EP2900905B1 - Tubing conveyed multiple zone integrated intelligent well completion - Google Patents
Tubing conveyed multiple zone integrated intelligent well completion Download PDFInfo
- Publication number
- EP2900905B1 EP2900905B1 EP12885450.2A EP12885450A EP2900905B1 EP 2900905 B1 EP2900905 B1 EP 2900905B1 EP 12885450 A EP12885450 A EP 12885450A EP 2900905 B1 EP2900905 B1 EP 2900905B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow control
- control devices
- tubing string
- well
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 65
- 238000000034 method Methods 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 34
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 238000012856 packing Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002955 isolation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010795 Steam Flooding Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000010618 wire wrap Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/10—Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/04—Gravelling of wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/14—Obtaining from a multiple-zone well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/008—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/02—Down-hole chokes or valves for variably regulating fluid flow
Definitions
- This disclosure relates generally to equipment utilized and operations performed in conjunction with subterranean wells and, in one example described below, more particularly provides a tubing conveyed multiple zone integrated intelligent well completion.
- US 2006/0060352 discloses sand control completion having smart well capability and method for use of same.
- variable flow restricting device is configured to receive fluid which flows through a well screen.
- an optical waveguide is positioned external to a tubing string, and one or more pressure sensors sense pressure internal and/or external to the tubing string.
- FIG. 1 Representatively illustrated in FIG. 1 is a well completion system 10 and associated method which can embody principles of this disclosure.
- system 10 and method are merely one example of an application of the principles of this disclosure in practice, and a wide variety of other examples are possible. Therefore, the scope of this disclosure is not limited at all to the details of the system 10 and method described herein and/or depicted in the drawings.
- a tubing string 12 has been installed in a wellbore 14 lined with casing 16 and cement 18.
- the tubing string 12 could be at least partially installed in an uncased or open hole portion of the wellbore 14.
- the tubing string 12 can be suspended from a tubing hanger (not shown) at or near the earth's surface (for example, in a surface or subsea wellhead).
- the tubing string 12 includes multiple sets 20 of completion equipment. In some examples, all of the sets 20 of completion equipment can be conveyed into the well at the same time on the tubing string 12. Gravel 22 can be placed about well screens 24 included in the completion equipment in a single trip into the wellbore 14, using a through-tubing multiple zone gravel packing system.
- Packers 26 on the tubing string 12 are used to isolate multiple earth formation zones 28 from each other in the wellbore 14.
- the packers 26 seal off an annulus 30 formed radially between the tubing string 12 and the wellbore 14.
- the zones 28 may be different sections of a same earth formation, but this is not necessary in keeping with the scope of this disclosure.
- each set 20 of completion equipment is a flow control device 32 and a hydraulic control device 34 which controls hydraulic actuation of the flow control device.
- a suitable flow control device which can variably restrict flow into or out of the tubing string 12, is the infinitely variable interval control valve IV-ICV(TM) marketed by Halliburton Energy Services, Inc.
- a suitable hydraulic control device for controlling hydraulic actuation of the IV-ICV(TM) is the surface controlled reservoir analysis and management system, or SCRAMS(TM), which is also marketed by Halliburton Energy Services.
- a pressure sensor 36 is included for sensing pressure internal and/or external to the tubing string 12.
- the pressure sensor 36 could be provided as part of the hydraulic control device 34 (such as, part of the SCRAMS(TM) device), or a separate pressure sensor may be used. If a separate pressure sensor 36 is used, a suitable sensor is the ROC(TM) pressure sensor marketed by Halliburton Energy Services, Inc.
- the senor 36 could also, or alternatively, include a flow rate sensor, a water cut or fluid composition sensor, or any other type of sensors.
- the packers 26 are preferably set by applying internal pressure.
- the packers 26 are set after the tubing string 12 has been landed (for example, in a wellhead at or near the earth's surface).
- no disconnect subs or expansion joints are required for spacing out the tubing string 12 relative to the wellhead prior to setting the packers 26, although such disconnect subs or expansion joints may be used, if desired.
- a gravel packing work string and service tool (not shown) used to direct flow of a fracturing and/or gravel packing slurry into the well is installed after the packers 26 are set. After the gravel packing operation is completed, the gravel packing work string and service tool is retrieved. The well can then be produced via the tubing string 12.
- a production string 38 (such as, a coiled tubing string, etc.) may be lowered into the wellbore 14 and stabbed into the tubing string 12, if desired.
- the production string 38 in this example includes seals 40 for sealingly engaging a seal bore 42 in an uppermost one of the packers 26.
- the production string 38 can include an electric submersible pump 44.
- the pump 44 could be conveyed by cable or wireline, in which case the tubing string 12 could be used for flowing a fluid 52 to the earth's surface above the pump.
- the pump 44 may be installed only after partial depletion of the well.
- lines 50 are carried externally on the tubing string 12.
- the lines 50 include one or more optical lines (e.g., at least one optical waveguide, such as, an optical fiber, optical ribbon, etc.).
- the optical waveguide(s) is/are external to the tubing string 12 (for example, between the well screens 24 and the wellbore 14), so that properties of fluid 52 which flows between the zones 28 and the interior of the tubing string 12 can be readily detected by the optical waveguide(s).
- the optical waveguide could be positioned in a wall of the casing 16, external to the casing, in the cement 18, etc.
- the optical waveguide is capable of sensing temperature and/or pressure of the fluid 52.
- the optical waveguide may be part of a distributed temperature sensing (DTS) system which detects Rayleigh backscattering in the optical waveguide as an indication of temperature along the waveguide.
- DTS distributed temperature sensing
- the optical waveguide could be equipped with fiber Bragg gratings and/or Brillouin backscattering in the optical waveguide could be detected as an indication of strain (resulting from pressure) along the optical waveguide.
- the optical waveguide could be used for sensing flow rate or water cut of the fluid 52.
- the scope of this disclosure is not limited to any particular technique for sensing any particular property of the fluid 52.
- a safety valve 46 is used to prevent unintended flow of fluid 52 out of the well (e.g., in the event of an emergency, blowout, etc.), and the isolation valve 48 is used to prevent the zones 28 from being exposed to potentially damaging fluids and pressures thereabove at times during the completion process.
- the safety valve 46 may be operated using one or more control lines 84 (such as, electrical and/or hydraulic lines), or the safety valve may be operated using one or more of the lines 50.
- the isolation valve 48 may be operated using one or more of the lines 50.
- the fluid 52 is depicted in FIG. 1 as flowing from the zones 28 into the tubing string 12, as in a production operation.
- the principles of this disclosure are also applicable to situations (such as, acidizing, fracturing, other stimulation operations, conformance or other injection operations, etc.), in which the fluid 52 is injected from the tubing string 12 into one or more of the zones 28.
- all of the flow control devices 32 can be closed, to thereby prevent flow of the fluid 52 through all of the screens 24, and then one of the flow control devices can be opened to allow the fluid to flow through a corresponding one of the screens.
- the properties of the fluid 52 which flows between the respective zone 28 and through the respective well screen 24 can be individually detected by the optical waveguide.
- the pressure sensors 36 can meanwhile detect internal and/or external pressures longitudinally distributed along the tubing string 12, and this will provide an operator with significant information on how and where the fluid 52 flows between the zones 28 and the interior of the tubing string.
- This process can be repeated for each of the zones 28 and/or each of the sets 20 of completion equipment, so that the fluid 52 characteristics and flow paths can be accurately modeled along the tubing string 12. Water or gas encroachment, water or steam flood fronts, etc., in individual zones 28 can also be detected using this process.
- FIGS. 2A-C an example of one longitudinal section of the tubing string 12 is representatively illustrated.
- the illustrated section depicts how flow through the well screens 24 can be controlled effectively using the flow control devices 32.
- the section shown in FIGS. 2A-C may be used in the system 10 and tubing string 12 of FIG. 1 , or it may be used in other systems and/or tubing strings.
- FIGS. 2A-C three of the flow control devices 32 are used to variably restrict flow through six of the well screens 24. This demonstrates that any number of flow control devices 32 and any number of well screens 24 may be used to control flow of the fluid 52 between a corresponding one of the zones 28 and the tubing string 12. The scope of this disclosure is not limited to any particular number or combination of the various components of the tubing string 12.
- Another flow control device 54 (such as, a mechanically actuated sliding sleeve-type valve, etc.) is used to selectively permit and prevent substantially unrestricted flow through the well screens 24.
- a mechanically actuated sliding sleeve-type valve, etc. is used to selectively permit and prevent substantially unrestricted flow through the well screens 24.
- the flow control device 54 can be closed to thereby prevent flow through the screens 24, so that sufficient pressure can be applied external to the screens to force fluid outward into the corresponding zone 28.
- An upper one of the hydraulic control devices 34 is used to control operation of an upper one of the flow control devices 32 ( FIG. 2A ), and to control an intermediate one of the flow control devices ( FIG. 2B ).
- a lower one of the hydraulic control devices 34 is used to control actuation of a lower one of the flow control devices 32 ( FIG. 2C ).
- an inner tubular 60 is secured to an outer tubular 94 (for example, by means of threads, etc.), so that the inner tubular 60 can be used to support a weight of a remainder of the tubing string 12 below.
- FIG. 3 an example of how the flow control device 32 can be used to control flow of the fluid 52 through the well screen 24 is representatively illustrated.
- the fluid 52 enters the well screen 24 and flows into an annular area 56 formed radially between a perforated base pipe 58 of the well screen and an inner tubular 60.
- the fluid 52 flows through the annular area 56 to the flow control device 32, which is contained within an outer tubular shroud 62.
- the flow control device 32 variably restricts the flow of the fluid 52 from the annular area 56 to a flow passage 64 extending longitudinally through the tubing string 12.
- Such variable restriction may be used to balance production from the multiple zones 28, to prevent water or gas coning, etc.
- the variable restriction may be used to control a shape or extent of a water or steam flood front in the various zones, etc.
- FIG. 4 a manner in which the lines 50 may be routed through the tubing string 12 is representatively illustrated.
- the shroud 62 is removed, so that the lines 50 extending from one of the flow control devices 32 (such as, the intermediate flow control device depicted in FIG. 2B ) to a well screen 24 below the flow control device may be seen.
- the lines 50 extend from a connector 66 on the flow control device 32 to an end connection 68 of the well screen 24, wherein the lines are routed to another connector 70 for extending the lines further down the tubing string 12.
- the end connection 68 may be provided with flow passages (not shown) to allow the fluid 52 to flow longitudinally through the end connection from the well screen 24 to the flow control device 32 via the annular area 56. Casting the end connection 68 can allow for forming complex flow passage and conduit shapes in the end connection, but other means of fabricating the end connection may be used, if desired.
- the lines 50 extend exterior to a filter media (e.g., wire wrap, wire mesh, sintered, pre-packed, etc.) of the well screen 24.
- a filter media e.g., wire wrap, wire mesh, sintered, pre-packed, etc.
- the lines 50 could be positioned between the base pipe 58 and the filter media, radially inward of the filter media, in the annular area 56, between the tubular 60 and the filter media, etc.
- the set 20 of completion equipment includes only one each of the well screen 24, flow control device 32, hydraulic control device 34 and flow control device 54.
- the set 20 of completion equipment includes only one each of the well screen 24, flow control device 32, hydraulic control device 34 and flow control device 54.
- any number or combination of components may be used, in keeping with the scope of this disclosure.
- FIG. 5 example One difference in the FIG. 5 example is that the flow control device 54 and at least a portion of the flow control device 32 are positioned within the well screen 24. This can provide a more longitudinally compact configuration, and eliminate use of the shroud 62. Thus, it will be appreciated that the scope of this disclosure is not limited to any particular configuration or arrangement of the components of the tubing string 12.
- the hydraulic control device 34 can include the pressure sensor 36, which can be ported to the interior flow passage 64 and/or to the annulus 30 external to the tubing string 12. Multiple pressure sensors 36 may be provided in the hydraulic control device 34 to separately sense pressures internal to, or external to, the tubing string 12.
- the tubing string 12 can be installed in a single trip into the wellbore 14 with the safety valve 46 (see FIG. 1 ).
- the tubing string 12 can be landed in a wellhead above, and then the packers 26 can be set by applying internal pressure to the tubing string.
- the pump 44 can be installed later, if desired (such as, when production has deminished significantly, etc.).
- the lines 50 can extend to a surface location, without any "wet" connections (e.g., connections made downhole) in the lines 50.
- the hydraulic control device 34 includes electronics 72 (such as, one or more processors, memory, batteries, etc.) responsive to signals transmitted from a remote location (for example, a control station at the earth's surface, a sea floor installation, a floating rig, etc.) via the lines 50 to direct hydraulic pressure (via a hydraulic manifold, not shown) to an actuator 74 of the flow control device 32.
- electronics 72 such as, one or more processors, memory, batteries, etc.
- the FIG. 6 flow control device 32 includes a sleeve 76 which is displaced by the actuator 74 relative to an opening 78 in an outer housing 80, in order to variably restrict flow through the opening.
- the flow control device 32 also includes a position indicator 82, so that the electronics 72 can verify whether the sleeve 76 is properly positioned to obtain a desired flow restriction.
- the pressure sensor(s) 36 may be used to verify that a desired pressure differential is achieved across the flow control device 32.
- flow control device 32 in the above examples is described as being a remotely hydraulically actuated variable choke, any type of flow control device which provides a variable resistance to flow may be used, in keeping with the scope of this disclosure.
- a remotely actuated inflow control device may be used.
- An inflow control device may be actuated using the hydraulic control device 34 described above, or relatively straightforward hydraulic control lines may be used to actuate an inflow control device.
- an autonomous inflow control device one which varies a resistance to flow without commands or actuation signals transmitted from a remote location
- an autonomous inflow control device such as those described in US Publication Nos. 2011/0042091 , 2011/0297385 , 2012/0048563 and others, may be used.
- an inflow control device (autonomous or remotely actuated) may be preferable for injection operations, for example, if precise regulation of flow resistance is not required.
- the scope of this disclosure is not limited to use of any particular type of flow control device, or use of a particular type of flow control device in a particular type of operation.
- separate pressure and/or temperature sensors may be conveyed into the tubing string 12 during the method described above, in which characteristics and flow paths of the fluid 52 flowing between the tubing string and the individual zones 28 are determined.
- a wireline or coiled tubing conveyed perforated dip tube could be conveyed into the tubing string during or prior to performance of the method.
- a selectively variable flow control device 32 integrated with an optical sensor (e.g., an optical waveguide as part of the lines 50) external to the tubing string 12, and pressure sensors 36 ported to an interior and/or exterior of the tubing string.
- an optical sensor e.g., an optical waveguide as part of the lines 50
- the system 10 can include: multiple well screens 24 which filter fluid 52 flowing between a tubing string 12 in the well and respective ones of the multiple zones 28; at least one optical waveguide 50 which senses at least one property of the fluid 52 as it flows between the tubing string 12 and at least one of the zones 28; multiple flow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24; and multiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24.
- the multiple well screens 24, the optical waveguide 50, the multiple flow control devices 32, and the multiple pressure sensors 36 can be installed in the well in a single trip into the well.
- the system 10 can also include multiple hydraulic control devices 34 which control application of hydraulic actuation pressure to respective ones of the multiple flow control devices 32.
- a single one of the hydraulic control devices 34 may control application of hydraulic actuation pressure to multiple ones of the flow control devices 32.
- the pressure sensors 36 may sense pressure of the fluid 52 external and/or internal to the tubing string 12. Sensor(s) may be provided for sensing flow rate of the fluid 52 and/or composition of the fluid.
- the flow control devices 32 may comprise remotely hydraulically actuated variable chokes.
- the flow control devices 32 may comprise autonomous variable flow restrictors.
- the flow control devices 32 receive the fluid 52 from the respective ones of the multiple well screens 24.
- the optical waveguide 50 is positioned external to the well screens 24.
- the optical waveguide 50 can be positioned between the well screens 24 and the zones 28.
- the tubing string 12 can include at least one well screen 24; at least one first flow control device 54; and at least one second flow control device 32, the second flow control device 32 being remotely operable.
- the first flow control device 54 selectively prevents and permits substantially unrestricted flow through the well screen 24.
- the second flow control device 32 variably restricts flow through the well screen 24.
- the tubing string 12 can include a hydraulic control device 34 which controls application of hydraulic actuation pressure to the second flow control device 32.
- the second flow control device 32 may comprise multiple second flow control devices 32, and the hydraulic control device 34 may control application of hydraulic actuation pressure to the multiple second flow control devices 32.
- the tubing string 12 includes at least one optical waveguide 50 which is operative to sense at least one property of a fluid 52 which flows through the well screen 24.
- the method can comprise: closing all of multiple flow control devices 32 connected in the tubing string 12, the tubing string 12 including multiple well screens 24 which filter fluid 52 flowing between the tubing string 12 and respective ones of multiple earth formation zones 28, at least one optical waveguide 50 which senses at least one property of the fluid 52 as it flows between the tubing string 12 and at least one of the zones 28, the multiple flow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24, and multiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24; at least partially opening a first selected one of the flow control devices 32; and measuring a first change in the property sensed by the optical waveguide 50 and a first change in the pressure of the fluid 52 as a result of the opening of the first selected one of the flow control devices 32.
- the method can also include: closing all of the multiple flow control devices 32 after the step of at least partially opening the first selected one of the flow control devices 32; at least partially opening a second selected one of the flow control devices 32; and recording a second change in the property sensed by the optical waveguide 50 and a second change in the pressure of the fluid 52 as a result of the opening of the second selected one of the flow control devices 32.
- the method can include installing the multiple well screens 24, the optical waveguide 50, the multiple flow control devices 32, and the multiple pressure sensors 36 in the well in a single trip into the well.
- Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip; landing the tubing string 12; and then setting multiple packers 26 in the tubing string 12.
- the tubing string 12 can be installed without making any connection in lines 50 extending along the tubing string 12.
- the setting step can include applying internal pressure to the tubing string 12.
- Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip; landing the tubing string 12; and then setting multiple packers 26 in the tubing string 12.
- the method can also include installing an electric pump 44 in the tubing string 12 after the setting.
- Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip, producing fluid 52 via the tubing string 12, and then installing an electric pump 44 in the tubing string 12.
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Earth Drilling (AREA)
- Pipeline Systems (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Description
- This disclosure relates generally to equipment utilized and operations performed in conjunction with subterranean wells and, in one example described below, more particularly provides a tubing conveyed multiple zone integrated intelligent well completion.
- Where multiple zones are to be produced (or injected) in a subterranean well, it can be difficult to determine how fluids communicate between an earth formation and a tubing string in the well. This can be particularly difficult where the fluids produced from the multiple zones are commingled in the tubing string, or where the same fluid is injected from the well into the multiple zones.
- Therefore, it will be appreciated that improvements are continually needed in the arts of constructing and operating well completion systems.
-
US 2012/0199346 A1 discloses a completion assembly. -
US 2006/0060352 discloses sand control completion having smart well capability and method for use of same. - In a first aspect of the present invention, there is provided a tubing string according to Claim 1.
- In a second aspect of the present invention, there is provided a method according to Claim 5.
- In a third aspect of the present invention, there is provided a system according to Claim 11.
-
-
FIG. 1 is a representative partially cross-sectional view of a well completion system and associated method which can embody principles of this disclosure. -
FIGS. 2A-C are representative cross-sectional views of successive longitudinal sections of a tubing string which may be used in the well completion system and method ofFIG. 1 , and which can embody principles of this disclosure. -
FIG. 3 is a representative cross-sectional view of a section of the tubing string, with fluid flowing from an earth formation into the tubing string. -
FIG. 4 is a representative elevational view of another section of the tubing string. -
FIG. 5 is a representative cross-sectional view of another example of the well completion system and method. -
FIG. 6 is a representative cross-sectional view of a flow control device which may be used in the well completion system and method. - In this disclosure, systems and methods are provided which bring improvements to the arts of constructing and operating well completion systems. One example is described below in which a variable flow restricting device is configured to receive fluid which flows through a well screen. Another example is described below in which an optical waveguide is positioned external to a tubing string, and one or more pressure sensors sense pressure internal and/or external to the tubing string.
- These and other features, advantages and benefits will become apparent to one of ordinary skill in the art upon careful consideration of the description of representative embodiments of the disclosure below and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
- Representatively illustrated in
FIG. 1 is awell completion system 10 and associated method which can embody principles of this disclosure. However, it should be clearly understood that thesystem 10 and method are merely one example of an application of the principles of this disclosure in practice, and a wide variety of other examples are possible. Therefore, the scope of this disclosure is not limited at all to the details of thesystem 10 and method described herein and/or depicted in the drawings. - In the
FIG. 1 example, atubing string 12 has been installed in awellbore 14 lined withcasing 16 andcement 18. In other examples, thetubing string 12 could be at least partially installed in an uncased or open hole portion of thewellbore 14. Thetubing string 12 can be suspended from a tubing hanger (not shown) at or near the earth's surface (for example, in a surface or subsea wellhead). - The
tubing string 12 includesmultiple sets 20 of completion equipment. In some examples, all of thesets 20 of completion equipment can be conveyed into the well at the same time on thetubing string 12. Gravel 22 can be placed aboutwell screens 24 included in the completion equipment in a single trip into thewellbore 14, using a through-tubing multiple zone gravel packing system. - For example, a system and technique which can be used for gravel packing about multiple sets of completion equipment for corresponding multiple zones, is marketed by Halliburton Energy Services, Inc. of Houston, Texas USA as the ENHANCED SINGLE TRIP MULTI-ZONE(TM) system, or ESTMZ(TM). However, other systems and techniques may be used, without departing from the principles of this disclosure.
- Packers 26 on the
tubing string 12 are used to isolate multipleearth formation zones 28 from each other in thewellbore 14. Thepackers 26 seal off anannulus 30 formed radially between thetubing string 12 and thewellbore 14. Thezones 28 may be different sections of a same earth formation, but this is not necessary in keeping with the scope of this disclosure. - Also included in each
set 20 of completion equipment is aflow control device 32 and ahydraulic control device 34 which controls hydraulic actuation of the flow control device. A suitable flow control device, which can variably restrict flow into or out of thetubing string 12, is the infinitely variable interval control valve IV-ICV(TM) marketed by Halliburton Energy Services, Inc. A suitable hydraulic control device for controlling hydraulic actuation of the IV-ICV(TM) is the surface controlled reservoir analysis and management system, or SCRAMS(TM), which is also marketed by Halliburton Energy Services. - In each completion equipment set 20, a
pressure sensor 36 is included for sensing pressure internal and/or external to thetubing string 12. Thepressure sensor 36 could be provided as part of the hydraulic control device 34 (such as, part of the SCRAMS(TM) device), or a separate pressure sensor may be used. If aseparate pressure sensor 36 is used, a suitable sensor is the ROC(TM) pressure sensor marketed by Halliburton Energy Services, Inc. - Other types of sensors may be used in addition to, or instead of, the
pressure sensor 36. For example, thesensor 36 could also, or alternatively, include a flow rate sensor, a water cut or fluid composition sensor, or any other type of sensors. - The
packers 26 are preferably set by applying internal pressure. Thepackers 26 are set after thetubing string 12 has been landed (for example, in a wellhead at or near the earth's surface). Preferably, no disconnect subs or expansion joints are required for spacing out thetubing string 12 relative to the wellhead prior to setting thepackers 26, although such disconnect subs or expansion joints may be used, if desired. - A gravel packing work string and service tool (not shown) used to direct flow of a fracturing and/or gravel packing slurry into the well is installed after the
packers 26 are set. After the gravel packing operation is completed, the gravel packing work string and service tool is retrieved. The well can then be produced via thetubing string 12. - Alternatively, or in addition, a production string 38 (such as, a coiled tubing string, etc.) may be lowered into the
wellbore 14 and stabbed into thetubing string 12, if desired. The production string 38 in this example includesseals 40 for sealingly engaging aseal bore 42 in an uppermost one of thepackers 26. - The production string 38 can include an electric
submersible pump 44. In other examples, thepump 44 could be conveyed by cable or wireline, in which case thetubing string 12 could be used for flowing afluid 52 to the earth's surface above the pump. - However, use of the
pump 44 is not necessary, at least initially. Thepump 44 may be installed only after partial depletion of the well. - In the
system 10 as depicted inFIG. 1 ,lines 50 are carried externally on thetubing string 12. According to the invention, thelines 50 include one or more optical lines (e.g., at least one optical waveguide, such as, an optical fiber, optical ribbon, etc.). - According to the invention, the optical waveguide(s) is/are external to the tubing string 12 (for example, between the
well screens 24 and the wellbore 14), so that properties offluid 52 which flows between thezones 28 and the interior of thetubing string 12 can be readily detected by the optical waveguide(s). In other examples, the optical waveguide could be positioned in a wall of thecasing 16, external to the casing, in thecement 18, etc. - Preferably, the optical waveguide is capable of sensing temperature and/or pressure of the
fluid 52. For example, the optical waveguide may be part of a distributed temperature sensing (DTS) system which detects Rayleigh backscattering in the optical waveguide as an indication of temperature along the waveguide. For pressure sensing, the optical waveguide could be equipped with fiber Bragg gratings and/or Brillouin backscattering in the optical waveguide could be detected as an indication of strain (resulting from pressure) along the optical waveguide. The optical waveguide could be used for sensing flow rate or water cut of the fluid 52. However, the scope of this disclosure is not limited to any particular technique for sensing any particular property of the fluid 52. - Also included in the
tubing string 12 example ofFIG. 1 are asafety valve 46 and anisolation valve 48. Thesafety valve 46 is used to prevent unintended flow offluid 52 out of the well (e.g., in the event of an emergency, blowout, etc.), and theisolation valve 48 is used to prevent thezones 28 from being exposed to potentially damaging fluids and pressures thereabove at times during the completion process. - The
safety valve 46 may be operated using one or more control lines 84 (such as, electrical and/or hydraulic lines), or the safety valve may be operated using one or more of thelines 50. Theisolation valve 48 may be operated using one or more of thelines 50. - The fluid 52 is depicted in
FIG. 1 as flowing from thezones 28 into thetubing string 12, as in a production operation. However, the principles of this disclosure are also applicable to situations (such as, acidizing, fracturing, other stimulation operations, conformance or other injection operations, etc.), in which the fluid 52 is injected from thetubing string 12 into one or more of thezones 28. - In one method, all of the
flow control devices 32 can be closed, to thereby prevent flow of the fluid 52 through all of thescreens 24, and then one of the flow control devices can be opened to allow the fluid to flow through a corresponding one of the screens. In this manner, the properties of the fluid 52 which flows between therespective zone 28 and through therespective well screen 24 can be individually detected by the optical waveguide. Thepressure sensors 36 can meanwhile detect internal and/or external pressures longitudinally distributed along thetubing string 12, and this will provide an operator with significant information on how and where the fluid 52 flows between thezones 28 and the interior of the tubing string. - This process can be repeated for each of the
zones 28 and/or each of thesets 20 of completion equipment, so that the fluid 52 characteristics and flow paths can be accurately modeled along thetubing string 12. Water or gas encroachment, water or steam flood fronts, etc., inindividual zones 28 can also be detected using this process. - Referring additionally now to
FIGS. 2A-C , an example of one longitudinal section of thetubing string 12 is representatively illustrated. The illustrated section depicts how flow through the well screens 24 can be controlled effectively using theflow control devices 32. The section shown inFIGS. 2A-C may be used in thesystem 10 andtubing string 12 ofFIG. 1 , or it may be used in other systems and/or tubing strings. - In the
FIGS. 2A-C example, three of theflow control devices 32 are used to variably restrict flow through six of the well screens 24. This demonstrates that any number offlow control devices 32 and any number of well screens 24 may be used to control flow of the fluid 52 between a corresponding one of thezones 28 and thetubing string 12. The scope of this disclosure is not limited to any particular number or combination of the various components of thetubing string 12. - Another flow control device 54 (such as, a mechanically actuated sliding sleeve-type valve, etc.) is used to selectively permit and prevent substantially unrestricted flow through the well screens 24. For example, during gravel packing operations, it may be desired to allow unrestricted flow through the well screens 24, for circulation of slurry fluid back to the earth's surface. In fracturing or other stimulation operations, the
flow control device 54 can be closed to thereby prevent flow through thescreens 24, so that sufficient pressure can be applied external to the screens to force fluid outward into the correspondingzone 28. - An upper one of the
hydraulic control devices 34 is used to control operation of an upper one of the flow control devices 32 (FIG. 2A ), and to control an intermediate one of the flow control devices (FIG. 2B ). A lower one of thehydraulic control devices 34 is used to control actuation of a lower one of the flow control devices 32 (FIG. 2C ). - If the SCRAMS(TM) device mentioned above is used for the
hydraulic control devices 34, signals transmitted via theelectrical lines 50 are used to control application of hydraulic pressure from the hydraulic lines to a selected one of theflow control devices 32. Thus, theflow control devices 32 can be individually actuated using thehydraulic control devices 34. - In
FIG. 2A , it may be seen that aninner tubular 60 is secured to an outer tubular 94 (for example, by means of threads, etc.), so that the inner tubular 60 can be used to support a weight of a remainder of thetubing string 12 below. - Referring additionally now to
FIG. 3 , an example of how theflow control device 32 can be used to control flow of the fluid 52 through thewell screen 24 is representatively illustrated. In this view, it may be seen that the fluid 52 enters thewell screen 24 and flows into anannular area 56 formed radially between aperforated base pipe 58 of the well screen and aninner tubular 60. The fluid 52 flows through theannular area 56 to theflow control device 32, which is contained within an outertubular shroud 62. - The
flow control device 32 variably restricts the flow of the fluid 52 from theannular area 56 to aflow passage 64 extending longitudinally through thetubing string 12. Such variable restriction may be used to balance production from themultiple zones 28, to prevent water or gas coning, etc. Of course, if the fluid 52 is injected into thezones 28, the variable restriction may be used to control a shape or extent of a water or steam flood front in the various zones, etc. - Referring additionally now to
FIG. 4 , a manner in which thelines 50 may be routed through thetubing string 12 is representatively illustrated. In this view, theshroud 62 is removed, so that thelines 50 extending from one of the flow control devices 32 (such as, the intermediate flow control device depicted inFIG. 2B ) to awell screen 24 below the flow control device may be seen. - The
lines 50 extend from aconnector 66 on theflow control device 32 to anend connection 68 of thewell screen 24, wherein the lines are routed to anotherconnector 70 for extending the lines further down thetubing string 12. Theend connection 68 may be provided with flow passages (not shown) to allow the fluid 52 to flow longitudinally through the end connection from thewell screen 24 to theflow control device 32 via theannular area 56. Casting theend connection 68 can allow for forming complex flow passage and conduit shapes in the end connection, but other means of fabricating the end connection may be used, if desired. - The
lines 50 extend exterior to a filter media (e.g., wire wrap, wire mesh, sintered, pre-packed, etc.) of thewell screen 24. In some examples, not part of the scope of the claims, thelines 50 could be positioned between thebase pipe 58 and the filter media, radially inward of the filter media, in theannular area 56, between the tubular 60 and the filter media, etc. - Referring additionally now to
FIG. 5 , another example of thecompletion system 10 andtubing string 12 is representatively illustrated. In this example, theset 20 of completion equipment includes only one each of thewell screen 24,flow control device 32,hydraulic control device 34 andflow control device 54. However, as mentioned above, any number or combination of components may be used, in keeping with the scope of this disclosure. - One difference in the
FIG. 5 example is that theflow control device 54 and at least a portion of theflow control device 32 are positioned within thewell screen 24. This can provide a more longitudinally compact configuration, and eliminate use of theshroud 62. Thus, it will be appreciated that the scope of this disclosure is not limited to any particular configuration or arrangement of the components of thetubing string 12. - In addition, it can be seen in
FIG. 5 that thehydraulic control device 34 can include thepressure sensor 36, which can be ported to theinterior flow passage 64 and/or to theannulus 30 external to thetubing string 12.Multiple pressure sensors 36 may be provided in thehydraulic control device 34 to separately sense pressures internal to, or external to, thetubing string 12. - In some examples, the
tubing string 12 can be installed in a single trip into thewellbore 14 with the safety valve 46 (seeFIG. 1 ). Thetubing string 12 can be landed in a wellhead above, and then thepackers 26 can be set by applying internal pressure to the tubing string. Thepump 44 can be installed later, if desired (such as, when production has deminished significantly, etc.). Thelines 50 can extend to a surface location, without any "wet" connections (e.g., connections made downhole) in thelines 50. - Referring additionally now to
FIG. 6 , another example of how theflow control device 32 may be connected to thehydraulic control device 34 is representatively illustrated. In this example, thehydraulic control device 34 includes electronics 72 (such as, one or more processors, memory, batteries, etc.) responsive to signals transmitted from a remote location (for example, a control station at the earth's surface, a sea floor installation, a floating rig, etc.) via thelines 50 to direct hydraulic pressure (via a hydraulic manifold, not shown) to anactuator 74 of theflow control device 32. - The
FIG. 6 flow control device 32 includes asleeve 76 which is displaced by theactuator 74 relative to anopening 78 in anouter housing 80, in order to variably restrict flow through the opening. Preferably, theflow control device 32 also includes aposition indicator 82, so that theelectronics 72 can verify whether thesleeve 76 is properly positioned to obtain a desired flow restriction. The pressure sensor(s) 36 may be used to verify that a desired pressure differential is achieved across theflow control device 32. - Although the
flow control device 32 in the above examples is described as being a remotely hydraulically actuated variable choke, any type of flow control device which provides a variable resistance to flow may be used, in keeping with the scope of this disclosure. For example, a remotely actuated inflow control device may be used. An inflow control device may be actuated using thehydraulic control device 34 described above, or relatively straightforward hydraulic control lines may be used to actuate an inflow control device. - Alternatively, an autonomous inflow control device (one which varies a resistance to flow without commands or actuation signals transmitted from a remote location), such as those described in
US Publication Nos. 2011/0042091 ,2011/0297385 ,2012/0048563 and others, may be used. - Use of an inflow control device (autonomous or remotely actuated) may be preferable for injection operations, for example, if precise regulation of flow resistance is not required. However, it should be appreciated that the scope of this disclosure is not limited to use of any particular type of flow control device, or use of a particular type of flow control device in a particular type of operation.
- Instead of, or in addition to, the
pressure sensors 36, separate pressure and/or temperature sensors may be conveyed into thetubing string 12 during the method described above, in which characteristics and flow paths of the fluid 52 flowing between the tubing string and theindividual zones 28 are determined. For example, a wireline or coiled tubing conveyed perforated dip tube could be conveyed into the tubing string during or prior to performance of the method. - It may now be fully appreciated that the above disclosure provides significant advancements to the art of constructing and operating well completion systems. In examples described above, enhanced well diagnostics are made possible by use of a selectively variable
flow control device 32 integrated with an optical sensor (e.g., an optical waveguide as part of the lines 50) external to thetubing string 12, andpressure sensors 36 ported to an interior and/or exterior of the tubing string. - A
system 10 for use with a subterranean well having multipleearth formation zones 28 is provided to the art by the above disclosure. In one example, thesystem 10 can include: multiple well screens 24 which filterfluid 52 flowing between atubing string 12 in the well and respective ones of themultiple zones 28; at least oneoptical waveguide 50 which senses at least one property of the fluid 52 as it flows between thetubing string 12 and at least one of thezones 28; multipleflow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24; andmultiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24. - The multiple well screens 24, the
optical waveguide 50, the multipleflow control devices 32, and themultiple pressure sensors 36 can be installed in the well in a single trip into the well. - The
system 10 can also include multiplehydraulic control devices 34 which control application of hydraulic actuation pressure to respective ones of the multipleflow control devices 32. - A single one of the
hydraulic control devices 34 may control application of hydraulic actuation pressure to multiple ones of theflow control devices 32. - The
pressure sensors 36 may sense pressure of the fluid 52 external and/or internal to thetubing string 12. Sensor(s) may be provided for sensing flow rate of the fluid 52 and/or composition of the fluid. - The
flow control devices 32 may comprise remotely hydraulically actuated variable chokes. Theflow control devices 32 may comprise autonomous variable flow restrictors. - The
flow control devices 32, in some examples, receive the fluid 52 from the respective ones of the multiple well screens 24. - The
optical waveguide 50 is positioned external to the well screens 24. Theoptical waveguide 50 can be positioned between the well screens 24 and thezones 28. - Also described above is a
tubing string 12 for use in a subterranean well. In one example, thetubing string 12 can include at least onewell screen 24; at least one firstflow control device 54; and at least one secondflow control device 32, the secondflow control device 32 being remotely operable. The firstflow control device 54 selectively prevents and permits substantially unrestricted flow through thewell screen 24. The secondflow control device 32 variably restricts flow through thewell screen 24. - The
tubing string 12 can include ahydraulic control device 34 which controls application of hydraulic actuation pressure to the secondflow control device 32. - The second
flow control device 32 may comprise multiple secondflow control devices 32, and thehydraulic control device 34 may control application of hydraulic actuation pressure to the multiple secondflow control devices 32. - The
tubing string 12 includes at least oneoptical waveguide 50 which is operative to sense at least one property of a fluid 52 which flows through thewell screen 24. - A method of operating a
tubing string 12 in a subterranean well is also described above. In one example, the method can comprise: closing all of multipleflow control devices 32 connected in thetubing string 12, thetubing string 12 including multiple well screens 24 which filterfluid 52 flowing between thetubing string 12 and respective ones of multipleearth formation zones 28, at least oneoptical waveguide 50 which senses at least one property of the fluid 52 as it flows between thetubing string 12 and at least one of thezones 28, the multipleflow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24, andmultiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24; at least partially opening a first selected one of theflow control devices 32; and measuring a first change in the property sensed by theoptical waveguide 50 and a first change in the pressure of the fluid 52 as a result of the opening of the first selected one of theflow control devices 32. - The method can also include: closing all of the multiple
flow control devices 32 after the step of at least partially opening the first selected one of theflow control devices 32; at least partially opening a second selected one of theflow control devices 32; and recording a second change in the property sensed by theoptical waveguide 50 and a second change in the pressure of the fluid 52 as a result of the opening of the second selected one of theflow control devices 32. - The method can include installing the multiple well screens 24, the
optical waveguide 50, the multipleflow control devices 32, and themultiple pressure sensors 36 in the well in a single trip into the well. - Another method of installing a
tubing string 12 in a subterranean well can include conveying thetubing string 12 with asafety valve 46 into the well in a single trip; landing thetubing string 12; and then settingmultiple packers 26 in thetubing string 12. - The
tubing string 12 can be installed without making any connection inlines 50 extending along thetubing string 12. The setting step can include applying internal pressure to thetubing string 12. - Another method of installing a
tubing string 12 in a subterranean well can include conveying thetubing string 12 with asafety valve 46 into the well in a single trip; landing thetubing string 12; and then settingmultiple packers 26 in thetubing string 12. - The method can also include installing an
electric pump 44 in thetubing string 12 after the setting. - Another method of installing a
tubing string 12 in a subterranean well can include conveying thetubing string 12 with asafety valve 46 into the well in a single trip, producingfluid 52 via thetubing string 12, and then installing anelectric pump 44 in thetubing string 12. - It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
- In the above description of the representative examples, directional terms (such as "above," "below," "upper," "lower," etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the scope of the invention being limited solely by the appended claims.
Claims (15)
- A tubing string for use in a subterranean well, the tubing string comprising:at least one well screen (24);at least one first flow control device (54) which selectively prevents and permits substantially unrestricted flow through the well screen; andat least one second flow control device (32), the second flow control device being remotely operable, and wherein the second flow control device variably restricts flow through the well screen, characterized by,further comprising at least one optical waveguide which is operative to sense at least one property of a fluid which flows through the well screen, and wherein the optical waveguide is positioned external to the well screen.
- The tubing string of claim 1:
wherein the second flow control device comprises a hydraulically actuated variable choke. - The tubing string of claim 1 or 2, further comprising a pressure sensor (36) which senses pressure external to the tubing string (12); and/or
further comprising a pressure sensor which senses pressure internal to the tubing string; and/or further comprising a sensor which senses at least one of flow rate and fluid composition. - The tubing string of claim 1, 2 or 3, further comprising a hydraulic control device (34) which controls application of hydraulic actuation pressure to the second flow control device, and, optionally, wherein the at least one second flow control device comprises multiple second flow control devices, and wherein the hydraulic control device controls application of hydraulic actuation pressure to the multiple second flow control devices.
- A method of operating a tubing string in a subterranean well, the method comprising:closing all of multiple flow control devices (32, 54) connected in the tubing string (12), the tubing string including multiple well screens (24) which filter fluid flowing between the tubing string and respective ones of multiple earth formation zones (28), at least one optical waveguide which senses at least one property of the fluid as it flows between the tubing string and at least one of the zones, wherein the optical waveguide is positioned external to the well screens (24), the multiple flow control devices which variably restrict flow of the fluid through respective ones of the multiple well screens, and multiple pressure sensors (36) which sense pressure of the fluid which flows through respective ones of the multiple well screens;at least partially opening a first selected one of the flow control devices; andmeasuring a first change in the property sensed by the optical waveguide and a first change in the pressure of the fluid as a result of the opening of the first selected one of the flow control devices,wherein the multiple flow control devices comprise: a first flow control device which selectively prevents and permits substantially unrestricted flow through the well screen; anda second flow control device, the second flow control device being remotely operable, wherein the second flow control device variably restricts flow through the same well screen.
- The method of claim 5:
further comprising:closing all of the multiple flow control devices after the step of at least partially opening the first selected one of the flow control devices;at least partially opening a second selected one of the flow control devices; and measuring a second change in the property sensed by the optical waveguide and a second change in the pressure of the fluid as a result of the opening of the second selected one of the flow control devices. - The method of claim 5 or 6, further comprising installing the multiple well screens, the optical waveguide, the multiple flow control devices, and the multiple pressure sensors in the well in a single trip into the well; and/orwherein the pressure sensors sense pressure of the fluid external to the tubing string; and/orwherein the pressure sensors sense pressure of the fluid internal to the tubing string.
- The method of any of claims 5 to 7, wherein the flow control devices comprise remotely hydraulically actuated variable chokes; and/orwherein the flow control devices comprise autonomous variable flow restrictors; and/orwherein the flow control devices receive the fluid from the respective ones of the multiple well screens.
- The method of any of claims 5 to 8, further comprising installing an electric pump (44) in the tubing string after the measuring.
- The method of any of claims 5 to 9, wherein the tubing string further comprises multiple hydraulic control devices (34) which control application of hydraulic actuation pressure to respective ones of the multiple flow control devices, and, optionally, wherein a single one of the hydraulic control devices controls application of hydraulic actuation pressure to multiple ones of the flow control devices.
- A system for use with a subterranean well having multiple earth formation zones, the system comprising:The tubing string of claim 1, the system comprising multiple well screens (24) which filter fluid flowing between the tubing string (12) in the well and respective ones of the multiple zones (28);multiple flow control devices (32, 54) which variably restrict flow of the fluid through respective ones of the multiple well screens, the multiple flow control devices for each one of the multiple well screens comprising:the first flow control device; andthe second flow control device, andmultiple sensors which sense at least one property of the fluid which flows through respective ones of the multiple well screens.
- The system of claim 11:
wherein the multiple well screens, the optical waveguide, the multiple flow control devices and the multiple sensors are installed in the well in a single trip into the well. - The system of claim 11 or 12, wherein the sensors sense pressure of the fluid external to the tubing string; and/orwherein the sensors sense pressure of the fluid internal to the tubing string; orwherein the sensors sense flow rate of the fluid; and/orwherein the sensors sense composition of the fluid.
- The system of claim 11, 12 or 13, wherein the flow control devices comprise remotely hydraulically actuated variable chokes;
and/or wherein the flow control devices comprise autonomous variable flow restrictors; and/or wherein the flow control devices receive the fluid from the respective ones of the multiple well screens. - The system of any of claims 11 to 14, further comprising multiple hydraulic control devices (34) which control application of hydraulic actuation pressure to respective ones of the multiple flow control devices, and, optionally, wherein a single one of the hydraulic control devices controls application of hydraulic actuation pressure to multiple ones of the flow control devices.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2012/057220 WO2014051559A1 (en) | 2012-09-26 | 2012-09-26 | Tubing conveyed multiple zone integrated intelligent well completion |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2900905A1 EP2900905A1 (en) | 2015-08-05 |
EP2900905A4 EP2900905A4 (en) | 2017-01-18 |
EP2900905B1 true EP2900905B1 (en) | 2024-03-06 |
Family
ID=50388765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12885450.2A Active EP2900905B1 (en) | 2012-09-26 | 2012-09-26 | Tubing conveyed multiple zone integrated intelligent well completion |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2900905B1 (en) |
AU (1) | AU2012391054B2 (en) |
BR (1) | BR112015006547B1 (en) |
DK (1) | DK2900905T3 (en) |
MX (1) | MX355148B (en) |
SG (1) | SG11201502084RA (en) |
WO (1) | WO2014051559A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2604371B (en) * | 2021-03-03 | 2023-12-06 | Equinor Energy As | Improved inflow control device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090008078A1 (en) * | 2007-03-13 | 2009-01-08 | Schlumberger Technology Corporation | Flow control assembly having a fixed flow control device and an adjustable flow control device |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4615388A (en) * | 1984-10-25 | 1986-10-07 | Shell Western E&P Inc. | Method of producing supercritical carbon dioxide from wells |
US5954135A (en) * | 1997-01-17 | 1999-09-21 | Halliburton Energy Services, Inc. | Method and apparatus for establishing fluid communication within a subterranean well |
US6082454A (en) * | 1998-04-21 | 2000-07-04 | Baker Hughes Incorporated | Spooled coiled tubing strings for use in wellbores |
US6789623B2 (en) * | 1998-07-22 | 2004-09-14 | Baker Hughes Incorporated | Method and apparatus for open hole gravel packing |
US6253857B1 (en) * | 1998-11-02 | 2001-07-03 | Halliburton Energy Services, Inc. | Downhole hydraulic power source |
US6257332B1 (en) * | 1999-09-14 | 2001-07-10 | Halliburton Energy Services, Inc. | Well management system |
GB2390423B (en) * | 2000-10-23 | 2004-12-29 | Halliburton Energy Serv Inc | Fluid property sensors and associated methods of calibrating sensors in a subterranean well |
US6712149B2 (en) * | 2001-01-19 | 2004-03-30 | Schlumberger Technology Corporation | Apparatus and method for spacing out of offshore wells |
GB2381281B (en) * | 2001-10-26 | 2004-05-26 | Schlumberger Holdings | Completion system, apparatus, and method |
US7273106B2 (en) * | 2003-03-28 | 2007-09-25 | Shell Oil Company | Surface flow controlled valve and screen |
US7191832B2 (en) * | 2003-10-07 | 2007-03-20 | Halliburton Energy Services, Inc. | Gravel pack completion with fiber optic monitoring |
US7367395B2 (en) * | 2004-09-22 | 2008-05-06 | Halliburton Energy Services, Inc. | Sand control completion having smart well capability and method for use of same |
US7428924B2 (en) * | 2004-12-23 | 2008-09-30 | Schlumberger Technology Corporation | System and method for completing a subterranean well |
US7677320B2 (en) * | 2006-06-12 | 2010-03-16 | Baker Hughes Incorporated | Subsea well with electrical submersible pump above downhole safety valve |
US8322415B2 (en) * | 2009-09-11 | 2012-12-04 | Schlumberger Technology Corporation | Instrumented swellable element |
EP2317073B1 (en) * | 2009-10-29 | 2014-01-22 | Services Pétroliers Schlumberger | An instrumented tubing and method for determining a contribution to fluid production |
US8863849B2 (en) * | 2011-01-14 | 2014-10-21 | Schlumberger Technology Corporation | Electric submersible pumping completion flow diverter system |
US9062530B2 (en) | 2011-02-09 | 2015-06-23 | Schlumberger Technology Corporation | Completion assembly |
-
2012
- 2012-09-26 BR BR112015006547-3A patent/BR112015006547B1/en active IP Right Grant
- 2012-09-26 MX MX2015003819A patent/MX355148B/en active IP Right Grant
- 2012-09-26 EP EP12885450.2A patent/EP2900905B1/en active Active
- 2012-09-26 WO PCT/US2012/057220 patent/WO2014051559A1/en active Application Filing
- 2012-09-26 SG SG11201502084RA patent/SG11201502084RA/en unknown
- 2012-09-26 AU AU2012391054A patent/AU2012391054B2/en active Active
- 2012-09-26 DK DK12885450.2T patent/DK2900905T3/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090008078A1 (en) * | 2007-03-13 | 2009-01-08 | Schlumberger Technology Corporation | Flow control assembly having a fixed flow control device and an adjustable flow control device |
Also Published As
Publication number | Publication date |
---|---|
EP2900905A1 (en) | 2015-08-05 |
SG11201502084RA (en) | 2015-04-29 |
DK2900905T3 (en) | 2024-04-22 |
MX355148B (en) | 2018-04-06 |
BR112015006547B1 (en) | 2020-11-24 |
EP2900905A4 (en) | 2017-01-18 |
BR112015006547A2 (en) | 2017-07-04 |
MX2015003819A (en) | 2015-10-12 |
WO2014051559A1 (en) | 2014-04-03 |
AU2012391054B2 (en) | 2016-07-07 |
AU2012391054A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8893783B2 (en) | Tubing conveyed multiple zone integrated intelligent well completion | |
US9428999B2 (en) | Multiple zone integrated intelligent well completion | |
EP2673460B1 (en) | Completion assembly | |
US8037940B2 (en) | Method of completing a well using a retrievable inflow control device | |
US6513599B1 (en) | Thru-tubing sand control method and apparatus | |
EP3726004B1 (en) | Single trip multi-zone completion systems and methods | |
US8985215B2 (en) | Single trip multi-zone completion systems and methods | |
WO2005045174A2 (en) | Gravel pack completion with fiber optic monitoring | |
WO2008112697A1 (en) | Providing a removable electrical pump in a completion system | |
AU2016228178B2 (en) | Multiple zone integrated intelligent well completion | |
EP2900905B1 (en) | Tubing conveyed multiple zone integrated intelligent well completion | |
OA16528A (en) | Completion assembly. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20150415 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 43/08 20060101ALI20160706BHEP Ipc: E21B 47/06 20120101ALI20160706BHEP Ipc: E21B 43/12 20060101AFI20160706BHEP Ipc: E21B 43/14 20060101ALI20160706BHEP Ipc: E21B 34/10 20060101ALI20160706BHEP |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20161219 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E21B 34/10 20060101ALI20161213BHEP Ipc: E21B 43/14 20060101ALI20161213BHEP Ipc: E21B 47/10 20120101ALI20161213BHEP Ipc: E21B 43/12 20060101AFI20161213BHEP Ipc: E21B 43/08 20060101ALI20161213BHEP Ipc: E21B 47/06 20120101ALI20161213BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210215 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231005 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HALLIBURTON ENERGY SERVICES, INC. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012080595 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20240419 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240606 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1663700 Country of ref document: AT Kind code of ref document: T Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240820 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240820 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240708 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240306 |