including vanadium, aluminum and nitrogen.
  • Chromium-containing in particular so-called stainless or stainless steel is available at low cost.
  • chromium-containing steel has a high rigidity in comparison to copper and copper alloys, which leads to an advantageous stability of the compensator plates.
  • compensator plates made of chromium-containing steel compared to many conventional connection elements, for example those made of titanium, improved solderability, resulting from a higher thermal conductivity.
  • the compensator plates preferably have a material thickness of 0, 1 mm to 1 mm, more preferably 0.4 mm to 0.8 mm. Within these ranges a sufficient mechanical stability as well as a good compensation of stresses with temperature expansion of the disc is optimally guaranteed.
  • the width and length of the compensator plates can be individually adapted to the connection elements used and the shape of their feet. In order to achieve the particularly advantageous standardization of Kompensatorplatten but particularly preferably round, circular or elliptical shapes, in particular circular shapes used. In a most preferred circular embodiment of Kompensatorplatten they have a diameter of 2 mm to 15 mm, preferably 4 mm to 10 mm.
  • the connecting element preferably contains titanium, iron, nickel, cobalt, molybdenum, copper, zinc, tin, manganese, niobium and / or chromium and / or alloys thereof.
  • a suitable material composition is selected according to its electrical resistance.
  • the terminal comprises 45.0 wt% to 99.9 wt% copper, 0 wt% to 45 wt% zinc, 0 wt% to 15 wt% tin, 0 wt .-% to 30 wt .-% nickel and 0 wt .-% to 5 wt .-% silicon.
  • wt% copper
  • wt% 45 wt% zinc
  • 0 wt .-% to 30 wt .-% nickel and 0 wt .-% to 5 wt .-% silicon In addition to electrolytic copper a variety of brass or bronze alloys are suitable as materials, such as nickel silver or Konstantan.
  • connection element contains 58 wt .-% to 99.9 wt .-% copper and 0 wt .-% to 37.0 wt .-% zinc, in particular 60 wt .-% to 80 wt .-% copper and 20 Wt .-% to 40 wt .-% zinc.
  • connection element is electrolytic copper with the material number CW004A (formerly 2.0065) and CuZn30 with the material number CW505L (formerly 2.0265).
  • the material of the connecting element has an electrical resistance between 1.0 ⁇ ⁇ and 15 ⁇ ⁇ , especially preferably between 1.5 ⁇ ⁇ and 1 1 ⁇ ⁇ .
  • the material thickness of the connecting element is preferably 0, 1 mm to 2 mm, more preferably 0.2 mm to 1 mm, most preferably 0.3 mm and 0.5 mm.
  • the material thickness of the connection element is constant in its entire area. This is particularly advantageous with regard to a simple production of the connection element.
  • the connecting element is connected via a connecting cable with the on-board electronics of the motor vehicle.
  • the electrical contacting of the connection element with the connection cable can be effected via a solder connection, a welded connection or a crimp connection.
  • connection cables for contacting the connection element are in principle all cables which are known to those skilled in the electrical contacting of an electrically conductive structure.
  • the connection cable can comprise, in addition to an electrically conductive core (inner conductor), an insulating, preferably polymeric sheath, wherein the insulating sheath is preferably removed in the end region of the connection cable in order to allow an electrically conductive connection between the connection element and the inner conductor.
  • the electrically conductive core of the connection cable can contain, for example, copper, aluminum and / or silver or alloys or mixtures thereof.
  • the electrically conductive core can be designed, for example, as a wire stranded conductor or as a solid wire conductor.
  • the cross-section of the electrically conductive core of the connection cable depends on the current carrying capacity required for the use of the pane according to the invention and can be suitably selected by the person skilled in the art.
  • the cross section is for example from 0.3 mm 2 to 6 mm 2 .
  • the connection element is electrically conductively connected to the compensator plates, wherein the elements can be connected by means of various soldering or welding techniques.
  • the compensator plates and the connection element are connected by means of electrode resistance welding, ultrasonic welding or friction welding.
  • connection element can also be applied to the compensator plates via a screw or plug connection.
  • a contact can be realized, for example, by a compensator plate with threaded pin, onto which a connection element with threaded sleeve is screwed.
  • connection element covers only a portion of the surface of the compensator plates. A part of the compensator plates thus protrudes laterally below the connection element and is accessible even after attachment of the connection element on the Kompensatorplatten. When soldering the compensator plates on the electrically conductive structure, these protrusions can serve for contacting the compensator plates.
  • an electrically conductive structure is applied, which preferably contains silver, particularly preferably silver particles and glass frits.
  • the electrically conductive structure according to the invention preferably has a layer thickness of 3 ⁇ to 40 ⁇ , more preferably from 5 ⁇ to 20 ⁇ , most preferably from 7 ⁇ to 15 ⁇ and in particular from 8 ⁇ to 12 ⁇ on.
  • the Kompensatorplatten on which the connection element is applied are connected over a contact surface over the entire surface with a portion of the electrically conductive structure. The electrical contacting takes place by means of the lead-free solder mass.
  • the electrically conductive structure can serve, for example, for contacting wires or a coating applied to the pane.
  • the electrically conductive structure is mounted, for example in the form of bus bars on opposite edges of the disc.
  • a voltage can be applied across the bus bars mounted on the bus bars, thereby flowing current through the conductive wires or coating from one bus bar to the other and heating the pane.
  • the pane according to the invention is also used in combination with antenna conductors usable or in any other embodiments in which a stable contacting of the disc is needed conceivable.
  • the substrate preferably contains glass, particularly preferably flat glass, float glass, quartz glass, borosilicate glass and / or soda-lime glass.
  • the substrate may also contain polymers, preferably polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene, polybutadiene, polynitriles, polyesters, polyurethane, polyvinyl chloride, polyacrylate, polyamide, polyethylene terephthalate and / or copolymers or mixtures thereof.
  • the substrate is preferably transparent.
  • the substrate preferably has a thickness of from 0.5 mm to 25 mm, particularly preferably from 1 mm to 10 mm and very particularly preferably from 1.5 mm to 5 mm.
  • the thermal expansion coefficient of the substrate is preferably 8 ⁇ 10 -6 / ° C to 9 ⁇ 10 -6 / ° C.
  • the substrate preferably contains glass, which preferably has a thermal expansion coefficient of 8.3 ⁇ 10 -6 / ° C. to 9 ⁇ 10 -6 / ° C. in a temperature range from 0 ° C. to 300 ° C.
  • a screen printing is applied to the substrate, which covers the contacting of the disc in the installed state of the disc, so that the connection element with Kompensatorplatten from the outside is not visible.
  • the electrically conductive structure is connected to the compensator plates in an electrically conductive manner via the lead-free solder mass.
  • the lead-free solder mass is arranged on the contact surfaces, which are located on the underside of the connection element.
  • the layer thickness of the lead-free solder mass is preferably less than or equal to 600 ⁇ , more preferably between 150 ⁇ and 600 ⁇ , in particular less than 300 ⁇ .
  • the lead-free solder mass is preferably lead-free. This is particularly advantageous with regard to the environmental compatibility of the pane according to the invention with electrical connection element.
  • the term "lead-free solder mass” is to be understood as meaning a solder mass which, in accordance with the EC directive "2002/95 / EC for the restriction of the Use of certain hazardous substances in electrical and electronic equipment "a proportion of less than or equal to 0, 1 wt .-% lead, preferably contains no lead.
  • solder mass preferably contains tin and bismuth, indium, zinc, copper, silver or compositions thereof.
  • the proportion of tin in the solder composition according to the invention is 3 wt .-% to 99.5 wt .-%, preferably 10 wt .-% to 95.5 wt .-%, particularly preferably 15 wt .-% to 60 wt. %.
  • the proportion of bismuth, indium, zinc, copper, silver or compositions thereof in the solder composition according to the invention from 0.5 wt .-% to 97 wt .-%, preferably 10 wt .-% to 67 wt .-%, wherein the proportion may be 0 wt .-% of bismuth, indium, zinc, copper or silver.
  • the solder composition may contain nickel, germanium, aluminum or phosphorus at a level of from 0% to 5% by weight.
  • the solder composition according to the invention very particularly preferably contains Bi40Sn57Ag3, Sn40Bi57Ag3, Bi59Sn40Agl, Bi57Sn42Agl, In97Ag3, In60Sn36.5Ag2Cul, 5, Sn95.5Ag3.8Cu0.7, Bi67In33, Bi33In50Sn17, Sn77.2In20Ag2.8, Sn95Ag4Cul, Sn99Cul, Sn96.5Ag3, 5, Sn96.5Ag3CuO, 5, Sn97Ag3 or mixtures thereof.
  • the solder mass contains bismuth. It has been shown that a bismuth-containing solder composition leads to a particularly good adhesion of the connecting element according to the invention to the disk, wherein damage to the disk can be avoided.
  • the proportion of bismuth in the solder composition is preferably from 0.5% by weight to 97% by weight, more preferably from 10% by weight to 67% by weight and most preferably from 33% by weight to 67% Wt .-%, in particular from 50% by weight to 60 wt .-%.
  • the solder mass preferably contains tin and silver or tin, silver and copper.
  • the solder mass contains at least 35 wt .-% to 69 wt .-% bismuth, 30 wt .-% to 50 wt .-% tin, 1 wt .-% to 10 wt .-% silver and 0 wt % to 5% by weight of copper.
  • the solder mass contains at least 49 wt .-% to 60 wt .-% bismuth, 39 wt .-% to 42 wt .-% tin, 1 wt .-% to 4 wt .-% silver and 0 Wt .-% to 3 wt .-% copper.
  • the solder mass of 90 wt .-% to 99.5 wt .-% tin preferably from 93 wt .-% to 99 wt .-%, particularly preferably from 95 wt .-% to 98 wt. -%.
  • the solder mass preferably contains from 0.5% by weight to 5% by weight of silver and from 0% by weight to 5% by weight of copper.
  • the solder mass emerges with an exit width of preferably less than 1 mm from the intermediate space between the soldering area of the compensator plates and the electrically conductive structure.
  • the maximum exit width is less than 0.5 mm and in particular about 0 mm. This is particularly advantageous with regard to the reduction of mechanical stresses in the disc, the adhesion of the connecting element and the saving of the solder.
  • the maximum exit width is defined as the distance between the outer edges of the soldering area and the point of Lotmasseübertritts, at which the solder mass falls below a layer thickness of 50 ⁇ . The maximum exit width is measured after the soldering process on the solidified solder mass.
  • a desired maximum exit width is achieved by a suitable choice of solder mass volume and perpendicular distance between compensator plates and electrically conductive structure, which can be determined by simple experiments.
  • the vertical distance between compensator plates and electrically conductive structure can be predetermined by a corresponding process tool, for example a tool with an integrated spacer.
  • the maximum exit width may also be negative, that is to say retracted into the intermediate space formed by the soldering area of the compensator plates and the electrically conductive structure.
  • the maximum exit width in the intermediate space formed by the soldering area of the compensator plates and the electrically conductive structure is withdrawn in a concave meniscus.
  • a concave meniscus is created by increasing the perpendicular distance between the spacer and conductive structure during the soldering process while the solder is still liquid.
  • the advantage lies in the reduction of the mechanical stresses in the disc, in particular in the critical range, which is present at a large Lotmasseübertritt.
  • the contact surfaces of the compensator plates on spacers preferably at least two spacers, particularly preferably at least three spacers.
  • the spacers are preferably formed integrally with the Kompensatorplatten, for example by embossing or deep drawing.
  • the spacers preferably have a width of 0.5.times.10.sup.- 4 m to 10.times.10.sup.-1 m and a height of 0.5.times.10.sup.- 4 m to 5.times.10.sup.- 4 m, more preferably 1.times.10.sup.- 4 m.sup.- 3 3 x 10 "4 m.
  • the compensator plates and / or the connection element are equipped with contact elevations, which serve for contacting with the soldering tool during the soldering process.
  • the contact elevations are arranged on the surface of the compensator plates facing away from the substrate opposite the contact surfaces or on the surface of the connection element facing away from the substrate in the region which is located above the compensator plates.
  • the contact elevations are preferably convexly curved, at least in the area of the contacting with the soldering tool.
  • the contact elevations preferably have a height of 0, 1 mm to 2 mm, more preferably from 0.2 mm to 1 mm.
  • the length and width of the contact elevations is preferably between 0, 1 and 5 mm, very particularly preferably between 0.4 mm and 3 mm.
  • the contact elevations are preferably formed integrally with the compensator plates or the connection element, for example by embossing or deep-drawing.
  • the contact side is formed flat.
  • the electrode surface is brought into contact with the contact elevation.
  • the electrode surface is arranged parallel to the surface of the substrate.
  • the contact area between the electrode surface and contact elevation forms the solder joint.
  • the position of the solder joint is determined by the point on the convex surface of the contact elevation, which has the greatest perpendicular distance from the surface of the substrate.
  • the position of the solder joint is independent of the position of the soldering electrode on the compensator plates or the connecting element. This is particularly advantageous in terms of a reproducible, even heat distribution during the soldering process.
  • the Heat distribution during the soldering process is determined by the position, size, arrangement and geometry of the contact bump.
  • the compensator plates preferably have a coating (wetting layer) at least on the contact surface aligned with the solder mass, which contains nickel, copper, zinc, tin, silver, gold or alloys or layers thereof, preferably silver.
  • the compensator plates according to the invention are preferably coated with nickel, tin, copper and / or silver.
  • the compensator plates are particularly preferably provided with an adhesion-promoting layer, preferably of nickel and / or copper, and additionally with a solderable layer, preferably of silver.
  • the compensator plates according to the invention are most preferably coated with 0, 1 ⁇ to 0.3 ⁇ nickel and / or 3 ⁇ to 20 ⁇ silver.
  • the compensator plates can be nickel-plated, tin-plated, copper-plated and / or silver-plated. Nickel and silver improve the current carrying capacity and corrosion stability of the compensator plates and the wetting with the solder mass.
  • connection element can optionally also have a coating.
  • a coating of the connection element is not necessary since there is no direct contact between the connection element and the solder mass. Thus, there is no need to optimize the wetting properties of the connection element. As a result, the production costs of the disc according to the invention with connection element and Kompensatorplatten be reduced because it can dispense with a large-area coating of the connection element and only the usually much smaller surface of Kompensatorplatten is coated.
  • connection element has a coating which contains nickel, copper, zinc, tin, silver, gold or alloys or layers thereof, preferably silver.
  • the connection element is coated with nickel, tin, copper and / or silver.
  • the connection element with 0, 1 ⁇ to 0.3 ⁇ nickel and / or 3 ⁇ coated to 20 ⁇ silver.
  • the connection element can be nickel-plated, tin-plated, copper-plated and / or silver-plated.
  • the shape of the compensator plates may form one or more solder deposits in the space between the compensator plate and the electrically conductive structure. The solder deposits and wetting properties of the solder on the compensator plates prevent the escape of the solder mass from the gap. Lotdepots can be rectangular, rounded or polygonal configured.
  • the invention further comprises a method for producing a pane with a connection element and one or more compensator plates, comprising the following steps:
  • connection element is fixed in an electrically conductive manner on the upper side of one or more compensator plates
  • a lead-free solder mass is applied to at least one contact surface on the underside of one or more compensator plates,
  • the compensator plates are arranged with the lead-free solder mass on an electrically conductive structure on a substrate and d) the compensator plates are soldered to the electrically conductive structure.
  • the electrically conductive structure can be applied to the substrate by methods known per se, for example by screen printing methods.
  • the application of the electrically conductive structure can take place before, during or after process steps (a) and (b).
  • the solder mass is preferably applied as platelets or flattened drops with a defined layer thickness, volume, shape and arrangement on the Kompensatorplatten.
  • the layer thickness of the Lotmasseplättchens is preferably less than or equal to 0.6 mm.
  • the shape of the Lotmasseplättchens preferably corresponds to the shape of the contact surface. If the contact surface is rectangular, for example, the solder mass platelet preferably has a rectangular shape.
  • connection element is welded or soldered on the upper side of the compensator plates or fastened by means of a screw or plug connection.
  • connection element is attached to the compensator plates by electrode resistance welding, ultrasonic welding or friction welding.
  • connection element is welded or crimped after installation of the disc in the vehicle with a metal sheet, a stranded wire or a braid, such as copper, and connected to the on-board electronics.
  • the invention further comprises the use of the inventive pane with electrically conductive structures in vehicles, architectural glazing or building glazing, in particular in motor vehicles, rail vehicles, aircraft or maritime vehicles.
  • the invention comprises the use of the pane according to the invention in rail vehicles or motor vehicles, preferably as a windscreen, rear window, side window and / or roof window, in particular as a heatable pane or as a pane with an antenna function.
  • Figure la is a plan view of a fiction, contemporary disc with connection element and Kompensatorplatte.
  • Figure lb shows a cross section of the disc according to Figure la along the cross-sectional line AA '.
  • FIG. 2a is a schematic perspective view of a disc according to the invention with bridge-shaped connection element and two Kompensatorplatten.
  • FIG. 2b shows a cross section of the disk according to FIG. 2a along the cross-sectional line BB '.
  • Figure 2c is a plan view of the disc according to Figure 2a.
  • Figure 3 is a plan view of the disc according to Figure 2c, in each case a contact elevation is applied to the Kompensatorplatten.
  • Figure 4 is a plan view of the disc according to Figure 2c, wherein additionally two contact elevations are applied to the connection element.
  • Figure 5a is a plan view of the disc according to Figure 2c, wherein additionally two contact elevations are applied to the Kompensatorplatten.
  • FIG. 5b shows a cross section of the disk according to FIG. 5a along the cross-sectional line BB '.
  • FIG. 6 shows a flow chart of the method according to the invention for producing a pane with connection element and compensator plates.
  • FIG. 1b shows a cross section along the cross section line AA '.
  • the cut surfaces in Figure lb are shown hatched.
  • a substrate (1) made of a 3 mm thick thermally toughened tempered safety glass of soda-lime glass a Abdecksieb réelle (6) is applied.
  • the substrate (1) has a width of 150 cm and a height of 80 cm, wherein at the shorter side edge in the region of Abdecksieb réelles (6), a connecting element (4) with Kompensatorplatte (3) is mounted.
  • an electrically conductive structure (2) is applied in the form of a Schuleiter Modell.
  • the electrically conductive structure contains silver particles and glass frits, wherein the silver content is greater than 90%.
  • the electrically conductive structure (2) is widened to 10 mm.
  • a lead-free solder mass (5) is applied, which connects the electrically conductive structure (2) with a contact surface (7) on the underside of the compensator plate (3).
  • the contact surface (7) and the lead-free solder mass (5) are concealed in the plan view in Figure la by the compensator plate (3), but in cross-section ( Figure lb) recognizable. The contact is made after mounting in the Vehicle body covered by the Abdecksiebdruck (6).
  • the lead-free solder mass (5) ensures a permanent electrical and mechanical connection of the electrically conductive structure (2) with the compensator plate (3).
  • the lead-free solder mass (5) contains 57 wt .-% bismuth, 42 wt .-% tin and 1 wt .-% silver.
  • the lead-free solder mass (5) has a thickness of 250 ⁇ .
  • the connecting element (4) consists of a flat bent sheet metal with a foot, the underside of which is welded on the upper side of the compensator plate (3). The bending of the connecting element can be seen in cross-section (FIG. 1b).
  • the electrical connection element (4) consists of copper of the material number CW004A (Cu-ETP) and has a contact surface with a width of 4 mm and a length of 6 mm. This material has a low electrical resistance (1.8 ⁇ ⁇ ) and is particularly suitable because of its high electrical conductivity as a connection element (4).
  • the material thickness of the connecting element (4) is 0.8 mm.
  • the compensator plate (3) consists of a circular punched sheet metal and has a height (material thickness) of 0.5 mm and a diameter of 4 mm.
  • the compensator plate (3) consists of steel of material number 1.4509 according to EN 10 088-2 (ThyssenKrupp Nirosta® 4509).
  • the Kompensatorplatte (3) compensates for mechanical stresses and thus makes the combination of a connecting element (4) made of copper with a lead-free solder mass (5) possible.
  • a connecting element (4) made of copper with a lead-free solder mass (5).
  • critical stresses in the disc are avoided, while still the previously known connection elements (4) made of copper or copper alloys can be used.
  • the manufacturing process can be simplified by standardizing the soldering process, regardless of the material and the shape of the connection element (4), since the parameters of the soldering process depend only on the compensator plates (3) used. This result was surprising and unexpected to the person skilled in the art.
  • Figures 2a, 2b and 2c show different views of a disc according to the invention with bridge-shaped connection element (4) and two Kompensatorplatten (3).
  • Figure 2a shows a perspective view of the disc
  • Figure 2b shows a cross section along the cross-sectional line BB 'and Figure 2c is a plan view. The cut surfaces are shown hatched in FIG. 2b.
  • a substrate (1) made of a 3 mm thick thermally toughened tempered safety glass of soda-lime glass a Abdecksiebdruck (6) is applied.
  • the substrate (1) has a width of 150 cm and a height of 80 cm, wherein at the shorter side edge in the region of Abdecksiebdrucks (6), a connection element (4) with Compensator plates (3) is mounted.
  • an electrically conductive structure (2) is applied in the form of a Walkerleiter Modell.
  • the electrically conductive structure contains silver particles and glass frits, the silver content being greater than 90%.
  • the electrically conductive structure (2) is widened to 10 mm.
  • a lead-free solder mass (5) is applied, which connects the electrically conductive structure (2) with the contact surfaces (7.1, 7.2) on the underside of the compensator plates (3).
  • the contact is obscured by the Abdecksieb réelle (6) after mounting in the vehicle body.
  • the lead-free solder mass (5) ensures a permanent electrical and mechanical connection of the electrically conductive structure (2) with the compensator plates (3) and the connection element (4).
  • the lead-free solder mass (5) contains 57 wt .-% bismuth, 42 wt .-% tin and 1 wt .-% silver.
  • the lead-free solder mass (5) has a thickness of 250 ⁇ .
  • the connection element (4) has a bridge shape.
  • the connecting element (4) comprises two feet which rest on the first compensator plate (3.1) and the second compensator plate (3.2) and a bridge-shaped section which extends between the feet. In the bridge-shaped section, the connection element (4) bears neither on the compensator plates (3) nor on the electrically conductive structure (2).
  • the electrical connection element (4) has a width of 4 mm and a length of 24 mm and consists of copper of the material number CW004A (Cu-ETP).
  • This material has a low electrical resistance (1.8 ⁇ ⁇ ) and is particularly suitable because of its high electrical conductivity as a connection element (4).
  • the material thickness of the connecting element (4) is 0.4 mm.
  • the compensator plates (3.1, 3.2) consist of circular stamped sheets and each have a height (material thickness) of 0.5 mm and a diameter of 6 mm.
  • the compensator plates (3.1, 3.2) consist of steel of material number 1.4509 according to EN 10 088-2 (ThyssenKrupp Nirosta® 4509). The compensator plates (3.1, 3.2) compensate for mechanical stresses and thus make it possible to combine a connecting element (4) made of copper with a lead-free solder mass (5).
  • FIG. 3 shows a plan view of the pane according to FIG. 2c, wherein in each case one contact elevation (9) is additionally applied to the compensator plates (3).
  • the contact elevations (9) are arranged on the surface of the compensator plates (3) facing away from the substrate, opposite the contact surfaces.
  • the contact elevations (9) are embossed into the compensator plates (3) and thus formed integrally therewith.
  • the Contact elevations (9) are formed as a spherical segment and have a height of 2.5 ⁇ 10 -4 m and a width of 5 ⁇ 10 -5 m
  • the contact elevations (9) serve to contact the compensator plates (3) with the soldering tool during the soldering process
  • the contact elevations (9) ensure a reproducible and defined heat distribution independently of the exact positioning of the soldering tool.
  • Figure 4 is a plan view of the disc according to Figure 2c, wherein additionally two contact elevations (9) on the connecting element (4) are applied.
  • the configuration of the contact elevations (9) corresponds to that described in FIG. 3, wherein, in contrast, the contact elevations (9) are arranged on the connection element (4) even in the area located above the compensator plates (3).
  • This embodiment is advantageous in terms of optimum heat distribution in the compensator plates (3) during the soldering process.
  • FIG. 5a shows a plan view of the disk according to FIG. 2c, with two additional contact elevations (9) being additionally applied to the compensator plates (3).
  • the design of the contact elevations (9) corresponds to that described in Figure 3, in contrast, each Kompensatorplatte (3.1, 3.2) carries two Kontakels (9).
  • the contact elevations (9) flank the feet of the connecting element (4) and are arranged laterally of these.
  • FIG. 5b shows a cross section of the disk according to FIG. 5a along the cross-sectional line CC.
  • the cut surfaces are shaded.
  • On the first contact surface (7.1) of the first compensator plate (3.1) three spacers (8) are arranged, two of which are recognizable, since they lie in the cross-sectional plane.
  • the second compensator plate (3.2), which is not shown in this figure, is equipped with contact elevations (9) and spacers (8) analogously to the first compensator plate (3.1).
  • the spacers (8) are embossed on the contact surfaces (7) in the compensator plates (3) and thus formed integrally therewith.
  • the spacers (8) are formed as spherical segments and have a height of 2.5 x 10 "4 m and a width of 5 x 10 " 4 m. By the spacers (8), the formation of a uniform layer of lead-free solder mass (5) is favored. This is particularly advantageous with regard to the adhesion of the compensator plates (3).
  • the contact elevations (9) are at the contact surfaces (7) opposite, from the substrate (1) arranged opposite surface of the compensator plates (3).
  • the spacers (8) and the contact elevations (9) can in principle be positioned independently of one another, wherein they may not overlap when the elements are imprinted.
  • the contact elevations (9) shown in FIGS. 3 and 4 can also be used in combination with spacers (8).
  • FIG. 6 shows a flow chart of the method according to the invention for producing a pane with connection element (4) and compensator plates (3).
  • a connection element (4) is fixed in an electrically conductive manner on the upper side of the compensator plates (3).
  • a lead-free solder mass (5) on the underside of the compensator plates (3) on at least one contact surface (7) is applied and the compensator plates (3) with the lead-free solder mass (5) on the electrically conductive structure (2).
  • the compensator plates (3) are then soldered to the electrically conductive structure (2).

Abstract

Eine Scheibe mit mindestens einem Anschlusselement (4) mit Kompensatorplatten (3) mindestens umfassend - ein Substrat (1) mit elektrisch leitfähiger Struktur (2) auf mindestens einem Teilbereich des Substrats (1), - mindestens eine Kompensatorplatte (3) auf mindestens einem Teilbereich der leitfähigen Struktur (2), - mindestens ein elektrisches Anschlusselement (4) auf mindestens einem Teilbereich der mindestens einen Kompensatorplatte (3), - eine bleifreie Lotmasse (5), die die Kompensatorplatte (3) über mindestens eine Kontaktfläche (7) mit mindestens einem Teilbereich der elektrisch leitfähigen Struktur (2) verbindet, wobei die Differenz der thermischen Ausdehnungskoeffizienten des Substrats (1) und der Kompensatorplatte (3) kleiner 5 x 10-6/°C ist und wobei das Anschlusselement (4) Kupfer enthält.

Description

Scheibe mit elektrischem Anschlusselement und Kompensatorplatten
Die Erfindung betrifft eine Scheibe mit einem elektrischen Anschlusselement, ein wirtschaftliches und umweltfreundliches Verfahren zu deren Herstellung und deren Verwendung.
Die Erfindung betrifft weiter eine Scheibe mit einem elektrischen Anschlusselement für Fahrzeuge mit elektrisch leitfähigen Strukturen wie beispielsweise Heizleiter oder Antennenleiter. Die elektrisch leitfähigen Strukturen sind üblicherweise über angelötete elektrische Anschlusselemente mit der Bordelektrik verbunden. Aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten der verwendeten Materialien treten mechanische Spannungen bei der Herstellung und im Betrieb auf, welche die Scheiben belasten und den Bruch der Scheibe hervorrufen können.
Bleihaltige Lote weisen eine hohe Duktilität auf, die auftretende mechanische Spannungen zwischen elektrischem Anschlusselement und der Scheibe durch plastische Deformierung kompensieren können. Allerdings müssen aufgrund der Altauto-Richtlinie 2000/53/EG innerhalb der EG bleihaltige Lote durch bleifreie Lote ersetzt werden. Die Richtlinie wird zusammenfassend mit dem Kürzel ELV (End of life vehicles) bezeichnet. Das Ziel ist dabei, im Zuge der massiven Ausweitung von Wegwerfelektronik äußerst problematische Bestandteile aus den Produkten zu verbannen. Die betroffenen Substanzen sind Blei, Quecksilber, Cadmium und Chrom. Das betrifft unter anderem die Durchsetzung von bleifreien Lötmitteln in elektrischen Anwendungen auf Glas und die Einführung entsprechender Ersatzprodukte hierzu.
Die bisher bekannten bleifreien Lotmassen, wie beispielsweise in EP 2 339 894 AI und WO 2000058051 offenbart, sind jedoch aufgrund ihrer niedrigeren Duktilität nicht in gleichem Maße wie Blei in der Lage mechanische Spannungen zu kompensieren. Die üblichen kupferhaltigen Anschlusselemente weisen jedoch einen größeren thermischen Ausdehnungskoeffizienten auf als Glas (CTE(Kupfer) = 16,8 x 10"6/°C), wodurch bei einer thermischen Ausdehnung des Kupfers eine Schädigung am Glas stattfindet. Aus diesem Grund werden in Verbindung mit bleifreien Lotmassen bevorzugt Anschlusselemente verwendet, die einen niedrigen thermischen Ausdehnungskoeffizienten, bevorzugt in der Größenordnung von Kalk-Natron-Glas (8,3 x 10"6/°C für 0 °C - 320 °C), aufweisen. Derartige Anschlusselemente dehnen sich bei Erwärmung kaum aus und kompensieren die entstehenden Spannungen.
EP 1 942 703 A2 offenbart ein elektrisches Anschlusselement an Scheiben von Fahrzeugen, wobei die Differenz der thermischen Ausdehnungskoeffizienten von Scheibe und elektrischem Anschlusselement < 5 x 10"6/°C beträgt und das Anschlusselement überwiegend Titan enthält. Um eine ausreichende mechanische Stabilität und Prozessierbarkeit zu ermöglichen wird vorgeschlagen, einen Lotmassenüberschuss zu verwenden. Der Überschuss an Lotmasse tritt aus dem Zwischenraum zwischen dem Anschlusselement und elektrisch leitfähiger Struktur heraus. Der Überschuss an Lotmasse verursacht hohe mechanische Spannungen in der Glasscheibe. Diese mechanischen Spannungen führen schließlich zum Bruch der Scheibe. Zudem ist Titan schlecht lötbar. Dies führt zu einer schlechten Haftung des Anschlusselementes an der Scheibe. Das Anschlusselement muss außerdem mit der Bordelektrik über ein elektrisch leitfähiges Material, beispielsweise Kupfer, verbunden werden, etwa durch Verschweißen. Titan ist schlecht schweißbar.
EP 2 408 260 AI beschreibt die Verwendung von Eisen-Nickel- oder Eisen-Nickel-Kobalt- Legierungen wie beispielsweise Kovar oder Invar, die einen niedrigen thermischen Ausdehnungskoeffizienten (CTE) besitzen. Sowohl Kovar (CTE = 5 x 10"6/°C) als auch Invar (CTE bis zu 0,55 x 10"6/°C je nach Zusammensetzung) weisen einen niedrigeren CTE auf als Kalk-Natron-Glas und kompensieren die mechanischen Spannungen. Invar weist dabei einen so niedrigen thermischen Ausdehnungskoeffizienten auf, dass eine Überkompensation dieser mechanischen Spannungen eintritt. Dies führt zu Druckspannungen im Glas bzw. Zugspannungen in der Legierung, die allerdings als unkritisch einzustufen sind.
Die bisher üblichen Anschlusselemente aus Kupfer, die in Verbindung mit bleihaltigen Lotmassen verwendet wurden, sind aufgrund ihres hohen Ausdehnungskoeffizientens nicht zur Verlötung mit den bekannten bleifreien Lotmassen auf Glas geeignet. Anschlusselemente aus Eisen oder Titan verfügen zwar über einen niedrigeren Ausdehnungskoeffizienten und sind mit bleifreien Lotmassen kompatibel, jedoch sind diese Materialien wesentlich schlechter umformbar. Somit werden die Standzeiten der für die Herstellung der Anschlusselemente benötigten Werkzeuge verkürzt, was zu einem Anstieg der Produktionskosten führt. Des Weiteren sind bei wechselnden Materialien und Formen der Anschlusselemente die Randbedingungen des Lötvorgangs immer wieder neu zu variieren. Verschiedene Anschlusselemente weisen ferner auch eine unterschiedliche mechanische Robustheit in Bezug auf Abziehkräfte auf. Eine Standardisierung wäre somit wünschenswert um gleichbleibende mechanische Stabilität und gleiches Lötverhalten zu gewährleisten.
Die Aufgabe der vorliegenden Erfindung ist es, eine Scheibe mit elektrischem Anschlusselement sowie ein wirtschaftliches und umweltfreundliches Verfahren zu deren Herstellung bereitzustellen, wobei kritische mechanische Spannungen in der Scheibe vermieden werden und der Fertigungsprozess durch Standardisierung des Lötvorgangs unabhängig vom Material und der Form des Anschlusselements vereinfacht wird.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine Scheibe mit Anschlusselement, ein Verfahren zu deren Herstellung und deren Verwendung gemäß den unabhängigen Ansprüchen 1, 13 und 14 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine Scheibe mit mindestens einem Anschlusselement mit Kompensatorplatten gelöst. Die Scheibe umfasst dabei mindestens ein Substrat mit einer elektrisch leitfähigen Struktur auf mindestens einem Teilbereich des Substrats, mindestens eine Kompensatorplatte auf mindestens einem Teilbereich der leitfähigen Struktur, mindestens ein elektrisches Anschlusselement auf mindestens einem Teilbereich der Kompensatorplatte sowie eine bleifreie Lotmasse, die die Kompensatorplatte über mindestens eine Kontaktfläche mit mindestens einem Teilbereich der elektrisch leitfähigen Struktur verbindet. Die Differenz der thermischen Ausdehnungskoeffizienten des Substrats und der Kompensatorplatten ist dabei kleiner als 5 x 10~6/°C und das Anschlusselement enthält Kupfer.
Der thermische Ausdehnungskoeffizient der Kompensatorplatten liegt bevorzugt zwischen 9 x 10"6/°C und 13 x 10"6/°C, besonders bevorzugt zwischen 10 x 10"6/°C und 12 x 10"6/°C, ganz besonders bevorzugt von 10 x 10"6/°C und 11 x 10"6/°C in einem Temperaturbereich von 0 °C bis 300 °C. Durch Einsatz der erfindungsgemäßen Kompensatorplatten können auch die bisher üblichen Anschlusselemente aus Kupfer in Verbindung mit bleifreien Lotmassen verwendet werden. Nach dem Stand der Technik ist das Anschlusselement mittels der bleifreien Lotmasse ohne Kompensatorplatte direkt auf der elektrisch leitfähigen Struktur des Substrats verlötet, wodurch in Temperaturwechseltests eine Beschädigung des Substrats auftritt. Derartige Schäden sind an der erfindungsgemäßen Scheibe nicht zu beobachten, da die Kompensatorplatte die auftretenden Spannungen kompensiert. Das Material der Kompensatorplatten wird dabei so gewählt, dass die Differenz der thermischen Ausdehnungskoeffizienten des Substrats und der Kompensatorplatten kleiner als 5 x 10"6/°C ist. Somit dehnen sich das Substrat und die Kompensatorplatten bei Erwärmung in gleichem Maße aus und eine Beschädigung der Lötstelle wird vermieden. Da die in der Vergangenheit üblichen kupferhaltigen Anschlusselemente weiter verwendet werden können ist ferner keine Werkzeugumstellung notwendig. Des Weiteren sind kupferhaltige Materialien in der Regel leicht umformbar. Die nach dem Stand der Technik bekannten Anschlusselemente, die auch in Verbindung mit bleifreien Lotmassen verwendet werden können, bestehen hingegen aus schlecht umformbaren Materialien wie beispielsweise Stahl oder Titan. Aus diesem Grund sind die Werkzeugstandzeiten bei Umformung kupferhaltiger Anschlusselemente wesentlich höher. Die erfindungsgemäße Verwendung von Kompensatorplatten führt somit zu einer Senkung der Produktionskosten im Hinblick auf den Umformprozess.
Des Weiteren haben die nach dem Stand der Technik mit bleifreien Lotmassen verlötbaren Anschlusselemente aus Stahl oder Titan einen wesentlich höheren elektrischen Widerstand im Vergleich zu den gängigen kupferhaltigen Anschlusselementen. Durch die erfindungsgemäße Kombination der Kompensatorplatten, die eine gute Thermostabilität der Lötstelle gewährleisten, mit kupferhaltigen Anschlusselementen, die eine hohe elektrische Leitfähigkeit aufweisen, werden die Vorteile der verschiedenen Materialien optimal ausgenutzt ohne dass die nachteiligen Materialeigenschaften zutage treten. Der Anteil des Materials mit hohem Widerstand kann demnach bei gleich bleibender Temperaturstabilität der Scheibe auf ein Minimum reduziert werden.
Ferner erfolgt durch Einsatz der erfindungsgemäßen Kompensatorplatten eine Standardisierung des Lötvorgangs. Die Kompensatorplatten bilden dabei die Kontaktbasis für Anschlusselemente und andere Verbindungselemente aller Art und dienen somit nicht nur als Kompensator sondern auch als Adapter. Durch Einsatz der immer gleichen standardisierten Kompensatorplatten bleiben auch die Bedingungen an der Lötstelle konstant und der Lötvorgang muss auch bei einem Wechsel der Formen und Materialien der Anschlusselemente nicht angepasst werden. Zudem bleiben die mechanischen Gegebenheiten an der Lötstelle konstant, so dass die Abziehkräfte von der Form des Anschlusselements unabhängig sind.
Die Anzahl der verwendeten Kompensatorplatten hängt von der Geometrie des Anschlusselements ab. Soll das Anschlusselement nur über eine Fläche mit der elektrisch leitfähigen Struktur verbunden werden, so genügt eine Kompensatorplatte an der Seite des Anschlusselements, die mit der elektrisch leitfähigen Struktur kontaktiert werden soll.
In einer bevorzugten Ausführungsform ist das elektrische Anschlusselement über eine erste Kompensatorplatte und eine zweite Kompensatorplatte elektrisch leitfähig mit der elektrisch leitfähigen Struktur verbunden. Dabei kann das Anschlusselement beispielsweise brückenförmig ausgeprägt sein, wobei das Anschlusselement über zwei Füße verfügt, zwischen denen ein erhöhter Abschnitt liegt, der die elektrisch leitfähige Struktur nicht direkt flächig kontaktiert. Das Anschlusselement kann sowohl eine einfache Brückenform aufweisen als auch komplexere Brückenformen umfassen. Die beiden Füße des Anschlusselements liegen dabei auf der Oberseite je einer Kompensatorplatte auf.
Die Kompensatorplatten verfügen an ihrer Unterseite über Kontaktflächen, mit denen sie vollflächig auf der elektrisch leitfähigen Struktur aufgebracht sind. Bevorzugt weisen die Kompensatorplatten und die Kontaktflächen keine Ecken auf. Ein derartiges Design bewirkt sowohl eine gleichmäßige Zugspannungsverteilung ohne Maximalwerte an den Ecken als auch eine gleichmäßige Lotverteilung.
Die Kompensatorplatten umfassen Titan, Eisen, Nickel, Kobalt, Molybdän, Kupfer, Zink, Zinn, Mangan, Niob und/oder Chrom und/oder Legierungen davon.
Bevorzugt enthalten die Kompensatorplatten einen chromhaltigen Stahl mit einem Anteil an Chrom von größer oder gleich 10,5 Gew.-%. Weitere Legierungsbestandteile wie Molybdän, Mangan oder Niob führen zu einer verbesserten Korrosionsbeständigkeit oder veränderten mechanischen Eigenschaften, wie Zugfestigkeit oder Kaltumformbarkeit.
Die erfindungsgemäßen Kompensatorplatten enthalten bevorzugt zumindest 66,5 Gew.-% bis 89,5 Gew.-% Eisen, 10,5 Gew.-% bis 20 Gew.-% Chrom, 0 Gew.-% bis 1 Gew.-% Kohlenstoff, 0 Gew.-% bis 5 Gew.-% Nickel, 0 Gew.-% bis 2 Gew.-% Mangan, 0 Gew.-% bis 2,5 Gew.-% Molybdän, 0 Gew.-% bis 2 Gew.-% Niob und 0 Gew.-% bis 1 Gew.-% Titan. Die Kompensatorplatten können zusätzlich Beimengungen weiterer Elemente enthalten, darunter Vanadium, Aluminium und Stickstoff.
Die Kompensatorplatten enthalten besonders bevorzugt zumindest 73 Gew.-% bis 89,5 Gew.- % Eisen, 10,5 Gew.-% bis 20 Gew.-% Chrom, 0 Gew.-% bis 0,5 Gew.-% Kohlenstoff, 0 Gew.-% bis 2,5 Gew.-% Nickel, 0 Gew.-% bis 1 Gew.-% Mangan, 0 Gew.-% bis 1,5 Gew.-% Molybdän, 0 Gew.-% bis 1 Gew.-% Niob und 0 Gew.-% bis 1 Gew.-% Titan. Des Weiteren können zusätzlich Beimengungen weiterer Elemente enthalten sein, darunter Vanadium, Aluminium und Stickstoff.
Die Kompensatorplatten enthalten ganz besonders bevorzugt zumindest 77 Gew.-% bis 84 Gew.-% Eisen, 16 Gew.-% bis 18,5 Gew.-% Chrom, 0 Gew.-% bis 0, 1 Gew.-% Kohlenstoff, 0 Gew.-% bis 1 Gew.-% Mangan, 0 Gew.-% bis 1 Gew.-% Niob, 0 Gew.-% bis 1,5 Gew.-% Molybdän und 0 Gew.-% bis 1 Gew.-% Titan. Die Kompensatorplatten können zusätzlich Beimengungen weiterer Elemente enthalten, darunter Vanadium, Aluminium und Stickstoff.
Chromhaltiger, insbesondere sogenannter rostfreier oder nichtrostender Stahl ist kostengünstig verfügbar. Chromhaltiger Stahl weist zudem im Vergleich zu Kupfer und Kupferlegierungen eine hohe Steifigkeit auf, was zu einer vorteilhaften Stabilität der Kompensatorplatten führt. Zudem weisen Kompensatorplatten aus chromhaltigem Stahl im Vergleich zu vielen herkömmlichen Anschlusselementen, beispielsweise solchen aus Titan, eine verbesserte Lötbarkeit auf, die sich aus einer höheren Wärmeleitfähigkeit ergibt.
Für die Verwendung als Kompensatorplatte besonders geeignete Materialien sind chromhaltige Stähle der Werkstoffnummern 1.4016, 1.41 13, 1.4509 und 1.4510 nach EN 10 Die Kompensatorplatten verfügen bevorzugt über eine Materialstärke von 0, 1 mm bis 1 mm, besonders bevorzugt 0,4 mm bis 0,8 mm. Innerhalb dieser Bereiche ist eine hinreichende mechanische Stabilität sowie eine gute Kompensation von Spannungen bei Temperaturausdehnung der Scheibe optimal gewährleistet. Die Breite und die Länge der Kompensatorplatten lassen sich individuell an die verwendeten Anschlusselemente und die Form ihrer Füße anpassen. Um die besonders vorteilhafte Standardisierung der Kompensatorplatten zu erreichen werden jedoch besonders bevorzugt runde, kreisförmige oder elliptische Formen, insbesondere kreisförmige Formen, eingesetzt. In einer ganz besonders bevorzugten kreisförmigen Ausführungsform der Kompensatorplatten haben diese einen Durchmesser von 2 mm bis 15 mm, bevorzugt 4 mm bis 10 mm.
Das Anschlusselement enthält neben Kupfer bevorzugt Titan, Eisen, Nickel, Kobalt, Molybdän, Kupfer, Zink, Zinn, Mangan, Niob und/oder Chrom und/oder Legierungen davon. Eine geeignete Materialzusammensetzung wird dabei nach ihrem elektrischen Widerstand ausgewählt.
In einer bevorzugten Ausführungsform umfasst das Anschlusselement 45,0 Gew.-% bis 99,9 Gew.-% Kupfer, 0 Gew.-% bis 45 Gew.-% Zink, 0 Gew.-% bis 15 Gew.-% Zinn, 0 Gew.-% bis 30 Gew.-% Nickel und 0 Gew.-% bis 5 Gew.-% Silicium. Neben elektrolytischem Kupfer sind die verschiedensten Messing- oder Bronze-Legierungen als Materialien geeignet, beispielsweise Neusilber oder Konstantan.
Besonders bevorzugt enthält das Anschlusselement 58 Gew.-% bis 99,9 Gew.-% Kupfer und 0 Gew.-% bis 37,0 Gew.-% Zink, insbesondere 60 Gew.-% bis 80 Gew.-% Kupfer und 20 Gew.-% bis 40 Gew.-% Zink.
Als besonderes Beispiel für das Material des Anschlusselements ist elektrolytisches Kupfer mit der Werkstoffnummer CW004A (ehemals 2.0065) und CuZn30 mit der Werkstoffnummer CW505L (ehemals 2.0265) zu nennen.
In einer bevorzugten Ausführungsform verfügt das Material des Anschlusselements über einen elektrischen Widerstand zwischen 1,0 μθΐπη ιη und 15 μθΐπη ιη, besonders bevorzugt zwischen 1,5 μθηηι ηι und 1 1 μθηηι ηι. Dadurch ergibt sich eine besonders vorteilhafte Kombination aus Kompensatorplatten mit an das Substrat angepasstem CTE und einem Anschlusselement mit sehr guter elektrischer Leitfähigkeit. Anschlusselemente nach dem Stand der Technik, die ebenfalls einen zum Substrat passenden Ausdehnungskoeffizienten aufweisen, verfügen über höhere elektrische Widerstände, so dass ein unvorteilhaft erhöhter Spannungsabfall auftritt.
Die Materialstärke des Anschlusselements beträgt bevorzugt 0, 1 mm bis 2 mm, besonders bevorzugt 0,2 mm bis 1 mm, ganz besonders bevorzugt 0,3 mm und 0,5 mm. In einer bevorzugten Ausführungsform ist die Materialstärke des Anschlusselements in seinem gesamten Bereich konstant. Dies ist besonders vorteilhaft im Hinblick auf eine einfache Herstellung des Anschlusselements.
Das Anschlusselement ist über ein Anschlusskabel mit der Bordelektronik des Kraftfahrzeugs verbunden. Die elektrische Kontaktierung des Anschlusselements mit dem Anschlusskabel kann über eine Lötverbindung, eine Schweißverbindung oder eine Crimpverbindung erfolgen.
Verwendbare Anschlusskabel zur Kontaktierung des Anschlusselements sind prinzipiell alle Kabel, die dem Fachmann zur elektrischen Kontaktierung einer elektrisch leitfähigen Struktur bekannt sind. Das Anschlusskabel kann neben einem elektrisch leitfähigen Kern (Innenleiter) eine isolierende, bevorzugt polymere Ummantelung umfassen, wobei die isolierende Ummantelung bevorzugt im Endbereich des Anschlusskabels entfernt ist, um eine elektrisch leitende Verbindung zwischen Anschlusselement und Innenleiter zu ermöglichen.
Der elektrisch leitfähige Kern des Anschlusskabels kann beispielsweise Kupfer, Aluminium und/oder Silber oder Legierungen oder Gemische davon enthalten. Der elektrisch leitfähige Kern kann beispielsweise als Drahtlitzenleiter oder als Volldrahtleiter ausgeführt sein. Der Querschnitt des elektrisch leitfähigen Kerns des Anschlusskabels richtet sich nach der für die Verwendung der erfindungsgemäßen Scheibe erforderlichen Stromtragfähigkeit und kann vom Fachmann geeignet gewählt werden. Der Querschnitt beträgt beispielsweise von 0,3 mm2 bis 6 mm2. Das Anschlusselement ist elektrisch leitfähig mit den Kompensatorplatten verbunden, wobei die Elemente mittels verschiedener Löt- oder Schweißtechniken verbunden werden können. Bevorzugt werden die Kompensatorplatten und das Anschlusselement mittels Elektrodenwiderstandsschweißen, Ultraschallschweißen oder Reibschweißen verbunden.
In einer alternativen Ausführungsform kann das Anschlusselement auch über eine Schrauboder Steckverbindung auf den Kompensatorplatten aufgebracht sein. Eine derartige Kontaktierung ist beispielsweise durch eine Kompensatorplatte mit Gewindestift realisierbar, auf die ein Anschlusselement mit Gewindehülse geschraubt wird.
In einer vorteilhaften Ausführungsform der Erfindung bedeckt das Anschlusselement nur einen Teilbereich der Oberfläche der Kompensatorplatten. Ein Teil der Kompensatorplatten steht somit seitlich unter dem Anschlusselement hervor und ist auch nach Anbringung des Anschlusselements auf den Kompensatorplatten zugänglich. Bei der Verlötung der Kompensatorplatten auf der elektrisch leitfähigen Struktur können diese Überstände der Kontaktierung der Kompensatorplatten dienen.
In mindestens einem Teilbereich der Scheibe ist eine elektrisch leitfähige Struktur aufgebracht, die bevorzugt Silber, besonders bevorzugt Silberpartikel und Glasfritten, enthält. Die erfindungsgemäße elektrisch leitfähige Struktur weist bevorzugt eine Schichtdicke von 3 μιη bis 40 μιη, besonders bevorzugt von 5 μιη bis 20 μιη, ganz besonders bevorzugt von 7 μιη bis 15 μιη und insbesondere von 8 μιη bis 12 μιη auf. Die Kompensatorplatten auf denen das Anschlusselement aufgebracht ist sind über eine Kontaktfläche vollflächig mit einem Teilbereich der elektrisch leitfähigen Struktur verbunden. Die elektrische Kontaktierung erfolgt dabei mittels der bleifreien Lotmasse. Die elektrisch leitfähige Struktur kann beispielsweise der Kontaktierung von auf der Scheibe angebrachten Drähten oder einer Beschichtung dienen. Dabei ist die elektrisch leitfähige Struktur beispielsweise in Form von Sammelleitern an gegenüberliegenden Rändern der Scheibe angebracht. Über die auf den Sammelleitern angebrachten Anschlusselemente mit Kompensatorplatten kann eine Spannung angelegt werden, wodurch ein Strom durch die leitfähigen Drähte bzw. die Beschichtung von einem Sammelleiter zum anderen fließt und die Scheibe erwärmt. Alternativ zu einer solchen Heizfunktion ist die erfindungsgemäße Scheibe auch in Kombination mit Antennenleitern verwendbar oder auch in beliebigen anderen Ausgestaltungen, bei denen eine stabile Kontaktierung der Scheibe benötigt wird, denkbar.
Das Substrat enthält bevorzugt Glas, besonders bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas und/oder Kalk-Natron-Glas. Das Substrat kann aber auch Polymere enthalten, bevorzugt Polyethylen, Polypropylen, Polycarbonat, Polymethylmethacrylat, Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethan, Polyvinylchlorid, Polyacrylat, Polyamid, Polyethylenterephthalat und/oder Copolymere oder Gemische davon. Das Substrat ist bevorzugt transparent. Das Substrat weist bevorzugt eine Dicke von 0,5 mm bis 25 mm, besonders bevorzugt von 1 mm bis 10 mm und ganz besonders bevorzugt von 1,5 mm bis 5 mm auf.
Der thermische Ausdehnungskoeffizient des Substrats beträgt bevorzugt 8 x 10"6/°C bis 9 x 10"6/°C. Das Substrat enthält bevorzugt Glas, das bevorzugt einen thermischen Ausdehnungskoeffizienten von 8,3 x 10"6/°C bis 9 x 10"6/°C in einem Temperaturbereich von 0 °C bis 300 °C aufweist.
Optional ist auf dem Substrat ein Siebdruck aufgebracht, der im Einbauzustand der Scheibe die Kontaktierung der Scheibe verdeckt, so dass das Anschlusselement mit Kompensatorplatten von außen nicht erkennbar ist.
Die elektrisch leitfähige Struktur ist mit den Kompensatorplatten elektrisch leitend über die bleifreie Lotmasse verbunden. Die bleifreie Lotmasse ist dabei an den Kontaktflächen angeordnet, die sich an der Unterseite des Anschlusselements befinden.
Die Schichtdicke der bleifreien Lotmasse beträgt bevorzugt kleiner oder gleich 600 μιη, besonders bevorzugt zwischen 150 μιη und 600 μιη, insbesondere kleiner 300 μιη.
Die bleifreie Lotmasse ist bevorzugt bleifrei. Dies ist besonders vorteilhaft im Hinblick auf die Umweltverträglichkeit der erfindungsgemäßen Scheibe mit elektrischem Anschlusselement. Als bleifreie Lotmasse ist im Sinne der Erfindung eine Lotmasse zu verstehen, welche entsprechend der EG-Richtlinie „2002/95/EG zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten" einen Anteil von kleiner oder gleich 0, 1 Gew.-% Blei, bevorzugt kein Blei enthält.
Bleifreie Lotmassen weisen typischerweise eine geringere Duktilität auf als bleihaltige Lotmassen, so dass mechanische Spannungen zwischen Anschlusselement und Scheibe weniger gut kompensiert werden können. Es hat sich aber gezeigt, dass kritische mechanische Spannungen durch das erfindungsgemäße Anschlusselement mit Kompensatorplatten vermieden werden können. Die Lotmasse enthält bevorzugt Zinn und Bismut, Indium, Zink, Kupfer, Silber oder Zusammensetzungen davon. Der Anteil an Zinn in der erfindungsgemäßen Lotzusammensetzung beträgt 3 Gew.-% bis 99,5 Gew.-%, bevorzugt 10 Gew.-% bis 95,5 Gew.-%, besonders bevorzugt 15 Gew.-% bis 60 Gew.-%. Der Anteil an Bismut, Indium, Zink, Kupfer, Silber oder Zusammensetzungen davon beträgt in der erfindungsgemäßen Lotzusammensetzung 0,5 Gew.-% bis 97 Gew.-%, bevorzugt 10 Gew.-% bis 67 Gew.-%, wobei der Anteil an Bismut, Indium, Zink, Kupfer oder Silber 0 Gew.-% betragen kann. Die Lotzusammensetzung kann Nickel, Germanium, Aluminium oder Phosphor mit einem Anteil von 0 Gew.-% bis 5 Gew.-% enthalten. Die erfindungs gemäße Lotzusammensetzung enthält ganz besonders bevorzugt Bi40Sn57Ag3, Sn40Bi57Ag3, Bi59Sn40Agl, Bi57Sn42Agl, In97Ag3, In60Sn36,5Ag2Cul,5, Sn95,5Ag3,8Cu0,7, Bi67In33, Bi33In50Snl7, Sn77,2In20Ag2,8, Sn95Ag4Cul, Sn99Cul, Sn96,5Ag3,5, Sn96,5Ag3CuO,5, Sn97Ag3 oder Gemische davon.
In einer vorteilhaften Ausgestaltung enthält die Lotmasse Bismut. Es hat sich gezeigt, dass eine Bismut-haltige Lotmasse zu einer besonders guten Haftung des erfindungsgemäßen Anschlusselements an der Scheibe führt, wobei Beschädigungen der Scheibe vermieden werden können. Der Anteil des Bismuts an der Lotmassenzusammensetzung beträgt bevorzugt von 0,5 Gew.-% bis 97 Gew.-%, besonders bevorzugt von 10 Gew.-% bis 67 Gew.- % und ganz besonders bevorzugt von 33 Gew.-% bis 67 Gew.-%, insbesondere von 50 Gew.- % bis 60 Gew.-%. Die Lotmasse enthält neben Bismut bevorzugt Zinn und Silber oder Zinn, Silber und Kupfer. In einer besonders bevorzugten Ausgestaltung enthält die Lotmasse zumindest 35 Gew.-% bis 69 Gew.-% Bismut, 30 Gew.-% bis 50 Gew.-% Zinn, 1 Gew.-% bis 10 Gew.-% Silber und 0 Gew.-% bis 5 Gew.-% Kupfer. In einer ganz besonders bevorzugten Ausgestaltung enthält die Lotmasse zumindest 49 Gew.-% bis 60 Gew.-% Bismut, 39 Gew.- % bis 42 Gew.-% Zinn, 1 Gew.-% bis 4 Gew.-% Silber und 0 Gew.-% bis 3 Gew.-% Kupfer. In einer weiteren vorteilhaften Ausgestaltung enthält die Lotmasse von 90 Gew.-% bis 99,5 Gew.-% Zinn, bevorzugt von 93 Gew.-% bis 99 Gew.-%, besonders bevorzugt von 95 Gew.- % bis 98 Gew.-%. Die Lotmasse enthält neben Zinn bevorzugt von 0,5 Gew.-% bis 5 Gew.-% Silber und von 0 Gew.-% bis 5 Gew.-% Kupfer.
Die Lotmasse tritt mit einer Austrittsbreite von bevorzugt kleiner 1 mm aus dem Zwischenraum zwischen dem Lötbereich der Kompensatorplatten und der elektrisch leitfähigen Struktur aus. In einer bevorzugten Ausgestaltung ist die maximale Austrittsbreite kleiner 0,5 mm und insbesondere etwa 0 mm. Das ist besonders vorteilhaft im Hinblick auf die Reduzierung von mechanischen Spannungen in der Scheibe, die Haftung des Anschlusselements und die Einsparung des Lots. Die maximale Austrittsbreite ist definiert als der Abstand zwischen den Außenkanten des Lötbereichs und der Stelle des Lotmasseübertritts, an dem die Lotmasse eine Schichtdicke von 50 μιη unterschreitet. Die maximale Austrittsbreite wird nach dem Lötvorgang an der erstarrten Lotmasse gemessen. Eine gewünschte maximale Austrittsbreite wird durch eine geeignete Wahl von Lotmassenvolumen und lotrechtem Abstand zwischen Kompensatorplatten und elektrisch leitfähiger Struktur erreicht, was durch einfache Versuche ermittelt werden kann. Der lotrechte Abstand zwischen Kompensatorplatten und elektrisch leitfähiger Struktur kann durch ein entsprechendes Prozesswerkzeug, beispielsweise ein Werkzeug mit einem integrierten Abstandshalter, vorgegeben werden. Die maximale Austrittsbreite kann auch negativ sein, also in den vom Lötbereich der Kompensatorplatten und elektrisch leitfähiger Struktur gebildeten Zwischenraum zurückgezogen sein. In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Scheibe ist die maximale Austrittsbreite in dem vom Lötbereich der Kompensatorplatten und der elektrisch leitfähigen Struktur gebildeten Zwischenraum in einem konkaven Meniskus zurückgezogen. Ein konkaver Meniskus entsteht beispielsweise durch Erhöhen des lotrechten Abstands zwischen Abstandshalter und leitfähiger Struktur beim Lötvorgang, während das Lot noch flüssig ist. Der Vorteil liegt in der Reduzierung der mechanischen Spannungen in der Scheibe, insbesondere im kritischen Bereich, der bei einem großen Lotmasseübertritt vorliegt.
In einer vorteilhaften Ausgestaltung der Erfindung weisen die Kontaktflächen der Kompensatorplatten Abstandshalter auf, bevorzugt mindestens zwei Abstandshalter, besonders bevorzugt mindestens drei Abstandshalter. Die Abstandshalter sind bevorzugt einstückig mit den Kompensatorplatten ausgebildet, beispielsweise durch Prägen oder Tiefziehen. Die Abstandshalter haben bevorzugt eine Breite von 0,5 x 10"4 m bis 10 x 10^ m und eine Höhe von 0,5 x 10"4 m bis 5 x 10^ m, besonders bevorzugt von 1 x 10"4 m bis 3 x 10" 4 m. Durch die Abstandshalter wird eine homogene, gleichmäßig dicke und gleichmäßig aufgeschmolzene Schicht der Lotmasse erreicht. Dadurch können mechanische Spannungen zwischen Kompensatorplatten und Scheibe verringert werden und die Haftung der Kompensatorplatten verbessert werden. Das ist insbesondere bei der Verwendung bleifreier Lotmassen besonders vorteilhaft, die aufgrund ihrer geringeren Duktilität im Vergleich zu bleihaltigen Lotmassen mechanische Spannungen weniger gut kompensieren können.
In einer vorteilhaften Ausgestaltung der Erfindung sind die Kompensatorplatten und/oder das Anschlusselement mit Kontakterhebungen ausgestattet, die der Kontaktierung mit dem Lötwerkzeug während des Lötvorgangs dienen. Die Kontakterhebungen sind dabei auf der vom Substrat abgewandten Oberfläche der Kompensatorplatten gegenüberliegend zu den Kontaktflächen oder auf der dem Substrat abgewandten Oberfläche des Anschlusselements in dem Bereich, der sich über den Kompensatorplatten befindet, angeordnet. Die Kontakterhebungen sind bevorzugt zumindest im Bereich der Kontaktierung mit dem Lötwerkzeug konvex gekrümmt ausgeformt. Die Kontakterhebungen haben bevorzugt eine Höhe von 0, 1 mm bis 2 mm, besonders bevorzugt von 0,2 mm bis 1 mm. Die Länge und Breite der Kontakterhebungen beträgt bevorzugt zwischen 0, 1 und 5 mm, ganz besonders bevorzugt zwischen 0,4 mm und 3 mm. Die Kontakterhebungen sind bevorzugt einstückig mit den Kompensatorplatten bzw. dem Anschlusselement ausgebildet, beispielsweise durch Prägen oder Tiefziehen. Zum Löten können Elektroden verwendet werden, deren Kontaktseite flach ausgeformt ist. Die Elektrodenfläche wird mit der Kontakterhebung in Kontakt gebracht. Die Elektrodenfläche ist dabei parallel zur Oberfläche des Substrats angeordnet. Der Kontaktbereich zwischen Elektrodenfläche und Kontakterhebung bildet die Lötstelle. Die Position der Lötstelle wird dabei durch den Punkt auf der konvexen Oberfläche der Kontakterhebung bestimmt, der den größten lotrechten Abstand zur Oberfläche des Substrats aufweist. Die Position der Lötstelle ist unabhängig von der Position der Lötelektrode auf den Kompensatorplatten bzw. dem Anschlusselement. Das ist besonders vorteilhaft im Hinblick auf eine reproduzierbare, gleichmäßige Wärmeverteilung während des Lötvorgangs. Die Wärmeverteilung während des Lötvorgangs wird durch die Position, die Größe, die Anordnung und die Geometrie der Kontakterhebung bestimmt.
Die Kompensatorplatten weisen bevorzugt zumindest auf der zur Lotmasse ausgerichteten Kontaktfläche eine Beschichtung (Benetzungsschicht) auf, die Nickel, Kupfer, Zink, Zinn, Silber, Gold oder Legierungen oder Schichten davon, bevorzugt Silber enthält. Dadurch werden eine verbesserte Benetzung der Kompensatorplatten mit der Lotmasse und eine verbesserte Haftung der Kompensatorplatten erreicht.
Die erfindungsgemäßen Kompensatorplatten sind bevorzugt mit Nickel, Zinn, Kupfer und/oder Silber beschichtet. Die Kompensatorplatten sind besonders bevorzugt mit einer haftvermittelnden Schicht, bevorzugt aus Nickel und/oder Kupfer, und zusätzlich mit einer lötbaren Schicht, bevorzugt aus Silber, versehen. Die erfindungsgemäßen Kompensatorplatten sind ganz besonders bevorzugt mit 0, 1 μιη bis 0,3 μιη Nickel und/oder 3 μιη bis 20 μιη Silber beschichtet. Die Kompensatorplatten können vernickelt, verzinnt, verkupfert und/oder versilbert werden. Nickel und Silber verbessern die Stromtragfähigkeit und Korrosionsstabilität der Kompensatorplatten und die Benetzung mit der Lotmasse.
Das Anschlusselement kann optional ebenfalls über eine Beschichtung verfügen. Eine Beschichtung des Anschlusselements ist jedoch nicht notwendig, da kein direkter Kontakt zwischen Anschlusselement und Lotmasse besteht. Somit bedarf es keiner Optimierung der Benetzungseigenschaften des Anschlusselements. Dadurch werden die Produktionskosten der erfindungsgemäßen Scheibe mit Anschlusselement und Kompensatorplatten gesenkt, da auf eine großflächige Beschichtung des Anschlusselements verzichtet werden kann und nur die in der Regel wesentlich kleinere Oberfläche der Kompensatorplatten beschichtet wird.
In einer alternativen Ausführungsform weist das Anschlusselement eine Beschichtung auf, die Nickel, Kupfer, Zink, Zinn, Silber, Gold oder Legierungen oder Schichten davon, bevorzugt Silber enthält. Bevorzugt ist das Anschlusselement mit Nickel, Zinn, Kupfer und/oder Silber beschichtet. Ganz besonders bevorzugt ist das Anschlusselement mit 0, 1 μιη bis 0,3 μιη Nickel und/oder 3 μιη bis 20 μιη Silber beschichtet. Das Anschlusselement kann vernickelt, verzinnt, verkupfert und/oder versilbert werden. Die Form der Kompensatorplatten kann ein oder mehrere Lotdepots im Zwischenraum von Kompensatorplatte und elektrisch leitfähiger Struktur ausbilden. Die Lotdepots und Benetzungseigenschaften des Lotes an den Kompensatorplatten verhindern den Austritt der Lotmasse aus dem Zwischenraum. Lotdepots können rechtwinklig, verrundet oder polygonal ausgestaltet sein.
Die Erfindung umfasst des Weiteren ein Verfahren zur Herstellung einer Scheibe mit Anschlusselement und einer oder mehrerer Kompensatorplatten enthaltend die nachfolgenden Schritte:
a) ein Anschlusselement wird elektrisch leitfähig auf der Oberseite einer oder mehrerer Kompensatorplatten befestigt,
b) auf der Unterseite einer oder mehrerer Kompensatorplatten wird eine bleifreie Lotmasse auf mindestens einer Kontaktfläche aufgebracht,
c) die Kompensatorplatten werden mit der bleifreien Lotmasse auf einer elektrisch leitfähigen Struktur auf einem Substrat angeordnet und d) die Kompensatorplatten werden mit der elektrisch leitfähigen Struktur verlötet.
Die elektrisch leitfähige Struktur kann durch an sich bekannte Verfahren auf das Substrat aufgebracht werden, beispielsweise durch Siebdruck- Verfahren. Das Aufbringen der elektrisch leitfähigen Struktur kann zeitlich vor, während oder nach den Verfahrensschritten (a) und (b) erfolgen.
Die Lotmasse wird bevorzugt als Plättchen oder abgeflachter Tropfen mit festgelegter Schichtdicke, Volumen, Form und Anordnung auf den Kompensatorplatten angebracht. Die Schichtdicke des Lotmasseplättchens beträgt bevorzugt kleiner oder gleich 0,6 mm. Die Form des Lotmasseplättchens entspricht bevorzugt der Form der Kontaktfläche. Ist die Kontaktfläche beispielsweise rechteckig ausgebildet, so weist das Lotmasseplättchen bevorzugt eine rechteckige Form auf.
Das Einbringen der Energie beim elektrischen Verbinden von Kompensatorplatten und elektrisch leitfähiger Struktur erfolgt bevorzugt mit Stempel, Thermoden, Kolbenlöten, Microflammlöten, bevorzugt Laserlöten, Heißluftlöten, Induktionslöten, Widerstandslöten und/oder mit Ultraschall. Bevorzugt wird das Anschlusselement auf der Oberseite der Kompensatorplatten verschweißt oder verlötet oder mittels einer Schraub- oder Steckverbindung befestigt. Besonders bevorzugt wird das Anschlusselement durch Elektrodenwiderstandsschweißen, Ultraschallschweißen oder Reibschweißen auf den Kompensatorplatten befestigt.
Das Anschlusselement wird nach Installation der Scheibe im Fahrzeug mit einem Blech, einer Litze oder einem Geflecht, beispielsweise aus Kupfer, verschweißt oder gecrimpt und mit der Bordelektronik verbunden.
Die Erfindung umfasst ferner die Verwendung der erfindungs gemäßen Scheibe mit elektrisch leitfähigen Strukturen in Fahrzeugen, Architekturverglasung oder Gebäudeverglasung, insbesondere in Kraftfahrzeugen, Schienenfahrzeugen, Flugzeugen oder Seefahrzeugen. Dabei dient ein Anschlusselement mit Kompensatorplatten der Verbindung von elektrisch leitfähigen Strukturen der Scheibe, wie beispielsweise Heizleitern oder Antennenleitern, mit externen elektrischen Systemen, wie beispielsweise Verstärkern, Steuereinheiten oder Spannungsquellen. Die Erfindung umfasst insbesondere die Verwendung der erfindungsgemäßen Scheibe in Schienenfahrzeugen oder Kraftfahrzeugen, bevorzugt als Windschutzscheibe, Heckscheibe, Seitenscheibe und/oder Dachscheibe, insbesondere als beheizbare Scheibe oder als Scheibe mit Antennenfunktion.
Die Erfindung wird anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein. Es zeigen:
Figur la eine Draufsicht einer erfindungs gemäßen Scheibe mit Anschlusselement und Kompensatorplatte.
Figur lb einen Querschnitt der Scheibe gemäß Figur la entlang der Querschnittslinie AA'.
Figur 2a eine schematische perspektivische Ansicht einer erfindungsgemäßen Scheibe mit brückenförmigem Anschlusselement und zwei Kompensatorplatten. Figur 2b einen Querschnitt der Scheibe gemäß Figur 2a entlang der Querschnittslinie BB'. Figur 2c eine Draufsicht der Scheibe gemäß Figur 2a.
Figur 3 eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich je eine Kontakterhebung auf den Kompensatorplatten aufgebracht ist.
Figur 4 eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich zwei Kontakterhebungen auf dem Anschlusselement aufgebracht sind.
Figur 5a eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich je zwei Kontakterhebungen auf den Kompensatorplatten aufgebracht sind.
Figur 5b einen Querschnitt der Scheibe gemäß Figur 5a entlang der Querschnittslinie BB'.
Figur 6 ein Fließschema des erfindungsgemäßen Verfahrens zur Herstellung einer Scheibe mit Anschlusselement und Kompensatorplatten.
Figur la und lb zeigen eine erfindungsgemäße Scheibe mit Anschlusselement (4) und Kompensatorplatte (3). Figur lb zeigt dabei einen Querschnitt entlang der Querschnittslinie AA'. Die geschnittenen Flächen in Figur lb werden schraffiert dargestellt. Auf einem Substrat (1) aus einem 3 mm dicken thermisch vorgespannten Einscheibensicherheitsglas aus Natron-Kalk-Glas ist ein Abdecksiebdruck (6) aufgebracht. Das Substrat (1) weist eine Breite von 150 cm und eine Höhe von 80 cm auf, wobei an der kürzeren Seitenkante im Bereich des Abdecksiebdrucks (6) ein Anschlusselement (4) mit Kompensatorplatte (3) angebracht ist. Auf der Oberfläche des Substrats (1) ist eine elektrisch leitfähige Struktur (2) in Form einer Heizleiterstruktur appliziert. Die elektrisch leitfähige Struktur enthält Silberpartikel und Glasfritten, wobei der Silberanteil größer 90 % beträgt. Im Randbereich der Scheibe ist die elektrisch leitfähige Struktur (2) auf 10 mm verbreitert. In diesem Bereich ist eine bleifreie Lotmasse (5) aufgebracht, die die elektrisch leitfähige Struktur (2) mit einer Kontaktfläche (7) an der Unterseite der Kompensatorplatte (3) verbindet. Die Kontaktfläche (7) und die bleifreie Lotmasse (5) sind in der Draufsicht in Figur la durch die Kompensatorplatte (3) verdeckt, jedoch im Querschnitt (Figur lb) erkennbar. Die Kontaktierung wird nach der Montage in der Fahrzeugkarosserie durch den Abdecksiebdruck (6) verdeckt. Die bleifreie Lotmasse (5) stellt eine dauerhafte elektrische und mechanische Verbindung der elektrisch leitfähigen Struktur (2) mit der Kompensatorplatte (3) sicher. Die bleifreie Lotmasse (5) enthält 57 Gew.-% Bismut, 42 Gew.-% Zinn und 1 Gew.-% Silber. Die bleifreie Lotmasse (5) hat eine Dicke von 250 μιη. Das Anschlusselement (4) besteht aus einem flachen gebogenen Blech mit einem Fuß, dessen Unterseite auf der Oberseite der Kompensatorplatte (3) aufgeschweißt ist. Die Biegung des Anschlusselements ist im Querschnitt (Figur lb) erkennbar. Das elektrische Anschlusselement (4) besteht aus Kupfer der Werkstoffnummer CW004A (Cu-ETP) und hat eine Kontaktfläche mit einer Breite von 4 mm und eine Länge von 6 mm. Dieses Material verfügt über einen niedrigen elektrischen Widerstand (1,8 μθΐπη ιη) und ist aufgrund seiner hohen elektrischen Leitfähigkeit als Anschlusselement (4) besonders geeignet. Die Materialstärke des Anschlusselements (4) beträgt 0,8 mm. Die Kompensatorplatte (3) besteht aus einem kreisförmig ausgestanzten Blech und weist eine Höhe (Materialstärke) von 0,5 mm und einen Durchmesser von 4 mm auf. Die Kompensatorplatte (3) besteht aus Stahl der Werkstoff-Nummer 1.4509 nach EN 10 088-2 (ThyssenKrupp Nirosta® 4509). Die Kompensatorplatte (3) kompensiert mechanische Spannungen und macht somit die Kombination eines Anschlusselements (4) aus Kupfer mit einer bleifreien Lotmasse (5) möglich. Dadurch werden einerseits kritische mechanische Spannungen in der Scheibe vermieden, wobei trotzdem die bisher bekannten Anschlusselemente (4) aus Kupfer oder Kupferlegierungen weiter verwendet werden können. Des Weiteren kann der Fertigungsprozess durch Standardisierung des Lötvorgangs unabhängig vom Material und der Form des Anschlusselements (4) vereinfacht werden, da die Parameter des Lötvorgangs nur von den verwendeten Kompensatorplatten (3) abhängen. Dieses Ergebnis war für den Fachmann überraschend und unerwartet.
Figur 2a, 2b und 2c zeigen verschiedene Ansichten einer erfindungsgemäßen Scheibe mit brückenförmigem Anschlusselement (4) und zwei Kompensatorplatten (3). Figur 2a zeigt eine perspektivische Ansicht der Scheibe, Figur 2b einen Querschnitt entlang der Querschnittslinie BB' und Figur 2c eine Draufsicht. Die geschnittenen Flächen werden in Figur 2b schraffiert dargestellt. Auf einem Substrat (1) aus einem 3 mm dicken thermisch vorgespannten Einscheibensicherheitsglas aus Natron-Kalk-Glas ist ein Abdecksiebdruck (6) aufgebracht. Das Substrat (1) weist eine Breite von 150 cm und eine Höhe von 80 cm auf, wobei an der kürzeren Seitenkante im Bereich des Abdecksiebdrucks (6) ein Anschlusselement (4) mit Kompensatorplatten (3) angebracht ist. Auf der Oberfläche des Substrats (1) ist eine elektrisch leitfähige Struktur (2) in Form einer Heizleiterstruktur appliziert. Die elektrisch leitfähige Struktur enthält Silberpartikel und Glasfritten, wobei der Silberanteil größer als 90 % beträgt. Im Randbereich der Scheibe ist die elektrisch leitfähige Struktur (2) auf 10 mm verbreitert. In diesem Bereich ist eine bleifreie Lotmasse (5) aufgebracht, die die elektrisch leitfähige Struktur (2) mit den Kontaktflächen (7.1, 7.2) an der Unterseite der Kompensatorplatten (3) verbindet. Die Kontaktierung wird nach der Montage in der Fahrzeugkarosserie durch den Abdecksiebdruck (6) verdeckt. Die bleifreie Lotmasse (5) stellt eine dauerhafte elektrische und mechanische Verbindung der elektrisch leitfähigen Struktur (2) mit den Kompensatorplatten (3) und dem Anschlusselement (4) sicher. Die bleifreie Lotmasse (5) enthält 57 Gew.-% Bismut, 42 Gew.-% Zinn und 1 Gew.-% Silber. Die bleifreie Lotmasse (5) hat eine Dicke von 250 μιη. Das Anschlusselement (4) weist eine Brückenform auf. Das Anschlusselement (4) umfasst zwei Füße, die auf der ersten Kompensatorplatte (3.1) und der zweiten Kompensatorplatte (3.2) aufliegen sowie einen brückenförmigen Abschnitt, der sich zwischen den Füßen erstreckt. Im brückenförmigen Abschnitt liegt das Anschlusselement (4) weder auf den Kompensatorplatten (3) noch auf der elektrisch leitfähigen Struktur (2) auf. Das elektrische Anschlusselement (4) hat eine Breite von 4 mm und eine Länge von 24 mm und besteht aus Kupfer der Werkstoffnummer CW004A (Cu- ETP). Dieses Material verfügt über einen niedrigen elektrischen Widerstand (1,8 μθΐηη ηι) und ist aufgrund seiner hohen elektrischen Leitfähigkeit als Anschlusselement (4) besonders geeignet. Die Materialstärke des Anschlusselements (4) beträgt 0,4 mm. Die Kompensatorplatten (3.1, 3.2) bestehen aus kreisförmig ausgestanzten Blechen und weisen jeweils eine Höhe (Materialstärke) von 0,5 mm und einen Durchmesser von 6 mm auf. Die Kompensatorplatten (3.1, 3.2) bestehen aus Stahl der Werkstoff-Nummer 1.4509 nach EN 10 088-2 (ThyssenKrupp Nirosta® 4509). Die Kompensatorplatten (3.1, 3.2) kompensieren mechanische Spannungen und machen somit die Kombination eines Anschlusselements (4) aus Kupfer mit einer bleifreien Lotmasse (5) möglich.
Figur 3 zeigt eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich je eine Kontakterhebung (9) auf den Kompensatorplatten (3) aufgebracht ist. Die Kontakterhebungen (9) sind auf der vom Substrat abgewandten Oberfläche der Kompensatorplatten (3) gegenüberliegend zu den Kontaktflächen angeordnet. Die Kontakterhebungen (9) sind in die Kompensatorplatten (3) eingeprägt und somit einstückig mit diesen ausgebildet. Die Kontakterhebungen (9) sind als Kugelsegment ausgeformt und haben eine Höhe von 2,5 x 10"4 m und eine Breite von 5 x 10^ m. Die Kontakterhebungen (9) dienen der Kontaktierung der Kompensatorplatten (3) mit dem Lötwerkzeug während des Lötvorgangs. Durch die Kontakterhebungen (9) wird eine reproduzierbare und definierte Wärmeverteilung unabhängig von der exakten Positionierung des Lötwerkzeugs sichergestellt.
Figur 4 eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich zwei Kontakterhebungen (9) auf dem Anschlusselement (4) aufgebracht sind. Die Ausgestaltung der Kontakterhebungen (9) entspricht dabei der in Figur 3 beschriebenen, wobei im Unterschied dazu die Kontakterhebungen (9) auf dem Anschlusselement (4) selbst in dem Bereich, der sich über den Kompensatorplatten (3) befindet, angeordnet sind. Diese Ausgestaltung ist vorteilhaft im Hinblick auf eine optimale Wärmeverteilung in den Kompensatorplatten (3) während des Lötvorgangs.
Figur 5a zeigt eine Draufsicht der Scheibe gemäß Figur 2c, wobei zusätzlich je zwei Kontakterhebungen (9) auf den Kompensatorplatten (3) aufgebracht sind. Die Ausgestaltung der Kontakterhebungen (9) entspricht dabei der in Figur 3 beschriebenen, wobei im Unterschied dazu jede Kompensatorplatte (3.1, 3.2) zwei Kontakterhebungen (9) trägt. Die Kontakterhebungen (9) flankieren die Füße des Anschlusselements (4) und sind seitlich von diesen angeordnet.
Figur 5b zeigt einen Querschnitt der Scheibe gemäß Figur 5 a entlang der Querschnittslinie CC. Die geschnittenen Flächen werden schraffiert dargestellt. Auf der ersten Kontaktfläche (7.1) der ersten Kompensatorplatte (3.1) sind drei Abstandshalter (8) angeordnet, von denen zwei erkennbar sind, da diese in der Querschnittsebene liegen. Die in dieser Abbildung nicht gezeigte zweite Kompensatorplatte (3.2) ist analog zur ersten Kompensatorplatte (3.1) mit Kontakterhebungen (9) und Abstandshaltern (8) ausgestattet. Die Abstandshalter (8) sind an den Kontaktflächen (7) in die Kompensatorplatten (3) eingeprägt und somit einstückig mit diesen ausgebildet. Die Abstandshalter (8) sind als Kugelsegmente ausgeformt und haben eine Höhe von 2,5 x 10"4 m und eine Breite von 5 x 10"4 m. Durch die Abstandshalter (8) wird die Ausbildung einer gleichmäßigen Schicht der bleifreien Lotmasse (5) begünstigt. Dies ist besonders vorteilhaft in Hinblick auf die Haftung der Kompensatorplatten (3). Die Kontakterhebungen (9) sind an der den Kontaktflächen (7) gegenüberliegenden, vom Substrat (1) abgewandten Oberfläche der Kompensatorplatten (3) angeordnet. Die Abstandshalter (8) und die Kontakterhebungen (9) können prinzipiell unabhängig voneinander positioniert werden, wobei sie sich bei einer Einprägung der Elemente nicht überlappen dürfen. Die in den Figuren 3 und 4 gezeigten Kontakterhebungen (9) sind ebenfalls in Kombination mit Abstandshaltern (8) verwendbar.
Figur 6 zeigt ein Fließschema des erfindungsgemäßen Verfahrens zur Herstellung einer Scheibe mit Anschlusselement (4) und Kompensatorplatten (3). Zunächst wird ein Anschlusselement (4) elektrisch leitfähig auf der Oberseite der Kompensatorplatten (3) befestigt. Danach wird eine bleifreie Lotmasse (5) auf der Unterseite der Kompensatorplatten (3) auf mindestens einer Kontaktfläche (7) aufgebracht und die Kompensatorplatten (3) mit der bleifreien Lotmasse (5) auf der elektrisch leitfähigen Struktur (2) angeordnet. Die Kompensatorplatten (3) werden daraufhin mit der elektrisch leitfähigen Struktur (2) verlötet.
Bezugszeichenliste
1 transparentes Substrat
2 leitfähige Struktur
3 Kompensatorplatten
3.1 erste Kompensatorplatte
3.2 zweite Kompensatorplatte
4 Anschlusselement
5 bleifreie Lotmasse
6 Abdecksiebdruck
7 Kontakt flächen
7.1 erste Kontaktfläche
7.2 zweite Kontaktfläche
8 Abstandshalter
9 Kontakterhebungen
AA' Querschnittslinie
BB' Querschnittslinie
CC Querschnittslinie

Claims

Patentansprüche
1. Eine Scheibe mit mindestens einem Anschlusselement (4) mit Kompensatorplatten (3) mindestens umfassend
ein Substrat (1) mit elektrisch leitfähiger Struktur (2) auf mindestens einem Teilbereich des Substrats (1),
mindestens eine Kompensatorplatte (3) auf mindestens einem Teilbereich der leitfähigen Struktur (2),
mindestens ein elektrisches Anschlusselement (4) auf mindestens einem Teilbereich der mindestens einen Kompensatorplatte (3),
eine bleifreie Lotmasse (5), die die Kompensatorplatte (3) über mindestens eine Kontaktfläche (7) mit mindestens einem Teilbereich der elektrisch leitfähigen Struktur (2) verbindet,
wobei die Differenz der thermischen Ausdehnungskoeffizienten des Substrats (1) und der Kompensatorplatte (3) kleiner 5 x 10~6/°C ist und
wobei das Anschlusselement (4) Kupfer enthält.
2. Scheibe nach Anspruch 1, wobei das elektrische Anschlusselement (4) über eine erste Kompensatorplatte (3.1) und eine zweite Kompensatorplatte (3.2) elektrisch leitfähig mit der elektrisch leitfähigen Struktur (2) verbunden ist.
3. Scheibe nach Anspruch 1 oder 2, wobei die Kompensatorplatten (3) und die Kontaktflächen (7) keine Ecken aufweisen.
4. Scheibe nach einem der Ansprüche 1 bis 3, wobei die Kompensatorplatten (3) Titan, Eisen, Nickel, Kobalt, Molybdän, Kupfer, Zink, Zinn, Mangan, Niob und/oder Chrom und/oder Legierungen davon, bevorzugt Eisen-Legierungen enthalten.
5. Scheibe nach Anspruch 4, wobei die Kompensatorplatten (3) zumindest 66,5 Gew.-% bis 89,5 Gew.-% Eisen, 10,5 Gew.-% bis 20 Gew.-% Chrom, 0 Gew.-% bis 1 Gew.-% Kohlenstoff, 0 Gew.-% bis 5 Gew.-% Nickel, 0 Gew.-% bis 2 Gew.-% Mangan, 0 Gew.-% bis 2,5 Gew.-% Molybdän, 0 Gew.-% bis 2 Gew.-% Niob und 0 Gew.-% bis 1 Gew.-% Titan enthalten.
6. Scheibe nach Anspruch 5, wobei die Kompensatorplatten (3) zumindest 77 Gew.-% bis 84 Gew.-% Eisen, 16 Gew.-% bis 18,5 Gew.-% Chrom, 0 Gew.-% bis 0, 1 Gew.-% Kohlenstoff, 0 Gew.-% bis 1 Gew.-% Mangan, 0 Gew.-% bis 1 Gew.-% Niob, 0 Gew.- % bis 1,5 Gew.-% Molybdän und 0 Gew.-% bis 1 Gew.-% Titan enthalten.
7. Scheibe nach einem der Ansprüche 1 bis 7, wobei das Anschlusselement (4) 45,0 Gew.-% bis 99,9 Gew.-% Kupfer, 0 Gew.-% bis 45 Gew.-% Zink, 0 Gew.-% bis 15 Gew.-% Zinn, 0 Gew.-% bis 30 Gew.-% Nickel und 0 Gew.-% bis 5 Gew.-% Silicium enthalten.
8. Scheibe nach Anspruch 7, wobei das Anschlusselement (4) 58 Gew.-% bis 99,9 Gew.- % Kupfer und 0 Gew.-% bis 37,0 Gew.-% Zink, bevorzugt 60 Gew.-% bis 80 Gew.-% Kupfer und 20 Gew.-% bis 40 Gew.-% Zink enthält.
9. Scheibe nach einem der Ansprüche 1 bis 8, wobei die elektrisch leitfähige Struktur (2) zumindest Silber, bevorzugt Silberpartikel und Glasfritten enthält und eine Schichtdicke von 5 μιη bis 40 μιη aufweist.
10. Scheibe nach einem der Ansprüche 1 bis 9, wobei das Substrat (1) Glas enthält, bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas und/oder Kalk-Natron- Glas.
1 1. Scheibe nach einem der Ansprüche 1 bis 10, wobei die bleifreie Lotmasse (5) Zinn, Bismut, Indium, Zink, Kupfer, Silber und/oder Gemische und/oder Legierungen davon enthält.
12. Scheibe nach Anspruch 1 1, wobei die bleifreie Lotmasse (5) 35 Gew.-% bis 69 Gew.- % Bismut, 30 Gew.-% bis 50 Gew.-% Zinn, 1 Gew.-% bis 10 Gew.-% Silber und 0 Gew.-% bis 5 Gew.-% Kupfer enthält.
13. Verfahren zur Herstellung einer Scheibe nach einem der Ansprüche 1 bis 12, wobei a) ein Anschlusselement (4) elektrisch leitfähig auf der Oberseite einer oder mehrerer Kompensatorplatten (3) befestigt wird,
b) auf der Unterseite der Kompensatorplatten (3) eine bleifreie Lotmasse (5) auf mindestens einer Kontaktfläche (7) aufgebracht wird,
c) die Kompensatorplatten (3) mit der bleifreien Lotmasse (5) auf einer elektrisch leitfähigen Struktur (2) auf einem Substrat (1) angeordnet werden und d) die Kompensatorplatten (3) mit der elektrisch leitfähigen Struktur (2) verlötet werden.
14. Verwendung einer Scheibe nach einem der Ansprüche 1 bis 12 als Scheibe mit elektrisch leitfähigen Strukturen, bevorzugt mit Heizleitern und/oder Antennenleitern, für Fahrzeuge, Flugzeuge, Schiffe, Architekturverglasung und Gebäudeverglasung.
EP13739210.6A 2012-11-21 2013-07-18 Scheibe mit elektrischem anschlusselement und kompensatorplatten Active EP2923529B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL13739210T PL2923529T3 (pl) 2012-11-21 2013-07-18 Szyba z elektrycznym elementem łączącym i płytą kompensatora
EP13739210.6A EP2923529B1 (de) 2012-11-21 2013-07-18 Scheibe mit elektrischem anschlusselement und kompensatorplatten

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12193521 2012-11-21
PCT/EP2013/065175 WO2014079595A1 (de) 2012-11-21 2013-07-18 Scheibe mit elektrischem anschlusselement und kompensatorplatten
EP13739210.6A EP2923529B1 (de) 2012-11-21 2013-07-18 Scheibe mit elektrischem anschlusselement und kompensatorplatten

Publications (2)

Publication Number Publication Date
EP2923529A1 true EP2923529A1 (de) 2015-09-30
EP2923529B1 EP2923529B1 (de) 2016-12-07

Family

ID=47594294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13739210.6A Active EP2923529B1 (de) 2012-11-21 2013-07-18 Scheibe mit elektrischem anschlusselement und kompensatorplatten

Country Status (17)

Country Link
US (1) US9572200B2 (de)
EP (1) EP2923529B1 (de)
JP (2) JP2016503568A (de)
KR (1) KR101711314B1 (de)
CN (1) CN104782225B (de)
AU (1) AU2013350059B2 (de)
BR (1) BR112015010474B1 (de)
CA (1) CA2891680C (de)
EA (1) EA029086B1 (de)
ES (1) ES2618514T3 (de)
MA (1) MA38104B1 (de)
MX (1) MX344768B (de)
MY (1) MY183691A (de)
PL (1) PL2923529T3 (de)
PT (1) PT2923529T (de)
WO (1) WO2014079595A1 (de)
ZA (1) ZA201503296B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015005078A2 (pt) 2012-09-14 2017-07-04 Saint Gobain chapa com elemento de conexão elétrica
CN104620674B (zh) 2012-09-14 2017-03-15 法国圣戈班玻璃厂 具有电连接元件的窗玻璃
JP6566811B2 (ja) * 2014-09-25 2019-08-28 株式会社旭製作所 半田チップ、半田チップを用いた端子付きガラス基板の製造方法
JP6725971B2 (ja) * 2015-07-14 2020-07-22 日本板硝子株式会社 ガラス板モジュール
GB201515010D0 (en) 2015-08-24 2015-10-07 Pilkington Group Ltd Electrical connector
JP6613920B2 (ja) 2016-01-22 2019-12-04 セントラル硝子株式会社 車両用窓ガラス及び車両用窓ガラスの製造方法
GB201607398D0 (en) * 2016-04-28 2016-06-15 Strip Tinning Ltd Connector
FR3054403B1 (fr) * 2016-07-22 2019-10-18 Saint-Gobain Glass France Vitrage avec element electriquement conducteur et sa connexion electrique
GB201704525D0 (en) 2017-03-22 2017-05-03 Central Glass Co Ltd Vehicle glass window with electrical connector soldered by lead-free solder
KR102335720B1 (ko) * 2017-03-27 2021-12-07 삼성전자주식회사 표면 실장용 금속 유닛 및 이를 포함하는 전자 장치
MA50987A (fr) 2017-12-04 2020-10-14 Agc Glass Europe Connecteur électrique à sertir comportant une partie formant queue
CN111448844B (zh) * 2017-12-04 2022-09-09 旭硝子欧洲玻璃公司 具有屏蔽元件的压接电连接器
GB201804622D0 (en) * 2018-03-22 2018-05-09 Central Glass Co Ltd Method of producing a vehicle glass assembly
GB201804624D0 (en) * 2018-03-22 2018-05-09 Central Glass Co Ltd Method of producing a vehicle glass assembly
MA53000A (fr) * 2018-06-26 2021-05-05 Saint Gobain Disque comprenant un élément de raccordement électrique et un câble de raccordement
CN109375400B (zh) * 2018-10-12 2021-09-21 中航华东光电有限公司 新型光学加热器及其制备方法
US10680354B1 (en) * 2019-03-14 2020-06-09 Antaya Technologies Corporation Electrically conductive connector
JP7373931B2 (ja) * 2019-07-01 2023-11-06 日本板硝子株式会社 接続端子
US11889596B2 (en) * 2020-07-30 2024-01-30 Min Hsiang Corporation Electrical connecting portion for a device with a heating function
WO2022172785A1 (ja) * 2021-02-09 2022-08-18 セントラル硝子株式会社 はんだ接合構造、車両用窓ガラス、はんだ接合構造の製造方法、ガラス物品の製造方法及びガラス物品
JP2023006654A (ja) * 2021-06-30 2023-01-18 日本板硝子株式会社 車両用ガラスモジュール

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2644066A (en) 1951-07-05 1953-06-30 Blue Ridge Glass Corp Electrical connector for resistance elements on glass plates
US4023008A (en) 1972-12-28 1977-05-10 Saint-Gobain Industries Terminal connection for electric heaters for vehicle windows
US6253988B1 (en) 1999-03-29 2001-07-03 Antaya Technologies Corporation Low temperature solder
US20070105412A1 (en) * 2004-11-12 2007-05-10 Agc Automotive Americas R&D, Inc. Electrical Connector For A Window Pane Of A Vehicle
US20070224842A1 (en) * 2004-11-12 2007-09-27 Agc Automotive Americas R&D, Inc. Electrical Connector For A Window Pane Of A Vehicle
US7223939B2 (en) 2004-11-12 2007-05-29 Agc Automotive Americas, R & D, Inc. Electrical connector for a window pane of a vehicle
GB0605884D0 (en) 2006-03-24 2006-05-03 Pilkington Plc Electrical connector
GB0605883D0 (en) 2006-03-24 2006-05-03 Pilkington Plc Electrical connector
US7696455B2 (en) * 2006-05-03 2010-04-13 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
DE102007059818B3 (de) * 2007-12-11 2009-04-09 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Fensterscheibe mit einem elektrischen Flachanschlusselement
DE202008018126U1 (de) * 2007-12-11 2011-12-28 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Lötanschlusselement
DE102009016353B4 (de) 2009-04-07 2022-06-30 Few Fahrzeugelektrik Werk Gmbh & Co. Kg Anschlusskontakt für an Scheiben von Fahrzeugen vorgesehene elektrische Einrichtungen
EP2339894A1 (de) * 2009-12-22 2011-06-29 Saint-Gobain Glass France Scheibe mit elektrischem Anschlusselement
EP2365730A1 (de) 2010-03-02 2011-09-14 Saint-Gobain Glass France Scheibe mit einem elektrischen Anschlusselement
EP2408260A1 (de) 2010-07-13 2012-01-18 Saint-Gobain Glass France Glasscheibe mit einem elektrischen Anschlusselement
EP2664503B1 (de) 2011-01-14 2018-03-07 Asahi Glass Company, Limited Verfahren zur herstellung von einer fensterscheibe für fahrzeuge
US20130333929A1 (en) 2011-03-02 2013-12-19 Central Glass Company, Limited Terminal Structure for Glass Plate with Conductive Section and Glass Plate Article Utilizing Same
HUE037054T2 (hu) 2011-05-10 2018-08-28 Saint Gobain Ablaktábla villamos csatlakozóelemmel
CA2835553C (en) 2011-05-10 2019-06-11 Saint-Gobain Glass France Pane with an electrical connection element
WO2013004434A1 (de) 2011-07-04 2013-01-10 Saint-Gobain Glass France Verfahren zur herstellung einer scheibe mit einem elektrischen anschlusselement

Also Published As

Publication number Publication date
MX2015006368A (es) 2015-09-28
ES2618514T3 (es) 2017-06-21
CA2891680A1 (en) 2014-05-30
BR112015010474B1 (pt) 2021-08-10
EA201590995A1 (ru) 2015-08-31
AU2013350059B2 (en) 2016-08-18
MX344768B (es) 2017-01-06
KR101711314B1 (ko) 2017-02-28
ZA201503296B (en) 2016-05-25
PL2923529T3 (pl) 2017-06-30
BR112015010474A2 (pt) 2017-07-11
MA38104B1 (fr) 2017-03-31
CN104782225B (zh) 2017-03-15
KR20150076217A (ko) 2015-07-06
JP6440756B2 (ja) 2018-12-19
MA38104A1 (fr) 2016-08-31
JP2017147229A (ja) 2017-08-24
EA029086B1 (ru) 2018-02-28
US9572200B2 (en) 2017-02-14
AU2013350059A1 (en) 2015-06-11
CN104782225A (zh) 2015-07-15
JP2016503568A (ja) 2016-02-04
PT2923529T (pt) 2017-03-07
CA2891680C (en) 2018-06-05
MY183691A (en) 2021-03-08
WO2014079595A1 (de) 2014-05-30
EP2923529B1 (de) 2016-12-07
US20150296569A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
EP2923529B1 (de) Scheibe mit elektrischem anschlusselement und kompensatorplatten
EP2923528B1 (de) Scheibe mit elektrischem anschlusselement und verbindungssteg
EP2896269B2 (de) Scheibe mit einem elektrischen anschlusselement
EP2896270B1 (de) Scheibe mit einem elektrischen anschlusselement
EP2708091B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3576491B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3500063B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3064034B1 (de) Scheibe mit mindestens zwei elektrischen anschlusselementen und verbindungsleiter
EP2888075B1 (de) Scheibe mit elektrischem anschlusselement
EP2859620B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3235340B1 (de) Scheibe mit einem elektrischen anschlusselement und einem flexiblen anschlusskabel
WO2015165632A1 (de) Elektrisches anschlusselement zur kontaktierung einer elektrisch leitfähigen struktur auf einem substrat
EP3292737B1 (de) Scheibe mit elektrischem anschlusselement und daran angebrachtem verbindungselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2923529

Country of ref document: PT

Date of ref document: 20170307

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170301

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2618514

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013005663

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PILKINGTON GROUP LIMITED

Effective date: 20170907

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 24489

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130718

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 852686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180718

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180718

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230614

Year of fee payment: 11

Ref country code: NL

Payment date: 20230614

Year of fee payment: 11

Ref country code: IT

Payment date: 20230612

Year of fee payment: 11

Ref country code: FR

Payment date: 20230620

Year of fee payment: 11

Ref country code: CZ

Payment date: 20230629

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230612

Year of fee payment: 11

Ref country code: SE

Payment date: 20230613

Year of fee payment: 11

Ref country code: PL

Payment date: 20230614

Year of fee payment: 11

Ref country code: LU

Payment date: 20230714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230616

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230714

Year of fee payment: 11

Ref country code: GB

Payment date: 20230601

Year of fee payment: 11

Ref country code: ES

Payment date: 20230809

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230717

Year of fee payment: 11

Ref country code: DE

Payment date: 20230531

Year of fee payment: 11