EP2912239B1 - Reinforcing element for producing prestressed concrete components, concrete component and production methods - Google Patents

Reinforcing element for producing prestressed concrete components, concrete component and production methods Download PDF

Info

Publication number
EP2912239B1
EP2912239B1 EP12766940.6A EP12766940A EP2912239B1 EP 2912239 B1 EP2912239 B1 EP 2912239B1 EP 12766940 A EP12766940 A EP 12766940A EP 2912239 B1 EP2912239 B1 EP 2912239B1
Authority
EP
European Patent Office
Prior art keywords
fibers
concrete
reinforcing element
holding elements
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12766940.6A
Other languages
German (de)
French (fr)
Other versions
EP2912239A1 (en
Inventor
Josef Peter Kurath-Grollmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPC AG
Original Assignee
CPC AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPC AG filed Critical CPC AG
Priority to EP23158276.8A priority Critical patent/EP4206413A1/en
Priority to PL12766940.6T priority patent/PL2912239T3/en
Priority to HUE12766940A priority patent/HUE062126T2/en
Publication of EP2912239A1 publication Critical patent/EP2912239A1/en
Application granted granted Critical
Publication of EP2912239B1 publication Critical patent/EP2912239B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material

Definitions

  • the present invention relates to a reinforcement element for the production of prestressed concrete components. Furthermore, the invention relates to a prestressed concrete component and manufacturing method for the reinforcement element and the prestressed concrete component.
  • Prestressed concrete slabs are known from the prior art. For example disclosed US 2002/0059768 A1 a method for producing a prestressed concrete slab using tensioned wire ropes. To generate the tension, the wire ropes are wound around opposite bolts and then tensioned by moving the bolts apart. This results in a pre-tension of approx. 70% of the breaking strength of the wire rope.
  • Another reinforcement element is from the U.S. 2010/132282 A1 and the U.S. 2007/175583 A1 known.
  • the object of the present invention is to specify an improved reinforcement element for the production of prestressed concrete components, an improved concrete component and improved production methods for the reinforcement element and the prestressed concrete component.
  • the present invention relates to a reinforcement element for the production of prestressed concrete components, with a large number of fibers and several holding elements which are connected to one another by the fibers so that the fibers can be tensioned in their longitudinal direction by means of the holding elements.
  • the fibers which have a net cross-sectional area of less than 5 mm 2 and are coated with a granular material, in particular sand, and form an essentially flat layer in the holding elements (14), are attached to the holding elements by lamination or laminating and clamps fastened in such a way that the fibers in the tensioned state open out largely in a straight line into the holding elements. This achieves both high prestressing and efficient, reliable and therefore cost-effective production of the concrete components.
  • fiber includes both a single or several elongated and flexible reinforcement elements for concrete components, for example a single filament - also called single filament or monofilament - or a bundle of filaments - also called multifilament, multifilament yarn, yarn or - in the case of stretched filaments - roving.
  • the term fiber also includes a single wire or multiple wires.
  • the fibers can also be used individually or coated together and/or the fiber bundle may be stranded or twisted.
  • the net cross-sectional area of the fibers is less than about 5 mm 2 , and specifically ranges from about 0.1 mm 2 to about 1 mm 2 .
  • the tensile elongation of the fibers is greater than about 1%.
  • the tensile strength of the fibers, based on their net cross-sectional area is greater than approximately 1000 N/mm 2 , in particular greater than approximately 1800 N/mm 2 .
  • the reinforcement elements according to the invention are first laid in a mold and then the fibers are stretched by pulling the corresponding holding elements apart.
  • the concrete component is then cast, with the parts of the fibers lying inside the mold being embedded in concrete.
  • the tension previously applied to the fibers is released, with the tension in the cast-in parts of the fibers being maintained, since the cast-in fiber parts are frictionally connected to the concrete and there is practically no relative displacement between these fiber parts and the concrete.
  • the non-positive connection is based - among other things - on the wedging of the fibers in their concrete coating (Hoyer effect).
  • the projecting from the concrete component stress-free parts of the fibers can be separated and together with the Holding elements are removed.
  • the prestress is therefore generated by the tension of the fibers embedded in concrete.
  • connection between fibers and concrete can be strengthened by a variety of means, for example by increasing the surface roughness of the fibres.
  • this connection is designed in such a way that the full dimensioning tensile force can be transmitted via the mechanical shear connection after 200 mm, in particular after 100 mm, further after in particular 70 mm, binding length (i.e. length of the fibers embedded in concrete).
  • the fibers of the reinforcing element according to the invention can be made from a large number of different materials, in particular from non-corrosive material and more particularly from alkali-resistant material.
  • this material is a polymer like carbon, but also glass, steel or natural fibers.
  • the fibers are made of carbon.
  • Carbon fibers have the advantage that they are very durable, which means that there is no noticeable loss of strength even over decades.
  • carbon fibers are corrosion-resistant, in particular they do not corrode on the surface of the concrete components, and are practically invisible. This means that the carbon fibers can often be left on the surface of the concrete components. However, they can also be removed with ease, for example by breaking them off or simply stripping them off.
  • Fastening the fibers “in” the holding elements includes a wide variety of fastening options, in particular also fastening the fibers “to” or “on” the holding elements, for example laminating the fibers without further covering.
  • both a high prestressing of the concrete components and an efficient, reliable and simple handling of the reinforcing elements are achieved.
  • the concrete components can be produced particularly inexpensively.
  • the following is achieved: Due to the fact that the fibers flow in a largely straight line with respect to their longitudinal direction, ie the fibers continue to flow evenly into the holding elements, transverse stresses in the fibers are largely avoided. Such transverse stresses often lead to fiber breaks and occur, for example, at kinks, jams or tight curve radii, i.e. typically with deflection webs, deflection rollers or guide bolts.
  • the fibers can be stressed at a stress of from about 50% to about 95% of the breaking stress of the fibers.
  • the fibers can be stressed with at least about 80%, more preferably at least about 90%, of the breaking stress of the fibers.
  • the thickness of the concrete component to be produced is in the range from approx. 10 mm to 60 mm, in particular approx. 15 mm to 40 mm.
  • the surface area of the concrete component is at least approx. 10 m x 5 m, in particular at least approx. 10 m x 10 m, more particularly at least approx. 15 m x 15 m.
  • the length of the concrete component is at least approx m, further in particular at least approx. 12 m.
  • the reinforcing elements can be produced as intermediate products at a first location, possibly packed in appropriate transport containers and transported to another location for the production of the concrete parts become. At the other location, for example in a concrete production plant, the reinforcement elements that have been delivered are then directly available as prefabricated components.
  • connection of the fibers to the holding elements according to the invention results in a robust and space-saving unit, which is therefore easy to transport.
  • the fibers are individual fibers and/or comprise one or more rovings, in particular carbon rovings.
  • Individual fibers are to be understood as meaning individual fibers that are not directly connected.
  • a continuous fiber assembly is seen where the reciprocating portions of the fiber assembly are connected via loops.
  • roving means a bundle of stretched filaments.
  • a roving also referred to as a stretched yarn, typically comprises a few thousand filaments, in particular approximately 2,000 to approximately 16,000 filaments. Due to the roving, the tensile forces acting on the fibers are distributed largely evenly over a large number of filaments, so that local peak loads are largely avoided.
  • the filaments of the roving have a small fiber diameter, so that a correspondingly large surface-to-diameter ratio and thus a good bond between the concrete and the filaments is achieved. Furthermore, a good shear transmission and a good distribution of the tensile load on the concrete are achieved.
  • the fibers are produced from an arrangement of several rovings, which comprises 2 to 10, in particular 2 to 5, individual rovings.
  • these fibers have about 4,000 to about 160,000 filaments.
  • the holding elements have guide elements for the fibers, in particular a clamping device and/or a carrier for laminating the fibers in the end region, in particular a fiber-reinforced polymer matrix, more particularly a polyester matrix. Good power transmission is achieved by these guide elements. In addition, a particularly space-saving and robust unit is achieved through the lamination.
  • the holding elements can also be designed as double-sided adhesive tape.
  • the fibers in the holding elements form an essentially planar layer and, in one embodiment, are arranged in particular largely parallel and/or largely evenly spaced from one another.
  • the reinforcement element has the shape of a track or a harp. This form is easily stacked or rolled up, optionally using interleaving sheets to keep the respective fibers separate. This means that reinforcement elements are easy to transport.
  • Such a harp-shaped reinforcement element has the advantage over a lattice (grid) that no knotting occurs and thus very high tensile loads can be achieved.
  • lattice grid
  • the reinforcement element has additional spacers which connect the fibers to one another, for example in the form of transverse threads and/or a fabric, so that there is a distance between the individual fibers even when the reinforcement element is not tensioned or is only partially tensioned. This largely or completely prevents the slack fibers from becoming tangled.
  • These spacers thus serve as an assembly aid and/or transport aid. When concreted in, the spacers absorb practically no tensile loads.
  • the distance between the reinforcements is about 5 mm to about 40 mm, in particular about 8 mm to about 25 mm, and/or at least 10, in particular at least 40 fibers are fixed in each of the holding elements.
  • the reinforcement distance ie the distance between two adjacent fibers, is less than or equal to twice the thickness of the concrete component.
  • the fibers are impregnated with an alkali-resistant polymer, in particular with a resin, more particularly with a vinyl ester resin. This increases the tensile strength of the fibers.
  • the fibers are coated with a granular material, in particular with sand. This improves the bond between the fibers and the concrete and thus increases the resistance of the prestressing in the concrete component.
  • the fibers are fastened to the holding elements in such a way that, in the tensioned state, the fibers continue largely in a straight line in the holding elements, in particular over a distance of at least approx. 5 mm, more particularly at least approx. 10 mm. This achieves good power transmission between the fibers and the holding elements.
  • the holding elements have means for force distribution, in particular running transversely to the direction of the fibers, in particular a curvature and/or a profile. This achieves good distribution of the acting forces and thus high tensile stress and/or low stress on the fibers during tensioning. In addition, this shortens the binding length, that is, shortens the length required for reliable attachment of the fibers to the holding elements.
  • the curvature of the holding element is designed in such a way that the curved fibers each define planes that are arranged largely parallel, in particular perpendicular to the position of the fibers. If the fibers are arranged in a horizontal position, their fiber ends are curved vertically downwards or upwards, for example.
  • the profiling achieves a good non-positive connection between the holding element and the clamping device.
  • the pressure on the holding element and/or on the fibers can thus be reduced.
  • the profiling is arranged on at least one of those surfaces of the holding element which is provided for fastening the holding element in a clamping device.
  • the Profiling wavy or jagged, especially saw-toothed.
  • its width is greater than 0.4 m, in particular greater than 0.8 m, and/or its length is greater than 4 m, in particular greater than 12 m. Efficient production of large concrete components is thereby achieved. For example, a 20 m x 20 m concrete slab can be produced in one work cycle.
  • the holding element is severed after being connected to the fibers, in particular in the middle, so that the two sections produced in turn form two holding elements for two reinforcing elements produced in succession.
  • the first section forms the end of a first reinforcement element and the second section forms the beginning of the subsequent reinforcement element.
  • the holding element is designed as a double holding element, with an open intermediate area between the two parts of the double holding element in which the fibers are exposed.
  • the previously mentioned severing of the holding element can be done by simply severing the fibers in this intermediate area, for example by breaking.
  • efficient separation is achieved during production, in particular in series production, of the reinforcement elements.
  • the retaining element is fastened while the fibers are being pulled out together, in particular by moving the retaining element in synchronism with the movement of the fibers.
  • the retaining element is fastened by fastening an upper part and a lower part of the retaining element from opposite sides of the fibers, in particular by assembling glass fiber mats.
  • the fibers are arranged by placing the fibers on a first part of the holding element and fixing the fibers by adding a second part of the holding element and by pressing these two parts together. As a result, the fibers are firmly enclosed by the holding elements, so that a particularly strong and robust attachment is achieved.
  • the present invention relates to a prestressed concrete component, in particular a concrete slab, which was produced using at least one reinforcing element according to the invention, the prestressing of the concrete component being at least 50%, in particular at least 80%, more in particular at least 90%, of the breaking stress of the fibers.
  • the present invention further relates to a concrete component, in particular a concrete slab, comprising a large number of fibers which are tensioned in their longitudinal direction.
  • the Fibers have a net cross-sectional area of less than 5 mm 2 , are coated with a granular material, in particular sand, and form at least one essentially planar layer, with the prestressing of the concrete component being at least 50%, in particular at least 80%, more particularly at least 90%, the breaking stress of the fibers.
  • this concrete component is produced using a large number of reinforcing elements according to the invention, in particular arranged in groups. Due to the arrangement in groups, an improved adaptation to the conditions of the concrete component is achieved.
  • a grouping can be achieved by one or more horizontal and/or vertical distances or by an angular, in particular right-angled, arrangement.
  • the fibers are pretensioned by tensioning in sections, in particular individually for each of the reinforcement elements used.
  • the preload can be flexibly adjusted to specific requirements.
  • the reinforcement distance ie the distance between two adjacent fibers, is less than or equal to twice the thickness of the concrete component, in particular less than or equal to twice the plate thickness.
  • the method according to the invention is particularly suitable for the production of large prestressed concrete components, for example for concrete slabs approximately 20 m wide and approximately 20 m long.
  • these large prestressed concrete components can then be subdivided into smaller prestressed concrete components, since the prestressing of the concrete components is always maintained during division.
  • the smaller concrete components can then be individually cut to size, for example by sawing, CNC milling or water jet cutting, in order to produce, for example, specially shaped floor panels, stair treads or panels for table tennis tables.
  • such a subdivision can be achieved by using separating elements, in particular a foam.
  • the at least one reinforcement element is provided by arranging several of the reinforcement elements in one layer, in particular by largely parallel and/or adjacent ones To lay next to each other. This means that large areas can be set up efficiently.
  • the at least one reinforcement element is provided by arranging the reinforcement elements in at least two layers, with the reinforcement elements in adjacent layers being aligned at an angle, in particular largely at right angles. This achieves an efficient and flexible set-up of a complex reinforcement.
  • the at least one reinforcement element is provided by stacking several of the reinforcement elements on top of one another.
  • this additionally includes the step of introducing a separating element, in particular a foam, before the concrete component is cast in concrete.
  • a separating element in particular a foam
  • a foam offers a very flexible, easy to use and inexpensive partition.
  • the foam offers an aid for positioning the fibers and/or fixing the fibers during concreting.
  • a solid material can also be used as a separating element, for example rubber or styrofoam.
  • this additionally includes the step of separating the concrete component after concreting, in particular by breaking and/or sawing. Since the foam does not make a significant contribution to the strength, the individual subdivisions of the concrete component are practically only held together by the fibers. The concrete components can thus be easily separated, in particular by simply breaking them. This achieves a breakdown into manageable parts in a convenient and very efficient way. For example, these parts can be distributed from a production plant for concrete components to other work stations and brought into the final form there.
  • FIG. 1 shows a simplified schematic representation of an embodiment of the inventive reinforcement element 10 in the stretched state.
  • Such a reinforcement element 10 is used to produce prestressed concrete components.
  • the reinforcement element 10 comprises ten individual fibers, which in this example are carbon fibers 12 (only partially designated) are formed, and two holding elements in the form of two carriers 14.
  • the carriers 14 are arranged at a distance from one another and are connected to one another by the ten carbon fibers 12.
  • the carbon fibers 12 can be tensioned in their longitudinal direction T by pulling the carriers 14 apart.
  • the carbon fibers 12 are preferably fastened in the supports 14 in such a way that the stretched carbon fibers 12 open into the supports 14 in a straight line. Furthermore, the carbon fibers 12 form an essentially planar layer, in which the carbon fibers 12 are arranged largely parallel and at a largely even distance from one another. As a result, the reinforcement element 10 has the shape of a harp. In this example, the distance between the reinforcements, i.e. the distance between the carbon fibers 12 arranged in parallel, is approximately 10 mm and the width of the reinforcement element 10 is therefore approximately 10 cm.
  • Each of the carbon fibers 12 comprises a carbon roving, ie a bundle of a few thousand stretched filaments arranged next to one another and essentially aligned in the same way (approx. 2,000 to approx. 16,000 filaments). These filaments and thus also the carbon fibers 12 are impregnated with an alkali-resistant resin in the form of vinyl ester resin, so that the carbon fibers 12 form a compact unit, similar to a metal wire.
  • the impregnation can, for example, by means of a Take place immersion bath through which the roving for the production of the carbon fibers 12 is pulled.
  • the carbon fibers 12 are coated with sand, so that an improved connection between fibers and concrete is achieved.
  • the full dimensioning tensile force can be transmitted via the mechanical shear connection.
  • the carriers 14 each have two openings 16 (shown in dashed lines) by means of which the carriers 14 can be positioned on a clamping device (not shown). With the clamping device, the carbon fibers 12 can be aligned precisely during the production of the concrete components, in particular without horizontal and/or vertical tilting.
  • the carrier 14 has a hole or a multiplicity of holes, in particular more than two holes, for positioning the carrier 14 .
  • carrier 14 is manufactured using inexpensive materials.
  • An exemplary material composition and the corresponding production of the carrier 14 is based on 2 described.
  • Other materials can also be used since the carrier 14 is not part of the concrete component to be produced and is usually separated and removed after concreting.
  • FIG 2 shows a simplified schematic detail view of a carrier 14 according to FIG 1 .
  • the carrier 14, also referred to as a patch, comprises a fiber-reinforced polymer matrix in the form of a polyester matrix with fibers enclosed therein in the form of two glass fiber mats.
  • This polyester matrix encloses the stretched carbon fibers 12 in their end areas.
  • the size of this polyester matrix is about 10 cm x 10 cm and the total thickness is about 2 mm.
  • the length of the polyester matrix in the direction of the carbon fibers 12 is between approximately 10 cm and approximately 20 cm.
  • the fiber mats form a lower and an upper layer, the stretched carbon fibers 12 being arranged between these layers and fixed therein by lamination with polyester.
  • the polyester matrix therefore forms a rectilinear guide element for the carbon fibers 12 (indicated by dashed lines), with the carbon fibers 12 continuing largely rectilinearly within the polyester matrix, ie within the carrier 14 .
  • the carbon fibers 12 are fixed in their mutual arrangement by means of the carrier 14, namely in a flat position, largely parallel and spaced evenly apart from one another.
  • the ends of the carbon fibers 12 protrude a little beyond the supports 14 on the exit side of the supports 14 .
  • the fibers 12 can also end in the carrier 14 or flush on its surface, for example if the carrier 14 has been separated from a larger unit.
  • the carrier 14 forms a compact and robust unit together with the carbon fibers 12 .
  • FIG. 12 shows a simplified schematic representation of an intermediate stage in the manufacture of a prestressed concrete slab 20, for example in a prefabricated concrete slab plant.
  • the intermediate state corresponds to an arrangement after the preparatory work has been completed, but before the concrete slab 20 is poured.
  • the arrangement comprises a concreting table (not shown), a hollow frame 30 arranged thereon and a multiplicity of identical reinforcing elements 10 according to the invention (in some cases only indicated schematically). Together with the surface of the concreting table, the hollow frame 30 forms a mold for the concrete, also called a prestressing bed.
  • the reinforcement elements 10 each have a large number of carbon fibers 12 (for the sake of clarity, only the outer fibers are shown in some cases) and two carriers 14 and largely correspond in their structure to the reinforcement elements 10 according to FIG 1 .
  • the length of the carbon fibers 12 is approximately 20 m and the width of the carrier 14 is approximately 1 m.
  • the distance between the reinforcements corresponds to the previous example, ie as in FIG 1 approx. 10 mm, so that approx. 100 carbon fibers 12 are fastened to the carriers 14 in each case.
  • the carriers 14 are each pulled apart, so that the carbon fibers 12 are in the hollow frame 30 in the stretched state.
  • the carbon fibers 12 are guided outwards through the hollow frame 30, so that the ends of the carbon fibers 12 and the supports 14 are outside of the hollow frame 30, for example at a distance of 30 cm from the hollow frame 30.
  • the passage channels are also formed by corresponding gaps between the lower part and the upper part of the hollow frame 30 .
  • the hollow frame 30 is constructed from a plurality of slats lying one above the other, so that the carbon fibers 12 can be guided through the interstices of the individual slats.
  • the gaps can also be sealed with foam rubber and/or brush hairs.
  • the height of the superimposed bars is 3mm, 12mm and 3mm.
  • the first half of the reinforcing elements 10 are in a first layer, parallel and adjacent to each other and the second half of the reinforcing elements 10 are in a second layer, also parallel and adjacent to but perpendicular to the reinforcing elements 10 of the first layer.
  • the reinforcing elements 10 are thus superimposed in separate layers and in the two adjacent ones Layers aligned at right angles to each other.
  • the reinforcement elements 10 therefore form both a longitudinal reinforcement and a transverse reinforcement, but without individual interweaving of the individual carbon fibers 12.
  • the carriers 14 are pulled apart, for example with a clamping device, also called a prestressing system, or manually with a torque wrench (not shown).
  • a stress of at least approx. 30 kN/m or at least approx. 300 kN/m is generated, depending on the load requirements on the concrete slab (dimensioning force).
  • concrete can be poured into the hollow frame 30 prepared in this way in order to concrete the concrete slab 20 in one operation.
  • the parts of the tensioned carbon fibers 12 which are located in the hollow frame 30 are enclosed by the concrete and thus embedded in concrete.
  • SCC fine concrete at least C30/37 according to the SIA SN505 262 standard
  • the concrete can also be introduced into the hollow frame 30 by spraying or spatula and evenly distributed by vibration.
  • the concrete slab 20 can be removed from the hollow frame 30 .
  • the concreted carbon fibers 12 the static reinforcement of the concrete slab 20.
  • the parts of the carbon fibers 12 protruding from the concrete are broken off at the edges of the concrete slab 20 and removed together with the supports 14.
  • the concrete slab produced is approximately 6 mx 2.5 m in size and the reinforcement content of this concrete slab 20 is more than 20 mm 2 /m width. In another example, the concrete slab produced is about 7 mx about 2.3 m.
  • FIG 4 14 shows a simplified schematic side view of a carrier 14 according to FIG 2 .
  • the carbon fibers 12 flow straight into the carrier 14. Furthermore, the carbon fibers 12 continue in a straight line inside the carrier 14, so that the carrier 14 forms a straight guide for the carbon fibers 12.
  • the length of the carrier 14 in the direction of the carbon fibers 12 is approximately 3 cm.
  • the carrier 14 can additionally have a profile 16 (shown in dashed lines).
  • a serrated profile 16 is arranged on a first (upper) surface and on the opposite (lower) surface of the carrier 14 . These surfaces are provided for mounting the carrier 14 in a fixture (not shown), for example by clamping.
  • the jagged profiling 16 achieves a non-positive connection between the carrier 14 and the clamping device in the form of teeth.
  • FIG. 5 shows a representation according to 3
  • a subdivision is also made in that a construction foam 40 (shown as a wavy line) is foamed as a separating element both on the bottom of the hollow mold and under and over the carbon fibers 12.
  • This subdivision means that no or only a negligible amount of the poured concrete can penetrate into the space occupied by the subdivision.
  • the construction foam 40 offers a fixation of the fibers during concreting.
  • the concrete slab 20 can be broken into individual raw slabs along the construction foam subdivisions. These raw panels can then be processed further, for example by cutting the raw panels into the desired shape using a circular saw.
  • the concrete slab produced is approx. 20 mx approx. 20 m and its thickness is approx. 20 mm.
  • 3 table tennis tables can then be sawn from these smaller slabs.
  • FIG 6 14 shows a simplified schematic side view of a carrier 14 according to FIG 2 , but this has a means for force distribution in the form of a bend 18.
  • the carbon fibers 12 flow straight into the carrier 14 and then run inside the carrier 14, corresponding to the curvature 18 of the carrier 14, also with a curvature.
  • the carbon fibers 12 are fastened in the entry area of the carrier 14 in such a way that the carbon fibers 12 continue largely in a straight line into the carrier 14 over a distance d of 10 mm. This shape achieves both good introduction of the fibers into the carrier 14 and an even distribution of the forces to be absorbed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

Die vorliegende Erfindung betrifft ein Armierungselement zur Herstellung vorgespannter Betonbauteile. Ferner betrifft die Erfindung ein vorgespanntes Betonbauteil und Herstellverfahren für das Armierungselement und das vorgespannte Betonbauteil.The present invention relates to a reinforcement element for the production of prestressed concrete components. Furthermore, the invention relates to a prestressed concrete component and manufacturing method for the reinforcement element and the prestressed concrete component.

Vorgespannte Betonplatten sind aus dem Stand der Technik bekannt. Beispielsweise offenbart US 2002/0059768 A1 ein Verfahren zur Herstellung einer vorgespannten Betonplatte mittels gespannter Drahtseile. Zur Erzeugung der Spannung werden die Drahtseile um jeweils gegenüberliegende Bolzen gewunden und anschliessend durch Auseinanderbewegen der Bolzen unter Zugspannung gesetzt. Dadurch ergibt sich eine Vorspannung von ca. 70% der Bruchspannung der Drahtseile.Prestressed concrete slabs are known from the prior art. For example disclosed US 2002/0059768 A1 a method for producing a prestressed concrete slab using tensioned wire ropes. To generate the tension, the wire ropes are wound around opposite bolts and then tensioned by moving the bolts apart. This results in a pre-tension of approx. 70% of the breaking strength of the wire rope.

Ein weiteres Armierungselement ist aus der US 2010/132282 A1 und der US 2007/175583 A1 bekannt.Another reinforcement element is from the U.S. 2010/132282 A1 and the U.S. 2007/175583 A1 known.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein verbessertes Armierungselement zur Herstellung vorgespannter Betonbauteile, ein verbessertes Betonbauteil und verbesserte Herstellverfahren für das Armierungselement und das vorgespannte Betonbauteil anzugeben.The object of the present invention is to specify an improved reinforcement element for the production of prestressed concrete components, an improved concrete component and improved production methods for the reinforcement element and the prestressed concrete component.

Diese Aufgabe wird durch ein Armierungselement mit den Merkmalen des Anspruchs 1 sowie einem Betonbauteil und Herstellverfahren gemäss den zugehörigen Ansprüchen gelöst.This object is achieved by a reinforcement element with the features of claim 1 and a concrete component and manufacturing method according to the associated claims.

Weitere erfindungsgemässe Ausführungen sind in den weiteren Ansprüchen angegeben.Further embodiments according to the invention are specified in the further claims.

Ferner betrifft die vorliegende Erfindung ein Armierungselement zur Herstellung vorgespannter Betonbauteile, mit einer Vielzahl von Fasern und mehreren Halteelementen, welche durch die Fasern miteinander verbunden sind, so dass die Fasern mittels der Halteelemente in ihrer Längsrichtung gespannt werden können. Dabei sind die Fasern, welche eine Netto-Querschnittsfläche von kleiner 5 mm2 aufweisen und mit einem körnigen Material, insbesondere mit Sand, beschichtet sind und in den Halteelementen (14) eine im Wesentlichen ebene Lage bilden, derart an den Halteelementen durch Laminieren oder Laminieren und Klemmen befestigt, dass die Fasern im gespannten Zustand weitgehend geradlinig in die Halteelemente münden. Dadurch wird sowohl eine hohe Vorspannung als auch eine effiziente, zuverlässige und damit kostengünstige Herstellung der Betonbauteile erreicht.Furthermore, the present invention relates to a reinforcement element for the production of prestressed concrete components, with a large number of fibers and several holding elements which are connected to one another by the fibers so that the fibers can be tensioned in their longitudinal direction by means of the holding elements. The fibers, which have a net cross-sectional area of less than 5 mm 2 and are coated with a granular material, in particular sand, and form an essentially flat layer in the holding elements (14), are attached to the holding elements by lamination or laminating and clamps fastened in such a way that the fibers in the tensioned state open out largely in a straight line into the holding elements. This achieves both high prestressing and efficient, reliable and therefore cost-effective production of the concrete components.

Der Begriff "Faser" umfasst sowohl ein einzelnes oder mehrere längliche und flexible Bewehrungselemente für Betonbauteile, beispielsweise ein einzelnes Filament - auch Einzelfilament oder Monofil genannt - oder ein Bündel von Filamenten - auch Multifilament, Multifilgarn, Garn oder - bei gestreckten Filamenten - Roving genannt. Insbesondere umfasst der Begriff Faser auch einen einzelnen Draht oder mehrere Drähte. Ferner können die Fasern auch einzeln oder gemeinsam beschichtet sein und/oder das Faserbündel kann verseilt oder verdrillt sein.The term "fiber" includes both a single or several elongated and flexible reinforcement elements for concrete components, for example a single filament - also called single filament or monofilament - or a bundle of filaments - also called multifilament, multifilament yarn, yarn or - in the case of stretched filaments - roving. In particular, the term fiber also includes a single wire or multiple wires. Furthermore, the fibers can also be used individually or coated together and/or the fiber bundle may be stranded or twisted.

Die Netto-Querschnittfläche der Fasern (d.h. ohne Harzimprägnierung) ist kleiner als ca. 5 mm2 und liegt insbesondere in einem Bereich von ca. 0.1 mm2 bis ca. 1 mm2. In einem Beispiel ist das elastische Zugdehnungsvermögen der Fasern grösser als ca. 1%. In einem weiteren Beispiel ist die Zugfestigkeit der Fasern bezogen auf deren Netto-Querschnittfläche grösser als ca. 1000 N/mm2, insbesondere grösser als ca. 1800 N/mm2.The net cross-sectional area of the fibers (ie, without resin impregnation) is less than about 5 mm 2 , and specifically ranges from about 0.1 mm 2 to about 1 mm 2 . In one example, the tensile elongation of the fibers is greater than about 1%. In a further example, the tensile strength of the fibers, based on their net cross-sectional area, is greater than approximately 1000 N/mm 2 , in particular greater than approximately 1800 N/mm 2 .

Bei der Herstellung eines vorgespannten Betonbauteils werden beispielweise zuerst die erfindungsgemässen Armierungselemente in einer Gussform verlegt und dann die Fasern mittels Auseinanderziehen der entsprechenden Halteelemente gespannt. Anschliessend wird das Betonbauteil gegossen, wobei die im Innern der Gussform liegenden Teile der Fasern einbetoniert werden. Nach dem Erhärten des Betons wird die zuvor an die Fasern angelegte Spannung gelöst, wobei die Spannung bei den einbetonierten Teilen der Fasern erhalten bleibt, da die einbetonierten Faserteile kraftschlüssig mit dem Beton verbunden sind und praktisch keine Relativverschiebung zwischen diesen Faserteilen und dem Beton stattfindet. Dabei basiert die kraftschlüssige Verbindung - unter anderem - auf dem Verkeilen der Fasern in ihrer Betonummantelung (Hoyer-Effekt). Die aus dem Betonbauteil ragenden spannungslosen Teile der Fasern können abgetrennt und zusammen mit den Halteelementen entfernt werden. Bei dem vorgespannten Betonbauteil wird demnach die Vorspannung durch die Spannung der einbetonierten Fasern erzeugt.When producing a prestressed concrete component, for example, the reinforcement elements according to the invention are first laid in a mold and then the fibers are stretched by pulling the corresponding holding elements apart. The concrete component is then cast, with the parts of the fibers lying inside the mold being embedded in concrete. After the concrete has hardened, the tension previously applied to the fibers is released, with the tension in the cast-in parts of the fibers being maintained, since the cast-in fiber parts are frictionally connected to the concrete and there is practically no relative displacement between these fiber parts and the concrete. The non-positive connection is based - among other things - on the wedging of the fibers in their concrete coating (Hoyer effect). The projecting from the concrete component stress-free parts of the fibers can be separated and together with the Holding elements are removed. In the case of the prestressed concrete component, the prestress is therefore generated by the tension of the fibers embedded in concrete.

Die Verbindung von Fasern und Beton kann mit verschiedensten Mitteln verstärkt werden, zum Beispiel mit einer erhöhten Oberflächenrauigkeit der Fasern. In einem Beispiel ist diese Verbindung derart ausgebildet, dass über die mechanische Schubverbindung nach 200 mm, insbesondere nach 100 mm, weitere nach insbesondere 70 mm, Einbindelänge (d.h. einbetonierte Länge der Fasern) die volle Dimensionierungszugkraft übertragen werden kann.The connection between fibers and concrete can be strengthened by a variety of means, for example by increasing the surface roughness of the fibres. In one example, this connection is designed in such a way that the full dimensioning tensile force can be transmitted via the mechanical shear connection after 200 mm, in particular after 100 mm, further after in particular 70 mm, binding length (i.e. length of the fibers embedded in concrete).

Die Fasern des erfindungsgemässen Armierungselementes können aus einer Vielzahl von verschiedenen Materialien hergestellt sein, insbesondere aus nicht-korrosivem Material und weiter insbesondere aus alkalibeständigem Material. Zum Beispiel ist dieses Material ein Polymer wie Carbon aber auch Glas, Stahl oder Naturfaser.The fibers of the reinforcing element according to the invention can be made from a large number of different materials, in particular from non-corrosive material and more particularly from alkali-resistant material. For example, this material is a polymer like carbon, but also glass, steel or natural fibers.

Beispielsweise sind die Fasern aus Carbon hergestellt. Carbon-Fasern haben den Vorteil, dass sie sehr beständig sind, das heisst selbst über Jahrzehnte sind keine wesentlichen Einbussen der Festigkeit feststellbar. Zudem sind Carbon-Fasern korrosionsbeständig, insbesondere korrodieren sie nicht an der Oberfläche der Betonbauteile, und sind praktisch unsichtbar. Somit können die Carbon-Fasern an Oberfläche der Betonbauteile oftmals belassen werden. Sie können aber auch mit Leichtigkeit entfernt werden, beispielsweise durch Abbrechen oder einfaches Abstreifen.For example, the fibers are made of carbon. Carbon fibers have the advantage that they are very durable, which means that there is no noticeable loss of strength even over decades. In addition, carbon fibers are corrosion-resistant, in particular they do not corrode on the surface of the concrete components, and are practically invisible. This means that the carbon fibers can often be left on the surface of the concrete components. However, they can also be removed with ease, for example by breaking them off or simply stripping them off.

Die Befestigung der Fasern "in" den Halteelementen umfasst verschiedenste Befestigungsmöglichen, insbesondere auch die Befestigung der Fasern "an" oder "auf" den Halteelementen, zum Beispiel ein Auflaminieren der Fasern ohne weitere Abdeckung.Fastening the fibers “in” the holding elements includes a wide variety of fastening options, in particular also fastening the fibers “to” or “on” the holding elements, for example laminating the fibers without further covering.

Überraschenderweise wird mit der erfindungsgemässen Lösung sowohl eine hohe Vorspannung der Betonbauteile als auch eine effiziente, zuverlässige und einfache Handhabung der Armierungselemente erreicht. Dadurch können die Betonbauteile besonders kostengünstig hergestellt werden. Insbesondere wird Folgendes erreicht:
Durch das weitgehend geradlinige Einmünden der Fasern bezüglich ihrer Längsrichtung, also der gleichmässigen Weiterführung der Fasern, in die Halteelemente, werden Querspannungen bei den Fasern weitgehend vermieden. Solche Querspannungen führen oftmals zu Faserbrüchen und treten zum Beispiel bei Knickstellen, Stauungen oder engen Kurvenradien auf, also typischerweise bei Umlenkstegen, Umlenkrollen oder Führungsbolzen. Dank der erfindungsgemässen Befestigung der Fasern mit der guten Einleitung der wirkendenden Kräfte in das Halteelement kann ohne ein Erhöhen der Bruchgefahr eine hohe Zugkraft und damit eine hohe Vorspannung der Betonbauteile erreicht werden. Dies ist besonders vorteilhaft bei Carbon-Fasern, insbesondere bei imprägnierten Carbon-Fasern, da diese bezüglich Querspannungen besonders bruchgefährdet sind.
Surprisingly, with the solution according to the invention, both a high prestressing of the concrete components and an efficient, reliable and simple handling of the reinforcing elements are achieved. As a result, the concrete components can be produced particularly inexpensively. In particular, the following is achieved:
Due to the fact that the fibers flow in a largely straight line with respect to their longitudinal direction, ie the fibers continue to flow evenly into the holding elements, transverse stresses in the fibers are largely avoided. Such transverse stresses often lead to fiber breaks and occur, for example, at kinks, jams or tight curve radii, i.e. typically with deflection webs, deflection rollers or guide bolts. Thanks to the fastening of the fibers according to the invention with the good introduction of the forces acting into the holding element, a high tensile force and thus a high prestressing of the concrete components can be achieved without increasing the risk of breakage. This is particularly advantageous in the case of carbon fibers, in particular in the case of impregnated carbon fibers, since these are particularly at risk of breaking with regard to transverse stresses.

In einem Beispiel können die Fasern, insbesondere die Carbon-Fasern, mit einer Spannung von ca. 50% bis ca. 95% der Bruchspannung der Fasern gespannt werden. In einem weiteren Beispiel können die Fasern mit mindestens ca. 80%, insbesondere mindestens ca. 90% der Bruchspannung der Fasern gespannt werden. Dadurch wird eine kostengünstige Herstellung von sehr stabilen, grossen und dünnen Betonbauteilen erreicht. Eine hohe Vorspannung des Betonbauteils ist bei Carbon-Fasern besonders vorteilhaft, da Carbon-Fasern ein anderes Ausdehnungsverhalten als Beton aufweisen.In one example, the fibers, particularly the carbon fibers, can be stressed at a stress of from about 50% to about 95% of the breaking stress of the fibers. In another example, the fibers can be stressed with at least about 80%, more preferably at least about 90%, of the breaking stress of the fibers. As a result, a cost-effective production of very stable, large and thin concrete components is achieved. A high prestressing of the concrete component is particularly advantageous with carbon fibers, since carbon fibers have a different expansion behavior than concrete.

Dank der erfindungsgemässen Armierungselemente können grosse und dünne Betonbauteile herstellt werden, welche sich bei Belastung praktisch nicht durchbiegen. In einem Beispiel liegt die Dicke des herzustellenden Betonbauteils im Bereich von ca. 10 mm bis 60 mm, insbesondere ca. 15 mm bis 40 mm. In einem anderen Beispiel beträgt die flächenmässige Ausdehnung des Betonbauteils mindestens ca. 10 m x 5 m, insbesondere mindestens ca. 10 m x 10 m, weiter insbesondere mindestens ca. 15 m x 15 m. In einem weiteren Beispiel beträgt die Länge des Betonbauteils mindestens ca. 6 m, weiter insbesondere mindestens ca. 12 m.Thanks to the reinforcement elements according to the invention, large and thin concrete components can be produced which practically do not sag under load. In one example, the thickness of the concrete component to be produced is in the range from approx. 10 mm to 60 mm, in particular approx. 15 mm to 40 mm. In another example, the surface area of the concrete component is at least approx. 10 m x 5 m, in particular at least approx. 10 m x 10 m, more particularly at least approx. 15 m x 15 m. In another example, the length of the concrete component is at least approx m, further in particular at least approx. 12 m.

Des Weiteren können die Armierungselemente an einem ersten Ort als Zwischenprodukte hergestellt, gegebenenfalls in entsprechende Transportbehälter verpackt, und an einen anderen Ort zur Herstellung der Betonteile transportiert werden. An dem anderen Ort, zum Beispiel in einem Betonfertigungswerk, stehen dann die angelieferten Armierungselemente direkt als vorgefertigte Bauteile zur Verfügung.Furthermore, the reinforcing elements can be produced as intermediate products at a first location, possibly packed in appropriate transport containers and transported to another location for the production of the concrete parts become. At the other location, for example in a concrete production plant, the reinforcement elements that have been delivered are then directly available as prefabricated components.

Ferner wird durch die erfindungsgemässe Verbindung der Fasern mit den Halteelementen eine robuste und platzsparende und damit eine gut transportierbare Einheit erreicht.Furthermore, the connection of the fibers to the holding elements according to the invention results in a robust and space-saving unit, which is therefore easy to transport.

In einer Ausgestaltung der vorliegenden Erfindung sind die Fasern individuelle Fasern und/oder umfassen ein oder mehrere Rovings, insbesondere Carbon-Rovings. Dadurch wird die Herstellung von besonders stabilen und leichten Betonbauteilen erreicht. Unter individuellen Fasern sind einzelne, nicht unmittelbar zusammenhängende Fasern zu verstehen. Im Gegensatz dazu ist eine fortlaufende Faseranordnung zu sehen, bei der die hin- und herlaufenden Teile der Faseranordnung über Schlaufen zusammenhängen.In one embodiment of the present invention, the fibers are individual fibers and/or comprise one or more rovings, in particular carbon rovings. As a result, the production of particularly stable and light concrete components is achieved. Individual fibers are to be understood as meaning individual fibers that are not directly connected. In contrast, a continuous fiber assembly is seen where the reciprocating portions of the fiber assembly are connected via loops.

Unter dem Begriff "Roving" ist ein Bündel von gestreckten Filamenten zu verstehen. Ein solcher Roving, auch als gestrecktes Garn bezeichnet, umfasst typischerweise einige tausend Filamente, insbesondere ca. 2'000 bis ca. 16'000 Filamente. Durch den Roving werden die auf die Fasern wirkenden Zugkräfte weitgehend gleichmässig auf eine Vielzahl von Filamenten verteilt, so dass lokale Spitzenbelastungen weitgehend vermieden werden.The term "roving" means a bundle of stretched filaments. Such a roving, also referred to as a stretched yarn, typically comprises a few thousand filaments, in particular approximately 2,000 to approximately 16,000 filaments. Due to the roving, the tensile forces acting on the fibers are distributed largely evenly over a large number of filaments, so that local peak loads are largely avoided.

Ferner weisen die Filamente des Rovings einen kleinen Faserdurchmesser auf, so dass ein entsprechend grosses Oberflächen-Durchmesser-Verhältnis und damit ein guter Verbund zwischen dem Beton und den Filamenten erreicht wird. Ferner werden eine gute Schubübertragung und eine gute Verteilung der Zugbelastung auf den Beton erreicht.Furthermore, the filaments of the roving have a small fiber diameter, so that a correspondingly large surface-to-diameter ratio and thus a good bond between the concrete and the filaments is achieved. Furthermore, a good shear transmission and a good distribution of the tensile load on the concrete are achieved.

In einem Beispiel sind die Fasern aus einer Anordnung von mehreren Rovings hergestellt, welche 2 bis 10, insbesondere 2 bis 5, einzelne Rovings umfasst. Somit weisen diese Fasern ca. 4'000 bis ca. 160`0000 Filamente auf.In one example, the fibers are produced from an arrangement of several rovings, which comprises 2 to 10, in particular 2 to 5, individual rovings. Thus, these fibers have about 4,000 to about 160,000 filaments.

In einer Ausgestaltung der vorliegenden Erfindung weisen die Halteelemente Führungselemente für die Fasern auf, insbesondere eine Klemmvorrichtung und/oder einen Träger zum Laminieren der Fasern im Endbereich, insbesondere eine faserverstärke Polymer-Matrix, weiter insbesondere eine Polyester-Matrix. Durch diese Führungselemente wird eine gute Kraftübertragung erreicht. Ausserdem wird durch das Laminieren eine besonders platzsparende, und robuste Einheit erreicht. Die Halteelemente können auch als Doppelklebeband ausgebildet sein.In one embodiment of the present invention, the holding elements have guide elements for the fibers, in particular a clamping device and/or a carrier for laminating the fibers in the end region, in particular a fiber-reinforced polymer matrix, more particularly a polyester matrix. Good power transmission is achieved by these guide elements. In addition, a particularly space-saving and robust unit is achieved through the lamination. The holding elements can also be designed as double-sided adhesive tape.

Gemäss der vorliegenden Erfindung bilden die Fasern in den Halteelementen eine im Wesentlichen ebene Lage, und sind in einer Ausgestaltung insbesondere weitgehend parallel und/oder weitgehend gleichmässig beabstandet zueinander angeordnet.According to the present invention, the fibers in the holding elements form an essentially planar layer and, in one embodiment, are arranged in particular largely parallel and/or largely evenly spaced from one another.

Dadurch weist das Armierungselement die Form einer Bahn oder einer Harfe auf. Diese Form ist leicht zu stapeln oder aufzurollen, gegebenenfalls unter Verwendung von Zwischenblättern zum Getrennthalten der jeweiligen Fasern. Dadurch sind Armierungselemente gut zu transportieren.As a result, the reinforcement element has the shape of a track or a harp. This form is easily stacked or rolled up, optionally using interleaving sheets to keep the respective fibers separate. This means that reinforcement elements are easy to transport.

Ein solches harfenförmiges Armierungselement hat gegenüber einem Gitter (Grid) den Vorteil, dass keine Verknotungen auftreten und somit sehr hohe Zugbelastung erreicht werden können. Ausserdem entfallen komplizierte Herstellschritte wie Weben oder Flechten und es besteht hohe Flexibilität bezüglich der Breite der Bahnen, da keine Maschinen zur Herstellung eines Gitters benötigt werden. Daher lassen sich sogenannte "Endlos Produkte" sowohl in Länge als auch in der Breite auf einfache Weise herstellen.Such a harp-shaped reinforcement element has the advantage over a lattice (grid) that no knotting occurs and thus very high tensile loads can be achieved. In addition, there are no complicated production steps such as weaving or braiding and there is a high degree of flexibility with regard to the width of the webs, since no machines are required to produce a grid. Therefore, so-called "endless products" can be produced in a simple manner, both in terms of length and width.

In einer Ausgestaltung der vorliegenden Erfindung weist das Armierungselement zusätzliche Abstandshalter auf, welche die Fasern untereinander verbinden, beispielsweise in Form von Querfäden und/oder einem Gewebe, so dass auch bei einem nicht oder nur teilweise gespannten Armierungselement ein Abstand zwischen den einzelnen Fasern vorhanden ist. Dadurch wird ein Verheddern der ungespannten Fasern weitgehend oder vollständig verhindert. Diese Abstandshalter dienen somit als Montagehilfe und/oder Transporthilfe. Im einbetonierten Zustand übernehmen die Abstandshalter praktisch keine Zugbelastungen.In one embodiment of the present invention, the reinforcement element has additional spacers which connect the fibers to one another, for example in the form of transverse threads and/or a fabric, so that there is a distance between the individual fibers even when the reinforcement element is not tensioned or is only partially tensioned. This largely or completely prevents the slack fibers from becoming tangled. These spacers thus serve as an assembly aid and/or transport aid. When concreted in, the spacers absorb practically no tensile loads.

In einer Ausgestaltung der vorliegenden Erfindung beträgt der Armierungsabstand ca. 5 mm bis ca. 40 mm, insbesondere ca. 8 mm bis ca. 25 mm, und/oder sind in den Halteelementen jeweils mindestens 10, insbesondere mindestens 40, Fasern befestigt. Beispielsweise ist der Armierungsabstand, das heisst der Abstand zwischen zwei benachbarten Fasern, kleiner oder gleich der doppelten Dicke des Betonbauteils.In one embodiment of the present invention, the distance between the reinforcements is about 5 mm to about 40 mm, in particular about 8 mm to about 25 mm, and/or at least 10, in particular at least 40 fibers are fixed in each of the holding elements. For example, the reinforcement distance, ie the distance between two adjacent fibers, is less than or equal to twice the thickness of the concrete component.

In einer Ausgestaltung der vorliegenden Erfindung sind die Fasern mit einem alkalibeständigen Polymer, insbesondere mit einem Harz, weiter insbesondere mit einem Vinylesterharz, imprägniert. Dadurch wird eine höhere Zugfestigkeit der Fasern erreicht.In one embodiment of the present invention, the fibers are impregnated with an alkali-resistant polymer, in particular with a resin, more particularly with a vinyl ester resin. This increases the tensile strength of the fibers.

Gemäss der vorliegenden Erfindung sind die Fasern mit einem körnigen Material, insbesondere mit Sand, beschichtet. Dadurch wird eine Verbesserung des Verbundes zwischen Fasern und Beton und damit ein höhere Beständigkeit der Vorspannung im Betonbauteil erreicht.According to the present invention, the fibers are coated with a granular material, in particular with sand. This improves the bond between the fibers and the concrete and thus increases the resistance of the prestressing in the concrete component.

Gemäss der vorliegenden Erfindung sind die Fasern derart an den Halteelementen befestigt, dass sich die Fasern im gespannten Zustand weitgehend geradlinig in den Halteelementen fortsetzt, insbesondere über eine Distanz von mindestens ca. 5 mm, weiter insbesondere mindestens ca. 10 mm. Dadurch wird eine gute Kraftübertragung zwischen den Fasern und den Halteelementen erreicht.According to the present invention, the fibers are fastened to the holding elements in such a way that, in the tensioned state, the fibers continue largely in a straight line in the holding elements, in particular over a distance of at least approx. 5 mm, more particularly at least approx. 10 mm. This achieves good power transmission between the fibers and the holding elements.

In einer Ausgestaltung der vorliegenden Erfindung weisen die Halteelemente ein, insbesondere quer zur Richtung der Fasern verlaufendes, Mittel zur Kraftverteilung auf, insbesondere eine Krümmung und/oder eine Profilierung. Dadurch wird eine gute Verteilung der wirkendenden Kräfte und damit eine hohe Zugspannung und/oder eine geringe Belastung der Fasern während des Spannens erreicht. Ausserdem wird dadurch ein Verkürzen der Einbindlänge erreicht, das heisst ein Verkürzen der benötigten Länge zur zuverlässigen Befestigung der Fasern an den Halteelementen.In one embodiment of the present invention, the holding elements have means for force distribution, in particular running transversely to the direction of the fibers, in particular a curvature and/or a profile. This achieves good distribution of the acting forces and thus high tensile stress and/or low stress on the fibers during tensioning. In addition, this shortens the binding length, that is, shortens the length required for reliable attachment of the fibers to the holding elements.

In einem Beispiel ist die Krümmung des Halteelements derart ausgebildet, dass die gekrümmt verlaufenden Fasern jeweils weitgehend parallel angeordnete, insbesondere senkrecht zur Lage der Fasern stehende, Ebenen definieren. Bei einer Anordnung der Fasern in einer horizontalen Lage sind beispielsweise deren Faserenden vertikal nach unten oder nach oben gekrümmt.In one example, the curvature of the holding element is designed in such a way that the curved fibers each define planes that are arranged largely parallel, in particular perpendicular to the position of the fibers. If the fibers are arranged in a horizontal position, their fiber ends are curved vertically downwards or upwards, for example.

Insbesondere wird durch die Profilierung eine gute kraftschlüssige Verbindung zwischen dem Halteelement und der Spannvorrichtung erreicht. Somit kann der Druck auf das Halteelement und/oder auf die Fasern reduziert werden. In einem Beispiel ist die Profilierung auf mindestens einer jener Flächen des Halteelements angeordnet, welche zur Befestigung des Halteelements in einer Spannvorrichtung vorgesehen ist. In einem anderen Beispiel ist die Profilierung wellenförmig oder zackenförmig, insbesondere sägezahnförmig.In particular, the profiling achieves a good non-positive connection between the holding element and the clamping device. The pressure on the holding element and/or on the fibers can thus be reduced. In one example, the profiling is arranged on at least one of those surfaces of the holding element which is provided for fastening the holding element in a clamping device. In another example, the Profiling wavy or jagged, especially saw-toothed.

In einer Ausgestaltung des erfindungsgemässen Armierungselements ist dessen Breite grösser als 0.4 m, insbesondere grösser als 0.8 m, und/oder dessen Länge grösser als 4 m, insbesondere grösser als 12 m. Dadurch wird eine effiziente Herstellung von grossen Betonbauteilen erreicht. Beispielsweise kann eine 20 m x 20 m grosse Betonplatte in einem Arbeitszyklus hergestellt werden.In one embodiment of the reinforcing element according to the invention, its width is greater than 0.4 m, in particular greater than 0.8 m, and/or its length is greater than 4 m, in particular greater than 12 m. Efficient production of large concrete components is thereby achieved. For example, a 20 m x 20 m concrete slab can be produced in one work cycle.

Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Armierungselements für vorgespannte Betonbauteile, wobei das Verfahren die Schritte umfasst:

  • Bereitstellen von gespannten Fasern durch gemeinsames Ausziehen einer Vielzahl von untereinander beabstandeten Fasern, wobei die Fasern (12) eine Netto-Querschnittsfläche von kleiner 5 mm2 aufweisen und mit einem körnigen Material, insbesondere mit Sand, beschichtet sind; und
  • Befestigen eines Halteelements an den gespannten Fasern, insbesondere durch Klemmen und/oder Laminieren, um die Fasern in ihrer gegenseitigen Anordnung, insbesondere bezüglich Abstand und/oder Ausrichtung, zu fixieren, wobei die Fasern (12) in dem Halteelement (14) eine im Wesentlichen ebene Lage bilden.
Furthermore, the present invention relates to a method for producing a reinforcing element for prestressed concrete components, the method comprising the steps:
  • providing tensioned fibers by drawing a plurality of spaced fibers together, said fibers (12) having a net cross-sectional area of less than 5 mm 2 and being coated with a granular material, particularly sand; and
  • Fastening a holding element to the taut fibers, in particular by clamping and/or laminating, in order to fix the fibers in their mutual arrangement, in particular with regard to distance and/or orientation, the fibers (12) in the holding element (14) having a substantially form an even layer.

Dadurch wird eine weitgehend parallele Verarbeitung der Fasern und damit eine sehr effiziente Herstellung des Armierungselements und eine vorteilhafte Anordnung der Fasern erreicht, insbesondere auch in Hinblick auf die weitere Verwendung des Armierungselements, nämlich für das Spannen der Fasern vor und während des Einbetonierens.This results in a largely parallel processing of the fibers and thus a very efficient production of the reinforcement element and an advantageous arrangement of the fibers, in particular with regard to the further use of the reinforcement element, namely for tensioning the fibers before and during concreting.

In einem Beispiel wird das Halteelement nach dem Verbinden mit den Fasern durchtrennt, insbesondere mittig, so dass die beiden erzeugten Teilstücke wiederum zwei Halteelemente für zwei aufeinanderfolgend hergestellte Armierungselemente bilden. Dabei bildet das erste Teilstück das Ende eines ersten Armierungselements und das zweite Teilstück den Anfang des nachfolgenden Armierungselements.In one example, the holding element is severed after being connected to the fibers, in particular in the middle, so that the two sections produced in turn form two holding elements for two reinforcing elements produced in succession. The first section forms the end of a first reinforcement element and the second section forms the beginning of the subsequent reinforcement element.

In einem anderen Beispiel ist das Halteelement als Doppel-Halteelement ausgebildet, wobei sich zwischen den beiden Teilen des Doppel-Halteelements ein offener Zwischenbereich befindet, in welchem die Fasern freiliegen. Das zuvor genannte Durchtrennen des Halteelements kann durch ein einfaches Trennen der Fasern in diesem Zwischenbereich erfolgen, beispielsweise durch Brechen. Dadurch wird eine effiziente Vereinzelung bei der Herstellung, insbesondere bei der Serienherstellung, der Armierungselemente erreicht.In another example, the holding element is designed as a double holding element, with an open intermediate area between the two parts of the double holding element in which the fibers are exposed. The previously mentioned severing of the holding element can be done by simply severing the fibers in this intermediate area, for example by breaking. As a result, efficient separation is achieved during production, in particular in series production, of the reinforcement elements.

In einer Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des Armierungselements erfolgt das Befestigen des Halteelements während des gemeinsamen Ausziehens der Fasern, insbesondere durch Bewegen des Halteelements im Gleichlauf zur Bewegung der Fasern. Dadurch wird eine sehr effiziente Herstellung erreicht, insbesondere bei der Serienherstellung der Armierungselemente.In one embodiment of the method according to the invention for producing the reinforcement element, the retaining element is fastened while the fibers are being pulled out together, in particular by moving the retaining element in synchronism with the movement of the fibers. As a result, a very efficient production is achieved, in particular in the series production of the reinforcement elements.

In einer Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des Armierungselements erfolgt das Befestigen des Halteelements durch Befestigen eines Oberteils und eines Unterteils des Halteelements von entgegengesetzten Seiten der Fasern, insbesondere durch das Zusammenfügen von Glasfasermatten.In one embodiment of the method according to the invention for producing the reinforcement element, the retaining element is fastened by fastening an upper part and a lower part of the retaining element from opposite sides of the fibers, in particular by assembling glass fiber mats.

In einer weiteren Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des Armierungselements erfolgt das Anordnen der Fasern durch Auflegen der Fasern auf einen ersten Teils des Halteelements und das Fixieren der Fasern durch Hinzufügen eines zweiten Teils des Halteelements und durch Zusammendrücken dieser beiden Teile. Dadurch werden die Fasern von den Halteelementen fest umschlossen, so dass eine besonders kräftige und robuste Befestigung erreicht wird.In a further embodiment of the method according to the invention for producing the reinforcement element, the fibers are arranged by placing the fibers on a first part of the holding element and fixing the fibers by adding a second part of the holding element and by pressing these two parts together. As a result, the fibers are firmly enclosed by the holding elements, so that a particularly strong and robust attachment is achieved.

Ferner betrifft die vorliegende Erfindung ein vorgespanntes Betonbauteil, insbesondere eine Betonplatte, das unter Verwendung mindestens eines erfindungsgemässen Armierungselements hergestellt wurde, wobei die Vorspannung des Betonbauteils mindestens 50%, insbesondere mindestens 80%, weiter insbesondere mindestens 90%, der Bruchspannung der Fasern beträgt.Furthermore, the present invention relates to a prestressed concrete component, in particular a concrete slab, which was produced using at least one reinforcing element according to the invention, the prestressing of the concrete component being at least 50%, in particular at least 80%, more in particular at least 90%, of the breaking stress of the fibers.

Weiter betrifft die vorliegende Erfindung ein Betonbauteil, insbesondere eine Betonplatte, umfassend eine Vielzahl von Fasern, die in ihrer Längsrichtung gespannt sind. Die Fasern weisen eine Netto-Querschnittsfläche von kleiner 5 mm2 auf, sind mit einem körnigen Material, insbesondere mit Sand, beschichtet und bilden mindestens eine im Wesentlichen ebene Lage, wobei die Vorspannung des Betonbauteils mindestens 50%, insbesondere mindestens 80%, weiter insbesondere mindestens 90%, der Bruchspannung der Fasern beträgt.The present invention further relates to a concrete component, in particular a concrete slab, comprising a large number of fibers which are tensioned in their longitudinal direction. The Fibers have a net cross-sectional area of less than 5 mm 2 , are coated with a granular material, in particular sand, and form at least one essentially planar layer, with the prestressing of the concrete component being at least 50%, in particular at least 80%, more particularly at least 90%, the breaking stress of the fibers.

In einem Beispiel wird dieses Betonbauteil unter Verwendung einer Vielzahl von, insbesondere gruppenweise angeordneten, erfindungsgemässen Armierungselementen hergestellt. Durch die gruppenweise Anordnung wird eine verbesserte Anpassung an die Gegebenheiten des Betonbauteils erreicht. Eine Gruppierung kann durch einen oder mehrere horizontale und/oder vertikale Abstände oder durch eine winklige, insbesondere rechtwinklige, Anordnung erreicht werden.In one example, this concrete component is produced using a large number of reinforcing elements according to the invention, in particular arranged in groups. Due to the arrangement in groups, an improved adaptation to the conditions of the concrete component is achieved. A grouping can be achieved by one or more horizontal and/or vertical distances or by an angular, in particular right-angled, arrangement.

In einem Beispiel erfolgt das Vorspannen der Fasern durch abschnittsweises Spannen, insbesondere individuell für jedes der verwendeten Armierungselemente. Dadurch kann die Vorspannung flexibel auf spezifische Anforderungen eingestellt werden.In one example, the fibers are pretensioned by tensioning in sections, in particular individually for each of the reinforcement elements used. As a result, the preload can be flexibly adjusted to specific requirements.

In einem Beispiel ist der Armierungsabstand, d.h. der Abstand zwischen zwei benachbarten Fasern, kleiner oder gleich der doppelten Dicke des Betonbauteils, insbesondere kleiner oder gleich der doppelten Plattendicke.In one example, the reinforcement distance, ie the distance between two adjacent fibers, is less than or equal to twice the thickness of the concrete component, in particular less than or equal to twice the plate thickness.

Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines vorgespannten Betonbauteils, wobei das Verfahren die Schritte umfasst:

  • Bereitstellen mindestens eines erfindungsgemässen Armierungselements;
  • Spannen der Fasern des Armierungselements durch Auseinanderziehen der zugehörigen Halteelemente; und
  • Betonieren des Betonbauteils unter zumindest teilweisem Einbetonieren der gespannten Fasern.
Furthermore, the present invention relates to a method for producing a prestressed concrete component, the method comprising the steps:
  • providing at least one reinforcement element according to the invention;
  • Tensioning of the fibers of the reinforcement element by pulling apart the associated holding elements; and
  • Concreting of the concrete component with at least partial concreting of the tensioned fibers.

Dadurch werden sehr effiziente und leicht zu handhabende Vorbereitungsarbeiten und damit eine kostengünstige Herstellung des Betonbauteils erreicht. Insbesondere entfallen aufwändige und komplizierte Verlege-Arbeiten einzelner Fasern, insbesondere filigrane Flechtarbeiten. Somit ist das erfindungsgemässe Verfahren sehr gut geeignet für die Herstellprozesse in einem Fertigungswerk für Betonbauteile.This results in very efficient and easy-to-handle preparatory work and therefore a cost-effective one Production of the concrete component achieved. In particular, there is no need for time-consuming and complicated laying work for individual fibers, in particular filigree braiding work. The method according to the invention is therefore very well suited for the production processes in a production plant for concrete components.

Das erfindungsgemässe Verfahren eignet sich besonders für die Herstellung von grossen vorgespannten Betonbauteilen, beispielsweise für Betonplatten von ca. 20 m Breite und ca. 20 m Länge. In einem darauf folgenden Arbeitsgang können diese grossen vorgespannten Betonbauteile dann in kleinere vorgespannte Betonbauteile unterteilt werden, da die Vorspannung der Betonbauteile beim Teilen stets erhalten bleibt. Die kleineren Betonbauteile können dann individuell zugeschnitten werden, beispielsweise durch Sägen, CNC-Fräsen oder Wasserstrahltrennen, um beispielsweise speziell geformte Bodenplatten, Treppentritte oder Platten für Tischtennistische herzustellen. Eine solche Unterteilung kann - wie weiter unten genauer beschrieben - durch Verwendung von Trennelementen, insbesondere eines Schaums, erreicht werden.The method according to the invention is particularly suitable for the production of large prestressed concrete components, for example for concrete slabs approximately 20 m wide and approximately 20 m long. In a subsequent work step, these large prestressed concrete components can then be subdivided into smaller prestressed concrete components, since the prestressing of the concrete components is always maintained during division. The smaller concrete components can then be individually cut to size, for example by sawing, CNC milling or water jet cutting, in order to produce, for example, specially shaped floor panels, stair treads or panels for table tennis tables. As described in more detail below, such a subdivision can be achieved by using separating elements, in particular a foam.

In einer weiteren Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des vorgespannten Betonbauteils erfolgt das Bereitstellen des mindestens einen Armierungselements durch Anordnen mehrerer der Armierungselemente in einer Lage, insbesondere durch weitgehend paralleles und/oder benachbartes Nebeneinanderlegen. Dadurch wird ein effizientes Einrichten von grossen Flächen erreicht.In a further embodiment of the method according to the invention for producing the prestressed concrete component, the at least one reinforcement element is provided by arranging several of the reinforcement elements in one layer, in particular by largely parallel and/or adjacent ones To lay next to each other. This means that large areas can be set up efficiently.

In einer weiteren Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des vorgespannten Betonbauteils erfolgt das Bereitstellen des mindestens einen Armierungselements durch Anordnen der Armierungselemente in mindestens zwei Lagen, wobei die Ausrichtung der Armierungselemente in benachbarten Lagen in einem Winkel, insbesondere weitgehend rechtwinklig, erfolgt. Dadurch wird ein effizientes und flexibles Einrichten einer komplexen Armierung erreicht. Beispielsweise erfolgt das Bereitstellen des mindestens einen Armierungselements durch ein Übereinanderschichten mehrerer der Armierungselemente.In a further embodiment of the method according to the invention for producing the prestressed concrete component, the at least one reinforcement element is provided by arranging the reinforcement elements in at least two layers, with the reinforcement elements in adjacent layers being aligned at an angle, in particular largely at right angles. This achieves an efficient and flexible set-up of a complex reinforcement. For example, the at least one reinforcement element is provided by stacking several of the reinforcement elements on top of one another.

In einer weiteren Ausgestaltung des erfindungsgemässen Verfahrens zur Herstellung des vorgespannten Betonbauteils umfasst dieses zusätzlich den Schritt des Einbringens eines Trennelements, insbesondere eines Schaums, vor dem Betonieren des Betonbauteils. Dadurch wird eine wirkungsvolle Unterteilung des Betonbauteils erreicht. Insbesondere bietet ein Schaum eine sehr flexible, gut anwendbare und kostengünstige Unterteilung. Als weitere Funktion bietet der Schaum ein Hilfsmittel zur Positionierung der Fasern und/oder eine Fixierung der Fasern während des Betonierens. Als Trennelement kann auch ein festes Material verwendet werden, zum Beispiel Kautschuk oder Styropor.In a further embodiment of the method according to the invention for producing the prestressed concrete component, this additionally includes the step of introducing a separating element, in particular a foam, before the concrete component is cast in concrete. This achieves an effective subdivision of the concrete component. In particular, a foam offers a very flexible, easy to use and inexpensive partition. As a further function, the foam offers an aid for positioning the fibers and/or fixing the fibers during concreting. A solid material can also be used as a separating element, for example rubber or styrofoam.

In einer weiteren Ausgestaltung des vorangehenden Verfahrens zur Herstellung des vorgespannten Betonbauteils umfasst dieses zusätzlich den Schritt des Trennens des Betonbauteils nach dem Betonieren, insbesondere durch Brechen und/oder Zersägen. Da der Schaum keinen nennenswerten Beitrag zur Festigkeit leistet, werden die einzelnen Unterteilungen des Betonbauteils praktisch nur durch die Fasern zusammen gehalten. Somit können die Betonbauteile leicht, insbesondere durch einfaches Brechen, getrennt werden. Dadurch wird auf bequeme und sehr effiziente Weise eine Aufteilung in gut handhabbare Teile erreicht. Zum Beispiel können diese Teile von einem Fertigungswerk für Betonbauteile an weitere Werkplätze verteilt und dort in die endgültige Form gebracht werden.In a further embodiment of the above method for producing the prestressed concrete component, this additionally includes the step of separating the concrete component after concreting, in particular by breaking and/or sawing. Since the foam does not make a significant contribution to the strength, the individual subdivisions of the concrete component are practically only held together by the fibers. The concrete components can thus be easily separated, in particular by simply breaking them. This achieves a breakdown into manageable parts in a convenient and very efficient way. For example, these parts can be distributed from a production plant for concrete components to other work stations and brought into the final form there.

Es wird ausdrücklich darauf hingewiesen, dass jede Kombination der zuvor genannten Beispiele und Ausführungsformen oder Kombinationen von Kombinationen Gegenstand einer weiteren Kombination sein können. Es werden nur jene Kombinationen ausgeschlossen, die zu einem Widerspruch führen würden oder ausserhalb des Schutzumfangs der Ansprüche liegen.It is expressly pointed out that any combination of the aforementioned examples and embodiments or combinations of combinations can be the subject of a further combination. Only those combinations which would result in a contradiction or are outside the scope of the claims are excluded.

Weitere Ausführungsbeispiele der vorliegenden Erfindung werden nachstehend anhand von Figuren näher erläutert. Es zeigen:

Fig. 1
eine vereinfachte schematische Darstellung eines Ausführungsbeispiels des erfindungsgemässen Armierungselements 10 mit Carbon-Fasern 12, die mittels zweier Träger 14 gespannt werden können;
Fig. 2
eine vereinfachte schematische Detailansicht eines Trägers 14 gemäss Fig. 1;
Fig. 3
eine vereinfachte schematische Darstellung eines Zwischenzustands bei der Herstellung einer vorgespannten Betonplatte 20 mittels einer Vielzahl von Armierungselementen 10 gemäss Fig. 1;
Fig. 4
eine vereinfachte schematische Seitenansicht des Trägers 14 gemäss Fig. 2;
Fig. 5
eine vereinfachte schematische Darstellung gemäss Fig. 3, jedoch zusätzlich mit einem Bauschaum 40 zur Unterteilung der Betonplatte 20 und Fixierung der Carbon-Fasern 12; und
Fig. 6
eine vereinfachte schematische Seitenansicht des Trägers 14 gemäss Fig. 2, wobei dieser jedoch eine Krümmung aufweist.
Further exemplary embodiments of the present invention are explained in more detail below with reference to figures. Show it:
1
a simplified schematic representation of an embodiment of the inventive reinforcement element 10 with carbon fibers 12, which can be stretched by means of two carriers 14;
2
a simplified schematic detailed view of a carrier 14 according to 1 ;
3
a simplified schematic representation of an intermediate state in the production of a prestressed concrete slab 20 by means of a plurality of reinforcing elements 10 according to 1 ;
4
a simplified schematic side view of the carrier 14 according to 2 ;
figure 5
a simplified schematic representation according to 3 , but additionally with a construction foam 40 for subdividing the concrete slab 20 and fixing the carbon fibers 12; and
6
a simplified schematic side view of the carrier 14 according to 2 , but this has a curvature.

Die nachfolgenden Ausführungen sind Beispiele und sollen die Erfindung in keiner Weise beschränken.The following statements are examples and are not intended to limit the invention in any way.

Fig. 1 zeigt eine vereinfachte schematische Darstellung eines Ausführungsbeispiels des erfindungsgemässen Armierungselements 10 im gestreckten Zustand. Ein solches Armierungselement 10 dient der Herstellung vorgespannter Betonbauteile. 1 shows a simplified schematic representation of an embodiment of the inventive reinforcement element 10 in the stretched state. Such a reinforcement element 10 is used to produce prestressed concrete components.

Das Armierungselement 10 umfasst zehn einzeln Fasern, die in diesem Beispiel als Carbon-Fasern 12 (nur teilweise bezeichnet) ausgebildet sind, und zwei Halteelemente in Form von zwei Trägern 14. Die Träger 14 sind beabstandet zueinander angeordnet und durch die zehn Carbon-Fasern 12 miteinander verbunden. Die Carbon-Fasern 12 können durch Auseinanderziehen der Träger 14 in ihrer Längsrichtung T gespannt werden.The reinforcement element 10 comprises ten individual fibers, which in this example are carbon fibers 12 (only partially designated) are formed, and two holding elements in the form of two carriers 14. The carriers 14 are arranged at a distance from one another and are connected to one another by the ten carbon fibers 12. The carbon fibers 12 can be tensioned in their longitudinal direction T by pulling the carriers 14 apart.

Bevorzugt sind die Carbon-Fasern 12 derart in den Trägern 14 befestigt, dass die gestreckten Carbon-Fasern 12 geradlinig in die Träger 14 münden. Ferner bilden die Carbon-Fasern 12 eine im Wesentlichen ebene Lage, bei der die Carbon-Fasern 12 weitgehend parallel und weitgehend gleichmässig beabstandet zueinander angeordnet sind. Dadurch hat das Armierungselement 10 die Form einer Harfe. In diesem Beispiel beträgt der Armierungsabstand, d.h. der Abstand zwischen den parallel angeordneten Carbon-Fasern 12, ca. 10 mm und somit beträgt die Breite des Armierungselements 10 ca. 10 cm.The carbon fibers 12 are preferably fastened in the supports 14 in such a way that the stretched carbon fibers 12 open into the supports 14 in a straight line. Furthermore, the carbon fibers 12 form an essentially planar layer, in which the carbon fibers 12 are arranged largely parallel and at a largely even distance from one another. As a result, the reinforcement element 10 has the shape of a harp. In this example, the distance between the reinforcements, i.e. the distance between the carbon fibers 12 arranged in parallel, is approximately 10 mm and the width of the reinforcement element 10 is therefore approximately 10 cm.

Jede der Carbon-Fasern 12 umfasst jeweils ein Carbon-Roving, das heisst ein Bündel von einigen tausend gestreckten, nebeneinander angeordneten und im Wesentlichen gleich ausgerichteten Filamenten (ca. 2'000 bis ca. 16'000 Filamente). Diese Filamente und damit auch die Carbon-Fasern 12 sind mit einem alkalibeständigen Harz in Form von Vinylesterharz imprägniert, so dass die Carbon-Fasern 12 eine kompakte Einheit bilden, ähnlich einem Metalldraht. Das Imprägnieren kann beispielsweise mittels eines Tauchbads erfolgen, durch das der Roving zur Herstellung der Carbon-Fasern 12 gezogen wird.Each of the carbon fibers 12 comprises a carbon roving, ie a bundle of a few thousand stretched filaments arranged next to one another and essentially aligned in the same way (approx. 2,000 to approx. 16,000 filaments). These filaments and thus also the carbon fibers 12 are impregnated with an alkali-resistant resin in the form of vinyl ester resin, so that the carbon fibers 12 form a compact unit, similar to a metal wire. The impregnation can, for example, by means of a Take place immersion bath through which the roving for the production of the carbon fibers 12 is pulled.

Ausserdem sind die Carbon-Fasern 12 mit Sand beschichtet, so dass eine verbesserte Verbindung von Fasern und Beton erreicht wird. In diesem Beispiel kann bei einer Einbindelänge von 100 mm über die mechanische Schubverbindung die volle Dimensionierungszugkraft übertragen werden.In addition, the carbon fibers 12 are coated with sand, so that an improved connection between fibers and concrete is achieved. In this example, with an anchoring length of 100 mm, the full dimensioning tensile force can be transmitted via the mechanical shear connection.

Ferner weisen die Träger 14 jeweils zwei Öffnungen 16 auf (gestrichelt gezeichnet) mittels denen die Träger 14 auf einer Spannvorrichtung (nicht dargestellt) positioniert werden können. Mit der Spannvorrichtung können die Carbon-Fasern 12 bei der Herstellung der Betonbauteile präzise ausgerichtet, insbesondere ohne horizontales und/oder vertikales Verkanten, gespannt werden. In einem anderen Beispiel weist der Träger 14 ein Loch oder eine Vielzahl von Löchern, insbesondere mehr als zwei Löcher zur Positionierung des Trägers 14 auf.Furthermore, the carriers 14 each have two openings 16 (shown in dashed lines) by means of which the carriers 14 can be positioned on a clamping device (not shown). With the clamping device, the carbon fibers 12 can be aligned precisely during the production of the concrete components, in particular without horizontal and/or vertical tilting. In another example, the carrier 14 has a hole or a multiplicity of holes, in particular more than two holes, for positioning the carrier 14 .

In einem Beispiel werden für die Herstellung des Trägers 14 kostengünstigen Materialien verwendet. Eine beispielhafte Materialzusammensetzung und die entsprechende Herstellung des Trägers 14 wird anhand von Fig. 2 beschrieben. Es können auch andere Materialien verwendet werden, da der Träger 14 nicht ein Teil des herzustellenden Betonbauteils ist und in der Regel nach dem Betonieren abgetrennt und entfernt wird.In one example, carrier 14 is manufactured using inexpensive materials. An exemplary material composition and the corresponding production of the carrier 14 is based on 2 described. Other materials can also be used since the carrier 14 is not part of the concrete component to be produced and is usually separated and removed after concreting.

Fig. 2 zeigt eine vereinfachte schematische Detailansicht eines Trägers 14 gemäss Fig. 1. 2 shows a simplified schematic detail view of a carrier 14 according to FIG 1 .

Der Träger 14, auch als Patch bezeichnet, umfasst eine faserverstärkte Polymer-Matrix in Form einer Polyester-Matrix mit darin eingeschlossenen Fasern in Form zweier Glasfasermatten. Diese Polyester-Matrix umschliesst die gestreckten Carbon-Fasern 12 in deren Endbereichen. Beispielsweise beträgt die Grösse dieser Polyester-Matrix ca. 10 cm x 10 cm und die gesamte Dicke ca. 2 mm. In einem anderen Beispiel beträgt die Längenausdehnung der Polyester-Matrix in Richtung der Carbon-Fasern 12 zwischen ca. 10 cm und ca. 20 cm. Die Fasermatten bilden eine untere und eine obere Lage, wobei die gestreckten Carbon-Fasern 12 zwischen diese Lagen angeordnet und durch Laminieren mit Polyester darin befestigt sind. Die Polyester-Matrix bildet daher für die Carbon-Fasern 12 ein geradliniges Führungselement (durch gestrichelte Linien angedeutet), wobei sich die Carbon-Fasern 12 innerhalb der Polyester-Matrix, d.h. innerhalb des Trägers 14, weitgehend geradlinig fortsetzen. Mittels des Trägers 14 sind die Carbon-Fasern 12 in ihrer gegenseitigen Anordnung fixiert, nämlich in einer ebenen Lage, weitgehend parallel und gleichmässig beabstandet zueinander.The carrier 14, also referred to as a patch, comprises a fiber-reinforced polymer matrix in the form of a polyester matrix with fibers enclosed therein in the form of two glass fiber mats. This polyester matrix encloses the stretched carbon fibers 12 in their end areas. For example, the size of this polyester matrix is about 10 cm x 10 cm and the total thickness is about 2 mm. In another example, the length of the polyester matrix in the direction of the carbon fibers 12 is between approximately 10 cm and approximately 20 cm. The fiber mats form a lower and an upper layer, the stretched carbon fibers 12 being arranged between these layers and fixed therein by lamination with polyester. The polyester matrix therefore forms a rectilinear guide element for the carbon fibers 12 (indicated by dashed lines), with the carbon fibers 12 continuing largely rectilinearly within the polyester matrix, ie within the carrier 14 . The carbon fibers 12 are fixed in their mutual arrangement by means of the carrier 14, namely in a flat position, largely parallel and spaced evenly apart from one another.

Die Enden der Carbon-Fasern 12 ragen an der Austrittsseite der Träger 14 ein Stück weit über die Träger 14 hinaus. Die Fasern 12 können aber auch im Träger 14 oder bündig auf dessen Oberfläche enden, beispielsweise wenn der Träger 14 von einer grösseren Einheit abgetrennt wurde.The ends of the carbon fibers 12 protrude a little beyond the supports 14 on the exit side of the supports 14 . However, the fibers 12 can also end in the carrier 14 or flush on its surface, for example if the carrier 14 has been separated from a larger unit.

Beispielsweise wird ein solcher Träger 14 durch folgende Schritte hergestellt:

  • Bereitstellen einer Vielzahl von nebeneinanderliegenden und untereinander beabstandeten Carbon-Rovings durch weitgehend gleichzeitiges Abziehen der Carbon-Rovings von einer entsprechenden Anzahl von Vorratsrollen;
  • Imprägnieren der Carbon-Rovings mittels Durchleiten der Carbon-Rovings durch ein Vinylesterharz-Tauchbad, so dass die Carbon-Rovings kompakte Carbon-Fasern 12 bilden;
  • Gemeinsames Ausziehen der Carbon-Fasern 12, gegebenenfalls mittels eines bereits zuvor angebrachten Trägers 14, so dass die Carbon-Fasern 12 gespannt werden;
  • Anlegen zweier mit Polyester getränkter Glasfasermatten an die gespannten Carbon-Fasern 12, eine von unten und die andere von oben;
  • Zusammenfügen der beiden Glasfasermatten, gegebenenfalls unter Hinzufügen einer zusätzlichen Menge des Polyesters, so dass die getränkten Glasfasermatten und der Polyester die gespannten Carbon-Fasern 12 umschliessen; und
  • Erhärtenlassen des Polyesters, so dass die Carbon-Fasern 12 kraftschlüssig im Träger 14 befestigt sind.
For example, such a carrier 14 is produced by the following steps:
  • providing a multiplicity of carbon rovings lying next to one another and spaced apart from one another by largely simultaneously drawing off the carbon rovings from a corresponding number of supply rolls;
  • impregnating the carbon rovings by passing the carbon rovings through a vinyl ester resin immersion bath so that the carbon rovings form compact carbon fibers 12;
  • Pulling out the carbon fibers 12 together, if necessary by means of a carrier 14 that has already been attached beforehand, so that the carbon fibers 12 are tensioned;
  • applying two fiberglass mats impregnated with polyester to the tensioned carbon fibers 12, one from below and the other from above;
  • Joining the two glass fiber mats, optionally with the addition of an additional amount of polyester, so that the impregnated glass fiber mats and the polyester enclose the tensioned carbon fibers 12; and
  • Allowing the polyester to harden so that the carbon fibers 12 are fixed in the carrier 14 in a non-positive manner.

Durch dieses Laminieren bildet der Träger 14 zusammen mit den Carbon-Fasern 12 eine kompakte und robuste Einheit.As a result of this lamination, the carrier 14 forms a compact and robust unit together with the carbon fibers 12 .

Fig. 3 zeigt eine vereinfachte schematische Darstellung eines Zwischenzustands bei der Herstellung einer vorgespannten Betonplatte 20, beispielsweise in einem Fertigteilwerk für Betonplatten. Dabei entspricht der Zwischenzustand einer Anordnung nach Abschluss der Vorbereitungsarbeiten, jedoch noch vor dem Betonieren der Betonplatte 20. 3 FIG. 12 shows a simplified schematic representation of an intermediate stage in the manufacture of a prestressed concrete slab 20, for example in a prefabricated concrete slab plant. The intermediate state corresponds to an arrangement after the preparatory work has been completed, but before the concrete slab 20 is poured.

Die Anordnung umfasst einen Betoniertisch (nicht dargestellt), einen darauf angeordneten Hohlrahmen 30 und eine Vielzahl von identischen, erfindungsgemässen Armierungselementen 10 (teilweise nur schematisch angedeutet). Der Hohlrahmen 30 bildet zusammen mit der Oberfläche des Betoniertischs eine Gussform für den Beton, auch Spannbett genannt.The arrangement comprises a concreting table (not shown), a hollow frame 30 arranged thereon and a multiplicity of identical reinforcing elements 10 according to the invention (in some cases only indicated schematically). Together with the surface of the concreting table, the hollow frame 30 forms a mold for the concrete, also called a prestressing bed.

Die Armierungselemente 10 weisen jeweils eine Vielzahl von Carbon-Fasern 12 (der Übersicht halber sind teilweise nur die aussenliegenden Fasern dargestellt) und zwei Träger 14 auf und entsprechen in ihrem Aufbau weitgehend den Armierungselementen 10 gemäss Fig. 1. In diesem Beispiel beträgt die Länge der Carbon-Fasern 12 jedoch ca. 20 m und die Breite der Träger 14 ca. 1 m. Der Armierungsabstand entspricht dem vorangehenden Beispiel, d.h. wie bei Fig. 1 ca. 10 mm, so dass auf den Trägern 14 jeweils ca. 100 Carbon-Fasern 12 befestigt sind.The reinforcement elements 10 each have a large number of carbon fibers 12 (for the sake of clarity, only the outer fibers are shown in some cases) and two carriers 14 and largely correspond in their structure to the reinforcement elements 10 according to FIG 1 . In this example, however, the length of the carbon fibers 12 is approximately 20 m and the width of the carrier 14 is approximately 1 m. The distance between the reinforcements corresponds to the previous example, ie as in FIG 1 approx. 10 mm, so that approx. 100 carbon fibers 12 are fastened to the carriers 14 in each case.

Beim Anordnen der Armierungselemente 10 werden die Träger 14 jeweils auseinandergezogen, so dass sich die Carbon-Fasern 12 im Hohlrahmen 30 im gestreckten Zustand befinden. Dabei werden die Carbon-Fasern 12 durch den Hohlrahmen 30 nach aussen geführt, so dass sich die Enden der Carbon-Fasern 12 und die Träger 14 ausserhalb des Hohlrahmens 30 befinden, beispielsweise mit 30 cm Abstand vom Hohlrahmen 30. Bei einem zweiteiligen Hohlrahmen 30 können die Durchlasskanäle auch durch entsprechende Zwischenräume zwischen Unterteil und Oberteil des Hohlrahmens 30 gebildet werden. Dabei ist der Hohlrahmen 30 aus mehreren übereinanderliegenden Leisten aufgebaut, so dass die Carbon-Fasern 12 durch die Zwischenräume der einzelnen Leisten geführt werden können. Die Zwischenräume können zusätzlich mit Moosgummi und/oder Bürstenhaaren abgedichtet sein. In einem Beispiel beträgt die Höhe der übereinanderliegenden Leisten 3 mm, 12 mm und 3 mm.When arranging the reinforcement elements 10, the carriers 14 are each pulled apart, so that the carbon fibers 12 are in the hollow frame 30 in the stretched state. The carbon fibers 12 are guided outwards through the hollow frame 30, so that the ends of the carbon fibers 12 and the supports 14 are outside of the hollow frame 30, for example at a distance of 30 cm from the hollow frame 30. In the case of a two-part hollow frame 30, the passage channels are also formed by corresponding gaps between the lower part and the upper part of the hollow frame 30 . In this case, the hollow frame 30 is constructed from a plurality of slats lying one above the other, so that the carbon fibers 12 can be guided through the interstices of the individual slats. The gaps can also be sealed with foam rubber and/or brush hairs. In one example, the height of the superimposed bars is 3mm, 12mm and 3mm.

Bei der dargestellten Anordnung liegt die erste Hälfte der Armierungselemente 10 in einer ersten Lage, parallel und benachbart nebeneinander und die zweite Hälfte der Armierungselemente 10 in einer zweiten Lage, ebenfalls parallel und benachbart nebeneinander, jedoch rechtwinklig zu den Armierungselementen 10 der ersten Lage. Die Armierungselemente 10 sind somit in getrennten Lagen übereinandergeschichtet und in den beiden benachbarten Lagen rechtwinklig zueinander ausgerichtet. Die Armierungselemente 10 bilden daher sowohl eine Längsarmierung als auch eine Querarmierung, jedoch ohne individuelle Verflechtung der einzelnen Carbon-Fasern 12.In the arrangement shown, the first half of the reinforcing elements 10 are in a first layer, parallel and adjacent to each other and the second half of the reinforcing elements 10 are in a second layer, also parallel and adjacent to but perpendicular to the reinforcing elements 10 of the first layer. The reinforcing elements 10 are thus superimposed in separate layers and in the two adjacent ones Layers aligned at right angles to each other. The reinforcement elements 10 therefore form both a longitudinal reinforcement and a transverse reinforcement, but without individual interweaving of the individual carbon fibers 12.

Nach dem Anordnen der Armierungselemente 10 werden die Träger 14 auseinander gezogen, zum Beispiel mit einer Spannvorrichtung, auch Vorspannanlage genannt, oder manuell mit einem Drehmomentschlüssel (nicht dargestellt). Beispielsweise wird eine Spannung von mindestens ca. 30 kN/m oder mindestens ca. 300 kN/m erzeugt, abhängig von den Belastungs-Anforderungen an die Betonplatte (Dimensionierungskraft).After the reinforcement elements 10 have been arranged, the carriers 14 are pulled apart, for example with a clamping device, also called a prestressing system, or manually with a torque wrench (not shown). For example, a stress of at least approx. 30 kN/m or at least approx. 300 kN/m is generated, depending on the load requirements on the concrete slab (dimensioning force).

Anschliessend an die dargestellte Situation kann in den derart vorbereiteten Hohlrahmen 30 Beton gegossen werden, um die Betonplatte 20 in einem Arbeitsgang zu betonieren. Dabei werden die Teile der gespannten Carbon-Fasern 12, welche sich im Hohlrahmen 30 befinden vom Beton umschlossen und damit einbetoniert. Besonders geeignet ist SCC-Feinbeton (mindestens C30/37 gern. Norm SIA SN505 262) der leicht durch die Zwischenräume der Carbon-Fasern 12 durchfliessen kann. Der Beton kann aber auch durch Spritzen oder Spachteln in den Hohlrahmen 30 eingebracht und durch Vibrieren gleichmässig verteilt werden.Subsequent to the situation shown, concrete can be poured into the hollow frame 30 prepared in this way in order to concrete the concrete slab 20 in one operation. The parts of the tensioned carbon fibers 12 which are located in the hollow frame 30 are enclosed by the concrete and thus embedded in concrete. SCC fine concrete (at least C30/37 according to the SIA SN505 262 standard) which can easily flow through the spaces between the carbon fibers 12 is particularly suitable. However, the concrete can also be introduced into the hollow frame 30 by spraying or spatula and evenly distributed by vibration.

Nach dem Aushärten des Betons kann die Betonplatte 20 dem Hohlrahmen 30 entnommen werden. Dabei bilden die einbetonierten Carbon-Fasern 12 die statische Armierung der Betonplatte 20. Die aus dem Beton ragenden Teile der Carbon-Fasern 12 werden an den Rändern der Betonplatte 20 abgebrochen und zusammen mit den Trägern 14 entfernt. In diesem Beispiel ist die hergestellte Betonplatte ca. 6 m x 2.5 m gross und der Armierungsgehalt dieser Betonplatte 20 beträgt mehr als 20 mm2/m Breite. In einem anderen Beispiel ist die hergestellte Betonplatte ca. 7 m x ca. 2.3 m gross.After the concrete has hardened, the concrete slab 20 can be removed from the hollow frame 30 . The concreted carbon fibers 12 the static reinforcement of the concrete slab 20. The parts of the carbon fibers 12 protruding from the concrete are broken off at the edges of the concrete slab 20 and removed together with the supports 14. In this example, the concrete slab produced is approximately 6 mx 2.5 m in size and the reinforcement content of this concrete slab 20 is more than 20 mm 2 /m width. In another example, the concrete slab produced is about 7 mx about 2.3 m.

Fig. 4 zeigt eine vereinfachte schematische Seitenansicht eines Trägers 14 gemäss Fig. 2. Dabei münden die Carbon-Fasern 12 geradlinig in den Träger 14. Ferner setzen sich die Carbon-Fasern 12 im Inneren des Trägers 14 geradlinig fort, so dass der Träger 14 eine gradlinige Führung für die Carbon-Fasern 12 bildet. In diesem Beispiel beträgt die Längenausdehnung des Trägers 14 in Richtung der Carbon-Fasern 12 ca. 3 cm. 4 14 shows a simplified schematic side view of a carrier 14 according to FIG 2 . The carbon fibers 12 flow straight into the carrier 14. Furthermore, the carbon fibers 12 continue in a straight line inside the carrier 14, so that the carrier 14 forms a straight guide for the carbon fibers 12. In this example, the length of the carrier 14 in the direction of the carbon fibers 12 is approximately 3 cm.

Der Träger 14 kann zusätzlich eine Profilierung 16 aufweisen (gestrichelt gezeichnet). In diesem Beispiel ist auf einer ersten (oberen) Fläche und auf der dazu gegenüberliegenden (unteren) Fläche des Trägers 14 eine zackenförmige Profilierung 16 angeordnet. Diese Flächen sind für das Befestigen des Trägers 14 in einer Spannvorrichtung (nicht dargestellt) vorgesehen, beispielsweise durch Festklemmen. Durch die zackenförmige Profilierung 16 wird eine kraftschlüssige Verbindung zwischen dem Träger 14 und der Spannvorrichtung in Form einer Verzahnung erreicht.The carrier 14 can additionally have a profile 16 (shown in dashed lines). In this example, a serrated profile 16 is arranged on a first (upper) surface and on the opposite (lower) surface of the carrier 14 . These surfaces are provided for mounting the carrier 14 in a fixture (not shown), for example by clamping. The jagged profiling 16 achieves a non-positive connection between the carrier 14 and the clamping device in the form of teeth.

Fig. 5 zeigt eine Darstellung gemäss Fig. 3, bei den Armierungselementen 10, wird zusätzlich jedoch eine Unterteilung vorgenommen, indem ein Bauschaum 40 (als Wellenlinie dargestellt) als Trennelement sowohl auf den Boden der Hohlform als auch unter und über die Carbon-Fasern 12 geschäumt wird. Durch diese Unterteilung kann keine oder nur eine vernachlässigbare Menge des eingefüllten Betons in jenen Raum eindringen, der durch die Unterteilung ausgefüllt wird. Somit werden lediglich die Teilräume des Hohlrahmens mit den darin befindlichen Faserteilen betoniert. Zudem bietet der Bauschaum 40 eine Fixierung der Fasern während des Betonierens. figure 5 shows a representation according to 3 However, in the case of the reinforcement elements 10, a subdivision is also made in that a construction foam 40 (shown as a wavy line) is foamed as a separating element both on the bottom of the hollow mold and under and over the carbon fibers 12. This subdivision means that no or only a negligible amount of the poured concrete can penetrate into the space occupied by the subdivision. Thus, only the partial spaces of the hollow frame with the fiber parts located therein are concreted. In addition, the construction foam 40 offers a fixation of the fibers during concreting.

Nach dem Erhärten des Betons kann die Betonplatte 20 entlang den Bauschaum-Unterteilungen in einzelne Rohplatten gebrochen werden. Diese Rohplatten können dann weiter verarbeitet werden, beispielsweise indem die Rohplatten mit einer Kreissäge in die gewünschte Form gebracht werden.After the concrete has hardened, the concrete slab 20 can be broken into individual raw slabs along the construction foam subdivisions. These raw panels can then be processed further, for example by cutting the raw panels into the desired shape using a circular saw.

In diesem Beispiel ist die hergestellte Betonplatte ca. 20 m x ca. 20 m gross und deren Dicke beträgt ca. 20 mm. Durch das Trennen der Betonplatte 20 gemäss der Unterteilung mit dem Bauschaum 40 ergeben sich 24 kleinere Platten mit einer Grösse von ca. 5 m x ca. 3 m. Aus diesen kleineren Platten können dann beispielsweise jeweils 3 Tischtennisplatten gesägt werden.In this example, the concrete slab produced is approx. 20 mx approx. 20 m and its thickness is approx. 20 mm. By separating the concrete slab 20 according to the subdivision with the construction foam 40, 24 smaller slabs with a size of approx. 5 mx approx. 3 m result. For example, 3 table tennis tables can then be sawn from these smaller slabs.

Fig. 6 zeigt eine vereinfachte schematische Seitenansicht eines Trägers 14 gemäss Fig. 2, wobei dieser jedoch ein Mittel zur Kraftverteilung in Form einer Krümmung 18 aufweist. Die Carbon-Fasern 12 münden geradlinig in den Träger 14 und verlaufen dann im Inneren des Trägers 14, der Krümmung 18 des Trägers 14 entsprechend, ebenfalls mit einer Krümmung. Dabei sind die Carbon-Fasern 12 im Eintrittsbereich des Trägers 14 derart befestigt, dass sich die Carbon-Fasern 12 über eine Distanz d von 10 mm weitgehend geradlinig in den Träger 14 fortsetzen. Durch diese Form wird sowohl eine gute Einleitung der Fasern in den Träger 14 als auch eine gleichmässige Verteilung der aufzunehmenden Kräfte erreicht. 6 14 shows a simplified schematic side view of a carrier 14 according to FIG 2 , but this has a means for force distribution in the form of a bend 18. The carbon fibers 12 flow straight into the carrier 14 and then run inside the carrier 14, corresponding to the curvature 18 of the carrier 14, also with a curvature. The carbon fibers 12 are fastened in the entry area of the carrier 14 in such a way that the carbon fibers 12 continue largely in a straight line into the carrier 14 over a distance d of 10 mm. This shape achieves both good introduction of the fibers into the carrier 14 and an even distribution of the forces to be absorbed.

Claims (17)

  1. Reinforcing element (10) for producing prestressed concrete components (20), having a plurality of fibers (12) and a plurality of holding elements (14) which are connected to one another by the fibers (12), so that the fibers (12) can be stressed in their longitudinal direction (T) by means of the holding elements (14), characterized in that the fibers (12) have a net cross-sectional area of less than 5 mm2 and are coated with a granular material, in particular with sand, and form a substantially planar layer in the holding elements (14) and are fixed to the holding elements (14) by lamination or by lamination and clamping in such a way that, in stressed state, the fibers (12) open into the holding elements (14) in a substantially straight line.
  2. Reinforcing element (10) according to claim 1, wherein the fibers (12) are individual fibers and/or comprise one or more rovings, in particular carbon rovings.
  3. Reinforcing element (10) according to claim 1 or 2, wherein the holding elements (14) comprise guiding elements for the fibers (12), in particular a clamping device and/or a support for laminating the fibers (12) in the end region, in particular a fiber-reinforced polymer matrix, further in particular a polyester matrix.
  4. Reinforcing element (10) according to one of the preceding claims, wherein the fibers (12) are arranged in the holding elements (14) substantially parallel and/or substantially uniformly spaced apart from one another.
  5. Reinforcing element (10) according to one of the preceding claims, wherein the reinforcement spacing is approx. 5 mm to approx. 40 mm, in particular approx. 8 mm to approx. 25 mm, and/or wherein at least 10, in particular at least 40, fibers (12) are fixed to? each of the holding elements (14).
  6. Reinforcing element (10) according to one of the preceding claims, wherein the fibers (12) are fastened to the holding elements (14) in such a way that, in the stressed state, the fibers (12) continue substantially in a straight line in the holding elements (14), in particular over a distance (d) of at least about 5 mm, further in particular of at least about 10 mm.
  7. Reinforcing element (10) according to one of the preceding claims, wherein the holding elements (14) have a means for force distribution, in particular a curvature (18) and/or a profiling (16), extending in particular transversely to the direction of the fibers (12).
  8. Reinforcing element (10) according to one of the preceding claims, wherein the width of which is greater than 0.4 m, in particular greater than 0.8 m, and/or the length of which is greater than 4 m, in particular greater than 12 m.
  9. Method for producing a reinforcing element for prestressed concrete components (20), comprising the steps of:
    - providing stressed fibers (12) by drawing a plurality of spaced-apart fibers (12) together, wherein the fibers (12) have a net cross-sectional area of less than 5 mm2 and are coated with a granular material, in particular with sand; and
    - fixing a holding element (14) to the stressed fibers (12) by lamination or clamping and lamination to fix the fibers (12) in their mutual arrangement, in particular with respect to spacing and/or orientation, wherein the fibers (12) form a substantially planar layer in the holding element (14).
  10. Method for producing a reinforcing element for prestressed concrete components (20), comprising the steps of:
    - coating the fibers with a granular material, in particular with sand; providing stressed fibers (12) by drawing a plurality of spaced-apart fibers (12) together, wherein the fibers (12) have a net cross-sectional area of less than 5 mm2; and
    - fixing a holding element (14) to the stressed fibers (12) by lamination or clamping and lamination to fix the fibers (12) in their mutual arrangement, in particular with respect to spacing and/or orientation, wherein the fibers (12) form a substantially planar layer in the holding element (14).
  11. Method according to claim 9 or 10, wherein the fixing of the holding element (14) takes place during the drawing of the fibers (12) together, in particular by moving the holding element (14) in synchronism with the movement of the fibers (12).
  12. Concrete component (20), in particular concrete slab, having at least one reinforcing element (10) according to one of claims 1 to 8, wherein the prestressing of the concrete component (20) is at least 50%, in particular at least 80%, further in particular at least 90%, of the breaking stress of the fibers (12).
  13. Concrete component (20), in particular concrete slab, comprising a plurality of fibers (12) which are stressed in their longitudinal direction (T), characterized in that the fibers (12) have a net cross-sectional area of less than 5 mm2 and are coated with a granular material, in particular with sand, and form at least one substantially planar layer, wherein the prestressing of the concrete component (20) is at least 50%, in particular at least 80%, further in particular at least 90%, of the breaking stress of the fibers (12).
  14. Method for producing a prestressed concrete component (20), comprising the steps of:
    - providing at least one reinforcing element (10) according to one of claims 1 to 8;
    - stressing the fibers (12) of the reinforcing element (10) by pulling apart the associated holding elements (14); and
    - concreting the concrete element (20) while at least partially embedding the stressed fibers (12) in concrete.
  15. Method according to claim 14, wherein the providing of the at least one reinforcing element is accomplished by arranging a plurality of the reinforcing elements (10) in a layer, in particular by laying them substantially parallel and/or adjacent to one another.
  16. Method according to claim 14, wherein the providing of the at least one reinforcing element (10) is accomplished by arranging the reinforcing elements (10) in at least two layers, wherein the orientation of the reinforcing elements (10) in adjacent layers is at an angle, in particular substantially at a right angle.
  17. Method according to one of claims 14 to 16, wherein this additionally comprises the step of:
    inserting a separating element, in particular a foam (40), before concreting the concrete component (20).
EP12766940.6A 2012-09-17 2012-09-17 Reinforcing element for producing prestressed concrete components, concrete component and production methods Active EP2912239B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23158276.8A EP4206413A1 (en) 2012-09-17 2012-09-17 Prestressed concrete components and method for producing prestressed concrete components
PL12766940.6T PL2912239T3 (en) 2012-09-17 2012-09-17 Reinforcing element for producing prestressed concrete components, concrete component and production methods
HUE12766940A HUE062126T2 (en) 2012-09-17 2012-09-17 Reinforcing element for producing prestressed concrete components, concrete component and production methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/068237 WO2014040653A1 (en) 2012-09-17 2012-09-17 Reinforcing element for producing prestressed concrete components, concrete component and production methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23158276.8A Division EP4206413A1 (en) 2012-09-17 2012-09-17 Prestressed concrete components and method for producing prestressed concrete components

Publications (2)

Publication Number Publication Date
EP2912239A1 EP2912239A1 (en) 2015-09-02
EP2912239B1 true EP2912239B1 (en) 2023-03-15

Family

ID=46968179

Family Applications (2)

Application Number Title Priority Date Filing Date
EP23158276.8A Pending EP4206413A1 (en) 2012-09-17 2012-09-17 Prestressed concrete components and method for producing prestressed concrete components
EP12766940.6A Active EP2912239B1 (en) 2012-09-17 2012-09-17 Reinforcing element for producing prestressed concrete components, concrete component and production methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP23158276.8A Pending EP4206413A1 (en) 2012-09-17 2012-09-17 Prestressed concrete components and method for producing prestressed concrete components

Country Status (15)

Country Link
US (2) US9938721B2 (en)
EP (2) EP4206413A1 (en)
JP (1) JP6198832B2 (en)
KR (1) KR102073598B1 (en)
CN (2) CN109281439A (en)
AU (1) AU2012389581B2 (en)
CA (1) CA2884137C (en)
DK (1) DK2912239T3 (en)
ES (1) ES2942845T3 (en)
FI (1) FI2912239T3 (en)
HU (1) HUE062126T2 (en)
PL (1) PL2912239T3 (en)
PT (1) PT2912239T (en)
RU (1) RU2015114179A (en)
WO (1) WO2014040653A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3091134B1 (en) * 2014-05-15 2019-03-20 Komrakov, Evgeny Vyacheslavovich Multi-link construction element and method for assembling same
DE102015100438B3 (en) * 2015-01-13 2016-03-24 Technische Universität Dresden Production of prefabricated parts from textile concrete
DE102016211176B4 (en) * 2016-06-22 2019-12-24 Lenz Tankred Method and use of a device for carrying out the method for the production of concrete components
EP3418465B1 (en) 2017-06-23 2022-05-04 Solidian GmbH Method for producing a textile reinforced building material component and use of a clamping device for same
KR101980324B1 (en) * 2017-11-13 2019-05-20 공주대학교 산학협력단 Fiber reinforced plastic and manufacturing method therof
IT201800005076A1 (en) 2018-05-04 2019-11-04 Prestressing system of a structure
JP6602928B1 (en) * 2018-05-23 2019-11-06 株式会社スカイ・アーク Cutting method of concrete structure
US11186991B2 (en) * 2018-10-31 2021-11-30 Shenzhen University Early warning device and ductility control method for prestressed FRP reinforced structure
CN111189768B (en) * 2018-11-14 2023-03-10 青岛理工大学 Corrosion-driven intelligent fiber and preparation method and application thereof
CN114599843A (en) 2019-09-06 2022-06-07 Cpc公司 Concrete roof, concrete roof panel and method for producing a concrete roof and a concrete roof panel
EP3845354A3 (en) 2019-12-10 2021-09-15 Wobben Properties GmbH Method of manufacturing segments for a tower, prestressed segment, tower ring, tower, wind turbine and prestressing device
CN111691679B (en) * 2020-06-24 2021-11-12 北京工业大学 Digital twinning-based intelligent tensioning method for prestressed steel structure
KR102226759B1 (en) * 2020-08-04 2021-03-12 한국건설기술연구원 Method for manufacturing precast prestressed concrete panel for applying tension force to imbedded strand
EP4349554A1 (en) 2022-10-04 2024-04-10 Holcim Technology Ltd Method for producing a concrete panel from prestressed concrete
EP4357092A1 (en) 2022-10-17 2024-04-24 Holcim Technology Ltd Method and device for producing a concrete slab from prestressed concrete

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070175583A1 (en) * 2006-01-31 2007-08-02 Mosallam Ayman S Technique for prestressing composite members and related apparatuses
DE102008011517A1 (en) * 2008-03-02 2009-09-03 Schottdorf, Bernd, Dr. Method, apparatus and support structure and their use for producing a fiber composite part

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036356A (en) * 1957-06-27 1962-05-29 Ceco Steel Products Corp Method of producing prestressed concrete slabs
US2971237A (en) * 1959-01-06 1961-02-14 Graham Phillip Flexible building panel form
US3882651A (en) * 1972-06-19 1975-05-13 Gilchrist Timothy M Floor supporting framework
US4205926A (en) * 1977-08-15 1980-06-03 Carlson Drexel T Sucker rod and coupling therefor
DE2759161A1 (en) * 1977-12-31 1979-07-12 Strabag Bau Ag Prestressed concrete tension bar reinforced with glass fibre rod - with cured resin binder having unaligned glass fibres to take up internal stresses
EP0343316A1 (en) * 1979-08-13 1989-11-29 RESTRA-Patentverwertung GmbH Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions
US4367568A (en) * 1980-05-24 1983-01-11 Strabag Bau-Ag Anchorage devices for a tension wire bundle of tension wires
JPS60203761A (en) * 1984-03-28 1985-10-15 財団法人鉄道総合技術研究所 Tension material for prestressed concrete
AT390027B (en) * 1984-05-28 1990-03-12 Katzenberger Helmut Method for producing prestressed precast concrete parts
FR2582335B1 (en) * 1985-05-24 1987-08-14 Gtm Ets Sa DEVICE FOR ANCHORING AN END OF AT LEAST ONE LIVE CABLE OR BAR, PARTICULARLY FOR STRUCTURAL CONCRETE STRUCTURE.
JPS646442A (en) * 1987-06-26 1989-01-11 Shimizu Construction Co Ltd Prestressed concrete member using lattice like reinforcing bar and its production
EP0297006B1 (en) 1987-06-26 1992-05-13 SHIMIZU CONSTRUCTION Co. LTD. Meshwork reinforced and pre-stressed concrete member, method and apparatus for making same
JP2593311B2 (en) * 1987-06-26 1997-03-26 清水建設株式会社 Equipment for manufacturing bidirectional prestressed concrete members
JPH0715937Y2 (en) 1988-01-28 1995-04-12 日本コンクリート工業株式会社 FRP muscle tension fixing device
US5072558A (en) * 1988-04-21 1991-12-17 Varitech Industries, Inc. Post-tension anchor system
JPH0272905A (en) * 1988-09-07 1990-03-13 Shimizu Corp Manufacture of prestressed concrete member and latticelike reinforcing rod for prestressed concrete member
US4932178A (en) * 1989-05-05 1990-06-12 Mozingo Ralph R Compound timber-metal stressed decks
EP0532140A1 (en) * 1991-09-13 1993-03-17 Board of Regents of the University of Nebraska Precast concrete sandwich panels
CH687399A5 (en) * 1992-04-06 1996-11-29 Eidgenoessische Materialpruefung Method and apparatus for Schubverstaerkung on a building part.
JPH0715851Y2 (en) * 1992-11-02 1995-04-12 株式会社富士ピー・エス Batch bending tool for non-ferrous wire for prestressing
DE4318904A1 (en) * 1993-06-07 1995-01-05 Horst Dr Ing Kinkel Method for reinforcing a concrete structure, and reinforcement elements therefor
JP2601596Y2 (en) * 1993-10-19 1999-11-22 宇部日東化成株式会社 Tendon for prestressed concrete
US5613334A (en) * 1994-12-15 1997-03-25 Cornell Research Foundation, Inc. Laminated composite reinforcing bar and method of manufacture
US6067757A (en) * 1999-02-17 2000-05-30 Olson; Timothy Tilt-up concrete panel and forming system therefore
FR2798409B1 (en) * 1999-09-15 2002-01-04 Freyssinet Int Stup SYSTEM FOR CONNECTING A CABLE TO A BUILDING STRUCTURE
JP2001262708A (en) * 2000-03-15 2001-09-26 Oriental Construction Co Ltd Frp concrete composite structure using frp lamination panel
US6711866B2 (en) 2000-10-06 2004-03-30 Brian M. Blount Thin prestressed concrete panel and apparatus for making the same
US6811861B2 (en) * 2000-11-28 2004-11-02 Wisconsin Alumni Research Foundation Structural reinforcement using composite strips
CN1245054C (en) * 2001-01-12 2006-03-08 伊沃柳姆两合公司 Method for processing resource management in a mobile radiocommunication system
US7124547B2 (en) * 2002-08-26 2006-10-24 Bravinski Leonid G 3-D construction modules
US6761002B1 (en) * 2002-12-03 2004-07-13 Felix L. Sorkin Connector assembly for intermediate post-tension anchorage system
US20060218870A1 (en) * 2005-04-01 2006-10-05 Messenger Harold G Prestressed concrete building panel and method of fabricating the same
CN100410452C (en) * 2006-06-23 2008-08-13 天津市永定河管理处 Hydrotechnics gate made from concrete of fibre tendon, and preparation method
US8036356B1 (en) * 2006-08-08 2011-10-11 Avaya Inc. System and method of identifying geographic location for the source of a call
CN101463638A (en) 2007-12-23 2009-06-24 柳州欧维姆机械股份有限公司 Carbon beaverboard anchorage
CN101285333B (en) * 2008-06-06 2010-08-04 湖南科技大学 Special anchorage for combined variable-corrugated fiber sheets and prestressing force stretching method thereof
KR101084992B1 (en) * 2009-03-25 2011-11-18 주식회사 젬콘 Prestressed girder stand, installing method thereof, girder manufacturing method using the same
CN201486017U (en) 2009-06-16 2010-05-26 张军 Improved building material substrate
US8511013B2 (en) * 2009-09-03 2013-08-20 General Electric Company Wind turbine tower and system and method for fabricating the same
US8312683B2 (en) * 2009-09-15 2012-11-20 Tadros Maher K Method for constructing precast sandwich panels
CN101851985B (en) * 2010-05-27 2012-08-08 卓清 Articulated anchor and prestress tensioning method of high strength fibre composite sheet
RU2455436C1 (en) 2010-12-15 2012-07-10 Христофор Авдеевич Джантимиров Reinforcement element for prestressed concrete structures
CN202000558U (en) 2011-03-24 2011-10-05 广西工学院 Pre-stress fiber resin composite rib
CN102242505A (en) 2011-05-23 2011-11-16 天津市银龙预应力钢材集团有限公司 Anticorrosion pre-stress steel strand and manufacturing method thereof
US8555584B2 (en) * 2011-09-28 2013-10-15 Romeo Ilarian Ciuperca Precast concrete structures, precast tilt-up concrete structures and methods of making same
US8613172B2 (en) * 2012-01-06 2013-12-24 Clark—Pacific Corporation Composite panel including pre-stressed concrete with support frame, and method for making same
NZ713716A (en) * 2013-05-06 2018-07-27 Univ Of Canterbury Pre-stressed beams or panels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070175583A1 (en) * 2006-01-31 2007-08-02 Mosallam Ayman S Technique for prestressing composite members and related apparatuses
DE102008011517A1 (en) * 2008-03-02 2009-09-03 Schottdorf, Bernd, Dr. Method, apparatus and support structure and their use for producing a fiber composite part

Also Published As

Publication number Publication date
KR102073598B1 (en) 2020-02-05
HUE062126T2 (en) 2023-09-28
FI2912239T3 (en) 2023-06-02
EP2912239A1 (en) 2015-09-02
US20150267408A1 (en) 2015-09-24
CN104797764A (en) 2015-07-22
CA2884137C (en) 2019-04-30
AU2012389581B2 (en) 2017-09-28
ES2942845T3 (en) 2023-06-07
US20180179757A1 (en) 2018-06-28
AU2012389581A1 (en) 2015-03-19
PT2912239T (en) 2023-05-09
US11365544B2 (en) 2022-06-21
WO2014040653A1 (en) 2014-03-20
JP6198832B2 (en) 2017-09-20
JP2015534613A (en) 2015-12-03
CN109281439A (en) 2019-01-29
DK2912239T3 (en) 2023-06-19
AU2012389581A8 (en) 2015-04-02
US9938721B2 (en) 2018-04-10
PL2912239T3 (en) 2023-08-14
CA2884137A1 (en) 2014-03-20
KR20150082216A (en) 2015-07-15
RU2015114179A (en) 2016-11-10
EP4206413A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
EP2912239B1 (en) Reinforcing element for producing prestressed concrete components, concrete component and production methods
DE102016100455B4 (en) Textile reinforcement and its manufacture
EP2839089B1 (en) Structural element and method for producing a structural element
EP3310976B1 (en) Lattice structure and method for producing same
WO2005120744A1 (en) Protective mesh in particular for rockfall protection or for slope stabilisation
DE102014000316B4 (en) Composite component of precast concrete precast elements supported on steel girders
DE102015100438B3 (en) Production of prefabricated parts from textile concrete
WO2003064789A1 (en) Reinforcing device
EP3258029B1 (en) Textile concrete reinforcement grid element and a method for producing the concrete reinforcement grid element
DE2613579C2 (en) Method for producing a flat or three-dimensional reinforcement structure from parallel longitudinal reinforcing bars and transverse reinforcing bars arranged transversely to them
DE69123517T2 (en) Process for the production of a sheet steel concrete ceiling
DE1812865C3 (en) Reinforcement for flat concrete components
EP2236686A1 (en) Reinforcing element for absorbing forces in concrete slabs in the area of supporting elements
EP2189586A1 (en) Panel element with reinforcement
DE4135581A1 (en) Reinforced construction plate - has spaced grids embedded in coating mass covering base plate, grids are kept apart by distance holders of swellable material
EP0628675B1 (en) Method for reinforcing a concrete structure and reinforcing elements for carrying out the method
DE19719049C1 (en) Method of producing textile-reinforced structural members used in building construction
DE102020126584B3 (en) Machine and process for the production of uniaxial steel wire mesh
EP0361227A2 (en) Prestressed concrete railway sleeper
DE3543369A1 (en) Process for reinforcing prefabricated reinforced-concrete compound units and apparatus for carrying out the process
EP1332262A1 (en) Reinforcing mat for reinforced concrete
EP3705657B1 (en) Textile reinforcing structure for a component, method for producing a reinforcing structure, component and semi-finished part
EP2096220B1 (en) Prestressed hollow board element
AT399006B (en) Process for producing parts for reinforced-concrete reinforcements
DE102021115774A1 (en) Device and method for producing a flat component with prestressed textile reinforcement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190320

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220516

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KURATH-GROLLMANN, JOSEF PETER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221006

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012017141

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1554078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2912239

Country of ref document: PT

Date of ref document: 20230509

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230503

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2942845

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230607

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230613

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230315

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230400789

Country of ref document: GR

Effective date: 20230710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062126

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230915

Year of fee payment: 12

Ref country code: RO

Payment date: 20230912

Year of fee payment: 12

Ref country code: NO

Payment date: 20230911

Year of fee payment: 12

Ref country code: NL

Payment date: 20230915

Year of fee payment: 12

Ref country code: IT

Payment date: 20230829

Year of fee payment: 12

Ref country code: GB

Payment date: 20230824

Year of fee payment: 12

Ref country code: FI

Payment date: 20230912

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230831

Year of fee payment: 12

Ref country code: AT

Payment date: 20230825

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230830

Year of fee payment: 12

Ref country code: PT

Payment date: 20230918

Year of fee payment: 12

Ref country code: PL

Payment date: 20230901

Year of fee payment: 12

Ref country code: HU

Payment date: 20230901

Year of fee payment: 12

Ref country code: GR

Payment date: 20230829

Year of fee payment: 12

Ref country code: FR

Payment date: 20230911

Year of fee payment: 12

Ref country code: DK

Payment date: 20230914

Year of fee payment: 12

Ref country code: DE

Payment date: 20230830

Year of fee payment: 12

Ref country code: BE

Payment date: 20230918

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012017141

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231010

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 12

26N No opposition filed

Effective date: 20231218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230315