EP2905471B1 - Elektrische Kraftfahrzeug-Kühlmittelpumpe - Google Patents

Elektrische Kraftfahrzeug-Kühlmittelpumpe Download PDF

Info

Publication number
EP2905471B1
EP2905471B1 EP14154591.3A EP14154591A EP2905471B1 EP 2905471 B1 EP2905471 B1 EP 2905471B1 EP 14154591 A EP14154591 A EP 14154591A EP 2905471 B1 EP2905471 B1 EP 2905471B1
Authority
EP
European Patent Office
Prior art keywords
motor
coolant pump
electrically operated
heat
motor vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14154591.3A
Other languages
English (en)
French (fr)
Other versions
EP2905471A1 (de
Inventor
Toni Henke
Kathrin Holzbauer
Alexander Findeisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg Pump Technology GmbH
Original Assignee
Pierburg Pump Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg Pump Technology GmbH filed Critical Pierburg Pump Technology GmbH
Priority to EP14154591.3A priority Critical patent/EP2905471B1/de
Priority to PCT/EP2015/051395 priority patent/WO2015121051A1/de
Publication of EP2905471A1 publication Critical patent/EP2905471A1/de
Application granted granted Critical
Publication of EP2905471B1 publication Critical patent/EP2905471B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps

Definitions

  • the invention relates to an electric motor vehicle coolant pump, which is driven by an electric drive motor, which is designed as a so-called canned motor.
  • a motor vehicle coolant pump serves to pump a liquid heat carrier, hereinafter referred to as coolant, in a heating or cooling circuit.
  • the coolant circuit does not necessarily have to be a main flow of the circuit, but may also form a side stream.
  • canned motors are used as drive motors, which are commutated electronically.
  • the motor rotor is arranged in the wet area, whereas the motor stator forming the motor coils are arranged in the dry area.
  • the motor rotor space and the motor stator space are separated from each other in a liquid-tight manner by a generally cylindrical can.
  • the problem with an electronically commutated drive motor is basically the cooling of the motor control, which has a plurality of power semiconductors for controlling the motor coils, which must heat up considerably during operation and must be cooled accordingly in order to prevent their destruction.
  • the motor coils are another heat source that should be thermally shielded as well as possible with respect to the motor control. To cool the power semiconductors, it makes sense to use this for the coolant flowing through the coolant pump.
  • EP 2 651 015 A1 discloses an electric fluid pump in which the control room with the engine control immediately adjacent to the containment shell.
  • Out EP 2 469 102 A1 is an electric motor vehicle coolant pump known, the canned drive motor is electronically commutated.
  • the dividing wall often consists of a material with good heat conduction, in order to ensure a good heat flow from the engine control through the dividing wall to the coolant.
  • the partition also separates the motor coils from the control room, heat from the motor coils into the control room can also be entered via this path.
  • Object of the invention against this background is to provide an electric motor vehicle coolant pump with improved cooling of the engine control.
  • the electric motor vehicle coolant pump has a pump unit, which is driven by the electric drive motor.
  • the pump unit may for example be designed as a so-called impeller having a central axial inlet and the liquid coolant pumped radially outward.
  • In the motor section is a permanent magnetically excited motor rotor, a plurality of motor coils provided motor stator and a split pot, which separates the motor stator liquid-tight from the motor rotor.
  • the fixed motor coils are preferably annular around the rotating motor rotor arranged around.
  • the coolant pump has a control section with a control room in which the engine control is arranged.
  • the control room is hermetically separated from the motor section by a plastic partition wall lying essentially in a transverse plane, so that the partition wall shields the control room from the containment shell insulating the wet space with the motor stator.
  • the partition wall has a heat transfer opening in which a heat conductor is arranged which is in heat-conducting contact with the split pot with its one axial longitudinal end and in heat-conducting contact with the motor control at its other axial longitudinal end.
  • the specific thermal conductivity of the heat conductor is higher than the specific thermal conductivity of the partition wall plastic. Particularly preferably, the specific thermal conductivity of the heat conductor is at least twice as high as the specific thermal conductivity of the partition wall plastic.
  • the control room with the motor control is thermally well insulated and shielded from the motor section, in which inter alia, the heat generating motor coils are arranged.
  • the heat input of the motor coils in the control room is reduced in this way to a minimum.
  • the heat conductor in the heat transfer opening of the partition wall produces "pointwise" a thermal bridge between the motor control and the containment shell, which preferably consists of a material with a relatively high specific heat conductivity.
  • the heat conductor is spatially preferably arranged where the motor control generates the most heat, ie in the vicinity of the power semiconductors.
  • the plastic partition wall including the partition axially penetrating heat conductor on the one hand, a good thermal insulation of the control room with respect to the motor coils and on the other hand, a targeted heat dissipation from the engine control to the containment shell realized.
  • the heat conductor is preferably formed by a thermal adhesive or a non-adhesive thermal compound that completely fills and closes the heat transfer opening so that the motor section is fluidically completely isolated from the control section.
  • thermal adhesive is permanently a gap-free connection of the heat conductor to the containment shell on the one hand and the engine control on the other hand ensured.
  • the heat conductor can also be designed to be elastic and clamped axially between the motor control and the containment shell, so that a gap-free thermal connection of the heat conductor to the containment shell and the motor control is permanently ensured in this way.
  • the heat conductor can also be formed by a rigid and prefabricated solid, for example, a metal body or a ceramic body, which is particularly preferably thermally coupled by a thermal adhesive or a thermal mass gap-free to the engine control and the containment shell, but (electrically insulating) formed is.
  • the heat conductor is designed as an electrical insulator.
  • the heat conductor can be thermally coupled directly to a conductor track or to a power semiconductor without thereby producing an electrical connection from the conductor track or the power semiconductor to the containment shell.
  • the heat transfer opening is formed by a sleeve body whose axial length substantially corresponds to the axial distance between the containment shell and the engine control.
  • the axial length of the sleeve body is greater than the axial wall thickness of the partition wall, so that the sleeve body axially projects beyond the partition wall on one or both axial sides.
  • the plastic partition forms the only spatial separation between the motor coils and the control room. Since the plastic baffle forms good thermal insulation, another baffle is not required to ensure good thermal isolation of the motor bobbins from the control room.
  • the plastic partition wall is an integral part of a plastic housing body which radially surrounds the motor stator and / or the control room. As a result, the additional production cost for the partition is kept relatively low.
  • the containment shell is made of metal, which has a good thermal conductivity.
  • a metal containment shell has the advantage of being absolutely leakproof with respect to liquids such as water or water vapor, so that a transfer of moisture into the control room is excluded.
  • the containment shell has a substantially lying in a transverse plane pot bottom, which is in heat-conducting contact with the heat conductor directly.
  • the Heat conductor or the heat transfer opening is within the axial projection of the pot bottom.
  • the motor control is arranged on a standing in a transverse plane board and has the motor control power semiconductors, which are directly or indirectly connected via separate guide elements thermally conductive to the heat conductor.
  • the power semiconductors When the power semiconductors are located on the distal side of the board, the heat is conducted through the routing elements to the proximal side of the board.
  • the power semiconductors may be arranged on the proximal side of the board facing the plastic partition wall so that the cooling vanes of the power semiconductors are connected directly to the heat conductor with the heat conductor.
  • the heat-conducting elements of the motor control board are particularly preferably formed by metal sleeves, metal sleeves filled with a heat conductor and / or metal pins which are inserted in the board.
  • the power semiconductors may in this case be arranged on the distal side of the circuit board, wherein the heat conduction elements establish the thermal connection through the circuit board to the proximal side of the circuit board.
  • the power semiconductors are arranged in close proximity to the heat conductor, so that the heat path is short and the absolute thermal resistance between the power semiconductors and the heat conductor is low.
  • the FIG. 1 shows an electric motor vehicle coolant pump 10, which is used in a cooling circuit of a motor vehicle, for example, the pumping of a liquid coolant, such as water, for cooling an internal combustion engine or other aggregate.
  • a liquid coolant such as water
  • the coolant pump 10 has three sections in the axial direction, namely a pump section 12, a motor section 14 adjoining thereto and a control section 16 adjoining the motor section 14.
  • a pump rotor 20 is arranged, which in the present case is a so-called impeller axial central inlet and the coolant pumps radially outward.
  • the pump rotor 20 is driven by an electronically commutated drive motor, which is essentially formed by a permanent magnetically excited motor rotor 30 and these coaxial and annular motor coils 33 surrounding the motor rotor 30, which constitute the motor stator 32.
  • the motor rotor 30 is hermetically and liquid-tight isolated from the motor stator 32 by a metal can 40. Radially between the motor rotor 30 and the motor stator 32, a cylinder body 44 of the split pot 40 is arranged in the cylindrical magnetic gap between the motor stator 32 and the motor rotor 30th lies.
  • the containment shell 40 has adjacent to the pump facing away from the longitudinal end of the motor rotor 30 adjacent to an annular pot bottom 42.
  • a plastic partition wall 50 arranged in a transverse plane, which forms a fluid-tight separation of the motor section 14 from the control section 16 defined by an electronic motor control 71 in a control room 70.
  • the plastic partition wall 50 is an integral part of a plastic housing body 18 which is substantially cylindrical and radially surrounds the motor stator 32 and the control room 70.
  • the plastic partition wall 50 has a heat transfer opening 64, which is extended by a sleeve body 60 axially beyond the axial thickness of the partition 50 on both sides, so that on the proximal side a proximal collar 63 and on the distal side a distal collar 62nd is realized.
  • the elongate heat transfer opening 64 formed in this way is completely filled with a heat conductor 66, which consists of a cured bathleitkleber.
  • the thermal adhesive has a good specific thermal conductivity and forms an electrical insulator.
  • the motor controller 71 in the control room 70 has a board 73 lying in a transverse plane, which carries the electronic components, which also include a plurality of power semiconductors 72.
  • the power semiconductors 72 are arranged on the distal side of the circuit board 73, ie on the side of the circuit board 73 facing away from the dividing wall 50.
  • the power semiconductors 72 are heaped and concentrated in a small area, in axial alignment with the heat conductor 66.
  • the circuit board 73 is repeatedly through-plated with guide elements 74 in the form of metal sleeves or metal pins filled with a heat-conducting compound, so that the heat generated by the power semiconductors 72 via their cooling surfaces and the guide elements 74 to the proximal side of the board 73 is headed.
  • a metallic collecting surface 76 is applied, which establishes the thermal connection between the guide elements 74 on the proximal side of the printed circuit board.
  • the heat conductor 66 is thermally connected directly to the collecting surface 76 such that overall a low thermal resistance is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine elektrische Kraftfahrzeug-Kühlmittelpumpe, die durch einen elektrischen Antriebsmotor angetrieben wird, der als sogenannter Spaltrohrmotor ausgebildet ist.
  • Eine Kraftfahrzeug-Kühlmittelpumpe dient dazu, einen flüssigen Wärmeträger, im Folgenden stets Kühlmittel genannt, in einem Heiz- oder Kühl-Kreislauf zu pumpen. Der Kühlmittel-Kreislauf muss nicht notwendigerweise ein Hauptstrom des Kreislaufes sein, sondern kann auch einen Nebenstrom bilden. Für eine öffnungsfreie Trennung des Nassbereiches vom Trockenbereich der Kühlmittelpumpe werden als Antriebsmotoren sogenannte Spaltrohrmotoren verwendet, die elektronisch kommutiert werden. Der Motorrotor ist in dem Nassbereich angeordnet, wohingegen die den Motorstator bildenden Motorspulen im Trockenbereich angeordnet sind. Der Motorrotor-Raum und der Motorstator-Raum sind durch ein in der Regel zylindrisches Spaltrohr voneinander flüssigkeitsdicht voneinander getrennt.
  • Problematisch ist bei einem elektronisch kommutierten Antriebsmotor grundsätzlich die Kühlung der Motorsteuerung, die zur Ansteuerung der Motorspulen mehrere Leistungshalbleiter aufweist, die im Betrieb stark erhitzen und entsprechend gekühlt werden müssen, um ihre Zerstörung zu verhindern. Die Motorspulen sind eine weitere Wärmequelle, die im Bezug auf die Motorsteuerung thermisch möglichst gut abgeschirmt sein soll. Zur Kühlung der Leistungshalbleiter bietet es sich an, hierfür das Kühlmittel zu nutzen, das die Kühlmittelpumpe durchströmt.
  • EP 2 651 015 A1 offenbart eine elektrische Flüssigkeitspumpe, bei der der Steuerungsraum mit der Motorsteuerung unmittelbar angrenzt an den Spalttopf.
  • Aus EP 2 469 102 A1 ist eine elektrische Kraftfahrzeug-Kühlmittelpumpe bekannt, deren Spaltrohr-Antriebsmotor elektronisch kommutiert wird. Die Kühlung der elektronischen Motorsteuerung erfolgt über eine im wesentlichen in einer Querebene angeordnete Trennwand, die den Nassraum, in dem der permanentmagnetische Motorrotor angeordnet ist, von dem Steuerungsraum trennt, in dem die elektronische Motorsteuerung angeordnet ist. Die Trennwand besteht in der Praxis häufig aus einem Material mit guter Wärmeleitung, um einen guten Wärmefluss von der Motorsteuerung durch die Trennwand zum Kühlmittel sicherzustellen. Da die Trennwand auch die Motorspulen von dem Steuerungsraum trennt, kann über diesen Weg jedoch auch Wärme von den Motorspulen in den Steuerungsraum eingetragen werden.
  • Aufgabe der Erfindung vor diesem Hintergrund ist es, eine elektrische Kraftfahrzeug-Kühlmittelpumpe mit verbesserter Kühlung der Motorsteuerung zu schaffen.
  • Diese Aufgabe wird durch eine elektrische Kraftfahrzeug-Kühlmittelpumpe mit den Merkmalen des Anspruches 1 gelöst.
  • Die erfindungsgemäße elektrische Kraftfahrzeug-Kühlmittelpumpe weist ein Pumpenaggregat auf, das durch den elektrischen Antriebsmotor angetrieben wird. Das Pumpaggregat kann beispielsweise als so genannter Impeller ausgebildet sein, der einen zentralen axialen Einlass aufweist und das flüssige Kühlmittel radial nach außen pumpt. In dem Motorabschnitt ist ein permanentmagnetisch erregter Motorrotor, ein mehrere Motorspulen aufweisenden Motorstator und ein Spalttopf vorgesehen, der den Motorstator flüssigkeitsdicht von dem Motorrotor trennt. Die feststehenden Motorspulen sind bevorzugt ringförmig um den rotierenden Motorrotor herum angeordnet. Ferner weist die Kühlmittelpumpe einen Steuerungsabschnitt mit einem Steuerungsraum auf, in dem die Motorsteuerung angeordnet ist.
  • Der Steuerungsraum ist durch eine im Wesentlichen in einer Querebene liegende Kunststoff-Trennwand von dem Motorabschnitt hermetisch getrennt, so dass die Trennwand den Steuerungsraum von dem den Nassraum mit dem Motorstator isolierenden Spalttopf abschirmt. Die Trennwand weist eine Wärmeübertragungsöffnung auf, in der ein Wärmeleiter angeordnet ist, der mit seinem einen axialen Längsende in wärmeleitenden Kontakt mit dem Spalttopf und mit seinem anderen axialen Längsende in wärmeleitenden Kontakt mit der Motorsteuerung steht. Die spezifische Wärmeleitfähigkeit des Wärmeleiters ist höher als die spezifische Wärmeleitfähigkeit des Trennwand-Kunststoffs. Besonders bevorzugt ist die spezifische Wärmeleitfähigkeit des Wärmeleiters mindestens doppelt so hoch wie die spezifische Wärmeleitfähigkeit des Trennwand-Kunststoffs.
  • Durch die Kunststoff-Trennwand ist der Steuerungsraum mit der Motorsteuerung thermisch gut isoliert und abgeschirmt gegenüber dem Motorabschnitt, in dem unter anderem die wärmeerzeugenden Motorspulen angeordnet sind. Der Wärmeeintrag der Motorspulen in den Steuerungsraum ist auf diese Weise auf ein Minimum reduziert. Der Wärmeleiter in der Wärmeübertragungsöffnung der Trennwand stellt aber "punktuell" eine Wärmebrücke zwischen der Motorsteuerung und dem Spalttopf her, der bevorzugt aus einem Material mit relativ hoher spezifischerer Wärmeleitfähigkeit besteht. Der Wärmeleiter ist räumlich bevorzugt dort angeordnet, wo die Motorsteuerung die meiste Wärme erzeugt, also in der Nähe der Leistungshalbleiter.
  • Durch die Kunststoff-Trennwand einschließlich des die Trennwand axial durchdringenden Wärmeleiters wird einerseits eine gute thermische Isolation des Steuerungsraums gegenüber den Motorspulen und andererseits dennoch eine gezielte Wärmeabführung von der Motorsteuerung zum Spalttopf realisiert.
  • Der Wärmeleiter wird bevorzugt von einem Wärmeleitkleber oder einer nicht-klebenden Wärmeleitmasse gebildet, der bzw. die die Wärmeübertragungsöffnung vollständig ausfüllt und verschließt, so dass der Motorabschnitt fluidisch vollständig isoliert ist von dem Steuerungsabschnitt. Durch den Wärmeleitkleber wird dauerhaft eine spaltfreie Anbindung des Wärmeleiters an den Spalttopf einerseits und die Motorsteuerung andererseits sichergestellt. Der Wärmeleiter kann auch elastisch ausgebildet und zwischen der Motorsteuerung und dem Spaltstopf axial eingespannt sein, so dass auch auf diese Weise dauerhaft eine spaltfreie thermische Anbindung des Wärmeleiters an den Spalttopf und die Motorsteuerung sichergestellt ist.
  • Alternativ oder ergänzend kann der Wärmeleiter auch von einem steifen und vorgefertigten Festkörper gebildet sein, beispielsweise von einem Metallkörper oder einem Keramikkörper, der besonders bevorzugt durch einen Wärmeleitkleber oder eine Wärmeleitmasse spaltfrei an die Motorsteuerung und den Spalttopf thermisch angekoppelt ist, jedoch (elektrisch isolierend) ausgebildet ist.
  • Vorzugsweise ist der Wärmeleiter als elektrischer Isolator ausgebildet. Hierdurch kann der Wärmeleiter unmittelbar an eine Leiterbahn oder an einen Leistungshalbleiter thermisch angekoppelt werden, ohne dass hierdurch eine elektrische Verbindung von der Leiterbahn bzw. dem Leistungshalbleiter zu dem Spalttopf hergestellt wird.
  • Vorzugsweise wird die Wärmeübertragungsöffnung von einem Hülsenkörper gebildet, dessen axiale Länge im wesentlichen dem axialen Abstand zwischen dem Spalttopf und der Motorsteuerung entspricht. Die axiale Länge des Hülsenkörpers ist größer als die axiale Wandstärke der Trennwand, so dass der Hülsenkörper die Trennwand axial an einer oder beiden axialen Seiten überragt.
  • Vorzugsweise bildet die Kunststoff-Trennwand die einzige räumliche Trennung zwischen den Motorspulen und dem Steuerungsraum. Da die Kunststoff-Trennwand eine gute thermische Isolation bildet, ist eine weitere Trennwand nicht erforderlich, um eine gute thermische Isolation der Motorspulen von dem Steuerungsraum sicherzustellen.
  • Gemäß einer bevorzugten Ausführungsform ist die Kunststoff-Trennwand ein einstückiger Teil eines Kunststoff-Gehäusekörpers, der den Motorstator und/oder den Steuerungsraum radial umgibt. Hierdurch wird der zusätzliche Herstellungsaufwand für die Trennwand relativ gering gehalten.
  • Vorzugsweise besteht der Spalttopf aus Metall, das eine gute Wärmeleitfähigkeit aufweist. Gegenüber einem Spalttopf aus Kunststoff weist ein Metall- Spalttopf den Vorteil auf, absolut dicht im Bezug auf Flüssigkeiten wie Wasser bzw. Wasserdampf zu sein, so dass ein Übertritt von Feuchtigkeit in den Steuerungsraum ausgeschlossen ist.
  • Gemäß einer bevorzugten Ausführungsform weist der Spalttopf einen im Wesentlichen in einer Querebene liegenden Topfboden auf, der mit dem Wärmeleiter unmittelbar in wärmeleitenden Kontakt steht. Der Wärmeleiter bzw. die Wärmeübertragungsöffnung liegt innerhalb der axialen Projektion des Topfbodens.
  • Vorzugsweise ist die Motorsteuerung auf einer in einer Querebene stehenden Platine angeordnet und weist die Motorsteuerung Leistungshalbleiter auf, die unmittelbar oder über separate Leitelemente mittelbar wärmeleitend mit dem Wärmeleiter verbunden sind. Wenn die Leistungshalbleiter auf der distalen Seite der Platine angeordnet sind, wird die Wärme durch die Leitelemente auf die proximale Seite der Platine geleitet. Die Leistungshalbleiter können alternativ auf der der Kunststoff-Trennwand zugewandten proximalen Seite der Platine angeordnet sein, so dass die Kühlfahnen der Leistungshalbleiter unmittelbar wärmeleitend mit den mit dem Wärmeleiter verbunden sind.
  • Besonders bevorzugt werden die Wärme-Leitelemente der Motorsteuerungs- Platine von Metallhülsen, mit einem Wärmeleiter gefüllten Metallhülsen und/oder Metallstiften gebildet, die in der Platine stecken. Die Leistungshalbleiter können in diesem Fall auf der distalen Seite der Platine angeordnet sein, wobei die Wärme-Leitelemente die thermische Verbindung durch die Platine hindurch zur proximalen Seite der Platine herstellen. Besonders bevorzugt sind die Leistungshalbleiter in nächster Nähe zu dem Wärmeleiter angeordnet, so dass die Wärmestrecke kurz und der absolute thermische Widerstand zwischen den Leistungshalbleitern und dem Wärmeleiter gering ist.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
    • Figur 1 einen Längsschnitt einer elektrischen Kraftfahrzeug-Kühlmittelpumpe mit einer Kunststoff-Trennwand, die eine Wärmeübertragungsöffnung aufweist, in der ein Wärmeleiter angeordnet ist,
    • Figur 2 die proximale Seite der Trennwand der Figur 1 in perspektivischer Darstellung, und
    • Figur 3 die distale Seite der Trennwand der Figur 1 in perspektivischer Darstellung.
  • Die Figur 1 zeigt eine elektrische Kraftfahrzeug-Kühlmittelpumpe 10, die in einem Kühlkreislauf eines Kraftfahrzeugs beispielsweise dem Pumpen eines flüssigen Kühlmittels, beispielsweise Wasser, zur Kühlung eines Verbrennungsmotors oder eines anderen Aggregates dient.
  • Die Kühlmittelpumpe 10 weist in axialer Richtung drei Abschnitte auf, nämlich einen Pumpenabschnitt 12, einem daran angrenzenden Motorabschnitt 14 und einen an den Motorabschnitt 14 angrenzenden Steuerungsabschnitt 16. In dem Pumpenabschnitt 12 ist ein Pumpenrotor 20 angeordnet, das vorliegend als sogenannter Impeller ausgebildet ist und einen axialen zentralen Einlass aufweist und das Kühlmittel radial nach außen pumpt. Der Pumpenrotor 20 wird durch einen elektronisch kommutierten Antriebsmotor angetrieben, der im wesentlichen von einem permanentmagnetisch erregten Motorrotor 30 und diesen koaxial und ringförmig umgebenden Motorspulen 33 gebildet wird, die den Motorrotor 30, die den Motorstator 32 darstellen.
  • Der Motorrotor 30 ist durch einen Metall- Spalttopf 40 hermetisch und flüssigkeitsdicht isoliert von dem Motorstator 32. Radial zwischen dem Motorrotor 30 und dem Motorstator 32 ist ein Zylinderkörper 44 des Spalttopfes 40 angeordnet, der in dem zylindrischen Magnetspalt zwischen dem Motorstator 32 und dem Motorrotor 30 liegt. Der Spalttopf 40 weist an das pumpenabgewandte Längsende des Motorrotors 30 angrenzend einen ringförmigen Topfboden 42 auf.
  • Zwischen dem Motorabschnitt 14 und dem Steuerungsabschnitt 16 ist eine in einer Querebene angeordnete Kunststoff-Trennwand 50 vorgesehen, die eine fluiddichte Trennung des Motorabschnitts 14 von dem Steuerungsabschnitt 16 bildet, der durch eine elektronische Motorsteuerung 71 in einem Steuerungsraum 70 definiert ist. Die Kunststoff-Trennwand 50 ist ein einstückiger Teil eines Kunststoff-Gehäusekörpers 18, der im Wesentlichen zylindrisch ausgebildet ist und den Motorstator 32 und den Steuerungsraum 70 radial umgibt.
  • Die Kunststoff-Trennwand 50 weist eine Wärmeübertragungsöffnung 64 auf, die durch einen Hülsenkörper 60 axial über die axiale Dicke der Trennwand 50 hinaus zu beiden Seiten verlängert ist, so dass auf der proximalen Seite ein proximaler Kragen 63 und auf der distalen Seite ein distaler Kragen 62 realisiert ist. Die auf diese Weise gebildete langgestreckte Wärmeübertragungsöffnung 64 ist vollständig ausgefüllt mit einem Wärmeleiter 66, der aus einem ausgehärteten Wärmeleitkleber besteht. Der Wärmeleitkleber weist eine gute spezifische Wärmeleitfähigkeit auf und bildet einen elektrischen Isolator.
  • Die Motorsteuerung 71 in dem Steuerungsraum 70 weist eine in einer Querebene liegende Platine 73 auf, die die elektronischen Bauelemente trägt, zu denen auch mehrere Leistungshalbleiter 72 zählen. Die Leistungshalbleiter 72 sind auf der distalen Seite der Platine 73 angeordnet, also auf der der Trennwand 50 abgewandten Seite der Platine 73. Die Leistungshalbleiter 72 sind gehäuft und auf eine kleine Fläche konzentriert angeordnet, und zwar in axialer Flucht mit dem Wärmeleiter 66.
  • Die Platine 73 ist im Bereich der Leistungshalbleiter 72 mehrfach mit Leitelementen 74 in Form von mit einer Wärmeleitmasse gefüllten Metall-Hülsen oder Metall-Stiften durchkontaktiert, so dass die von den Leistungshalbleitern 72 generierte Wärme über ihre Kühlflächen und die Leitelemente 74 zur proximalen Seite der Platine 73 geleitet wird. Auf der proximalen Seite der Platine 73 ist eine metallische Sammelfläche 76 aufgebracht, die auf der proximalen Leiterplatten-Seite die thermische Verbindung zwischen den Leitelementen 74 herstellt. Der Wärmeleiter 66 ist unmittelbar mit der Sammelfläche 76 thermisch derart verbunden, dass insgesamt ein geringer thermischer Widerstand realisiert ist.

Claims (11)

  1. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) mit
    einem Pumpenrotor (20),
    einem Motorabschnitt (14) mit einem permanentmagnetischen Motorrotor (30), einem Motorspulen (33) aufweisenden Motorstator (32) und einem Spalttopf (40), der den Motorstator (32) flüssigkeitsdicht von dem Motorrotor (30) trennt, und
    einem Steuerungsabschnitt (16) mit einem Steuerungsraum (70), in dem die Motorsteuerung (71) angeordnet ist, dadurch gekennzeichnet, dass
    der Steuerungsraum (70) durch eine im wesentlichen in einer Querebene liegende Kunststoff-Trennwand (50) von dem Motorabschnitt (14) getrennt ist,
    die Trennwand (50) eine Wärmeübertragungsöffnung (64) aufweist, in der ein Wärmeleiter (66) angeordnet ist, der mit seinem einen Längsende in wärmeleitenden Kontakt mit dem Spalttopf (40) und mit seinem anderen Längsende in wärmeleitenden Kontakt mit der Motorsteuerung (71) steht, und
    die spezifische Wärmeleitfähigkeit des Wärmeleiters (66) höher ist als die spezifische Wärmeleitfähigkeit des Trennwand-Kunststoffs.
  2. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach Anspruch 1, wobei die Wärmeübertragungsöffnung (64) von einem Hülsenkörper (60) gebildet wird, dessen axiale Länge im wesentlichen dem axialen Abstand zwischen dem Spalttopf (40) und der Motorsteuerung (71) entspricht.
  3. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei der Wärmeleiter (66) von einem Wärmeleitkleber gebildet wird, der die Wärmeübertragungsöffnung (64) vollständig verschließt.
  4. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei der Wärmeleiter (66) von einem Festkörper gebildet wird.
  5. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei der Wärmeleiter (66) ein elektrischer Isolator ist.
  6. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei die Kunststoff-Trennwand (50) die einzige Trennung zwischen den Motorspulen (33) und dem Steuerungsraum (70) bildet.
  7. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei die Kunststoff-Trennwand (50) einstückiger Teil eines Kunststoff-Gehäusekörpers (18) ist, der den Motorstator (32) und/oder den Steuerungsraum (70) radial umgibt.
  8. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei der Spalttopf (40) aus Metall besteht.
  9. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei der Spalttopf (40) einen im wesentlichen in einer Querebene liegenden Topfboden (42) aufweist, der mit dem Wärmeleiter (66) unmittelbar in wärmeleitenden Kontakt steht
  10. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei die Motorsteuerung (71) auf einer in einer Querebene stehenden Platine (73) angeordnet ist und Leistungshalbleiter (72) aufweist, die unmittelbar oder über Leitelemente (74) wärmeleitend mit dem Wärmeleiter (66) verbunden sind.
  11. Elektrische Kraftfahrzeug-Kühlmittelpumpe (10) nach einem der vorangegangenen Ansprüche, wobei die Leitelemente (74) von Metall-Hülsen und/oder Metall-Stiften gebildet werden, die in der Platine (73) stecken.
EP14154591.3A 2014-02-11 2014-02-11 Elektrische Kraftfahrzeug-Kühlmittelpumpe Active EP2905471B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14154591.3A EP2905471B1 (de) 2014-02-11 2014-02-11 Elektrische Kraftfahrzeug-Kühlmittelpumpe
PCT/EP2015/051395 WO2015121051A1 (de) 2014-02-11 2015-01-23 Elektrische kraftfahrzeug-kühlmittelpumpe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14154591.3A EP2905471B1 (de) 2014-02-11 2014-02-11 Elektrische Kraftfahrzeug-Kühlmittelpumpe

Publications (2)

Publication Number Publication Date
EP2905471A1 EP2905471A1 (de) 2015-08-12
EP2905471B1 true EP2905471B1 (de) 2019-10-09

Family

ID=50072954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14154591.3A Active EP2905471B1 (de) 2014-02-11 2014-02-11 Elektrische Kraftfahrzeug-Kühlmittelpumpe

Country Status (2)

Country Link
EP (1) EP2905471B1 (de)
WO (1) WO2015121051A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206406A1 (de) * 2016-04-15 2017-10-19 Bühler Motor GmbH Pumpenmotor mit einem Spalttopf
CN109863669B (zh) * 2016-12-22 2022-03-22 皮尔伯格泵技术有限责任公司 汽车电动气泵
EP3339656B1 (de) * 2016-12-22 2020-11-11 Grundfos Holding A/S Pumpenaggregat
IT201700117896A1 (it) * 2017-10-18 2019-04-18 Taco Italia S R L Circolatore di fluido
DE102020201306A1 (de) * 2019-10-15 2021-04-15 Vitesco Technologies GmbH Fluidpumpe
CN111852888A (zh) * 2020-07-28 2020-10-30 安徽天富泵阀有限公司 一种屏蔽泵系统
US20240113597A1 (en) 2020-12-14 2024-04-04 Pierburg Pump Technology Gmbh Automotive electrical liquid pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949171A (en) * 1998-06-19 1999-09-07 Siemens Canada Limited Divisible lamination brushless pump-motor having fluid cooling system
JP4084351B2 (ja) * 2004-12-24 2008-04-30 株式会社日立製作所 モータ一体型内接歯車式ポンプ及び電子機器
EP2651015B1 (de) * 2010-12-07 2019-12-18 Mitsubishi Electric Corporation Motor mit eingebetteter leistungsumwandlungsschaltung, flüssigkeitspumpe mit diesem motor mit eingebetteter leistungsumwandlungsschaltung, klimaanlage, in dem diese flüssigkeitspumpe installiert ist, wassererhitzer, in dem dieses flüssigkeitspumpe installiert ist, und anlage mit installiertem motor mit eingebetteter leistungsumwandlungsschaltung
EP2469102B1 (de) 2010-12-22 2017-08-02 Pierburg Pump Technology GmbH Kfz-Kühlmittelpumpe
JP2013099021A (ja) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp ポンプ及びヒートポンプ装置

Also Published As

Publication number Publication date
WO2015121051A1 (de) 2015-08-20
EP2905471A1 (de) 2015-08-12

Similar Documents

Publication Publication Date Title
EP2905471B1 (de) Elektrische Kraftfahrzeug-Kühlmittelpumpe
EP3232543B1 (de) Pumpenmotor mit einem spalttopf
EP3163721B1 (de) Elektrische maschine
EP2476914A1 (de) Elektrische Kfz-Kühlmittelpumpe
EP3631966B1 (de) Kraftfahrzeug und stromrichtereinrichtung für ein kraftfahrzeug
DE102016202463A1 (de) Elektronische Steuervorrichtung, Motorsteuervorrichtung und elektrische Fluidpumpe
DE112015004701T5 (de) Elektrische Vorrichtung und Herstellungsverfahren für elektrische Vorrichtung
DE102014110299A1 (de) Elektrische Maschine
EP1637741A1 (de) Flüssigkeitsgekühltes Pumpensteuergerät und Flüssigkeitspumpenanordnung
DE112010004321T5 (de) Antriebsvorrichtung
WO1997049162A1 (de) Elektromotor
DE102014017745A1 (de) Nutverschluss einer elektrischen Maschine und elektrische Maschine
DE102012021600B4 (de) Elektromotor
EP2003322A2 (de) Kraftstoffpumpe mit elektrisch kommutiertem Motor
DE102013018317A1 (de) Elektrische Maschine
EP3365616A1 (de) Wärmeübertrager, insbesondere thermoelektrische wärmepumpe, zum temperieren einer batterie
EP3016254A2 (de) Kühlung einer elektrischen antriebseinrichtung
DE102012216694A1 (de) Elektrische Verbindung mit Kühlung zur Wärmeableitung
DE102013203500B4 (de) Lüftermotoreinheit für ein Fahrzeug
EP3759802A1 (de) Elektrisches kfz-nebenaggregat
DE212016000048U1 (de) Pumpengruppe mit gekühlter elektronischer Steuervorrichtung
WO2015067514A1 (de) Elektromotorische wasserpumpe
DE4435511C1 (de) Pumpenaggregat
DE19904162A1 (de) Brennstoff-Elektromotorpumpe
EP2725691A1 (de) Elektrisches Kfz-Nebenaggregat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012795

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1189144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014012795

Country of ref document: DE

Representative=s name: TERPATENT PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014012795

Country of ref document: DE

Representative=s name: TERPATENT PATENTANWAELTE TER SMITTEN EBERLEIN-, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012795

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1189144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 11

Ref country code: FR

Payment date: 20240221

Year of fee payment: 11