EP2908188B1 - Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique - Google Patents

Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique Download PDF

Info

Publication number
EP2908188B1
EP2908188B1 EP14155433.7A EP14155433A EP2908188B1 EP 2908188 B1 EP2908188 B1 EP 2908188B1 EP 14155433 A EP14155433 A EP 14155433A EP 2908188 B1 EP2908188 B1 EP 2908188B1
Authority
EP
European Patent Office
Prior art keywords
balance spring
outer terminal
regulator device
periodically
terminal curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14155433.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2908188A1 (fr
Inventor
Thierry Hessler
Davide Sarchi
Marc Stranczl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP14155433.7A priority Critical patent/EP2908188B1/fr
Priority to EP14184155.1A priority patent/EP2908189A3/fr
Priority to EP14184631.1A priority patent/EP2908190B1/fr
Priority to EP15153321.3A priority patent/EP2908191B1/fr
Priority to US14/620,733 priority patent/US9201400B2/en
Priority to CN201510075805.7A priority patent/CN104849994B/zh
Priority to RU2015105166A priority patent/RU2015105166A/ru
Priority to JP2015027462A priority patent/JP5997305B2/ja
Priority to JP2016566664A priority patent/JP6224854B2/ja
Priority to RU2016150515A priority patent/RU2680411C1/ru
Publication of EP2908188A1 publication Critical patent/EP2908188A1/fr
Priority to HK16101510.1A priority patent/HK1213646A1/zh
Application granted granted Critical
Publication of EP2908188B1 publication Critical patent/EP2908188B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/02Regulator or adjustment devices; Indexing devices, e.g. raquettes
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/04Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat

Definitions

  • the invention relates to a method of frequency maintenance and regulation, around its natural frequency, of a clockwork resonator mechanism comprising at least one elastic return means which comprises at least one spiral or a torsion wire or a flexible guide, where at least one regulating device acting on said resonator mechanism is used with a periodic movement.
  • the invention also relates to a watch movement comprising at least one clock resonator mechanism designed to oscillate at a natural frequency, said resonator mechanism comprising at least one elastic return means comprising at least one spiral, said clock resonator mechanism comprising at least one sprung-balance assembly, a spiral of which constitutes a said elastic return means and is held between a stud at a first outer end and a ferrule at a second inner end.
  • the invention also relates to a timepiece, more particularly a watch, comprising at least one such watch movement.
  • the invention relates to the field of time bases in mechanical watchmaking, in particular based on a spiral balance resonator mechanism.
  • the document EP 1 843 227 A1 of the same applicant describes a coupled resonator comprising a first low frequency resonator for example of the order of a few hertz and a second resonator at higher frequency, for example of the order of one kilohertz.
  • the invention is characterized in that the first resonator and the second resonator comprise permanent mechanical coupling means, said coupling making it possible to stabilize the frequency in the event of external disturbances, for example in the event of shocks.
  • the document CH 615 314 A3 in the name of PATEK PHILIPPE SA describes a mobile watch clock regulation unit, comprising an oscillating balance mechanically maintained by a spiral spring, and a vibrating member magnetically coupled with a fixed member for the synchronization of the balance.
  • the balance and the vibrating member are constituted by a single mobile element vibrating and oscillating simultaneously.
  • the vibration frequency of the vibrating member is an integer multiple of the oscillation frequency of the balance.
  • the invention proposes to manufacture a time base as accurate as possible.
  • the invention relates to a method for frequency maintenance and regulation of a clock resonator mechanism, around its natural frequency, according to claim 1.
  • the invention further relates to a watch movement according to claim 19.
  • the invention also relates to a timepiece, more particularly a watch, comprising at least one such watch movement.
  • the object of the invention is to manufacture a time base to make a mechanical timepiece, including a mechanical watch, as accurate as possible.
  • a parametric resonator system reduces the influence of the exhaust and thus make the watch more accurate.
  • a parametric oscillator uses, for the maintenance of oscillations, a parametric actuation which consists in varying one of the parameters of the oscillator with a regulation frequency ⁇ R between 0.9 times and 1.1 times the value of a multiple integer of the eigenfrequency ⁇ 0 of the oscillator system to be regulated, this integer being greater than or equal to 2, and which is preferably an integer multiple, in particular double, of the natural frequency ⁇ 0.
  • regulator 2 the oscillator which serves for maintenance and frequency regulation of the other system maintained, which is called “the resonator” 1.
  • T is the kinetic energy and V the potential energy and the inertia I ( t ), the stiffness k ( t ) and the rest position x 0 ( t ) of said resonator are a periodic function of time.
  • x is the generalized coordinate of the resonator.
  • the function f (t) takes the value 0 in the case of a non-forced oscillator.
  • This function f (t) can, again, be a periodic function, or be representative of a Dirac type pulse.
  • the invention consists in varying, by the action of a maintenance oscillator or regulator, one or the other, or all, the terms ⁇ (t), ⁇ (t), by modifying the real part and / or imaginary rigidity, with a regulation frequency ⁇ R which is between 0.9 times and 1.1 times the value of an integer multiple, this integer being greater than or equal to 2, in particular double, of the natural frequency ⁇ 0 of the system oscillator to be regulated.
  • the regulation frequency ⁇ R is an integer multiple, in particular double, of the natural frequency ⁇ 0 of the resonator system to be regulated.
  • the rest position x 0 (t) varies simultaneously with the parameters ⁇ (t), ⁇ (t), with a regulation frequency ⁇ R which is between 0.9 times and 1.1 times the value of an integer multiple, this integer being greater than or equal to 2, in particular double, of the natural frequency ⁇ 0 of the oscillator system to be regulated.
  • control frequency wR which is preferably a multiple integer, in particular double, of the natural frequency ⁇ 0 of the resonator system to be regulated.
  • the maintenance oscillator or regulator in addition to the modulation of the parametric terms, also introduces a nonparametric maintenance term f (t), the amplitude of which is negligible once the parametric regime is reached [ WB Case, The pumping of a swing from the standing position, Am. J. Phys. 64, 215 (1996) )].
  • the forcing term f (t) may be introduced by a second maintenance mechanism.
  • the principle can be reproduced in a timepiece or a watch which comprises a mechanical resonator balance sprung, with one end of the spiral attached to a ferrule integral with the balance, and the other end attached to a stud.
  • the oscillation can be maintained and the accuracy of the system is notoriously improved.
  • the maintenance is advantageously carried out with an integer multiple frequency, in particular double, of the frequency of the maintained resonator.
  • the mechanical means of maintenance can take different forms.
  • the present invention consists in varying the rigidity of the spiral.
  • the excitation at twice the frequency can be performed with a square signal, or with a pulse signal, it is not essential to have a sinusoidal excitation.
  • the maintenance regulator does not need to be very precise: its possible lack of precision only results in a loss of amplitude, but without variation of the frequency (except of course if this frequency is very variable, which is to be avoided).
  • these two oscillators, maintenance regulator and resonator maintained are not coupled, but one maintains the other, one-way.
  • the invention differs from the coupled oscillators known elsewhere: indeed, it is not desired, in the implementation of the invention, reversibility of energy transfer between two oscillators, but rather, in the whenever possible, a one-way energy transfer from one oscillator to the other.
  • the invention more particularly relates to the frequency regulation of a clock resonator by acting on the rigidity of an elastic return means.
  • the invention relates to a method of frequency regulation of a clock resonator mechanism 1 around its natural frequency ⁇ 0.
  • This method implements at least one regulating device 2 imparting a periodic movement to at least one component of the resonator mechanism 1 or to a tooling influencing the position or the rigidity of such a component of the resonator mechanism 1.
  • this periodic movement imposes a periodic modulation at least of the resonant frequency of the resonator mechanism 1, acting at least on the rigidity of a return means that includes this resonator mechanism 1, with a regulation frequency ⁇ R which is between 0.9 times and 1.1 times the value of an integer multiple of the natural frequency ⁇ 0, this integer being greater than or equal to 2.
  • the periodic movement imposes a periodic modulation of the resonant frequency of the resonator mechanism 1, imposing both a modulation of the rigidity of the resonator mechanism 1 and an inertial modulation of the mechanism resonator 1.
  • the periodic movement imposes a periodic modulation of the resonant frequency of the resonator mechanism 1, by imposing a modulation of the section of a spring, which comprises said resonator mechanism 1 and / or a modulating the modulus of elasticity of a biasing means that comprises the resonator mechanism 1, and / or modulating the shape of a biasing means that comprises the resonator mechanism 1.
  • this periodic movement can, again, impose a periodic modulation of the resonance frequency of the resonator mechanism 1, by imposing, again, a modulation of the active length of a spring, which this resonator mechanism 1 comprises.
  • the periodic movement imposes a periodic modulation of the resonance frequency of the resonator mechanism 1 by imposing both a modulation of the rigidity of the resonator mechanism 1, and a modulation of the rest point of the resonator mechanism 1.
  • At least one said regulating device 2 is printed, printing a periodic movement to least one component of the resonator mechanism 1, or to a tooling influencing the position of such a component of the resonator mechanism 1, and this periodic movement is printed to a resonator mechanism 1 comprising at least one elastic return means 40 comprising at least one spiral 4, or, in a variant close to the invention a torsion wire (or a flexible guide) 46, and is made to act at least one said regulating device 2 by controlling a periodic variation of the rigidity of the elastic return means 40 by modulating its section and / or modulus of elasticity and / or shape and / or stresses at its attachment points.
  • this method is applied to a resonator mechanism 1 comprising at least one elastic return means 40 comprising at least one hairspring 4, and at least one such a regulating device 2 is actuated by controlling a periodic variation of the real part and / or the imaginary part of the rigidity of this elastic return means 40, the real part of the stiffness defining the frequency of this resonator mechanism 1, and the imaginary part of the rigidity defining the quality factor of this resonator mechanism 1 .
  • this method is applied to a sprung-balance assembly 3, the spiral 4 of which constitutes the elastic return means 40 and is held between a stud 5 at a first external end 6 and a ferrule 7 at a second inner end 8, and is made to act at least one such regulator device 2 by controlling a periodic variation of the real part and / or the imaginary part of the rigidity of the spiral 4.
  • the external terminal curve 17 of the hairspring 4 is doubled locally by an additional turn 18 fixed to this hairspring 4 at at least a first junction point 19, and is made periodically with the regulating device 2 of twists in opposite directions on the outer end curve 17 and on the additional turn 18, by acting on the peak 5 for the outer terminal curve 17, and on an end 18A opposite this first junction point 19 of the additional turn 18 for the additional turn 18.
  • This double torsion has the advantage of allowing the modification of the rigidity of the spiral, without modifying its position in its plane.
  • the outer terminal curve 17 of the spiral 4 is locally doubled by an additional turn 18 fixed to this spring 4 at at least a first junction point 19, and is carried out periodically with the device regulator 2 a movement on an end 18A opposite this first junction point 19 of the additional coil 18.
  • the stiffness of the external terminal curve, and consequently that of the spiral, is thus modified. It is also possible to use the regulator device 2 to move the stud 5 and the end 18A.
  • an arm 20 is attached to the external terminal curve 17 of the hairspring 4 at at least a second junction point 21, and a movement is made periodically with the regulating device 2 on one end 22 of the arm 20 opposite this second point.
  • the arm 20 is chosen to be stiffer than the external terminal curve 17.
  • the spiral 4 is made with at least two conductive strips 41, 42, separated by insulating elements 43 and such a regulating device 2 is used to periodically apply a field to the two blades 41, 42 so as to modify the gap E1 ( Figure 7A ) or E2 ( Figure 7B ) between these two blades 41,42, and thus to change the total section and stiffness of the spiral 4. In a variant, they are periodically applied a different field.
  • the two blades 41, 42 are subjected to a different electromagnetic and / or electrostatic and / or magnetostatic field by a movement printed on a ferromagnetic or magnetized or electrostatically conductive or electrised polar mass (in particular magnets or electrets) in the vicinity.
  • each blade so as to give rise to an electric or magnetic or electrostatic or magnetostatic force between them, and to approach them or to move them away from each other.
  • the rigidity of the spiral 4 is modified because its section varies.
  • the movement is preferably mechanically printed to these polar masses.
  • the two blades 41, 42 are subjected to an electric or electrostatic field so as to locally polarize the spiral 4 and locally modify its rigidity 4.
  • such a regulating device 2 comprising a rotating mobile 28 equipped with magnets 29 at its periphery and whose field cooperates periodically with at least one magnet 45 placed on the spiral 4 (one can imagine placing the magnet on the side of the ferrule), to periodically change the stiffness of the hairspring 4.
  • the prestressing of the hairspring and the radial position of the counting point are also periodically modified.
  • a rotating mobile 28 is used that is inhomogeneously magnetized to periodically modify the rigidity of the spring 4 by the phenomenon of magnetostriction.
  • a regulator device 2 comprising a similar rotating mobile 28, this time equipped with electrets at its periphery, and whose electric field cooperates periodically with at least one electret placed on the external terminal curve 17 of the spiral 4, to periodically change the rigidity of the spiral 4, by the phenomenon of piezoelectricity.
  • the rigidity is modulated through a temperature variation.
  • the regulation frequency ⁇ R is twice the natural frequency ⁇ 0.
  • the relative amplitude of the modulation of the real part of the rigidity of the resonator mechanism 1 is greater than twice the inverse of the quality factor of the resonator mechanism 1.
  • the invention also relates to a watch movement 10, comprising at least one clocking resonator mechanism 1 designed to oscillate at a natural frequency ⁇ 0, this clock resonator mechanism 1 comprising at least one elastic return means 40 comprising at least a spiral 4, or in a variant close to the invention a torsion wire 46 or a flexible guide.
  • this movement 10 comprises at least one regulating device 2 controlling a periodic variation of the rigidity of the elastic return means 40 with a control frequency ⁇ R, which is between 0.9 times and 1.1 times the value of an integer multiple of the natural frequency ⁇ 0 of the resonator 1, said integer being greater than or equal to 2.
  • the clockwork resonator mechanism 1 comprises at least one balance spring-balance 3, the spiral 4 constitutes the elastic return means 40 and is held between a stud 5 at a first outer end 6 and a ferrule 7 to a second internal end 8, and the regulator device 2 controls a periodic variation of the rigidity of the spiral 4.
  • the movement 10 comprises an additional turn 18 fixed to this spring 4 in at least a first junction point 19 and lining locally with the external terminal curve 17 of the spiral 4.
  • the regulating device 2 periodically makes twists of opposite directions on the outer terminal curve 17 and on the additional turn 18, by acting on the stud 5 for the outer terminal curve 17, and on one end 18A of the additional turn 18 opposite this first connection point 19.
  • the movement 10 comprises an additional turn 18 fixed to this spring 4 at at least a first junction point 19 and lining locally with the external terminal curve 17 of the spring 4, and the regulating device 2 periodically moves on an end 18A of the additional turn 18 opposite this first junction point 19.
  • the additional turn 18 is either of flexibility equivalent to that of the external terminal curve 17, or much more rigid than the external terminal curve 17.
  • the movement 10 comprises an arm 20 fixed to the outer end curve 17 of the hairspring 4 at at least a second junction point 21, and the regulating device 2 periodically moves on one end 22 of the arm 20 opposite to this second junction point 21.
  • the arm 20 is more rigid than the external terminal curve 17.
  • the movement 10 comprises, in the vicinity of the outer terminal curve 17 of the spiral 4, another turn 23 which is held at a first end by a support 24 operated by the regulating device 2, and which is free at a second end 25 arranged to come periodically in contact with the external terminal curve 17 under the action of the regulating device 2 on this support 24.
  • the hairspring 4 comprises at least two conductive strips 41, 42, separated by insulating elements 43, and the regulating device 2 is arranged to periodically subject the two blades 41, 42 to an electric and / or magnetic field (in the broad sense , according to the definition of fields above), so as to change the gap E1, E2, between the two blades 41, 42, and thus to modify the total section and the rigidity of the spiral 4.
  • the regulator 2 is arranged to periodically subject the two blades 41, 42 to a different electric field.
  • the regulating device 2 comprises a rotating mobile 28 equipped with magnets 29 at its periphery and whose magnetic field cooperates periodically with at least one magnet 45 placed on the external terminal curve 17 of the spiral 4, to periodically modify the rigidity of the spiral 4 .
  • the resonator mechanism 1 comprises at least one rocker 26 comprising a ferrule 7 holding a torsion wire 46 which constitutes the elastic return means 40, and the regulating device 2 controls a periodic variation of the tension of the torsion wire 46.
  • layers or electrostatic elements may be implemented to vary the rigidity of a spring or spiral by covering it partially or completely with a piezoelectric layer activated by a small electronic module.
  • the regulation frequency wR of the regulator device 2 is twice the natural frequency ⁇ 0 of the resonator mechanism 1.
  • the invention also relates to a timepiece, more particularly a watch, comprising at least one such watch movement 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Electric Clocks (AREA)
  • Vibration Prevention Devices (AREA)
  • Control Of Position Or Direction (AREA)
EP14155433.7A 2014-02-17 2014-02-17 Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique Active EP2908188B1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP14155433.7A EP2908188B1 (fr) 2014-02-17 2014-02-17 Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique
EP14184155.1A EP2908189A3 (fr) 2014-02-17 2014-09-09 Mécanisme de synchronisation de deux oscillateurs d'horlogerie avec un rouage
EP14184631.1A EP2908190B1 (fr) 2014-02-17 2014-09-12 Résonateur combiné à frottement minimal
EP15153321.3A EP2908191B1 (fr) 2014-02-17 2015-01-30 Régulation en fréquence d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique
CN201510075805.7A CN104849994B (zh) 2014-02-17 2015-02-12 经由作用于弹性回位部件刚度的钟表调节器频率调节方法
US14/620,733 US9201400B2 (en) 2014-02-17 2015-02-12 Frequency regulation of a timepiece regulator via action on the rigidity of an elastic return means
RU2015105166A RU2015105166A (ru) 2014-02-17 2015-02-16 Способ регулирования частоты часового регулятора путём изменения жесткости упругого возвратного средства
JP2015027462A JP5997305B2 (ja) 2014-02-17 2015-02-16 弾性復元手段の剛性に対する作用による時計のレギュレータの周波数調節
JP2016566664A JP6224854B2 (ja) 2014-02-17 2015-06-22 2つの計時器用発振器を1つの歯車列と同期する方法
RU2016150515A RU2680411C1 (ru) 2014-02-17 2015-06-22 Способ синхронизации двух осцилляторов часов с одной зубчатой передачей
HK16101510.1A HK1213646A1 (zh) 2014-02-17 2016-02-11 經由作用於彈性回位部件剛度的鐘錶調節器頻率調節方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14155433.7A EP2908188B1 (fr) 2014-02-17 2014-02-17 Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique

Publications (2)

Publication Number Publication Date
EP2908188A1 EP2908188A1 (fr) 2015-08-19
EP2908188B1 true EP2908188B1 (fr) 2018-06-27

Family

ID=50101823

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14155433.7A Active EP2908188B1 (fr) 2014-02-17 2014-02-17 Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique
EP15153321.3A Active EP2908191B1 (fr) 2014-02-17 2015-01-30 Régulation en fréquence d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15153321.3A Active EP2908191B1 (fr) 2014-02-17 2015-01-30 Régulation en fréquence d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique

Country Status (6)

Country Link
US (1) US9201400B2 (ja)
EP (2) EP2908188B1 (ja)
JP (1) JP5997305B2 (ja)
CN (1) CN104849994B (ja)
HK (1) HK1213646A1 (ja)
RU (1) RU2015105166A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4187326A1 (fr) * 2021-11-29 2023-05-31 Omega SA RESSORT-SPIRAL POUR MÉCANISME RÉSONATEUR D'HORLOGERIE MUNI DE MOYENS D'
AJUSTEMENT DE LA RAIDEUR

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908184B1 (fr) * 2014-02-17 2017-10-18 The Swatch Group Research and Development Ltd. Procédé d'entretien et de régulation d'un résonateur d'horlogerie
JP6826673B2 (ja) * 2017-03-28 2021-02-03 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 調整デバイスにより動作が強化されるムーブメントを備えた機械式計時器
EP3457224B1 (fr) * 2017-09-14 2020-10-28 The Swatch Group Research and Development Ltd Element piezoelectrique pour un circuit d'autoregulation de frequence, systeme mecanique oscillant et dispositif le comprenant, et procede de fabrication de l'element piezoelectrique
EP3457223A1 (fr) * 2017-09-14 2019-03-20 The Swatch Group Research and Development Ltd Element piezoelectrique pour un circuit d'autoregulation de frequence, et systeme mecanique oscillant et dispositif le comprenant
CH714480A2 (fr) * 2017-12-20 2019-06-28 Swatch Group Res & Dev Ltd Dispositif de réglage autonome de la longueur active d'un spiral.
EP3629103B1 (fr) * 2018-09-28 2021-05-12 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électronique
EP4009115A1 (fr) * 2020-12-02 2022-06-08 Omega SA Ressort-spiral pour mécanisme résonateur d horlogerie muni de moyens d'ajustement de la rigidité
EP4016193A1 (fr) * 2020-12-18 2022-06-22 Omega SA Mecanisme resonateur d' horlogerie a guidage flexible muni de moyens d' ajustement de la rigidite
CN115603698B (zh) * 2022-11-28 2023-05-05 电子科技大学 一种基于弹性软化效应的可调谐薄膜体声波谐振器
WO2024141600A1 (fr) * 2022-12-28 2024-07-04 Csem Système réglant pour mouvement horloger
WO2024141601A1 (fr) * 2022-12-28 2024-07-04 Rolex Sa Système réglant pour mouvement horloger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217883B (de) * 1960-04-06 1966-05-26 Baehni & Co S A Elektrische Uhr mit einem Impulsgeber und einem Antriebsorgan fuer das Raederwerk, unter Verwendung eines magnetostriktiven Schwingers
US3451210A (en) * 1966-07-01 1969-06-24 Benrus Corp System for maintaining oscillations in an electric timing mechanism having an oscillatory element
CH594201B5 (ja) * 1972-12-13 1977-12-30 Ebauches Sa
FR2748583B1 (fr) * 1996-05-07 1998-06-26 Asulab Sa Stabilisation d'un circuit electronique de regulation du mouvement mecanique d'une piece d'horlogerie
CH696507A5 (fr) * 1998-02-05 2007-07-13 Asulab Sa Pièce d'horlogerie électronique comportant une génératrice entraînée par un barillet à ressort.
DE60314142T2 (de) * 2003-10-01 2008-01-24 Asulab S.A. Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
ATE557328T1 (de) * 2004-10-26 2012-05-15 Lvmh Swiss Mft Sa Chronographmodul für armbanduhr
EP1843227A1 (fr) * 2006-04-07 2007-10-10 The Swatch Group Research and Development Ltd. Résonateur couplé système réglant
EP2410386B1 (fr) * 2010-07-19 2018-10-03 Nivarox-FAR S.A. Balancier à réglage d'inertie avec insert
EP2570871B1 (fr) * 2011-09-14 2014-03-19 Montres Breguet SA Spiral à deux ressort-spiraux
HK1178376A2 (en) * 2012-07-17 2013-09-06 Master Dynamic Ltd Hairspring for mechanical timepiece
EP2690507B1 (fr) * 2012-07-26 2014-12-31 Nivarox-FAR S.A. Spiral d'horlogerie
CH707814A2 (fr) * 2013-03-19 2014-09-30 Nivarox Sa Mécanisme de réglage de spiral d'horlogerie.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4187326A1 (fr) * 2021-11-29 2023-05-31 Omega SA RESSORT-SPIRAL POUR MÉCANISME RÉSONATEUR D'HORLOGERIE MUNI DE MOYENS D'
AJUSTEMENT DE LA RAIDEUR

Also Published As

Publication number Publication date
US20150234356A1 (en) 2015-08-20
EP2908191B1 (fr) 2020-03-18
EP2908191A2 (fr) 2015-08-19
JP5997305B2 (ja) 2016-09-28
RU2015105166A3 (ja) 2018-09-20
HK1213646A1 (zh) 2016-07-08
CN104849994B (zh) 2017-12-05
CN104849994A (zh) 2015-08-19
EP2908191A3 (fr) 2015-09-02
JP2015152604A (ja) 2015-08-24
RU2015105166A (ru) 2016-09-10
US9201400B2 (en) 2015-12-01
EP2908188A1 (fr) 2015-08-19

Similar Documents

Publication Publication Date Title
EP2908188B1 (fr) Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique
EP3108305B1 (fr) Procede d'entretien et de regulation d'un resonateur d'horlogerie
EP2908185B1 (fr) Dispositif d'entretien et de régulation d'un résonateur d'horlogerie
EP2908187B1 (fr) Régulation d'un résonateur d'horlogerie par action sur la longueur active d'un spiral
EP2496990B1 (fr) Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
CH709279A2 (fr) Régulation d'un résonateur d'horlogerie par action sur la rigidité d'un moyen de rappel élastique.
EP1276126A1 (fr) Composant microélectromécanique
EP3273309B1 (fr) Oscillateur hybride d'horlogerie
EP2908186B1 (fr) Régulation de fréquence d'un résonateur d'horlogerie avec déplacement du spiral
CH709278A2 (fr) Régulation d'un résonateur d'horlogerie par action sur la longueur active d'un spiral.
EP3140698B1 (fr) Oscillateur mecanique a diapason pour mouvement horloger
EP2497095A1 (fr) Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant
CH709280A2 (fr) Procédé d'entretien et de régulation d'un résonateur d'horlogerie.
EP4391347A1 (fr) Résonateur piézoélectrique a guidage flexible, notamment pour moteur rotatif d'horlogerie
CH720388A2 (fr) Résonateur piézoélectrique, moteur piézoélectrique et pièce d'horlogerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180305

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STRANCZL, MARC

Inventor name: HESSLER, THIERRY

Inventor name: SARCHI, DAVIDE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1012851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014027443

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180627

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1012851

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181027

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014027443

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

26N No opposition filed

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181029

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180627

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 11

Ref country code: CH

Payment date: 20240301

Year of fee payment: 11

Ref country code: GB

Payment date: 20240123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 11