EP2897908A1 - Electrochemical co-production of chemicals employing the recycling of a hydrogen halide - Google Patents

Electrochemical co-production of chemicals employing the recycling of a hydrogen halide

Info

Publication number
EP2897908A1
EP2897908A1 EP13838395.5A EP13838395A EP2897908A1 EP 2897908 A1 EP2897908 A1 EP 2897908A1 EP 13838395 A EP13838395 A EP 13838395A EP 2897908 A1 EP2897908 A1 EP 2897908A1
Authority
EP
European Patent Office
Prior art keywords
region
product
reactor
acid
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13838395.5A
Other languages
German (de)
French (fr)
Other versions
EP2897908A4 (en
Inventor
Kyle Teamey
Jerry J. Kaczur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avantium Knowledge Centre BV
Original Assignee
Liquid Light Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/724,878 external-priority patent/US8647493B2/en
Application filed by Liquid Light Inc filed Critical Liquid Light Inc
Publication of EP2897908A1 publication Critical patent/EP2897908A1/en
Publication of EP2897908A4 publication Critical patent/EP2897908A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present disclosure generally relates to the field of electrochemical reactions, and more particularly to methods and/or systems for electrochemical co-production of chemicals employing the recycling of a hydrogen halide.
  • a mechanism for mitigating emissions is to convert carbon dioxide into economically valuable materials such as fuels and industrial chemicals. If the carbon dioxide is converted using energy from renewable sources, both mitigation of carbon dioxide emissions and conversion of renewable energy into a chemical form that may be stored for later use will be possible.
  • the present disclosure includes a system and methods for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode.
  • the method may include a step of contacting the first region with a catholyte comprising carbon dioxide.
  • the method may include another step of contacting the second region with an anolyte comprising a recycled reactant.
  • the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
  • the second product may be removed from the second region and introduced to a secondary reactor.
  • the method may include forming the recycled reactant in the secondary reactor.
  • FIG. 1 is a block diagram of a system in accordance with an embodiment of the present disclosure
  • FIG. 2A is a block diagram of a system in accordance with another embodiment of the present disclosure.
  • FIG. 2B is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
  • FIG. 3 is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
  • FIG. 4 is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
  • FIG. 5 is a flow diagram of a method of electrochemical co-production of products in accordance with an embodiment of the present disclosure
  • FIG. 6 is a flow diagram of a method of electrochemical co-production of products in accordance with another embodiment of the present disclosure
  • FIG. 7 is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
  • the electrochemical co-production of products may include production of a first product, such as reduction of carbon dioxide to carbon-based products including one, two, three, and four carbon chemicals, at a cathode side of an electrochemical cell with co-production of a second product, such as a halide (e.g., X 2 , where X is F, CI, Br, I, or mixtures thereof), at the anode of the electrochemical cell where the anolyte comprises a recycled reactant, where the recycled reactant is preferably HX.
  • a first product such as reduction of carbon dioxide to carbon-based products including one, two, three, and four carbon chemicals
  • a second product such as a halide (e.g., X 2 , where X is F, CI, Br, I, or mixtures thereof)
  • a halide e.g., X 2 , where X is F, CI, Br, I, or mixtures thereof
  • System (or apparatus) 100 generally includes an electrochemical cell (also referred as a container, electrolyzer, or cell) 102, a carbon dioxide source 104, a secondary reactor 106, a carbon-based reactant source 108, a first product extractor 1 10 (configured to extract a first product 1 12), a second product extractor 1 14 (configured to extract a second product 1 16), and an energy source 1 18.
  • electrochemical cell also referred as a container, electrolyzer, or cell
  • carbon dioxide source 104 also referred as a container, electrolyzer, or cell
  • secondary reactor 106 a carbon-based reactant source 108
  • first product extractor 1 10 configured to extract a first product 1 12
  • second product extractor 1 14 configured to extract a second product 1 16
  • an energy source 1 18.
  • Electrochemical cell 102 may be implemented as a divided cell.
  • the divided cell may be a divided electrochemical cell and/or a divided photo-electrochemical cell.
  • Electrochemical cell 102 may include a first region 120 and a second region 122.
  • First region 120 and second region 122 may refer to a compartment, section, or generally enclosed space, and the like without departing from the scope and intent of the present disclosure.
  • First region 120 may include a cathode 124.
  • Second region 122 may include an anode 126.
  • First region 120 may include a catholyte whereby carbon dioxide is dissolved in the catholyte.
  • Second region 122 may include an anolyte which may include a recycled reactant (e.g., HX, where X is F, CI, Br, I and mixtures thereof).
  • a source of HX may be operably connected to second region 122.
  • Energy source 1 18 may generate an electrical potential between the anode 126 and the cathode 124. The electrical potential may be a DC voltage.
  • Energy source 1 18 may be configured to supply a variable voltage or constant current to electrochemical cell 102.
  • a separator 128 may selectively control a flow of ions between the first region 120 and the second region 122. Separator 128 may include an ion conducting membrane or diaphragm material.
  • Electrochemical cell 102 is generally operational to reduce carbon dioxide in the first region 120 to a first product 1 12 recoverable from the first region 120 while producing a second product 1 16 recoverable from the second region 122.
  • Cathode 124 may reduce the carbon dioxide into the first product 112 that may include one or more compounds.
  • Examples of the first product 1 12 recoverable from the first region 120 by the first product extractor 1 10 may include carbon monoxide, formic acid, formaldehyde, methanol, methane, oxalate, oxalic acid, glyoxylic acid, glyoxylate, glycolic acid, glycolate, glyoxal, glycolaldehyde, ethylene glycol, acetic acid, acetate, acetaldehyde, ethanol, ethane, ethylene, lactic acid, lactate, propanoic acid, propionate, acetone, isopropanol, 1 -propanol, 1 ,2-propylene glycol, propane, propylene, 1 -butanol, 2-butanone, 2-butanol, butane, butene, a carboxylic acid, a carboxylate, a ketone, an aldehyde, and an alcohol.
  • Carbon dioxide source 104 may provide carbon dioxide to the first region 120 of electrochemical cell 102.
  • the carbon dioxide is introduced directly into the region 120 containing the cathode 124. It is contemplated that carbon dioxide source 104 may include a source of a mixture of gases in which carbon dioxide has been separated and filtered from the gas mixture.
  • First product extractor 110 may include an organic product and/or inorganic product extractor.
  • First product extractor 110 is generally operational to extract (separate) the first product 112 from the first region 120.
  • the extracted first product 112 may be presented through a port of the system 100 for subsequent storage and/or consumption by other devices and/or processes.
  • the anode side of the reaction occurring in the second region 122 may include a recycled reactant 130, may be a gas phase, liquid phase, or solution phase reactant, supplied to the second region 122.
  • the second product 116 recoverable from the second region 122 may be derived from the oxidation of HX.
  • Second product extractor 114 may extract the second product 116 from the second region 122. Examples of the second product 116 recoverable from the second region 122 by the second product extractor 114 may include F 2 , Cl 2 , Br 2 , and l 2 , and mixtures thereof.
  • first product extractor 1 10 and/or second product extractor 1 14 may be implemented with electrochemical cell 102, or may be remotely located from the electrochemical cell 102. Additionally, it is contemplated that first product extractor 1 10 and/or second product extractor 1 14 may be implemented in a variety of mechanisms and to provide desired separation methods, such as fractional distillation, without departing from the scope and intent of the present disclosure.
  • second product 1 16 may be presented to another reactor, such as a secondary reactor 106, where the recycled reactant 130 is a product of a reaction of the second product 1 16 recovered from the second region 1 18 of the electrochemical cell 102 with a carbon-based reactant from the carbon-based reactant source 108.
  • the secondary reactor 106 may include the carbon-based reactant therein to react with the second product 1 16.
  • the carbon- based reactant may include, for example, an alkane, an alkene, an aromatic, or another organic compound.
  • a third product 132 produced by secondary reactor 106 as an additional product of a reaction at secondary reactor 106 may include a halogenated organic compound or halogenated intermediate that may be further converted to another product.
  • Recycled reactant 130 may be recycled back to the second region 122 as an input feed to the second region 122 of electrochemical cell 102. It is contemplated that an additional source of recycled reactant may be further supplied as an input feed to the second region 122 of the electrochemical cell 102 without departing from the scope and intent of the present disclosure.
  • electrochemical cell 102 may be capable of simultaneously producing two or more products with high selectivity.
  • the organic chemical partially oxidized in the reaction may serve as the source of hydrogen for the reduction of carbon dioxide.
  • the organic may thereby be indirectly oxidized by carbon dioxide while the carbon dioxide is reduced by the organic such that two or more products are made simultaneously.
  • the halogen may be employed to partially oxidize an organic and provide hydrogen halide which may be recycled to the electrochemical cell 102 and used for the reduction of C0 2 .
  • a preferred embodiment of the present disclosure may include production of organic chemicals, such as carbon dioxide reduction products, at the cathode while simultaneously using a hydrogen halide feed to the anode for production of X 2 , which is subsequently used to generate additional products.
  • organic chemicals such as carbon dioxide reduction products
  • FIG. 2A a system 200 for co-production of a carbon dioxide reduction product 202 and a fourth product 138, preferably one or more of an alkene, an alcohol, and an olefin, is shown. Examples of some possible fourth products and the organic compound from which they are derived are in Table 1 below.
  • the oxidation of the recycled reactant 130 preferably HX, where X is F, CI, Br, I, and mixtures thereof, in the second region 122 produces protons and electrons that are utilized to reduce carbon dioxide in the first region 120.
  • the oxidation of the recycled reactant 130 may produce the second product 116, which is preferably X 2 , which may be reacted in the secondary reactor 106 to selectively produce the third product 132, preferably a halogenated compound.
  • the third product 132 may be isolated or it may be supplied to a third reactor 134 for additional reactions to generate a fourth product 138 and the recycled reactant 130.
  • Third reactor 134 may include a feed of water, or hydroxide ion, 136 to produce an alkene or alcohol and the recycled reactant 130.
  • the third reactor 134 does not receive water, or hydroxide ion, as a reactant and instead produces the recycled reactant and one or more of an alkyne and an alkene.
  • the recycled reactant 130 formed in the third reactor 134 may be recycled back to the second region 122 as an input feed to the second region 122 of electrochemical cell 102 either as a pure anhydrous gas or in a liquid phase.
  • glycol ethylene
  • acetylene longer chain compounds such as butane
  • propanoic acid lactic acid, propylene glycol, propylene
  • FIG. 2B a block diagram of a system 200 in accordance with an additional embodiment of the present disclosure is shown. Similar to the embodiment shown in FIG. 2A, FIG. 2B is a block diagram of a system in accordance with an additional embodiment of the present disclosure wherein the recycled reactant 130 is hydrogen bromide (HBr) 202, the second product 1 16 is Br 2 204, the third product 132 is bromoethane 206, and the fourth product 138 is ethanol 208.
  • Bromine (Br 2 ) may be supplied to secondary reactor 106 and reacted with ethane 210 to produce HBr 202, which is recycled as an input feed to the second region 122, and bromoethane 206.
  • Bromoethane 206 may be supplied to third reactor 134 and reacted with water from water source 136 to produce HBr 202, which is recycled as an input feed to the second region 122, and ethanol 208.
  • water is not reacted in third reactor 134, and the bromoethane 206 is reacted to produce HBr 202 and one or more of an alkyne or an alkene such as ethylene.
  • the carbon dioxide reduction product of FIG. 2B preferably includes one or more of acetate and acetic acid 212.
  • the molar ratios of the product may be 1 acetic acid : 4 ethanol because acetic acid production from C0 2 is an 8 electron process and ethanol from ethane is a two electron process.
  • the mass ratios may be 1 :3.
  • FIGS. 3 and 4 with block diagrams of systems 300, 400 in accordance with additional embodiments of the present disclosure are shown.
  • Systems 300, 400 provide additional embodiments to systems 100, 200 of FIGS. 1 -2 to co-produce a first product and second product.
  • first region 120 of electrochemical cell 102 may produce a first product of H 2 310 which is combined with carbon dioxide 332 in a reactor 330 which may perform a reverse water gas shift reaction.
  • This reverse water gas shift reaction performed by reactor 330 may produce water 334 and carbon monoxide 336.
  • Carbon monoxide 336 along with H 2 310 may be combined at second reactor 338.
  • Reactor 338 may cause a reaction by utilizing H 2 310 from the first region 120 of the electrochemical cell 102, such as a Fischer- Tropsch-type reaction, to reduce carbon monoxide to a product 340.
  • Product 340 may include methane, methanol, hydrocarbons, glycols, and olefins.
  • Second reactor 338 may also include transition metals such as iron, cobalt, and ruthenium as well as other transition metal oxides as catalysts, on inorganic support structures that may promote the reaction of CO with hydrogen at lower temperatures and pressures.
  • Second region 122 may co-produce X 2 342, where X is F, CI, Br, I, and mixtures thereof.
  • the X 2 is Br 2 .
  • the X 2 342 may be introduced to the third reactor 106, which may have a feed input of an alkane, an alkene, an alkyne, and an aromatic compound 344, for production of a halogenated compound 312.
  • the alkane 344 is ethane and the halogenated compound 312 is bromoethane.
  • Halogenated compound 312 may be isolated, or may be supplied to a fourth reactor 31 to generate products such as an alkene 318 and a hydrogen halide recycled reactant 320, which is recycled back as an input feed to the second region 122.
  • the alkene 318 is ethylene and the hydrogen halide recycled reactant 320 is hydrogen bromide (HBr).
  • alkane 344 may be other types of carbon-based reactants, including various types of alkanes, alkenes, or aromatic compounds while halogenated compound 312 may also refer to any type of halogenated compound that may be supplied to a fourth reactor 314 to produce various types of alkenes, alcohols, aldehydes, ketones, glycols, or olefins without departing from the scope or intent of the present disclosure.
  • first region 120 of electrochemical cell 102 may produce a first product of carbon monoxide 410 which is combined with water 432 in a reactor 430 which may perform a water gas shift reaction.
  • This water gas shift reaction performed by reactor 430 may produce carbon dioxide 434 and H 2 436.
  • Carbon monoxide 410 and H 2 436 may be combined at second reactor 438.
  • Second reactor 438 may cause a reaction, such as a Fischer-Tropsch-type reaction, to reduce carbon monoxide to a product 440.
  • Product 440 may include methane, methanol, hydrocarbons, glycols, or olefins by utilizing H 2 436 from the water gas shift reaction.
  • Carbon dioxide 434 may be a byproduct of water gas shift reaction of reactor 430 and may be recycled as an input feed to the first region 120
  • Water 406, which may include a hydrogen halide, may be an additional product produced by the first region 120 and may be recycled as another input feed to the first region 120.
  • Second reactor 438 may also include transition metals and their oxides, such as iron and copper oxides as catalysts, on inorganic support structures that may promote the reaction of CO with hydrogen at lower temperatures and pressures.
  • Second region 122 may co-produce X 2 442, where X is F, CI, Br, I and mixtures thereof.
  • the X 2 is Br 2 .
  • the X 2 442 may be introduced to the third reactor 106, which may have a feed input of an alkane, an alkene, an alkyne, and an aromatic compound 444, for production of a halogenated compound 412.
  • an alkane 444 is ethane and the halogenated compound 412 is bromoethane.
  • Halogenated compound 412 may be isolated, or may be supplied to a fourth reactor 414 to generate byproducts such as an alkene 418 and a hydrogen halide recycled reactant 420, which is recycled back as an input feed to the second region 122.
  • the alkene 418 is ethylene and the hydrogen halide recycled reactant 420 is hydrogen bromide (HBr).
  • alkane 444 may be other types of carbon-based reactants, including various types of alkanes, alkenes, or aromatic compounds while halogenated compound 412 may also refer to any type of halogenated compound that may be supplied to a fourth reactor 414 to produce various types of alkenes, alkynes, alcohols, aldehydes, ketones, glycols, or olefins without departing from the scope or intent of the present disclosure.
  • reactions occurring at the first region 120 may occur in a catholyte which may include water, methanol, acetonitrile, propylene carbonate, ionic liquids, or other catholytes. They may also occur in the gas phase, though liquid phase may be preferred.
  • the reactions occurring at the second region 122 may be in a gas phase or may occur in liquid phase, for example, in an aqueous or non-aqueous solution.
  • the structure and operation of the electrochemical cell 102 may be adjusted to provide desired results.
  • the electrochemical cell 102 may operate at higher pressures, such as pressure above atmospheric pressure which may increase current efficiency and allow operation of the electrochemical cell at higher current densities.
  • the cathode 124 and anode 126 may include a high surface area electrode structure with a void volume which may range from 30% to 98%.
  • the electrode void volume percentage may refer to the percentage of empty space that the electrode is not occupying in the total volume space of the electrode.
  • the advantage in using a high void volume electrode is that the structure has a lower pressure drop for liquid flow through the structure.
  • the specific surface area of the electrode base structure may be from 2 cm 2 /cm 3 to 500 cm 2 /cm 3 or higher.
  • the electrode specific surface area is a ratio of the base electrode structure surface area divided by the total physical volume of the entire electrode.
  • surface areas also may be defined as a total area of the electrode base substrate in comparison to the projected geometric area of the current distributor/conductor back plate, with a preferred range of 2x to 1000x or more.
  • the actual total active surface area of the electrode structure is a function of the properties of the electrode catalyst deposited on the physical electrode structure which may be 2 to 1000 times higher in surface area than the physical electrode base structure.
  • Cathode 124 may be selected from a number of high surface area materials to include copper, stainless steels, transition metals and their alloys and oxides, carbon, and silicon, which may be further coated with a layer of material which may be a conductive metal or semiconductor.
  • the base structure of cathode 124 may be in the form of fibrous, reticulated, or sintered powder materials made from metals, carbon, or other conductive materials including polymers.
  • the materials may be a very thin plastic screen incorporated against the cathode side of the membrane to prevent the membrane 128 from directly touching the high surface area cathode structure.
  • the high surface area cathode structure may be mechanically pressed or physically bonded against a cathode current distributor back plate, which may be composed of material that has the same surface composition as the high surface area cathode.
  • cathode 124 may be a suitable conductive electrode, such as Al, Au, Ag, Bi, C, Cd, Co, Cr, Cu, Cu alloys (e.g., brass and bronze), Ga, Hg, In, Mo, Nb, Ni, NiCo 2 0 4 , Ni alloys (e.g., Ni 625, NiHX), Ni-Fe alloys, Pb, Pd alloys (e.g., PdAg), Pt, Pt alloys (e.g., PtRh), Rh, Sn, Sn alloys (e.g., SnAg, SnPb, SnSb), Ti, V, W, Zn, stainless steel (SS) (e.g., SS 2205, SS 304, SS 316, SS 321 ), austenitic steel, ferritic steel, duplex steel, martensitic steel, Nichrome (e.g., NiCr 60:16 (with Fe)), elg
  • SS stainless steel
  • cathode 122 may be a p-type semiconductor electrode, such as p-GaAs, p-GaP, p-lnN, p-lnP, p-CdTe, p-GalnP 2 and p-Si, or an n- type semiconductor, such as n-GaAs, n-GaP, n-lnN, n-lnP, n-CdTe, n-GalnP 2 and n- Si.
  • p-type semiconductor electrode such as p-GaAs, p-GaP, p-lnN, p-lnP, p-CdTe, p-GalnP 2 and n- Si.
  • Other semiconductor electrodes may be implemented to meet the criteria of a particular application including, but not limited to, CoS, MoS 2 , TiB, WS 2 , SnS, Ag 2 S, CoP 2 , Fe 3 P, Mn 3 P 2 , MoP, Ni 2 Si, MoSi 2 , WSi2, CoSi 2 , Ti 4 0 7 , Sn0 2 , GaAs, GaSb, Ge, and CdSe.
  • Catholyte may include a pH range from 1 to 12 if an aqueous solvent or electrolyte is employed, preferably from pH 4 to pH 10.
  • the selected operating pH may be a function of any catalysts utilized in operation of the electrochemical cell 102.
  • catholyte and catalysts may be selected to prevent corrosion at the electrochemical cell 102.
  • Catholyte may include homogeneous catalysts. Homogeneous catalysts are defined as aromatic heterocyclic amines and may include, but are not limited to, unsubstituted and substituted pyridines and imidazoles.
  • Substituted pyridines and imidazoles may include, but are not limited to mono and disubstituted pyridines and imidazoles.
  • suitable catalysts may include straight chain or branched chain lower alkyl (e.g. , CI-C10) mono and disubstituted compounds such as 2-methylpyridine, 4-tertbutyl pyridine, 2,6 dimethylpyridine (2,6-lutidine); bipyridines, such as 4,4'-bipyridine; amino- substituted pyridines, such as 4- dimethylamino pyridine; and hydroxyl-substituted pyridines (e.g.
  • the catalysts may also suitably include substituted or unsubstituted dinitrogen heterocyclic amines, such as pyrazine, pyridazine and pyrimidine.
  • Other catalysts generally include azoles, imidazoles, indoles, oxazoles, thiazoles, substituted species and complex multi-ring amines such as adenine, pterin, pteridine, benzimidazole, phenonthroline and the like.
  • the catholyte may include an electrolyte.
  • Catholyte electrolytes may include alkali metal bicarbonates, carbonates, sulfates, phosphates, borates, and hydroxides.
  • the electrolyte may comprise one or more of Na 2 S0 4 , KCl, NaN0 3 , NaCl, NaF, NaCl0 4 , KC10 4 , K 2 Si0 3 , CaCl 2 , a guanidinium cation, an H cation, an alkali metal cation, an ammonium cation, an alkylammonium cation, a tetraalkyl ammonium cation, a halide anion, an alkyl amine, a borate, a carbonate, a guanidinium derivative, a nitrite, a nitrate, a phosphate, a polyphosphate, a perchlorate, a silicate, a sulfate, and a hydroxide.
  • the catholyte may further include an aqueous or non-aqueous solvent.
  • An aqueous solvent may include greater than 5% water.
  • a non-aqueous solvent may include as much as 5% water.
  • a solvent may contain one or more of water or a non-aqueous solvent.
  • Representative solvents include methanol, ethanol, acetonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, tetrahydrofuran, ⁇ , ⁇ -dimethylacetaminde, dimethoxyethane, diethylene glycol dimethyl ester, butyrolnitrile, 1 ,2-difluorobenzene, ⁇ -butyrolactone, N-methyl-2- pyrrolidone, sulfolane, 1 ,4-dioxane, nitrobenzene, nitromethane, acetic anhydride, ionic liquids, and mixtures thereof.
  • a catholyte/anolyte flow rate may include a catholyte/anolyte cross sectional area flow rate range such as 2 - 3,000 gpm/ft 2 or more (0.0076 - 11.36 m 3 /m 2 ).
  • a flow velocity range may be 0.002 to 20 ft/sec (0.0006 to 6.1 m/sec). Operation of the electrochemical cell catholyte at a higher operating pressure allows more dissolved carbon dioxide to dissolve in the aqueous solution.
  • electrochemical cells may operate at pressures up to about 20 to 30 psig in multi-cell stack designs, although with modifications, the electrochemical cells may operate at up to 100 psig.
  • the electrochemical cell may operate anolyte at the same pressure range to minimize the pressure differential on a separator 128 or membrane separating the two regions.
  • Special electrochemical designs may be employed to operate electrochemical units at higher operating pressures up to about 60 to 100 atmospheres or greater, which is in the liquid C0 2 and supercritical C0 2 operating range.
  • a portion of a catholyte recycle stream may be separately pressurized using a flow restriction with backpressure or using a pump, with C0 2 injection, such that the pressurized stream is then injected into the catholyte region of the electrochemical cell which may increase the amount of dissolved C0 2 in the aqueous solution to improve the conversion yield.
  • micro-bubble generation of carbon dioxide may be conducted by various means in the catholyte recycle stream to maximize carbon dioxide solubility in the solution.
  • Catholyte may be operated at a temperature range of - 10 to 95 ° C, more preferably 5 - 60° C.
  • the lower temperature will be limited by the catholytes used and their freezing points. In general, the lower the temperature, the higher the solubility of C0 2 in an aqueous solution phase of the catholyte, which would help in obtaining higher conversion and current efficiencies.
  • the drawback is that the operating electrochemical cell voltages may be higher, so there is an optimization that would be done to produce the chemicals at the lowest operating cost.
  • the catholyte may require cooling, so an external heat exchanger may be employed, flowing a portion, or all, of the catholyte through the heat exchanger and using cooling water to remove the heat and control the catholyte temperature.
  • Anolyte operating temperatures may be in the same ranges as the ranges for the catholyte, and may be in a range of 0° C to 95 ° C.
  • the anolyte may require cooling, so an external heat exchanger may be employed, flowing a portion, or all, of the anolyte through the heat exchanger and using cooling water to remove the heat and control the anolyte temperature.
  • Electrochemical cells may include various types of designs. These designs may include zero gap designs with a finite or zero gap between the electrodes and membrane, flow-by and flow-through designs with a recirculating catholyte electrolyte utilizing various high surface area cathode materials.
  • the electrochemical cell may include flooded co-current and counter-current packed and trickle bed designs with the various high surface area cathode materials.
  • bipolar stack cell designs and high pressure cell designs may also be employed for the electrochemical cells.
  • Anode electrodes may be the same as cathode electrodes or different.
  • Anode 126 may include electrocatalytic coatings applied to the surfaces of the base anode structure.
  • Anolytes may be the same as catholytes or different.
  • Anolyte electrolytes may be the same as catholyte electrolytes or different.
  • Anolyte may comprise solvent.
  • Anolyte solvent may be the same as catholyte solvent or different.
  • the preferred electrocatalytic coatings may include precious metal oxides such as ruthenium and iridium oxides, as well as platinum and gold and their combinations as metals and oxides on valve metal substrates such as titanium, tantalum, zirconium, or niobium.
  • precious metal oxides such as ruthenium and iridium oxides, as well as platinum and gold and their combinations as metals and oxides on valve metal substrates such as titanium, tantalum, zirconium, or niobium.
  • platinum and gold and their combinations as metals and oxides on valve metal substrates such as titanium, tantalum, zirconium, or niobium.
  • carbon and graphite are particularly suitable for use as anodes.
  • Polymeric bonded carbon material may also be used.
  • anodes may include carbon, cobalt oxides, stainless steels, transition metals, and their alloys and combinations.
  • High surface area anode structures that may be used which would help promote the reactions at the anode surfaces.
  • the high surface area anode base material may be in a reticulated form composed of fibers, sintered powder, sintered screens, and the like, and may be sintered, welded, bonded, or mechanically connected to a current distributor back plate that is commonly used in bipolar electrochemical cell assemblies.
  • the high surface area reticulated anode structure may also contain areas where additional applied catalysts on and near the electrocatalytic active surfaces of the anode surface structure to enhance and promote reactions that may occur in the bulk solution away from the anode surface such as the reaction between bromine and the carbon based reactant being introduced into the anolyte.
  • the anode structure may be gradated, so that the density of the may vary in the vertical or horizontal direction to allow the easier escape of gases from the anode structure.
  • this gradation there may be a distribution of particles of materials mixed in the anode structure that may contain catalysts, such as metal halide or metal oxide catalysts such as iron halides, zinc halides, aluminum halides, cobalt halides, for the reactions between the bromine and the carbon-based reactant.
  • catalysts such as metal halide or metal oxide catalysts such as iron halides, zinc halides, aluminum halides, cobalt halides, for the reactions between the bromine and the carbon-based reactant.
  • anodes may include carbon, cobalt oxides, stainless steels, and their alloys and combinations.
  • Separator 128, also referred to as a membrane, between first region 120 and second region 122, may include cation ion exchange type membranes.
  • Cation ion exchange membranes which have a high rejection efficiency to anions, may be preferred.
  • Examples of such cation ion exchange membranes may include perfluorinated sulfonic acid based ion exchange membranes such as DuPont Nafion ® brand unreinforced types N117 and N120 series, more preferred PTFE fiber reinforced N324 and N424 types, and similar related membranes manufactured by Japanese companies under the supplier trade names such as AGC Engineering (Asahi Glass) under their trade name Flemion ® .
  • multi-layer perfluorinated ion exchange membranes used in the chlor alkali industry may have a bilayer construction of a sulfonic acid based membrane layer bonded to a carboxylic acid based membrane layer, which efficiently operates with an anolyte and catholyte above a pH of about 2 or higher. These membranes may have a higher anion rejection efficiency. These are sold by DuPont under their Nafion ® trademark as the N900 series, such as the N90209, N966, N982, and the 2000 series, such as the N2010, N2020, and N2030 and all of their types and subtypes.
  • Hydrocarbon based membranes which are made from of various cation ion exchange materials may also be used if the anion rejection is not as desirable, such as those sold by Sybron under their trade name lonac ® , AGC Engineering (Asahi Glass) under their Selemion ® trade name, and Tokuyama Soda, among others on the market.
  • Ceramic based membranes may also be employed, including those that are called under the general name of NASICON (for sodium super-ionic conductors) which are chemically stable over a wide pH range for various chemicals and selectively transports sodium ions, the composition is Nai+xZr 2 Si x P3-xOi2, and well as other ceramic based conductive membranes based on titanium oxides, zirconium oxides and yttrium oxides, and beta aluminum oxides.
  • Alternative membranes that may be used are those with different structural backbones such as polyphosphazene and sulfonated polyphosphazene membranes in addition to crown ether based membranes.
  • the membrane or separator is chemically resistant to the anolyte and catholyte and operates at temperatures of less than 600 degrees C, and more preferably less than 500 degrees C.
  • Method 500 may be performed by system 100 and system 200 as shown in FIGS. 1 -2.
  • Method 500 may include producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode.
  • Method 500 of electrochemical co-production of products may include a step of contacting the first region with a catholyte comprising carbon dioxide 510.
  • method 500 may include contacting the second region with an anolyte comprising a recycled reactant 520.
  • Method 500 may further include applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region 530.
  • Method 500 may additionally include removing the second product from the second region 540.
  • Method 500 may additionally include introducing the second product to a secondary reactor 550.
  • method 500 may include forming the recycled reactant in the secondary reactor 560.
  • a first product produced at the first region may be recoverable from the first region and the recycled reactant produced in the secondary reactor may be recycled to the second region.
  • Method 600 may be performed by system 100 and system 200 as shown in FIGS. 1 -2.
  • Method 600 may include producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode.
  • Method 600 of electrochemical co-production of products may include a step of contacting the first region with a catholyte comprising carbon dioxide 610.
  • method 600 may include receiving a feed of a recycled reactant at the second region of the electrochemical cell, the recycled reactant is HX where X is selected from the group consisting of F, CI, Br, I and mixtures thereof 620.
  • Method 600 may further include contacting the second region with an anolyte comprising the recycled reactant 630.
  • Method 600 may additionally include applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a diatomic halide product, X 2 , recoverable from the second region 640.
  • Method 600 may additionally include removing the diatomic halide product from the second region 650. Further, method 600 may include introducing the diatomic halide product to a secondary reactor 660. Method 600 may also include forming the recycled reactant in the secondary reactor 670.
  • a first product produced at the first region may be recoverable from the first region and the recycled reactant produced in the secondary reactor may be recycled to the second region.
  • HBr is introduced to the second region 122 of a two compartment cell 102 having first region 120 and second region 122 that is separated by cation exchange membrane 128.
  • HBr may be circulated with a pump in an anolyte circulation loop where HBr may be converted to Br 2 as a gas or liquid in the second region, where H + ions crossing the membrane 128 into the first region 120.
  • Br 2 may be collected as a liquid stream containing HBr 3 , (i.e., bromine combined with HBr), which may serve as an oxidizer for the formation of bromoethane from the reaction of bromine with ethane in reactor 701 , which may then be converted to ethanol using a reaction with water or alkali hydroxide in reactor 702.
  • HBr 3 i.e., bromine combined with HBr
  • carbon dioxide is reacted on a high surface area cathode to produce, in this example, sodium acetate.
  • a circulation pump may be used to provide sufficient mass transfer to obtain a high Faradaic efficiency conversion to acetate.
  • the product acetate overflows the catholyte loop, and may be converted to the acid form in the acidification unit using either an electrochemical acidification unit or by direct mixing with HBr and may be then purified and concentrated in a separate unit (not shown).
  • the electrochemical cell may be operated at a current density of greater than 3 kA/m 2 (300 mA/cm 2 ), or in suitable range of 0.5 to 5 kA/m 2 or higher if needed.
  • the current density of the formation of bromine from HBr may easily be operated at even higher current densities.
  • the cell may be operated in a liquid phase in both the anode and cathode compartments, or in a preferred embodiment, may be liquid phase in the cathode compartment with a gas phase anode compartment wherein gas phase HBr is fed directly to the anode.
  • the operating voltage of the system at a current density of 1 kA/m 2 may be between 1.0 - 2.5 volts, where the half cell voltage of anolyte reaction may be between 0.6V and 1.2V.
  • the comparable cell voltage using a 1 M sulfuric acid anolyte with the formation of oxygen operating at 1 kA/m 2 may likely be between 2.0V and 4V.
  • the HBr anolyte concentration may be in the range of 5 wt% to 50 wt%, more preferably in the range of 10 wt% to 40 wt%, and more preferably in the 15 wt% to 30 wt% range, with a corresponding 2 to 30 wt% bromine content as HBr 3 in the solution phase.
  • the HBr content in the anolyte solution may control the anolyte solution conductivity, and thus the anolyte compartment IR voltage drop. If the anode is run with gas phase HBr, then HBr concentrations will approach 100% by wt% in anhydrous conditions.
  • the anode may preferably include a polymeric bound carbon current distributor anode and incorporate a high surface area carbon felt with a specific surface area of 50 cm 2 /cm 3 or more that fills the gap between the cathode back plate and the membrane, thus having a zero gap anode.
  • Metal and/or metal oxide catalysts may be added to the anode in order to decrease anode potential and/or increase anode current density.
  • An example is the use of a Ru0 2 catalyst.
  • the cathode may also be a number of high surface area materials, which may include copper, stainless steels, carbon, and silicon, which may be further coated with a layer of material which may be a conductive metal or semiconductor.
  • high surface area cathode structure is mechanically pressed against the cathode current distributor backplate, which may be composed of material that has the same surface composition as the high surface area cathode.
  • the operating Faradaic current efficiency of the anode may preferably between 90 to 100%, and the acetate Faradaic current efficiency may preferably be between 25 and 100%.
  • the flow circulation of the anolyte and catholyte may be such that it provides sufficient flow for the reactions.
  • Br 2 produced at the anode in second region 122 may be reacted with ethane to make bromoethane and HBr.
  • the bromoethane may then be reacted with water to form ethanol and HBr.
  • the reaction product may contain up to 15% byproduct of dibromoethane (1 ,1 dibromoethane and/or 1 ,2 dibromoethane). These byproducts may be sold or chemically converted into a non-Br containing compound such as acetylene or acetaldehyde in order to reclaim the Br.
  • These byproducts may also be catalytically converted into 1 -bromoethane or hydrogenated back to ethane.
  • the reaction of bromoethane to ethanol may be catalyzed by a base such as NaOH, by magnesium or similar metals that have a high affinity for Br, or by a zeolite containing metal reaction sites.
  • the HBr byproduct from the reactors making bromoethane and ethanol may be recycled back to the anode portion of the cell. Br is thus conserved and H is made available for C0 2 reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant. The method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region. The second product may be removed from the second region and introduced to a secondary reactor. The method may include forming the recycled reactant in the secondary reactor.

Description

ELECTROCHEMICAL CO-PRODUCTION OF CHEMICALS EMPLOYING THE
RECYCLING OF A HYDROGEN HALIDE
TECHNICAL FIELD
[0001] The present disclosure generally relates to the field of electrochemical reactions, and more particularly to methods and/or systems for electrochemical co-production of chemicals employing the recycling of a hydrogen halide.
BACKGROUND
[0002]The combustion of fossil fuels in activities such as electricity generation, transportation, and manufacturing produces billions of tons of carbon dioxide annually. Research since the 1970s indicates increasing concentrations of carbon dioxide in the atmosphere may be responsible for altering the Earth's climate, changing the pH of the ocean and other potentially damaging effects. Countries around the world, including the United States, are seeking ways to mitigate emissions of carbon dioxide.
[0003] A mechanism for mitigating emissions is to convert carbon dioxide into economically valuable materials such as fuels and industrial chemicals. If the carbon dioxide is converted using energy from renewable sources, both mitigation of carbon dioxide emissions and conversion of renewable energy into a chemical form that may be stored for later use will be possible.
SUMMARY OF THE PREFERRED EMBODIMENTS
[0004] The present disclosure includes a system and methods for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include a step of contacting the first region with a catholyte comprising carbon dioxide. The method may include another step of contacting the second region with an anolyte comprising a recycled reactant. The method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region. The second product may be removed from the second region and introduced to a secondary reactor. The method may include forming the recycled reactant in the secondary reactor.
[0005] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not necessarily restrictive of the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The numerous advantages of the disclosure may be better understood by those skilled in the art by reference to the accompanying figures in which:
FIG. 1 is a block diagram of a system in accordance with an embodiment of the present disclosure;
FIG. 2A is a block diagram of a system in accordance with another embodiment of the present disclosure;
FIG. 2B is a block diagram of a system in accordance with an additional embodiment of the present disclosure;
FIG. 3 is a block diagram of a system in accordance with an additional embodiment of the present disclosure;
FIG. 4 is a block diagram of a system in accordance with an additional embodiment of the present disclosure;
FIG. 5 is a flow diagram of a method of electrochemical co-production of products in accordance with an embodiment of the present disclosure;
FIG. 6 is a flow diagram of a method of electrochemical co-production of products in accordance with another embodiment of the present disclosure; FIG. 7 is a block diagram of a system in accordance with an additional embodiment of the present disclosure; and
FIG. 8 is a block diagram of a system in accordance with an additional embodiment of the present disclosure.
DETAILED DESCRIPTION
[0007] Reference will now be made in detail to the subject matter disclosed, which is illustrated in the accompanying drawings.
[0008] Referring generally to FIGS. 1 -8, systems and methods of electrochemical co-production of products with a recycled halogen halide fed to an anode are disclosed. It is contemplated that the electrochemical co-production of products may include production of a first product, such as reduction of carbon dioxide to carbon-based products including one, two, three, and four carbon chemicals, at a cathode side of an electrochemical cell with co-production of a second product, such as a halide (e.g., X2, where X is F, CI, Br, I, or mixtures thereof), at the anode of the electrochemical cell where the anolyte comprises a recycled reactant, where the recycled reactant is preferably HX.
[0009] Before any embodiments of the disclosure are explained in detail, it is to be understood that the embodiments may not be limited in application per the details of the structure or the function as set forth in the following descriptions or illustrated in the figures. Different embodiments may be capable of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of terms such as "including," "comprising," or "having" and variations thereof herein are generally meant to encompass the item listed thereafter and equivalents thereof as well as additional items. Further, unless otherwise noted, technical terms may be used according to conventional usage. It is further contemplated that like reference numbers may describe similar components and the equivalents thereof. [0010] Referring to FIG. 1 , a block diagram of a system 100 in accordance with an embodiment of the present disclosure is shown. System (or apparatus) 100 generally includes an electrochemical cell (also referred as a container, electrolyzer, or cell) 102, a carbon dioxide source 104, a secondary reactor 106, a carbon-based reactant source 108, a first product extractor 1 10 (configured to extract a first product 1 12), a second product extractor 1 14 (configured to extract a second product 1 16), and an energy source 1 18.
Electrochemical cell 102 may be implemented as a divided cell. The divided cell may be a divided electrochemical cell and/or a divided photo-electrochemical cell. Electrochemical cell 102 may include a first region 120 and a second region 122. First region 120 and second region 122 may refer to a compartment, section, or generally enclosed space, and the like without departing from the scope and intent of the present disclosure. First region 120 may include a cathode 124. Second region 122 may include an anode 126. First region 120 may include a catholyte whereby carbon dioxide is dissolved in the catholyte. Second region 122 may include an anolyte which may include a recycled reactant (e.g., HX, where X is F, CI, Br, I and mixtures thereof). A source of HX may be operably connected to second region 122. Energy source 1 18 may generate an electrical potential between the anode 126 and the cathode 124. The electrical potential may be a DC voltage. Energy source 1 18 may be configured to supply a variable voltage or constant current to electrochemical cell 102. A separator 128 may selectively control a flow of ions between the first region 120 and the second region 122. Separator 128 may include an ion conducting membrane or diaphragm material.
[001 1 ] Electrochemical cell 102 is generally operational to reduce carbon dioxide in the first region 120 to a first product 1 12 recoverable from the first region 120 while producing a second product 1 16 recoverable from the second region 122. Cathode 124 may reduce the carbon dioxide into the first product 112 that may include one or more compounds. Examples of the first product 1 12 recoverable from the first region 120 by the first product extractor 1 10 may include carbon monoxide, formic acid, formaldehyde, methanol, methane, oxalate, oxalic acid, glyoxylic acid, glyoxylate, glycolic acid, glycolate, glyoxal, glycolaldehyde, ethylene glycol, acetic acid, acetate, acetaldehyde, ethanol, ethane, ethylene, lactic acid, lactate, propanoic acid, propionate, acetone, isopropanol, 1 -propanol, 1 ,2-propylene glycol, propane, propylene, 1 -butanol, 2-butanone, 2-butanol, butane, butene, a carboxylic acid, a carboxylate, a ketone, an aldehyde, and an alcohol.
[0012] Carbon dioxide source 104 may provide carbon dioxide to the first region 120 of electrochemical cell 102. In some embodiments, the carbon dioxide is introduced directly into the region 120 containing the cathode 124. It is contemplated that carbon dioxide source 104 may include a source of a mixture of gases in which carbon dioxide has been separated and filtered from the gas mixture.
[0013] First product extractor 110 may include an organic product and/or inorganic product extractor. First product extractor 110 is generally operational to extract (separate) the first product 112 from the first region 120. The extracted first product 112 may be presented through a port of the system 100 for subsequent storage and/or consumption by other devices and/or processes.
[0014] The anode side of the reaction occurring in the second region 122 may include a recycled reactant 130, may be a gas phase, liquid phase, or solution phase reactant, supplied to the second region 122. The second product 116 recoverable from the second region 122 may be derived from the oxidation of HX. Second product extractor 114 may extract the second product 116 from the second region 122. Examples of the second product 116 recoverable from the second region 122 by the second product extractor 114 may include F2, Cl2, Br2, and l2, and mixtures thereof.
[0015]The extracted second product 116 may be presented through a port of the system 100 for subsequent storage and/or consumption by other devices and/or processes. It is contemplated that first product extractor 1 10 and/or second product extractor 1 14 may be implemented with electrochemical cell 102, or may be remotely located from the electrochemical cell 102. Additionally, it is contemplated that first product extractor 1 10 and/or second product extractor 1 14 may be implemented in a variety of mechanisms and to provide desired separation methods, such as fractional distillation, without departing from the scope and intent of the present disclosure.
[0016] Furthermore, second product 1 16 may be presented to another reactor, such as a secondary reactor 106, where the recycled reactant 130 is a product of a reaction of the second product 1 16 recovered from the second region 1 18 of the electrochemical cell 102 with a carbon-based reactant from the carbon-based reactant source 108. For instance, the secondary reactor 106 may include the carbon-based reactant therein to react with the second product 1 16. The carbon- based reactant may include, for example, an alkane, an alkene, an aromatic, or another organic compound. A third product 132 produced by secondary reactor 106 as an additional product of a reaction at secondary reactor 106 may include a halogenated organic compound or halogenated intermediate that may be further converted to another product. Recycled reactant 130 may be recycled back to the second region 122 as an input feed to the second region 122 of electrochemical cell 102. It is contemplated that an additional source of recycled reactant may be further supplied as an input feed to the second region 122 of the electrochemical cell 102 without departing from the scope and intent of the present disclosure.
[0017]Through the co-production of the first product 1 12 and the second product 1 16, the overall energy requirement for making each of the first product 1 12 and second product 1 16 may be reduced by 50% or more. In addition, electrochemical cell 102 may be capable of simultaneously producing two or more products with high selectivity. The organic chemical partially oxidized in the reaction may serve as the source of hydrogen for the reduction of carbon dioxide. The organic may thereby be indirectly oxidized by carbon dioxide while the carbon dioxide is reduced by the organic such that two or more products are made simultaneously. Advantageously, the halogen may be employed to partially oxidize an organic and provide hydrogen halide which may be recycled to the electrochemical cell 102 and used for the reduction of C02.
[0018] A preferred embodiment of the present disclosure may include production of organic chemicals, such as carbon dioxide reduction products, at the cathode while simultaneously using a hydrogen halide feed to the anode for production of X2, which is subsequently used to generate additional products. Referring to FIG. 2A, a system 200 for co-production of a carbon dioxide reduction product 202 and a fourth product 138, preferably one or more of an alkene, an alcohol, and an olefin, is shown. Examples of some possible fourth products and the organic compound from which they are derived are in Table 1 below. The oxidation of the recycled reactant 130, preferably HX, where X is F, CI, Br, I, and mixtures thereof, in the second region 122 produces protons and electrons that are utilized to reduce carbon dioxide in the first region 120. The oxidation of the recycled reactant 130 may produce the second product 116, which is preferably X2, which may be reacted in the secondary reactor 106 to selectively produce the third product 132, preferably a halogenated compound. The third product 132 may be isolated or it may be supplied to a third reactor 134 for additional reactions to generate a fourth product 138 and the recycled reactant 130. Third reactor 134 may include a feed of water, or hydroxide ion, 136 to produce an alkene or alcohol and the recycled reactant 130. Alternatively, the third reactor 134 does not receive water, or hydroxide ion, as a reactant and instead produces the recycled reactant and one or more of an alkyne and an alkene. The recycled reactant 130 formed in the third reactor 134 may be recycled back to the second region 122 as an input feed to the second region 122 of electrochemical cell 102 either as a pure anhydrous gas or in a liquid phase. Organic Feed Oxidation Product(s)
Methane Methanol, formaldehyde, formic acid, ethylene,
longer chain compounds such as ethane
Ethane Ethanol, acetaldehyde, acetic acid, ethylene
glycol, ethylene, acetylene, longer chain compounds such as butane
Ethene (Ethylene) Acetylene
Propane Propanol, isopropanol, propanone, acetone,
propanoic acid, lactic acid, propylene glycol, propylene
Butane Butanol, butane, butadiene
Isobutane Isobutanol, isobutylene
Benzene Phenol
Toluene Benzyl alcohol, benzyl aldehyde, benzoic acid
Xylene Terephthalic acid, isophthalic acid, phthalic acid
Table 1
[0019] Referring to FIG. 2B, a block diagram of a system 200 in accordance with an additional embodiment of the present disclosure is shown. Similar to the embodiment shown in FIG. 2A, FIG. 2B is a block diagram of a system in accordance with an additional embodiment of the present disclosure wherein the recycled reactant 130 is hydrogen bromide (HBr) 202, the second product 1 16 is Br2 204, the third product 132 is bromoethane 206, and the fourth product 138 is ethanol 208. Bromine (Br2) may be supplied to secondary reactor 106 and reacted with ethane 210 to produce HBr 202, which is recycled as an input feed to the second region 122, and bromoethane 206. Bromoethane 206 may be supplied to third reactor 134 and reacted with water from water source 136 to produce HBr 202, which is recycled as an input feed to the second region 122, and ethanol 208. In another embodiment of the disclosure, water is not reacted in third reactor 134, and the bromoethane 206 is reacted to produce HBr 202 and one or more of an alkyne or an alkene such as ethylene. The carbon dioxide reduction product of FIG. 2B preferably includes one or more of acetate and acetic acid 212. When the carbon dioxide reduction product is acetic acid and when ethanol 208 is produced in third reactor 134, then the molar ratios of the product may be 1 acetic acid : 4 ethanol because acetic acid production from C02 is an 8 electron process and ethanol from ethane is a two electron process. The mass ratios may be 1 :3.
[0020] Referring to FIGS. 3 and 4 with block diagrams of systems 300, 400 in accordance with additional embodiments of the present disclosure are shown. Systems 300, 400 provide additional embodiments to systems 100, 200 of FIGS. 1 -2 to co-produce a first product and second product.
[0021] Referring specifically to FIG. 3, first region 120 of electrochemical cell 102 may produce a first product of H2 310 which is combined with carbon dioxide 332 in a reactor 330 which may perform a reverse water gas shift reaction. This reverse water gas shift reaction performed by reactor 330 may produce water 334 and carbon monoxide 336. Carbon monoxide 336 along with H2 310 may be combined at second reactor 338. Reactor 338 may cause a reaction by utilizing H2 310 from the first region 120 of the electrochemical cell 102, such as a Fischer- Tropsch-type reaction, to reduce carbon monoxide to a product 340. Product 340 may include methane, methanol, hydrocarbons, glycols, and olefins. Water 306, which may include a hydrogen halide, may be an additional product produced by the first region 120 and may be recycled as an input feed to the first region 120. Second reactor 338 may also include transition metals such as iron, cobalt, and ruthenium as well as other transition metal oxides as catalysts, on inorganic support structures that may promote the reaction of CO with hydrogen at lower temperatures and pressures.
[0022] Second region 122 may co-produce X2 342, where X is F, CI, Br, I, and mixtures thereof. In an embodiment, the X2 is Br2. The X2 342 may be introduced to the third reactor 106, which may have a feed input of an alkane, an alkene, an alkyne, and an aromatic compound 344, for production of a halogenated compound 312. In an embodiment, the alkane 344 is ethane and the halogenated compound 312 is bromoethane. Halogenated compound 312 may be isolated, or may be supplied to a fourth reactor 31 to generate products such as an alkene 318 and a hydrogen halide recycled reactant 320, which is recycled back as an input feed to the second region 122. In an embodiment, the alkene 318 is ethylene and the hydrogen halide recycled reactant 320 is hydrogen bromide (HBr). It is contemplated that alkane 344 may be other types of carbon-based reactants, including various types of alkanes, alkenes, or aromatic compounds while halogenated compound 312 may also refer to any type of halogenated compound that may be supplied to a fourth reactor 314 to produce various types of alkenes, alcohols, aldehydes, ketones, glycols, or olefins without departing from the scope or intent of the present disclosure.
[0023] Referring to FIG. 4, first region 120 of electrochemical cell 102 may produce a first product of carbon monoxide 410 which is combined with water 432 in a reactor 430 which may perform a water gas shift reaction. This water gas shift reaction performed by reactor 430 may produce carbon dioxide 434 and H2 436. Carbon monoxide 410 and H2 436 may be combined at second reactor 438. Second reactor 438 may cause a reaction, such as a Fischer-Tropsch-type reaction, to reduce carbon monoxide to a product 440. Product 440 may include methane, methanol, hydrocarbons, glycols, or olefins by utilizing H2 436 from the water gas shift reaction. Carbon dioxide 434 may be a byproduct of water gas shift reaction of reactor 430 and may be recycled as an input feed to the first region 120 Water 406, which may include a hydrogen halide, may be an additional product produced by the first region 120 and may be recycled as another input feed to the first region 120. Second reactor 438 may also include transition metals and their oxides, such as iron and copper oxides as catalysts, on inorganic support structures that may promote the reaction of CO with hydrogen at lower temperatures and pressures.
[0024] Second region 122 may co-produce X2 442, where X is F, CI, Br, I and mixtures thereof. In an embodiment, the X2 is Br2. The X2 442 may be introduced to the third reactor 106, which may have a feed input of an alkane, an alkene, an alkyne, and an aromatic compound 444, for production of a halogenated compound 412. In an embodiment, an alkane 444 is ethane and the halogenated compound 412 is bromoethane. Halogenated compound 412 may be isolated, or may be supplied to a fourth reactor 414 to generate byproducts such as an alkene 418 and a hydrogen halide recycled reactant 420, which is recycled back as an input feed to the second region 122. In an embodiment, the alkene 418 is ethylene and the hydrogen halide recycled reactant 420 is hydrogen bromide (HBr). It is contemplated that alkane 444 may be other types of carbon-based reactants, including various types of alkanes, alkenes, or aromatic compounds while halogenated compound 412 may also refer to any type of halogenated compound that may be supplied to a fourth reactor 414 to produce various types of alkenes, alkynes, alcohols, aldehydes, ketones, glycols, or olefins without departing from the scope or intent of the present disclosure.
[0025] It is contemplated that reactions occurring at the first region 120 may occur in a catholyte which may include water, methanol, acetonitrile, propylene carbonate, ionic liquids, or other catholytes. They may also occur in the gas phase, though liquid phase may be preferred. The reactions occurring at the second region 122 may be in a gas phase or may occur in liquid phase, for example, in an aqueous or non-aqueous solution.
[0026] It is further contemplated that the structure and operation of the electrochemical cell 102 may be adjusted to provide desired results. For example, the electrochemical cell 102 may operate at higher pressures, such as pressure above atmospheric pressure which may increase current efficiency and allow operation of the electrochemical cell at higher current densities.
[0027] Additionally, the cathode 124 and anode 126 may include a high surface area electrode structure with a void volume which may range from 30% to 98%. The electrode void volume percentage may refer to the percentage of empty space that the electrode is not occupying in the total volume space of the electrode. The advantage in using a high void volume electrode is that the structure has a lower pressure drop for liquid flow through the structure. The specific surface area of the electrode base structure may be from 2 cm2/cm3 to 500 cm2/cm3 or higher. The electrode specific surface area is a ratio of the base electrode structure surface area divided by the total physical volume of the entire electrode. It is contemplated that surface areas also may be defined as a total area of the electrode base substrate in comparison to the projected geometric area of the current distributor/conductor back plate, with a preferred range of 2x to 1000x or more. The actual total active surface area of the electrode structure is a function of the properties of the electrode catalyst deposited on the physical electrode structure which may be 2 to 1000 times higher in surface area than the physical electrode base structure.
[0028] Cathode 124 may be selected from a number of high surface area materials to include copper, stainless steels, transition metals and their alloys and oxides, carbon, and silicon, which may be further coated with a layer of material which may be a conductive metal or semiconductor. The base structure of cathode 124 may be in the form of fibrous, reticulated, or sintered powder materials made from metals, carbon, or other conductive materials including polymers. The materials may be a very thin plastic screen incorporated against the cathode side of the membrane to prevent the membrane 128 from directly touching the high surface area cathode structure. The high surface area cathode structure may be mechanically pressed or physically bonded against a cathode current distributor back plate, which may be composed of material that has the same surface composition as the high surface area cathode.
[0029] In addition, cathode 124 may be a suitable conductive electrode, such as Al, Au, Ag, Bi, C, Cd, Co, Cr, Cu, Cu alloys (e.g., brass and bronze), Ga, Hg, In, Mo, Nb, Ni, NiCo204, Ni alloys (e.g., Ni 625, NiHX), Ni-Fe alloys, Pb, Pd alloys (e.g., PdAg), Pt, Pt alloys (e.g., PtRh), Rh, Sn, Sn alloys (e.g., SnAg, SnPb, SnSb), Ti, V, W, Zn, stainless steel (SS) (e.g., SS 2205, SS 304, SS 316, SS 321 ), austenitic steel, ferritic steel, duplex steel, martensitic steel, Nichrome (e.g., NiCr 60:16 (with Fe)), elgiloy (e.g., Co-Ni-Cr), degenerately doped p-Si, degenerately doped p- Si:As, degenerately doped p-Si: B, degenerately doped n-Si, degenerately doped n- Si:As, and degenerately doped n-Si: B. These metals and their alloys may also be used as catalytic coatings on the various metal substrates. Other conductive electrodes may be implemented to meet the criteria of a particular application. For photo-electrochemical reductions, cathode 122 may be a p-type semiconductor electrode, such as p-GaAs, p-GaP, p-lnN, p-lnP, p-CdTe, p-GalnP2 and p-Si, or an n- type semiconductor, such as n-GaAs, n-GaP, n-lnN, n-lnP, n-CdTe, n-GalnP2 and n- Si. Other semiconductor electrodes may be implemented to meet the criteria of a particular application including, but not limited to, CoS, MoS2, TiB, WS2, SnS, Ag2S, CoP2, Fe3P, Mn3P2, MoP, Ni2Si, MoSi2, WSi2, CoSi2, Ti407, Sn02, GaAs, GaSb, Ge, and CdSe.
[0030] Catholyte may include a pH range from 1 to 12 if an aqueous solvent or electrolyte is employed, preferably from pH 4 to pH 10. The selected operating pH may be a function of any catalysts utilized in operation of the electrochemical cell 102. Preferably, catholyte and catalysts may be selected to prevent corrosion at the electrochemical cell 102. Catholyte may include homogeneous catalysts. Homogeneous catalysts are defined as aromatic heterocyclic amines and may include, but are not limited to, unsubstituted and substituted pyridines and imidazoles. Substituted pyridines and imidazoles may include, but are not limited to mono and disubstituted pyridines and imidazoles. For example, suitable catalysts may include straight chain or branched chain lower alkyl (e.g. , CI-C10) mono and disubstituted compounds such as 2-methylpyridine, 4-tertbutyl pyridine, 2,6 dimethylpyridine (2,6-lutidine); bipyridines, such as 4,4'-bipyridine; amino- substituted pyridines, such as 4- dimethylamino pyridine; and hydroxyl-substituted pyridines (e.g. , 4-hydroxy-pyridine) and substituted or unsubstituted quinoline or isoquinolines. The catalysts may also suitably include substituted or unsubstituted dinitrogen heterocyclic amines, such as pyrazine, pyridazine and pyrimidine. Other catalysts generally include azoles, imidazoles, indoles, oxazoles, thiazoles, substituted species and complex multi-ring amines such as adenine, pterin, pteridine, benzimidazole, phenonthroline and the like. [0031] The catholyte may include an electrolyte. Catholyte electrolytes may include alkali metal bicarbonates, carbonates, sulfates, phosphates, borates, and hydroxides. The electrolyte may comprise one or more of Na2S04, KCl, NaN03, NaCl, NaF, NaCl04, KC104, K2Si03, CaCl2, a guanidinium cation, an H cation, an alkali metal cation, an ammonium cation, an alkylammonium cation, a tetraalkyl ammonium cation, a halide anion, an alkyl amine, a borate, a carbonate, a guanidinium derivative, a nitrite, a nitrate, a phosphate, a polyphosphate, a perchlorate, a silicate, a sulfate, and a hydroxide. In one embodiment, bromide salts and acids such as NaBr, KBr, or HBr may be preferred.
[0032]The catholyte may further include an aqueous or non-aqueous solvent. An aqueous solvent may include greater than 5% water. A non-aqueous solvent may include as much as 5% water. A solvent may contain one or more of water or a non-aqueous solvent. Representative solvents include methanol, ethanol, acetonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, tetrahydrofuran, Ν,Ν-dimethylacetaminde, dimethoxyethane, diethylene glycol dimethyl ester, butyrolnitrile, 1 ,2-difluorobenzene, γ-butyrolactone, N-methyl-2- pyrrolidone, sulfolane, 1 ,4-dioxane, nitrobenzene, nitromethane, acetic anhydride, ionic liquids, and mixtures thereof.
[0033] In one embodiment, a catholyte/anolyte flow rate may include a catholyte/anolyte cross sectional area flow rate range such as 2 - 3,000 gpm/ft2 or more (0.0076 - 11.36 m3/m2). A flow velocity range may be 0.002 to 20 ft/sec (0.0006 to 6.1 m/sec). Operation of the electrochemical cell catholyte at a higher operating pressure allows more dissolved carbon dioxide to dissolve in the aqueous solution. Typically, electrochemical cells may operate at pressures up to about 20 to 30 psig in multi-cell stack designs, although with modifications, the electrochemical cells may operate at up to 100 psig. The electrochemical cell may operate anolyte at the same pressure range to minimize the pressure differential on a separator 128 or membrane separating the two regions. Special electrochemical designs may be employed to operate electrochemical units at higher operating pressures up to about 60 to 100 atmospheres or greater, which is in the liquid C02 and supercritical C02 operating range.
[0034] In another embodiment, a portion of a catholyte recycle stream may be separately pressurized using a flow restriction with backpressure or using a pump, with C02 injection, such that the pressurized stream is then injected into the catholyte region of the electrochemical cell which may increase the amount of dissolved C02 in the aqueous solution to improve the conversion yield. In addition, micro-bubble generation of carbon dioxide may be conducted by various means in the catholyte recycle stream to maximize carbon dioxide solubility in the solution.
[0035] Catholyte may be operated at a temperature range of - 10 to 95 ° C, more preferably 5 - 60° C. The lower temperature will be limited by the catholytes used and their freezing points. In general, the lower the temperature, the higher the solubility of C02 in an aqueous solution phase of the catholyte, which would help in obtaining higher conversion and current efficiencies. The drawback is that the operating electrochemical cell voltages may be higher, so there is an optimization that would be done to produce the chemicals at the lowest operating cost. In addition, the catholyte may require cooling, so an external heat exchanger may be employed, flowing a portion, or all, of the catholyte through the heat exchanger and using cooling water to remove the heat and control the catholyte temperature.
[0036]Anolyte operating temperatures may be in the same ranges as the ranges for the catholyte, and may be in a range of 0° C to 95 ° C. In addition, the anolyte may require cooling, so an external heat exchanger may be employed, flowing a portion, or all, of the anolyte through the heat exchanger and using cooling water to remove the heat and control the anolyte temperature.
[0037] Electrochemical cells may include various types of designs. These designs may include zero gap designs with a finite or zero gap between the electrodes and membrane, flow-by and flow-through designs with a recirculating catholyte electrolyte utilizing various high surface area cathode materials. The electrochemical cell may include flooded co-current and counter-current packed and trickle bed designs with the various high surface area cathode materials. Also, bipolar stack cell designs and high pressure cell designs may also be employed for the electrochemical cells.
[0038] Anode electrodes may be the same as cathode electrodes or different. Anode 126 may include electrocatalytic coatings applied to the surfaces of the base anode structure. Anolytes may be the same as catholytes or different. Anolyte electrolytes may be the same as catholyte electrolytes or different. Anolyte may comprise solvent. Anolyte solvent may be the same as catholyte solvent or different. For example, for HBr, acid anolytes, and oxidizing water generating oxygen, the preferred electrocatalytic coatings may include precious metal oxides such as ruthenium and iridium oxides, as well as platinum and gold and their combinations as metals and oxides on valve metal substrates such as titanium, tantalum, zirconium, or niobium. For bromine and iodine anode chemistry, carbon and graphite are particularly suitable for use as anodes. Polymeric bonded carbon material may also be used. For other anolytes, comprising alkaline or hydroxide electrolytes, anodes may include carbon, cobalt oxides, stainless steels, transition metals, and their alloys and combinations. High surface area anode structures that may be used which would help promote the reactions at the anode surfaces. The high surface area anode base material may be in a reticulated form composed of fibers, sintered powder, sintered screens, and the like, and may be sintered, welded, bonded, or mechanically connected to a current distributor back plate that is commonly used in bipolar electrochemical cell assemblies. In addition, the high surface area reticulated anode structure may also contain areas where additional applied catalysts on and near the electrocatalytic active surfaces of the anode surface structure to enhance and promote reactions that may occur in the bulk solution away from the anode surface such as the reaction between bromine and the carbon based reactant being introduced into the anolyte. The anode structure may be gradated, so that the density of the may vary in the vertical or horizontal direction to allow the easier escape of gases from the anode structure. In this gradation, there may be a distribution of particles of materials mixed in the anode structure that may contain catalysts, such as metal halide or metal oxide catalysts such as iron halides, zinc halides, aluminum halides, cobalt halides, for the reactions between the bromine and the carbon-based reactant. For other anolytes comprising alkaline, or hydroxide electrolytes, anodes may include carbon, cobalt oxides, stainless steels, and their alloys and combinations.
[0039] Separator 128, also referred to as a membrane, between first region 120 and second region 122, may include cation ion exchange type membranes. Cation ion exchange membranes, which have a high rejection efficiency to anions, may be preferred. Examples of such cation ion exchange membranes may include perfluorinated sulfonic acid based ion exchange membranes such as DuPont Nafion® brand unreinforced types N117 and N120 series, more preferred PTFE fiber reinforced N324 and N424 types, and similar related membranes manufactured by Japanese companies under the supplier trade names such as AGC Engineering (Asahi Glass) under their trade name Flemion®. Other multi-layer perfluorinated ion exchange membranes used in the chlor alkali industry may have a bilayer construction of a sulfonic acid based membrane layer bonded to a carboxylic acid based membrane layer, which efficiently operates with an anolyte and catholyte above a pH of about 2 or higher. These membranes may have a higher anion rejection efficiency. These are sold by DuPont under their Nafion® trademark as the N900 series, such as the N90209, N966, N982, and the 2000 series, such as the N2010, N2020, and N2030 and all of their types and subtypes. Hydrocarbon based membranes, which are made from of various cation ion exchange materials may also be used if the anion rejection is not as desirable, such as those sold by Sybron under their trade name lonac®, AGC Engineering (Asahi Glass) under their Selemion® trade name, and Tokuyama Soda, among others on the market. Ceramic based membranes may also be employed, including those that are called under the general name of NASICON (for sodium super-ionic conductors) which are chemically stable over a wide pH range for various chemicals and selectively transports sodium ions, the composition is Nai+xZr2SixP3-xOi2, and well as other ceramic based conductive membranes based on titanium oxides, zirconium oxides and yttrium oxides, and beta aluminum oxides. Alternative membranes that may be used are those with different structural backbones such as polyphosphazene and sulfonated polyphosphazene membranes in addition to crown ether based membranes. Preferably, the membrane or separator is chemically resistant to the anolyte and catholyte and operates at temperatures of less than 600 degrees C, and more preferably less than 500 degrees C.
[0040] Referring to FIG. 5 a flow diagram of a method 500 of electrochemical co- production of products in accordance with an embodiment of the present disclosure is shown. It is contemplated that method 500 may be performed by system 100 and system 200 as shown in FIGS. 1 -2. Method 500 may include producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode.
[0041]Method 500 of electrochemical co-production of products may include a step of contacting the first region with a catholyte comprising carbon dioxide 510. Next, method 500 may include contacting the second region with an anolyte comprising a recycled reactant 520. Method 500 may further include applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region 530. Method 500 may additionally include removing the second product from the second region 540. Method 500 may additionally include introducing the second product to a secondary reactor 550. Further, method 500 may include forming the recycled reactant in the secondary reactor 560. Advantageously, a first product produced at the first region may be recoverable from the first region and the recycled reactant produced in the secondary reactor may be recycled to the second region.
[0042] Referring to FIG. 6 a flow diagram of a method 600 of electrochemical co- production of products in accordance with an embodiment of the present disclosure is shown. It is contemplated that method 600 may be performed by system 100 and system 200 as shown in FIGS. 1 -2. Method 600 may include producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode.
Method 600 of electrochemical co-production of products may include a step of contacting the first region with a catholyte comprising carbon dioxide 610. Next, method 600 may include receiving a feed of a recycled reactant at the second region of the electrochemical cell, the recycled reactant is HX where X is selected from the group consisting of F, CI, Br, I and mixtures thereof 620. Method 600 may further include contacting the second region with an anolyte comprising the recycled reactant 630. Method 600 may additionally include applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a diatomic halide product, X2, recoverable from the second region 640. Method 600 may additionally include removing the diatomic halide product from the second region 650. Further, method 600 may include introducing the diatomic halide product to a secondary reactor 660. Method 600 may also include forming the recycled reactant in the secondary reactor 670. Advantageously, a first product produced at the first region may be recoverable from the first region and the recycled reactant produced in the secondary reactor may be recycled to the second region.
[0043] Referring now to FIG. 7, an embodiment of an electrochemical system 700 for the co-production of acetic acid and ethanol is shown. The overall equation for the desired reaction may be 2C02 + 4C2H6 + 2H20→ CH3COOH + 4C2H5OH. HBr is introduced to the second region 122 of a two compartment cell 102 having first region 120 and second region 122 that is separated by cation exchange membrane 128. HBr may be circulated with a pump in an anolyte circulation loop where HBr may be converted to Br2 as a gas or liquid in the second region, where H+ ions crossing the membrane 128 into the first region 120. Alternatively, Br2 may be collected as a liquid stream containing HBr3, (i.e., bromine combined with HBr), which may serve as an oxidizer for the formation of bromoethane from the reaction of bromine with ethane in reactor 701 , which may then be converted to ethanol using a reaction with water or alkali hydroxide in reactor 702.
[0044] On the cathode side in first region 120, carbon dioxide is reacted on a high surface area cathode to produce, in this example, sodium acetate. A circulation pump may be used to provide sufficient mass transfer to obtain a high Faradaic efficiency conversion to acetate. The product acetate overflows the catholyte loop, and may be converted to the acid form in the acidification unit using either an electrochemical acidification unit or by direct mixing with HBr and may be then purified and concentrated in a separate unit (not shown).
[0045] The electrochemical cell may be operated at a current density of greater than 3 kA/m2 (300 mA/cm2), or in suitable range of 0.5 to 5 kA/m2 or higher if needed. The current density of the formation of bromine from HBr may easily be operated at even higher current densities. The cell may be operated in a liquid phase in both the anode and cathode compartments, or in a preferred embodiment, may be liquid phase in the cathode compartment with a gas phase anode compartment wherein gas phase HBr is fed directly to the anode.
[0046]The operating voltage of the system at a current density of 1 kA/m2 may be between 1.0 - 2.5 volts, where the half cell voltage of anolyte reaction may be between 0.6V and 1.2V. In comparison, the comparable cell voltage using a 1 M sulfuric acid anolyte with the formation of oxygen operating at 1 kA/m2 may likely be between 2.0V and 4V.
[0047] In the case of a liquid anolyte, the HBr anolyte concentration may be in the range of 5 wt% to 50 wt%, more preferably in the range of 10 wt% to 40 wt%, and more preferably in the 15 wt% to 30 wt% range, with a corresponding 2 to 30 wt% bromine content as HBr3 in the solution phase. The HBr content in the anolyte solution may control the anolyte solution conductivity, and thus the anolyte compartment IR voltage drop. If the anode is run with gas phase HBr, then HBr concentrations will approach 100% by wt% in anhydrous conditions.
[0048] The anode may preferably include a polymeric bound carbon current distributor anode and incorporate a high surface area carbon felt with a specific surface area of 50 cm2/cm3 or more that fills the gap between the cathode back plate and the membrane, thus having a zero gap anode. Metal and/or metal oxide catalysts may be added to the anode in order to decrease anode potential and/or increase anode current density. An example is the use of a Ru02 catalyst.
[0049] The cathode may also be a number of high surface area materials, which may include copper, stainless steels, carbon, and silicon, which may be further coated with a layer of material which may be a conductive metal or semiconductor. There is a very thin plastic screen against the cathode side of the membrane to prevent the membrane from touching the high surface area cathode structure. The high surface area cathode structure is mechanically pressed against the cathode current distributor backplate, which may be composed of material that has the same surface composition as the high surface area cathode.
[0050] The operating Faradaic current efficiency of the anode may preferably between 90 to 100%, and the acetate Faradaic current efficiency may preferably be between 25 and 100%. The flow circulation of the anolyte and catholyte may be such that it provides sufficient flow for the reactions.
[0051] Br2 produced at the anode in second region 122 may be reacted with ethane to make bromoethane and HBr. The bromoethane may then be reacted with water to form ethanol and HBr. Though high selectivity for bromoethane may be generally observed, the reaction product may contain up to 15% byproduct of dibromoethane (1 ,1 dibromoethane and/or 1 ,2 dibromoethane). These byproducts may be sold or chemically converted into a non-Br containing compound such as acetylene or acetaldehyde in order to reclaim the Br. These byproducts may also be catalytically converted into 1 -bromoethane or hydrogenated back to ethane. The reaction of bromoethane to ethanol may be catalyzed by a base such as NaOH, by magnesium or similar metals that have a high affinity for Br, or by a zeolite containing metal reaction sites. The HBr byproduct from the reactors making bromoethane and ethanol may be recycled back to the anode portion of the cell. Br is thus conserved and H is made available for C02 reduction.

Claims

CLAIMS What is claimed is:
1 . A method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode, the method comprising the steps of: contacting the first region with a catholyte comprising carbon dioxide;
contacting the second region with an anolyte comprising a recycled reactant;
applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region;
removing the second product from the second region;
introducing the second product to a secondary reactor; and
forming the recycled reactant in the secondary reactor.
2. The method according to claim 1 , wherein the recycled reactant is a hydrogen halide, HX, where X is selected from a group consisting of F, CI, Br, I, and mixtures thereof.
3. The method according to claim 2, wherein the second product is X2.
4. The method according to claim 3, wherein the reaction in the secondary reactor includes an alkane, alkene or aromatic compound therein.
5. The method according to claim 4, further comprising:
forming a halogenated organic compound in the secondary reactor.
6. The method according to claim 5, further comprising:
feeding the halogenated organic compound into a third reactor.
7. The method according to claim 6, further comprising:
feeding water into the third reactor.
8. The method according to claim 7, further comprising:
forming an alcohol and HX in the third reactor; and
recycling the HX into the second region.
9. The method according to claim 6, further comprising:
forming HX and at least one of an alkene and an alkyne in the third reactor; and
recycling the HX into the second region.
10. The method according to claim 6, further comprising:
forming HX and at least one of an alcohol, an alkene, an alkyne, an aldehyde, a ketone, an alkane, and mixtures thereof in the third reactor; and
recycling the HX into the second region.
1 1 . The method according to claim 5, wherein the halogenated organic compound is bromoethane.
12. The method according to claim 2, wherein HX is HBr.
13. The method according to claim 12, wherein the second product is Br2.
14. The method according to claim 1 , wherein the anolyte and catholyte comprise water, the first product includes acetic acid, and the second product includes Br2.
15. The method according to claim 1 , wherein the catholyte comprises a nonaqueous solvent, the first product includes a carboxylic acid, and the second product includes Br2.
16. The method according to claim 1 , wherein the first region and the second region are separated by an ion permeable barrier that operates at a temperature of less than 600 degrees C.
17. The method according to claim 16, wherein the ion permeable barrier includes one of a polymeric or inorganic ceramic-based ion permeable barrier.
18. The method according to claim 1 , wherein the catholyte is a liquid and the anolyte is a gas.
19. The method according to claim 1 , wherein the catholyte is a liquid and the anolyte is a liquid.
20. The method according to claim 1 , wherein said first product includes at least one of carbon monoxide, formic acid, formaldehyde, methanol, methane, oxalate, oxalic acid, glyoxylic acid, glyoxylate, glycolic acid, glycolate, glyoxal, glycolaldehyde, ethylene glycol, acetic acid, acetate, acetaldehyde, ethanol, ethane, ethylene, lactic acid, lactate, propionic acid, propionate, acetone, isopropanol, 1 -propanol, 1 ,2-propylene glycol, propane, propylene, butane, butene, 1 -butanol, 2-butanone, 2-butanol, a carboxylic acid, a carboxylate, a ketone, an aldehyde, and an alcohol.
21 . The method according to claim 1 , wherein the catholyte further comprises a solvent selected from the group consisting of water, methanol, ethanol, acetonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, dimethylformamide, acetonitrile, acetone, tetrahydrofuran, Ν,Ν-dimethylacetaminde, dimethoxyethane, diethylene glycol dimethyl ester, butyrolnitrile, 1 ,2-difluorobenzene, γ-butyrolactone, N-methyl-2- pyrrolidone, sulfolane, 1 ,4-dioxane, nitrobenzene, nitromethane, acetic anhydride, ionic liquids, and mixtures thereof.
22. A method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode, the method comprising the steps of: contacting the first region with a catholyte comprising carbon dioxide;
receiving a feed of a recycled reactant at the second region of the electrochemical cell, the recycled reactant is HX where X is selected from the group consisting of F, CI, Br, I and mixtures thereof;
contacting the second region with an anolyte comprising the recycled reactant;
applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a diatomic halide product, X2, recoverable from the second region;
removing the diatomic halide product from the second region;
introducing the diatomic halide product to a secondary reactor; and forming the recycled reactant in the secondary reactor.
23. The method according to claim 22, wherein the secondary reactor includes an alkane, alkene or aromatic therein.
24. The method according to claim 22, further comprising:
forming a halogenated organic compound in the secondary reactor; and feeding the halogenated organic compound into a third reactor.
25. The method according to claim 24, further comprising:
forming HX and at least one of an alcohol, an alkene, an alkyne, an aldehyde, a ketone, an alkane, and mixtures thereof in the third reactor; and
recycling the HX into the second region.
26. A system for electrochemical co-production of products, comprising:
an electrochemical cell including:
a first region;
a cathode associated with the first region;
a second region;
an anode associated with the second region; and
a separator for selectively controlling a flow of ions between the first region and the second region;
a carbon dioxide source, the carbon dioxide source in flow communication with the first region to supply carbon dioxide to the first region;
a recycled reactant source, the recycled reactant source in flow communication with the second region to supply a recycled reactant to the second region, the recycled reactant is HX where X is selected from the group consisting of F, CI, Br, I and mixtures thereof;
an energy source for applying a current across the anode and the cathode, wherein when current is applied, a first product recoverable from the first region and a second product is recoverable from the second region; and
a secondary reactor, the secondary reactor including an alkane, alkene or aromatic therein, the secondary reactor configured to form the recycled reactant from the second product and the alkane, alkene or aromatic for introduction of the recycled reactant to the second region.
27. The system of claim 26, wherein the secondary reactor is further configured to form a halogenated organic compound.
28. The system of claim 27, further comprising:
a third reactor configured to form HX and at least one of an alcohol, an alkene, an aldehyde, a ketone, an alkane, and an alkyne from at least the halogenated organic compound.
29. The system of claim 26, wherein said first product includes at least one of carbon monoxide, formic acid, formaldehyde, methanol, methane, oxalate, oxalic acid, glyoxylic acid, glyoxylate, glycolic acid, glycolate, glyoxal, glycolaldehyde, ethylene glycol, acetic acid, acetate, acetaldehyde, ethanol, ethane, ethylene, lactic acid, lactate, propanoic acid, propionate, acetone, isopropanol, 1 -propanol, 1 ,2-propylene glycol, propane, propylene, butane, butene, 1 -butanol, 2-butanone, 2-butanol, a carboxylic acid, a carboxylate, an aldehyde, an alcohol, and a ketone.
30. The system of claim 26, wherein the first region includes a non-aqueous solvent, the first product includes a carboxylic acid, and the second product includes Br2.
EP13838395.5A 2012-09-19 2013-08-05 Electrochemical co-production of chemicals employing the recycling of a hydrogen halide Withdrawn EP2897908A4 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201261703158P 2012-09-19 2012-09-19
US201261703229P 2012-09-19 2012-09-19
US201261703231P 2012-09-19 2012-09-19
US201261703187P 2012-09-19 2012-09-19
US201261703234P 2012-09-19 2012-09-19
US201261703238P 2012-09-19 2012-09-19
US201261703232P 2012-09-19 2012-09-19
US201261703175P 2012-09-19 2012-09-19
US201261720670P 2012-10-31 2012-10-31
US13/724,878 US8647493B2 (en) 2012-07-26 2012-12-21 Electrochemical co-production of chemicals employing the recycling of a hydrogen halide
PCT/US2013/053569 WO2014046792A1 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals employing the recycling of a hydrogen halide

Publications (2)

Publication Number Publication Date
EP2897908A1 true EP2897908A1 (en) 2015-07-29
EP2897908A4 EP2897908A4 (en) 2016-05-18

Family

ID=50341842

Family Applications (6)

Application Number Title Priority Date Filing Date
EP13839654.4A Withdrawn EP2897899A4 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode
EP13838376.5A Active EP2897907B1 (en) 2012-09-19 2013-08-05 Electrochemical co-production of products with carbon-based reactant feed to anode
EP13839836.7A Active EP2898118B1 (en) 2012-09-19 2013-08-05 A method and system for the electrochemical co-production of halogen and carbon monoxide for carbonylated products
EP13839631.2A Active EP2900847B1 (en) 2012-09-19 2013-08-05 Eletrochemical reduction of co2 with co-oxidation of an alcohol
EP13838395.5A Withdrawn EP2897908A4 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals employing the recycling of a hydrogen halide
EP13839027.3A Active EP2897910B1 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals utilizing a halide salt

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP13839654.4A Withdrawn EP2897899A4 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode
EP13838376.5A Active EP2897907B1 (en) 2012-09-19 2013-08-05 Electrochemical co-production of products with carbon-based reactant feed to anode
EP13839836.7A Active EP2898118B1 (en) 2012-09-19 2013-08-05 A method and system for the electrochemical co-production of halogen and carbon monoxide for carbonylated products
EP13839631.2A Active EP2900847B1 (en) 2012-09-19 2013-08-05 Eletrochemical reduction of co2 with co-oxidation of an alcohol

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13839027.3A Active EP2897910B1 (en) 2012-09-19 2013-08-05 Electrochemical co-production of chemicals utilizing a halide salt

Country Status (10)

Country Link
EP (6) EP2897899A4 (en)
JP (4) JP2015534609A (en)
KR (4) KR20150056635A (en)
CN (6) CN104640816A (en)
AU (5) AU2013318501A1 (en)
BR (5) BR112015006212A2 (en)
CA (4) CA2883367A1 (en)
ES (3) ES2703123T3 (en)
SA (1) SA515360160B1 (en)
WO (7) WO2014046790A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562075B (en) * 2015-01-15 2015-11-18 东北石油大学 A kind of Driven by Solar Energy high-temperature electrolysis CO 2/ H 2o hydrocarbon system and application thereof
CN104562073B (en) * 2015-01-15 2015-11-18 东北石油大学 A kind of high-temperature electrolysis CO 2/ H 2o prepares hydrocarbon system and application thereof
US10465303B2 (en) 2015-09-15 2019-11-05 Kabushiki Kaisha Toshiba Producing system of reduction product
DE102016200858A1 (en) * 2016-01-21 2017-07-27 Siemens Aktiengesellschaft Electrolysis system and process for electrochemical ethylene oxide production
CN109643813B (en) 2016-05-03 2022-06-07 欧普斯12公司 For CO2Reactors with advanced architecture for electrochemical reactions of CO and other chemical compounds
WO2018044720A1 (en) * 2016-08-29 2018-03-08 Dioxide Materials, Inc. System and process for the production of renewable fuels and chemicals
DE102016218235A1 (en) * 2016-09-22 2018-03-22 Siemens Aktiengesellschaft Process for the preparation of propanol, propionaldehyde and / or propionic acid from carbon dioxide, water and electrical energy
JP6870956B2 (en) * 2016-10-27 2021-05-12 株式会社東芝 Electrochemical reactor
US10675681B2 (en) * 2017-02-02 2020-06-09 Honda Motor Co., Ltd. Core shell
CN108793338A (en) * 2017-04-26 2018-11-13 昆山纳诺新材料科技有限公司 Nanoparticle water and its manufacturing method
KR20200026916A (en) 2017-07-03 2020-03-11 코베스트로 도이칠란트 아게 Electrochemical Method for Synthesis of Diaryl Carbonate
CN110869537A (en) * 2017-07-03 2020-03-06 科思创德国股份有限公司 Electrochemical process for preparing aryl alkyl or diaryl carbonates
JP2019035102A (en) * 2017-08-10 2019-03-07 東京瓦斯株式会社 Carbon monoxide production system
CN107779907A (en) * 2017-10-10 2018-03-09 凯莱英医药集团(天津)股份有限公司 The method of electrochemistry formated carbonyls
DE102017219974A1 (en) * 2017-11-09 2019-05-09 Siemens Aktiengesellschaft Production and separation of phosgene by combined CO2 and chloride electrolysis
CN107723734A (en) * 2017-11-13 2018-02-23 山西洁泰达煤化工工程有限公司 A kind of method that glycolic is prepared using electrolysis
KR20210018783A (en) 2018-01-22 2021-02-18 오푸스-12 인코포레이티드 System and method for carbon dioxide reactor control
DE102018202335A1 (en) * 2018-02-15 2019-08-22 Linde Aktiengesellschaft Plant for the electrochemical production of a CO-containing gas product
US11193212B2 (en) 2018-09-25 2021-12-07 Sekisui Chemical Co., Ltd. Synthetic method and synthetic system
CN109126858B (en) * 2018-11-05 2021-03-26 湖南科技大学 Preparation method of bifunctional catalyst capable of simultaneously generating diglycolic acid and hydrogen, product and application thereof
CN111188053B (en) * 2018-11-14 2021-05-14 万华化学集团股份有限公司 Method for preparing carbonate by utilizing Kolbe reaction by-product
CN109179814B (en) * 2018-11-26 2024-06-14 南京紫江工程科技有限公司 Method for treating sewage by combined advanced oxidation
KR20210108387A (en) 2018-11-28 2021-09-02 오푸스-12 인코포레이티드 Electrolyzer and how to use it
CN109608329A (en) * 2018-12-12 2019-04-12 浙江大学 A kind of terephthalic acid production method of low bromine discharge
BR112021017768A2 (en) * 2019-03-08 2021-11-16 Huang HOE Hui Electrochemical production of polymers.
CN110052281B (en) * 2019-03-10 2021-11-05 天津大学 Oxygen vacancy enriched nitrogen doped tin oxide and preparation method and application thereof
CN110117794B (en) * 2019-05-21 2021-05-18 盐城工学院 Electro-reduction of CO2Three-chamber type electrolytic cell device for preparing formate and electrolytic method thereof
JP7418733B2 (en) * 2019-11-13 2024-01-22 清水建設株式会社 Gas supply device, electrochemical reaction device and gas supply method
EP4065753A1 (en) 2019-11-25 2022-10-05 Twelve Benefit Corporation Membrane electrode assembly for co x reduction
CN111575732A (en) * 2020-05-28 2020-08-25 昆明理工大学 Electrochemical preparation method of phosgene synthesis raw material
CN111850592B (en) * 2020-07-03 2021-12-03 大连理工大学 Method for co-producing propionic acid and improving electrolytic water performance of anion exchange membrane
CN112125775B (en) * 2020-10-15 2023-03-24 江苏蓝色星球环保科技股份有限公司 Method and device for producing 1, 2-tetrafluoroethane and co-producing glycolic acid
CN112062668B (en) * 2020-10-15 2023-01-17 江苏蓝色星球环保科技股份有限公司 Method and device for continuously producing 1, 2-tetrafluoroethane and coproducing 2, 2-trifluoroethanol and glycolic acid
JP2023546172A (en) 2020-10-20 2023-11-01 トゥエルブ ベネフィット コーポレーション Semi-interpenetrating and cross-linked polymers and membranes thereof
CN112481656B (en) * 2020-11-30 2021-08-10 华南理工大学 Bifunctional catalyst for high-selectivity electrocatalysis of glycerin oxidation conversion to produce formic acid and high-efficiency electrolysis of water to produce hydrogen, preparation method and application thereof
CN112725816B (en) * 2020-12-25 2021-12-24 昆明理工大学 Method and device for preparing hydrogen sulfide by sulfur dioxide electrocatalytic reduction in cooperation with membrane separation
CN113399766B (en) * 2021-06-02 2022-06-14 贵州大学 Test method of electrolyte for high-speed steel roll material electrolytic grinding
CN113621995B (en) * 2021-07-16 2023-12-26 武汉理工大学 Method for recycling noble metals in thiosulfate leaching solution based on electrochemical combined catalysis technology
CN114588849A (en) * 2022-02-22 2022-06-07 兰州城市学院 Method for preparing 3D nanoflower composite material by hydrothermal method
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production
CN117604542A (en) * 2023-09-11 2024-02-27 山东核电设备制造有限公司 Electrolysis system and electrolysis method for preparing formic acid by coupling flue gas treatment with methanol oxidation in power plant

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR853643A (en) * 1938-05-04 1940-03-23 Ig Farbenindustrie Ag Process for producing halogenated hydrocarbons
US3236879A (en) * 1957-10-10 1966-02-22 Montedison Spa Preparation of alpha-beta, deltaepsilon unsaturated carboxylic acids and esters
US3479261A (en) * 1967-05-15 1969-11-18 North American Rockwell Electrochemical method for recovery of sulfur oxides
US3649482A (en) * 1968-11-04 1972-03-14 Continental Oil Co Cathodic process for the preparation of tetraalkyl lead compounds
GB1425022A (en) * 1972-05-03 1976-02-18 Petrocarbon Dev Lts Process for the oxidation of olefins
US3824163A (en) * 1972-07-19 1974-07-16 Electronic Associates Electrochemical sulfur dioxide abatement process
US4147599A (en) * 1977-07-19 1979-04-03 Diamond Shamrock Corporation Production of alkali metal carbonates in a cell having a carboxyl membrane
US4072583A (en) * 1976-10-07 1978-02-07 Monsanto Company Electrolytic carboxylation of carbon acids via electrogenerated bases
DE2953388C2 (en) 1979-01-23 1986-07-24 Institut elektrochimii Akademii Nauk SSSR, Moskau/Moskva Process for the preparation of 1,2-dichloroethane
IT1122699B (en) * 1979-08-03 1986-04-23 Oronzio De Nora Impianti RESILIENT ELECTRIC COLLECTOR AND SOLID ELECTROLYTE ELECTROCHEMISTRY INCLUDING THE SAME
US4253921A (en) * 1980-03-10 1981-03-03 Battelle Development Corporation Electrochemical synthesis of butane-1,4-diol
US4560451A (en) * 1983-05-02 1985-12-24 Union Carbide Corporation Electrolytic process for the production of alkene oxides
US4661422A (en) * 1985-03-04 1987-04-28 Institute Of Gas Technology Electrochemical production of partially oxidized organic compounds
US4810596A (en) * 1985-10-18 1989-03-07 Hughes Aircraft Company Sulfuric acid thermoelectrochemical system and method
DE68903760T2 (en) * 1989-08-07 1993-04-08 Euratom METHOD FOR REMOVING NITROGEN COMPOUNDS FROM LIQUIDS.
US5246551A (en) * 1992-02-11 1993-09-21 Chemetics International Company Ltd. Electrochemical methods for production of alkali metal hydroxides without the co-production of chlorine
US5223102A (en) * 1992-03-03 1993-06-29 E. I. Du Pont De Nemours And Company Process for the electrooxidation of methanol to formaldehyde and methylal
DE19543678A1 (en) * 1995-11-23 1997-05-28 Bayer Ag Process for direct electrochemical gas phase phosgene synthesis
IN190134B (en) * 1995-12-28 2003-06-21 Du Pont
US20020122980A1 (en) * 1998-05-19 2002-09-05 Fleischer Niles A. Electrochemical cell with a non-liquid electrolyte
US6447943B1 (en) * 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
AU2003214890A1 (en) * 2002-01-24 2003-09-09 The C And M Group, Llc Mediated electrochemical oxidation of halogenated hydrocarbon waste materials
US6949178B2 (en) * 2002-07-09 2005-09-27 Lynntech, Inc. Electrochemical method for preparing peroxy acids
DE10235476A1 (en) * 2002-08-02 2004-02-12 Basf Ag Integrated process for the production of isocyanates
AU2003303104A1 (en) * 2002-08-21 2004-10-18 Battelle Memorial Institute Photolytic oxygenator with carbon dioxide and/or hydrogen separation and fixation
AU2003270437A1 (en) * 2002-09-10 2004-04-30 The C And M Group, Llc Mediated electrochemical oxidation of inorganic materials
US7767358B2 (en) * 2005-05-31 2010-08-03 Nextech Materials, Ltd. Supported ceramic membranes and electrochemical cells and cell stacks including the same
DE102005032663A1 (en) * 2005-07-13 2007-01-18 Bayer Materialscience Ag Process for the preparation of isocyanates
EP1942087A1 (en) * 2005-10-05 2008-07-09 Daiichi Sankyo Company, Limited Method for dehydrohalogenation of organic halogen compound
JP2009511740A (en) * 2005-10-13 2009-03-19 マントラ エナジー オールターナティヴス リミテッド Continuous cocurrent electrochemical reduction of carbon dioxide
DE102006022447A1 (en) * 2006-05-13 2007-11-15 Bayer Materialscience Ag Process for the coupled production of chlorine and isocyanates
FI121271B (en) * 2007-01-19 2010-09-15 Outotec Oyj Process for the preparation of hydrogen and sulfuric acid
US8152988B2 (en) * 2007-08-31 2012-04-10 Energy & Enviromental Research Center Foundation Electrochemical process for the preparation of nitrogen fertilizers
WO2009145624A1 (en) * 2008-05-30 2009-12-03 Inoviakem B.V. Use of activated carbon dioxide in the oxidation of compounds having a hydroxy group
US8282810B2 (en) * 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US20110315560A1 (en) * 2008-12-18 2011-12-29 The University Of Queensland Process for the production of chemicals
US20100270167A1 (en) * 2009-04-22 2010-10-28 Mcfarland Eric Process for converting hydrocarbon feedstocks with electrolytic and photoelectrocatalytic recovery of halogens
US7993511B2 (en) * 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
EP2324528A1 (en) * 2009-07-15 2011-05-25 Calera Corporation Electrochemical production of an alkaline solution using co2
WO2011011521A2 (en) * 2009-07-23 2011-01-27 Ceramatec, Inc. Decarboxylation cell for production of coupled radical products
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8703089B2 (en) * 2010-03-03 2014-04-22 Ino Therapeutics Llc Method and apparatus for the manufacture of high purity carbon monoxide
US8721866B2 (en) * 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
JP6021074B2 (en) * 2011-02-28 2016-11-02 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
US8562811B2 (en) * 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
WO2013006711A1 (en) * 2011-07-06 2013-01-10 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8647493B2 (en) * 2012-07-26 2014-02-11 Liquid Light, Inc. Electrochemical co-production of chemicals employing the recycling of a hydrogen halide
BR112015005640A2 (en) * 2012-09-14 2017-08-08 Liquid Light Inc high surface area process and electrodes for electrochemical carbon dioxide reduction

Also Published As

Publication number Publication date
JP2015534609A (en) 2015-12-03
CA2883900C (en) 2020-10-27
JP2015535884A (en) 2015-12-17
CA2883752C (en) 2021-04-27
EP2897907A1 (en) 2015-07-29
CA2883367A1 (en) 2014-03-27
SA515360160B1 (en) 2016-05-11
ES2703098T3 (en) 2019-03-07
CN104641021B (en) 2019-02-12
EP2897907A4 (en) 2015-10-21
CA2883748A1 (en) 2014-03-27
WO2014046795A3 (en) 2014-10-09
ES2703123T3 (en) 2019-03-07
WO2014046796A2 (en) 2014-03-27
JP2015535885A (en) 2015-12-17
KR20150056635A (en) 2015-05-26
EP2897910A4 (en) 2015-10-21
AU2018204558B2 (en) 2020-06-11
CA2883900A1 (en) 2014-03-27
WO2014046795A2 (en) 2014-03-27
BR112015006113A2 (en) 2018-05-29
ES2718328T3 (en) 2019-07-01
EP2897907B1 (en) 2018-10-03
BR112015006212A2 (en) 2017-07-04
EP2897899A2 (en) 2015-07-29
EP2900847A4 (en) 2015-10-21
CN104718156A (en) 2015-06-17
CN104641021A (en) 2015-05-20
CN104640816A (en) 2015-05-20
WO2014046798A3 (en) 2014-06-26
EP2900847A2 (en) 2015-08-05
WO2014046797A3 (en) 2014-05-22
EP2897910B1 (en) 2019-01-02
BR112015006196A2 (en) 2017-07-04
CN104641019B (en) 2017-12-05
EP2897899A4 (en) 2015-10-28
KR20150056629A (en) 2015-05-26
EP2900847B1 (en) 2021-03-24
WO2014046793A1 (en) 2014-03-27
JP2015533947A (en) 2015-11-26
EP2897910A2 (en) 2015-07-29
CN104640815A (en) 2015-05-20
KR20150056628A (en) 2015-05-26
WO2014046796A3 (en) 2014-11-06
AU2013318506A1 (en) 2015-03-26
BR112015006139A2 (en) 2017-08-22
CN104640814A (en) 2015-05-20
EP2898118B1 (en) 2018-10-03
AU2018204558A1 (en) 2018-07-12
AU2013318502A1 (en) 2015-03-26
AU2013318507A1 (en) 2015-03-26
EP2897908A4 (en) 2016-05-18
WO2014046790A1 (en) 2014-03-27
BR112015006214A2 (en) 2017-07-04
EP2898118A2 (en) 2015-07-29
EP2898118A4 (en) 2015-10-21
WO2014046798A2 (en) 2014-03-27
CN104641019A (en) 2015-05-20
WO2014046792A1 (en) 2014-03-27
CA2883748C (en) 2021-08-10
WO2014046797A2 (en) 2014-03-27
KR20150056634A (en) 2015-05-26
AU2013318501A1 (en) 2015-03-26
CA2883752A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
US8647493B2 (en) Electrochemical co-production of chemicals employing the recycling of a hydrogen halide
AU2018204558B2 (en) Electrochemical reduction of co2 with co-oxidation of an alcohol
CA2883744A1 (en) System and method for oxidizing organic compounds while reducing carbon dioxide
HALIDE Teamey et al.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160414

RIC1 Information provided on ipc code assigned before grant

Ipc: C02F 9/06 20060101ALI20160408BHEP

Ipc: C02F 1/00 20060101AFI20160408BHEP

Ipc: C25B 1/24 20060101ALI20160408BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARES CAPITAL CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVANTIUM KNOWLEDGE CENTRE B.V.

17Q First examination report despatched

Effective date: 20170627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180718