EP2900905B1 - Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages - Google Patents

Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages Download PDF

Info

Publication number
EP2900905B1
EP2900905B1 EP12885450.2A EP12885450A EP2900905B1 EP 2900905 B1 EP2900905 B1 EP 2900905B1 EP 12885450 A EP12885450 A EP 12885450A EP 2900905 B1 EP2900905 B1 EP 2900905B1
Authority
EP
European Patent Office
Prior art keywords
flow control
control devices
tubing string
well
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12885450.2A
Other languages
German (de)
English (en)
Other versions
EP2900905A1 (fr
EP2900905A4 (fr
Inventor
Timothy R. Tips
William M. Richards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP2900905A1 publication Critical patent/EP2900905A1/fr
Publication of EP2900905A4 publication Critical patent/EP2900905A4/fr
Application granted granted Critical
Publication of EP2900905B1 publication Critical patent/EP2900905B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor

Definitions

  • This disclosure relates generally to equipment utilized and operations performed in conjunction with subterranean wells and, in one example described below, more particularly provides a tubing conveyed multiple zone integrated intelligent well completion.
  • US 2006/0060352 discloses sand control completion having smart well capability and method for use of same.
  • variable flow restricting device is configured to receive fluid which flows through a well screen.
  • an optical waveguide is positioned external to a tubing string, and one or more pressure sensors sense pressure internal and/or external to the tubing string.
  • FIG. 1 Representatively illustrated in FIG. 1 is a well completion system 10 and associated method which can embody principles of this disclosure.
  • system 10 and method are merely one example of an application of the principles of this disclosure in practice, and a wide variety of other examples are possible. Therefore, the scope of this disclosure is not limited at all to the details of the system 10 and method described herein and/or depicted in the drawings.
  • a tubing string 12 has been installed in a wellbore 14 lined with casing 16 and cement 18.
  • the tubing string 12 could be at least partially installed in an uncased or open hole portion of the wellbore 14.
  • the tubing string 12 can be suspended from a tubing hanger (not shown) at or near the earth's surface (for example, in a surface or subsea wellhead).
  • the tubing string 12 includes multiple sets 20 of completion equipment. In some examples, all of the sets 20 of completion equipment can be conveyed into the well at the same time on the tubing string 12. Gravel 22 can be placed about well screens 24 included in the completion equipment in a single trip into the wellbore 14, using a through-tubing multiple zone gravel packing system.
  • Packers 26 on the tubing string 12 are used to isolate multiple earth formation zones 28 from each other in the wellbore 14.
  • the packers 26 seal off an annulus 30 formed radially between the tubing string 12 and the wellbore 14.
  • the zones 28 may be different sections of a same earth formation, but this is not necessary in keeping with the scope of this disclosure.
  • each set 20 of completion equipment is a flow control device 32 and a hydraulic control device 34 which controls hydraulic actuation of the flow control device.
  • a suitable flow control device which can variably restrict flow into or out of the tubing string 12, is the infinitely variable interval control valve IV-ICV(TM) marketed by Halliburton Energy Services, Inc.
  • a suitable hydraulic control device for controlling hydraulic actuation of the IV-ICV(TM) is the surface controlled reservoir analysis and management system, or SCRAMS(TM), which is also marketed by Halliburton Energy Services.
  • a pressure sensor 36 is included for sensing pressure internal and/or external to the tubing string 12.
  • the pressure sensor 36 could be provided as part of the hydraulic control device 34 (such as, part of the SCRAMS(TM) device), or a separate pressure sensor may be used. If a separate pressure sensor 36 is used, a suitable sensor is the ROC(TM) pressure sensor marketed by Halliburton Energy Services, Inc.
  • the senor 36 could also, or alternatively, include a flow rate sensor, a water cut or fluid composition sensor, or any other type of sensors.
  • the packers 26 are preferably set by applying internal pressure.
  • the packers 26 are set after the tubing string 12 has been landed (for example, in a wellhead at or near the earth's surface).
  • no disconnect subs or expansion joints are required for spacing out the tubing string 12 relative to the wellhead prior to setting the packers 26, although such disconnect subs or expansion joints may be used, if desired.
  • a gravel packing work string and service tool (not shown) used to direct flow of a fracturing and/or gravel packing slurry into the well is installed after the packers 26 are set. After the gravel packing operation is completed, the gravel packing work string and service tool is retrieved. The well can then be produced via the tubing string 12.
  • a production string 38 (such as, a coiled tubing string, etc.) may be lowered into the wellbore 14 and stabbed into the tubing string 12, if desired.
  • the production string 38 in this example includes seals 40 for sealingly engaging a seal bore 42 in an uppermost one of the packers 26.
  • the production string 38 can include an electric submersible pump 44.
  • the pump 44 could be conveyed by cable or wireline, in which case the tubing string 12 could be used for flowing a fluid 52 to the earth's surface above the pump.
  • the pump 44 may be installed only after partial depletion of the well.
  • lines 50 are carried externally on the tubing string 12.
  • the lines 50 include one or more optical lines (e.g., at least one optical waveguide, such as, an optical fiber, optical ribbon, etc.).
  • the optical waveguide(s) is/are external to the tubing string 12 (for example, between the well screens 24 and the wellbore 14), so that properties of fluid 52 which flows between the zones 28 and the interior of the tubing string 12 can be readily detected by the optical waveguide(s).
  • the optical waveguide could be positioned in a wall of the casing 16, external to the casing, in the cement 18, etc.
  • the optical waveguide is capable of sensing temperature and/or pressure of the fluid 52.
  • the optical waveguide may be part of a distributed temperature sensing (DTS) system which detects Rayleigh backscattering in the optical waveguide as an indication of temperature along the waveguide.
  • DTS distributed temperature sensing
  • the optical waveguide could be equipped with fiber Bragg gratings and/or Brillouin backscattering in the optical waveguide could be detected as an indication of strain (resulting from pressure) along the optical waveguide.
  • the optical waveguide could be used for sensing flow rate or water cut of the fluid 52.
  • the scope of this disclosure is not limited to any particular technique for sensing any particular property of the fluid 52.
  • a safety valve 46 is used to prevent unintended flow of fluid 52 out of the well (e.g., in the event of an emergency, blowout, etc.), and the isolation valve 48 is used to prevent the zones 28 from being exposed to potentially damaging fluids and pressures thereabove at times during the completion process.
  • the safety valve 46 may be operated using one or more control lines 84 (such as, electrical and/or hydraulic lines), or the safety valve may be operated using one or more of the lines 50.
  • the isolation valve 48 may be operated using one or more of the lines 50.
  • the fluid 52 is depicted in FIG. 1 as flowing from the zones 28 into the tubing string 12, as in a production operation.
  • the principles of this disclosure are also applicable to situations (such as, acidizing, fracturing, other stimulation operations, conformance or other injection operations, etc.), in which the fluid 52 is injected from the tubing string 12 into one or more of the zones 28.
  • all of the flow control devices 32 can be closed, to thereby prevent flow of the fluid 52 through all of the screens 24, and then one of the flow control devices can be opened to allow the fluid to flow through a corresponding one of the screens.
  • the properties of the fluid 52 which flows between the respective zone 28 and through the respective well screen 24 can be individually detected by the optical waveguide.
  • the pressure sensors 36 can meanwhile detect internal and/or external pressures longitudinally distributed along the tubing string 12, and this will provide an operator with significant information on how and where the fluid 52 flows between the zones 28 and the interior of the tubing string.
  • This process can be repeated for each of the zones 28 and/or each of the sets 20 of completion equipment, so that the fluid 52 characteristics and flow paths can be accurately modeled along the tubing string 12. Water or gas encroachment, water or steam flood fronts, etc., in individual zones 28 can also be detected using this process.
  • FIGS. 2A-C an example of one longitudinal section of the tubing string 12 is representatively illustrated.
  • the illustrated section depicts how flow through the well screens 24 can be controlled effectively using the flow control devices 32.
  • the section shown in FIGS. 2A-C may be used in the system 10 and tubing string 12 of FIG. 1 , or it may be used in other systems and/or tubing strings.
  • FIGS. 2A-C three of the flow control devices 32 are used to variably restrict flow through six of the well screens 24. This demonstrates that any number of flow control devices 32 and any number of well screens 24 may be used to control flow of the fluid 52 between a corresponding one of the zones 28 and the tubing string 12. The scope of this disclosure is not limited to any particular number or combination of the various components of the tubing string 12.
  • Another flow control device 54 (such as, a mechanically actuated sliding sleeve-type valve, etc.) is used to selectively permit and prevent substantially unrestricted flow through the well screens 24.
  • a mechanically actuated sliding sleeve-type valve, etc. is used to selectively permit and prevent substantially unrestricted flow through the well screens 24.
  • the flow control device 54 can be closed to thereby prevent flow through the screens 24, so that sufficient pressure can be applied external to the screens to force fluid outward into the corresponding zone 28.
  • An upper one of the hydraulic control devices 34 is used to control operation of an upper one of the flow control devices 32 ( FIG. 2A ), and to control an intermediate one of the flow control devices ( FIG. 2B ).
  • a lower one of the hydraulic control devices 34 is used to control actuation of a lower one of the flow control devices 32 ( FIG. 2C ).
  • an inner tubular 60 is secured to an outer tubular 94 (for example, by means of threads, etc.), so that the inner tubular 60 can be used to support a weight of a remainder of the tubing string 12 below.
  • FIG. 3 an example of how the flow control device 32 can be used to control flow of the fluid 52 through the well screen 24 is representatively illustrated.
  • the fluid 52 enters the well screen 24 and flows into an annular area 56 formed radially between a perforated base pipe 58 of the well screen and an inner tubular 60.
  • the fluid 52 flows through the annular area 56 to the flow control device 32, which is contained within an outer tubular shroud 62.
  • the flow control device 32 variably restricts the flow of the fluid 52 from the annular area 56 to a flow passage 64 extending longitudinally through the tubing string 12.
  • Such variable restriction may be used to balance production from the multiple zones 28, to prevent water or gas coning, etc.
  • the variable restriction may be used to control a shape or extent of a water or steam flood front in the various zones, etc.
  • FIG. 4 a manner in which the lines 50 may be routed through the tubing string 12 is representatively illustrated.
  • the shroud 62 is removed, so that the lines 50 extending from one of the flow control devices 32 (such as, the intermediate flow control device depicted in FIG. 2B ) to a well screen 24 below the flow control device may be seen.
  • the lines 50 extend from a connector 66 on the flow control device 32 to an end connection 68 of the well screen 24, wherein the lines are routed to another connector 70 for extending the lines further down the tubing string 12.
  • the end connection 68 may be provided with flow passages (not shown) to allow the fluid 52 to flow longitudinally through the end connection from the well screen 24 to the flow control device 32 via the annular area 56. Casting the end connection 68 can allow for forming complex flow passage and conduit shapes in the end connection, but other means of fabricating the end connection may be used, if desired.
  • the lines 50 extend exterior to a filter media (e.g., wire wrap, wire mesh, sintered, pre-packed, etc.) of the well screen 24.
  • a filter media e.g., wire wrap, wire mesh, sintered, pre-packed, etc.
  • the lines 50 could be positioned between the base pipe 58 and the filter media, radially inward of the filter media, in the annular area 56, between the tubular 60 and the filter media, etc.
  • the set 20 of completion equipment includes only one each of the well screen 24, flow control device 32, hydraulic control device 34 and flow control device 54.
  • the set 20 of completion equipment includes only one each of the well screen 24, flow control device 32, hydraulic control device 34 and flow control device 54.
  • any number or combination of components may be used, in keeping with the scope of this disclosure.
  • FIG. 5 example One difference in the FIG. 5 example is that the flow control device 54 and at least a portion of the flow control device 32 are positioned within the well screen 24. This can provide a more longitudinally compact configuration, and eliminate use of the shroud 62. Thus, it will be appreciated that the scope of this disclosure is not limited to any particular configuration or arrangement of the components of the tubing string 12.
  • the hydraulic control device 34 can include the pressure sensor 36, which can be ported to the interior flow passage 64 and/or to the annulus 30 external to the tubing string 12. Multiple pressure sensors 36 may be provided in the hydraulic control device 34 to separately sense pressures internal to, or external to, the tubing string 12.
  • the tubing string 12 can be installed in a single trip into the wellbore 14 with the safety valve 46 (see FIG. 1 ).
  • the tubing string 12 can be landed in a wellhead above, and then the packers 26 can be set by applying internal pressure to the tubing string.
  • the pump 44 can be installed later, if desired (such as, when production has deminished significantly, etc.).
  • the lines 50 can extend to a surface location, without any "wet" connections (e.g., connections made downhole) in the lines 50.
  • the hydraulic control device 34 includes electronics 72 (such as, one or more processors, memory, batteries, etc.) responsive to signals transmitted from a remote location (for example, a control station at the earth's surface, a sea floor installation, a floating rig, etc.) via the lines 50 to direct hydraulic pressure (via a hydraulic manifold, not shown) to an actuator 74 of the flow control device 32.
  • electronics 72 such as, one or more processors, memory, batteries, etc.
  • the FIG. 6 flow control device 32 includes a sleeve 76 which is displaced by the actuator 74 relative to an opening 78 in an outer housing 80, in order to variably restrict flow through the opening.
  • the flow control device 32 also includes a position indicator 82, so that the electronics 72 can verify whether the sleeve 76 is properly positioned to obtain a desired flow restriction.
  • the pressure sensor(s) 36 may be used to verify that a desired pressure differential is achieved across the flow control device 32.
  • flow control device 32 in the above examples is described as being a remotely hydraulically actuated variable choke, any type of flow control device which provides a variable resistance to flow may be used, in keeping with the scope of this disclosure.
  • a remotely actuated inflow control device may be used.
  • An inflow control device may be actuated using the hydraulic control device 34 described above, or relatively straightforward hydraulic control lines may be used to actuate an inflow control device.
  • an autonomous inflow control device one which varies a resistance to flow without commands or actuation signals transmitted from a remote location
  • an autonomous inflow control device such as those described in US Publication Nos. 2011/0042091 , 2011/0297385 , 2012/0048563 and others, may be used.
  • an inflow control device (autonomous or remotely actuated) may be preferable for injection operations, for example, if precise regulation of flow resistance is not required.
  • the scope of this disclosure is not limited to use of any particular type of flow control device, or use of a particular type of flow control device in a particular type of operation.
  • separate pressure and/or temperature sensors may be conveyed into the tubing string 12 during the method described above, in which characteristics and flow paths of the fluid 52 flowing between the tubing string and the individual zones 28 are determined.
  • a wireline or coiled tubing conveyed perforated dip tube could be conveyed into the tubing string during or prior to performance of the method.
  • a selectively variable flow control device 32 integrated with an optical sensor (e.g., an optical waveguide as part of the lines 50) external to the tubing string 12, and pressure sensors 36 ported to an interior and/or exterior of the tubing string.
  • an optical sensor e.g., an optical waveguide as part of the lines 50
  • the system 10 can include: multiple well screens 24 which filter fluid 52 flowing between a tubing string 12 in the well and respective ones of the multiple zones 28; at least one optical waveguide 50 which senses at least one property of the fluid 52 as it flows between the tubing string 12 and at least one of the zones 28; multiple flow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24; and multiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24.
  • the multiple well screens 24, the optical waveguide 50, the multiple flow control devices 32, and the multiple pressure sensors 36 can be installed in the well in a single trip into the well.
  • the system 10 can also include multiple hydraulic control devices 34 which control application of hydraulic actuation pressure to respective ones of the multiple flow control devices 32.
  • a single one of the hydraulic control devices 34 may control application of hydraulic actuation pressure to multiple ones of the flow control devices 32.
  • the pressure sensors 36 may sense pressure of the fluid 52 external and/or internal to the tubing string 12. Sensor(s) may be provided for sensing flow rate of the fluid 52 and/or composition of the fluid.
  • the flow control devices 32 may comprise remotely hydraulically actuated variable chokes.
  • the flow control devices 32 may comprise autonomous variable flow restrictors.
  • the flow control devices 32 receive the fluid 52 from the respective ones of the multiple well screens 24.
  • the optical waveguide 50 is positioned external to the well screens 24.
  • the optical waveguide 50 can be positioned between the well screens 24 and the zones 28.
  • the tubing string 12 can include at least one well screen 24; at least one first flow control device 54; and at least one second flow control device 32, the second flow control device 32 being remotely operable.
  • the first flow control device 54 selectively prevents and permits substantially unrestricted flow through the well screen 24.
  • the second flow control device 32 variably restricts flow through the well screen 24.
  • the tubing string 12 can include a hydraulic control device 34 which controls application of hydraulic actuation pressure to the second flow control device 32.
  • the second flow control device 32 may comprise multiple second flow control devices 32, and the hydraulic control device 34 may control application of hydraulic actuation pressure to the multiple second flow control devices 32.
  • the tubing string 12 includes at least one optical waveguide 50 which is operative to sense at least one property of a fluid 52 which flows through the well screen 24.
  • the method can comprise: closing all of multiple flow control devices 32 connected in the tubing string 12, the tubing string 12 including multiple well screens 24 which filter fluid 52 flowing between the tubing string 12 and respective ones of multiple earth formation zones 28, at least one optical waveguide 50 which senses at least one property of the fluid 52 as it flows between the tubing string 12 and at least one of the zones 28, the multiple flow control devices 32 which variably restrict flow of the fluid 52 through respective ones of the multiple well screens 24, and multiple pressure sensors 36 which sense pressure of the fluid 52 which flows through respective ones of the multiple well screens 24; at least partially opening a first selected one of the flow control devices 32; and measuring a first change in the property sensed by the optical waveguide 50 and a first change in the pressure of the fluid 52 as a result of the opening of the first selected one of the flow control devices 32.
  • the method can also include: closing all of the multiple flow control devices 32 after the step of at least partially opening the first selected one of the flow control devices 32; at least partially opening a second selected one of the flow control devices 32; and recording a second change in the property sensed by the optical waveguide 50 and a second change in the pressure of the fluid 52 as a result of the opening of the second selected one of the flow control devices 32.
  • the method can include installing the multiple well screens 24, the optical waveguide 50, the multiple flow control devices 32, and the multiple pressure sensors 36 in the well in a single trip into the well.
  • Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip; landing the tubing string 12; and then setting multiple packers 26 in the tubing string 12.
  • the tubing string 12 can be installed without making any connection in lines 50 extending along the tubing string 12.
  • the setting step can include applying internal pressure to the tubing string 12.
  • Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip; landing the tubing string 12; and then setting multiple packers 26 in the tubing string 12.
  • the method can also include installing an electric pump 44 in the tubing string 12 after the setting.
  • Another method of installing a tubing string 12 in a subterranean well can include conveying the tubing string 12 with a safety valve 46 into the well in a single trip, producing fluid 52 via the tubing string 12, and then installing an electric pump 44 in the tubing string 12.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Pipeline Systems (AREA)
  • Earth Drilling (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Claims (15)

  1. Une colonne de tubage à utiliser dans un puits souterrain, la colonne de tubage comprenant :
    au moins un tamis de puits (24) ;
    au moins un premier dispositif de régulation de débit (54) qui empêche et permet sélectivement un débit substantiellement illimité à travers le tamis de puits ; et
    au moins un second dispositif de régulation de débit (32), le second dispositif de régulation de débit pouvant être actionné à distance, et où le second dispositif de régulation de débit restreint de manière variable le débit à travers le tamis de puits, caractérisée en ce qu'elle
    comprend en outre au moins un guide d'ondes optique destiné à détecter au moins une propriété d'un fluide qui traverse le tamis de puits, et où le guide d'ondes optique est positionné à l'extérieur du tamis de puits.
  2. La colonne de tubage selon la revendication 1 :
    où le second dispositif de régulation de débit comprend un étrangleur variable actionné hydrauliquement.
  3. La colonne de tubage selon la revendication 1 ou 2, comprenant en outre un détecteur de pression (36) qui détecte la pression externe à la colonne de tubage (12) ; et/ou
    comprenant en outre un détecteur de pression qui détecte la pression interne à la colonne de tubage ; et/ou
    comprenant en outre un détecteur qui détecte au moins l'un parmi le débit et la composition du fluide.
  4. La colonne de tubage selon la revendication 1, 2 ou 3, comprenant en outre un dispositif de régulation hydraulique (34) qui régule l'application de la pression d'actionnement hydraulique au second dispositif de régulation de débit, et, en option, où l'au moins un second dispositif de régulation de débit comprend de multiples seconds dispositifs de régulation de débit, et où le dispositif de régulation hydraulique régule l'application de la pression d'actionnement hydraulique aux multiples seconds dispositifs de régulation de débit.
  5. Un procédé d'exploitation d'une colonne de tubage dans un puits souterrain, le procédé comprenant :
    fermeture de tous les dispositifs de régulation de débit (32, 54) raccordés dans la colonne de tubage (12), la colonne de tubage comprenant plusieurs tamis de puits (24) qui filtrent le fluide s'écoulant entre la colonne de tubage et chacune des multiples zones de formation terrestre (28), au moins un guide d'ondes optique qui détecte au moins une propriété du fluide lorsqu'il s'écoule entre la colonne de tubage et au moins l'une des zones, où le guide d'ondes optique est positionné à l'extérieur des tamis de puits (24), les multiples dispositifs de régulation de débit qui restreignent de manière variable le débit du fluide à travers chacun des multiples tamis de puits, et de multiples détecteurs de pression (36) qui détectent la pression du fluide qui s'écoule à travers chacun des multiples tamis de puits ; ouverture au moins partielle d'un premier dispositif sélectionné parmi les dispositifs de régulation de débit ; et
    mesure d'une première modification de la propriété détectée par le guide d'ondes optique et d'une première modification de la pression du fluide à la suite de l'ouverture du premier dispositif sélectionné parmi les dispositifs de régulation de débit,
    où les multiples dispositifs de régulation de débit comprennent : un premier dispositif de régulation de débit qui empêche et permet sélectivement un débit substantiellement illimité à travers le tamis de puits ; et
    un second dispositif de régulation de débit, le second dispositif de régulation de débit étant actionnable à distance, où le second dispositif de régulation de débit restreint de manière variable le débit à travers le même tamis de puits.
  6. Le procédé selon la revendication 5,
    comprenant en outre :
    fermeture de tous les multiples dispositifs de régulation de débit après l'étape d'ouverture au moins partielle du premier dispositif sélectionné parmi les dispositifs de régulation de débit ;
    ouverture au moins partielle d'un second dispositif sélectionné parmi les dispositifs de régulation de débit ; et mesure d'une seconde modification de la propriété détectée par le guide d'ondes optique et d'une seconde modification de la pression du fluide à la suite de l'ouverture du second dispositif sélectionné parmi les dispositifs de régulation de débit.
  7. Le procédé de la revendication 5 ou 6, comprenant en outre l'installation des multiples tamis de puits, du guide d'ondes optique, des multiples dispositifs de régulation de débit et des multiples détecteurs de pression dans le puits en un seul passage dans le puits ; et/ou
    où les détecteurs de pression détectent la pression du fluide externe à la colonne de tubage ; et/ou
    où les détecteurs de pression détectent la pression du fluide interne à la colonne de tubage.
  8. Le procédé selon l'une quelconque des revendications 5 à 7, où les dispositifs de régulation de débit comprennent des étrangleurs variables actionnés hydrauliquement à distance ; et/ou
    où les dispositifs de régulation de débit comprennent des limiteurs de débit variables autonomes ; et/ou où les dispositifs de régulation de débit reçoivent le fluide à partir de chacun des multiples tamis de puits.
  9. Le procédé selon l'une quelconque des revendications 5 à 8, comprenant en outre l'installation d'une pompe électrique (44) dans la colonne de tubage après la mesure.
  10. Le procédé selon l'une quelconque des revendications 5 à 9, où la colonne de tubage comprend en outre de multiples dispositifs de régulation hydraulique (34) qui régulent l'application d'une pression d'actionnement hydraulique à chacun des multiples dispositifs de régulation de débit, et, en option, où un seul des dispositifs de régulation hydraulique régule l'application de la pression d'actionnement hydraulique aux multiples dispositifs de régulation de débit.
  11. Un système à utiliser avec un puits souterrain ayant de multiples zones de formation terrestre, le système comprenant :
    La colonne de tubage selon la revendication 1, le système comprenant de multiples tamis de puits (24) qui filtrent le fluide s'écoulant entre la colonne de tubage (12) dans le puits et chacune des zones multiples (28) ;
    de multiples dispositifs de régulation de débit (32, 54) qui restreignent de manière variable le débit du fluide à travers chacun des multiples tamis de puits, les multiples dispositifs de régulation de débit pour chacun des multiples tamis de puits comprenant :
    le premier dispositif de régulation de débit ; et
    le second dispositif de régulation de débit, et
    de multiples détecteurs qui détectent au moins une propriété du fluide qui s'écoule à travers chacun des multiples tamis de puits.
  12. Le système selon la revendication 11,
    où les multiples tamis de puits, le guide d'ondes optique, les multiples dispositifs de régulation de débit et les multiples détecteurs sont installés dans le puits en un seul passage dans le puits.
  13. Le système selon la revendication 11 ou 12, où les détecteurs de pression détectent la pression du fluide externe à la colonne de tubage ; et/ou
    où les détecteurs mesurent la pression du fluide interne à la colonne de tubage ; ou
    où les détecteurs détectent le débit du fluide ; et/ou où les détecteurs détectent la composition du fluide.
  14. Le système selon la revendication 11, 12 ou 13, où les dispositifs de régulation de débit comprennent des étrangleurs variables actionnés hydrauliquement à distance ;
    et/ou où les dispositifs de régulation de débit comprennent des limiteurs de débit variables autonomes ; et/ou où les dispositifs de régulation de débit reçoivent le fluide à partir de chacun des multiples tamis de puits.
  15. Le système selon l'une quelconque des revendications 11 à 14, comprenant en outre de multiples dispositifs de régulation hydraulique (34) qui régulent l'application de la pression d'actionnement hydraulique à chacun des multiples dispositifs de régulation de débit, et, en option, où un seul des dispositifs de régulation hydraulique régule l'application de la pression d'actionnement hydraulique à de multiples dispositifs de régulation de débit.
EP12885450.2A 2012-09-26 2012-09-26 Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages Active EP2900905B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/057220 WO2014051559A1 (fr) 2012-09-26 2012-09-26 Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages

Publications (3)

Publication Number Publication Date
EP2900905A1 EP2900905A1 (fr) 2015-08-05
EP2900905A4 EP2900905A4 (fr) 2017-01-18
EP2900905B1 true EP2900905B1 (fr) 2024-03-06

Family

ID=50388765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12885450.2A Active EP2900905B1 (fr) 2012-09-26 2012-09-26 Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages

Country Status (7)

Country Link
EP (1) EP2900905B1 (fr)
AU (1) AU2012391054B2 (fr)
BR (1) BR112015006547B1 (fr)
DK (1) DK2900905T3 (fr)
MX (1) MX355148B (fr)
SG (1) SG11201502084RA (fr)
WO (1) WO2014051559A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2604371B (en) * 2021-03-03 2023-12-06 Equinor Energy As Improved inflow control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008078A1 (en) * 2007-03-13 2009-01-08 Schlumberger Technology Corporation Flow control assembly having a fixed flow control device and an adjustable flow control device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615388A (en) * 1984-10-25 1986-10-07 Shell Western E&P Inc. Method of producing supercritical carbon dioxide from wells
US5954135A (en) * 1997-01-17 1999-09-21 Halliburton Energy Services, Inc. Method and apparatus for establishing fluid communication within a subterranean well
US6082454A (en) * 1998-04-21 2000-07-04 Baker Hughes Incorporated Spooled coiled tubing strings for use in wellbores
US6789623B2 (en) * 1998-07-22 2004-09-14 Baker Hughes Incorporated Method and apparatus for open hole gravel packing
US6253857B1 (en) * 1998-11-02 2001-07-03 Halliburton Energy Services, Inc. Downhole hydraulic power source
US6257332B1 (en) * 1999-09-14 2001-07-10 Halliburton Energy Services, Inc. Well management system
WO2002035059A1 (fr) * 2000-10-23 2002-05-02 Halliburton Energy Services, Inc. Capteurs de proprietes de fluide et procedes associes d'etalonnage de capteurs dans un puits souterrain
US6712149B2 (en) * 2001-01-19 2004-03-30 Schlumberger Technology Corporation Apparatus and method for spacing out of offshore wells
GB2381281B (en) * 2001-10-26 2004-05-26 Schlumberger Holdings Completion system, apparatus, and method
BRPI0408789A (pt) * 2003-03-28 2006-03-28 Shell Int Research conjunto de filtro de poço ajustável, método para controlar o fluxo através de uma formação e de um cano dentro da formação, e, filtro de poço ajustável
US7191832B2 (en) * 2003-10-07 2007-03-20 Halliburton Energy Services, Inc. Gravel pack completion with fiber optic monitoring
US7367395B2 (en) * 2004-09-22 2008-05-06 Halliburton Energy Services, Inc. Sand control completion having smart well capability and method for use of same
US7428924B2 (en) * 2004-12-23 2008-09-30 Schlumberger Technology Corporation System and method for completing a subterranean well
US7677320B2 (en) * 2006-06-12 2010-03-16 Baker Hughes Incorporated Subsea well with electrical submersible pump above downhole safety valve
US8322415B2 (en) * 2009-09-11 2012-12-04 Schlumberger Technology Corporation Instrumented swellable element
EP2317073B1 (fr) * 2009-10-29 2014-01-22 Services Pétroliers Schlumberger Tubage instrumenté et procédé pour déterminer une contribution pour production fluide
US8863849B2 (en) * 2011-01-14 2014-10-21 Schlumberger Technology Corporation Electric submersible pumping completion flow diverter system
US9062530B2 (en) 2011-02-09 2015-06-23 Schlumberger Technology Corporation Completion assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008078A1 (en) * 2007-03-13 2009-01-08 Schlumberger Technology Corporation Flow control assembly having a fixed flow control device and an adjustable flow control device

Also Published As

Publication number Publication date
AU2012391054A1 (en) 2015-04-02
AU2012391054B2 (en) 2016-07-07
BR112015006547A2 (pt) 2017-07-04
BR112015006547B1 (pt) 2020-11-24
DK2900905T3 (en) 2024-04-22
WO2014051559A1 (fr) 2014-04-03
MX355148B (es) 2018-04-06
MX2015003819A (es) 2015-10-12
SG11201502084RA (en) 2015-04-29
EP2900905A1 (fr) 2015-08-05
EP2900905A4 (fr) 2017-01-18

Similar Documents

Publication Publication Date Title
US8893783B2 (en) Tubing conveyed multiple zone integrated intelligent well completion
US9428999B2 (en) Multiple zone integrated intelligent well completion
EP2673460B1 (fr) Ensemble de complétion
US8037940B2 (en) Method of completing a well using a retrievable inflow control device
US6513599B1 (en) Thru-tubing sand control method and apparatus
EP3726004B1 (fr) Systèmes de complétion multizone de déclenchement unique et procédés
US8985215B2 (en) Single trip multi-zone completion systems and methods
WO2005045174A2 (fr) Completion de filtre a graviers avec controle par fibre optique
WO2008112697A1 (fr) Fourniture d'une pompe électrique amovible dans un système de complétion
EP2900905B1 (fr) Système intelligent et intégré de complétion de puits présentant plusieurs zones et acheminé par tubages
AU2016228178B2 (en) Multiple zone integrated intelligent well completion
OA16528A (en) Completion assembly.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20150415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 43/08 20060101ALI20160706BHEP

Ipc: E21B 47/06 20120101ALI20160706BHEP

Ipc: E21B 43/12 20060101AFI20160706BHEP

Ipc: E21B 43/14 20060101ALI20160706BHEP

Ipc: E21B 34/10 20060101ALI20160706BHEP

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20161219

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 34/10 20060101ALI20161213BHEP

Ipc: E21B 43/14 20060101ALI20161213BHEP

Ipc: E21B 47/10 20120101ALI20161213BHEP

Ipc: E21B 43/12 20060101AFI20161213BHEP

Ipc: E21B 43/08 20060101ALI20161213BHEP

Ipc: E21B 47/06 20120101ALI20161213BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HALLIBURTON ENERGY SERVICES, INC.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012080595

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D