JP2009511740A - Continuous cocurrent electrochemical reduction of carbon dioxide - Google Patents

Continuous cocurrent electrochemical reduction of carbon dioxide Download PDF

Info

Publication number
JP2009511740A
JP2009511740A JP2008534843A JP2008534843A JP2009511740A JP 2009511740 A JP2009511740 A JP 2009511740A JP 2008534843 A JP2008534843 A JP 2008534843A JP 2008534843 A JP2008534843 A JP 2008534843A JP 2009511740 A JP2009511740 A JP 2009511740A
Authority
JP
Japan
Prior art keywords
anolyte
cathode
catholyte
gas
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008534843A
Other languages
Japanese (ja)
Inventor
オロマン,コリン
リ,フイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mantra Energy Alternatives Ltd
Original Assignee
Mantra Energy Alternatives Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mantra Energy Alternatives Ltd filed Critical Mantra Energy Alternatives Ltd
Publication of JP2009511740A publication Critical patent/JP2009511740A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • C25B11/044Impregnation of carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/40Cells or assemblies of cells comprising electrodes made of particles; Assemblies of constructional parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

各種実施形態において、発明は、例えば、二酸化炭素をギ酸塩若しくはギ酸へと変換する、二酸化炭素の還元のための電気化学的方法を提供する。選択された実施形態では、3次元陰極を有する連続反応器の動作と、2相(ガス/液体)陰極液流れとが二酸化炭素の電気的還元における有利な条件をもたらす。これらの実施形態では、選択されたガス/液相体積流量比で、陰極液溶媒とガスを含む二酸化炭素との連続2相の流れが、比較的低い反応器(セル)電圧(<10V)と共に、比較的高い有効表面電流密度及びガス空間速度でのCOの電気的還元を有利にする動的条件をもたらす。幾つかの実施形態では、陰極室における比較的高い内部ガス滞留量(液相に対する内部ガスの体積比>0.1であることが明らかである)は、液相での平衡CO濃度よりも大きくすることができ、また、比較的高い有効表面電流密度を促進することができる。幾つかの実施形態では、これらの特徴は、例えば、陰極液でのpH>7で、比較的低いCO分圧(<10bar)を達成することができる。幾つかの実施形態では、これらの特徴は、例えば、最大約80℃の陰極液出口温度と共に断熱条件に近い条件下で達成することができる。In various embodiments, the invention provides an electrochemical method for the reduction of carbon dioxide, for example, converting carbon dioxide to formate or formic acid. In selected embodiments, operation of a continuous reactor with a three-dimensional cathode and a two-phase (gas / liquid) catholyte stream provide advantageous conditions in the electroreduction of carbon dioxide. In these embodiments, at a selected gas / liquid phase volume flow ratio, a continuous two-phase flow of catholyte solvent and gas containing carbon dioxide, along with a relatively low reactor (cell) voltage (<10V). Resulting in dynamic conditions that favor the electroreduction of CO 2 at relatively high effective surface current densities and gas space velocities. In some embodiments, a relatively high internal gas retention in the cathode chamber (obviously a volume ratio of internal gas to liquid phase> 0.1) is greater than the equilibrium CO 2 concentration in the liquid phase. It can be increased and can promote a relatively high effective surface current density. In some embodiments, these features can achieve a relatively low CO 2 partial pressure (<10 bar), for example, with pH> 7 in the catholyte. In some embodiments, these features can be achieved under conditions close to adiabatic conditions, for example, with a catholyte outlet temperature of up to about 80 ° C.

Description

発明の詳細な説明Detailed Description of the Invention

〔発明の分野〕
上記発明の分野は電気化学であり、当該発明には、水系での二酸化炭素の電気還元方法及びそのための装置が含まれる。
(Field of the Invention)
The field of the invention is electrochemistry, and the invention includes a method for electroreduction of carbon dioxide in an aqueous system and an apparatus therefor.

〔発明の背景〕
ギ酸塩MHCO(ここで、Mは通常、Na、K又はNHである)及びギ酸HCOHは、工業的な熱化学的方法(Kirk-Othmer - Encyclopedia of Chemical Technology, 1991)により生産され得る商業用化学品である。例えば、ギ酸ナトリウムは一酸化炭素と水酸化ナトリウムとの反応により得られ、その後の硫酸による酸分解によりギ酸は得られる。
BACKGROUND OF THE INVENTION
Formate MHCO 2 (where M is usually Na, K or NH 4 ) and formic acid HCO 2 H are produced by an industrial thermochemical method (Kirk-Othmer-Encyclopedia of Chemical Technology, 1991). To obtain commercial chemicals. For example, sodium formate is obtained by the reaction of carbon monoxide and sodium hydroxide, and then formic acid is obtained by acid decomposition with sulfuric acid.

NaOH + CO → NaHCO
2NaHCO + HSO → 2HCOH + NaSO
ギ酸は、炭化水素の酸化における副産物として、並びにメタノールのカルボニル化から得られるギ酸メチルの加水分解によっても製造され得る。二酸化炭素の電気還元によるギ酸塩(例えば、KHCO)の合成方法も知られている(Chaplin and Wragg, 2003; Sanchez et at., 2001; Akahori et al., 2004; Hui and Oloman, 2005)。
NaOH + CO → NaHCO 2
2NaHCO 2 + H 2 SO 4 → 2HCO 2 H + Na 2 SO 4
Formic acid can also be produced as a by-product in the oxidation of hydrocarbons, as well as by hydrolysis of methyl formate obtained from methanol carbonylation. A method for synthesizing formate (eg, KHCO 2 ) by electroreduction of carbon dioxide is also known (Chaplin and Wragg, 2003; Sanchez et at., 2001; Akahori et al., 2004; Hui and Oloman, 2005).

二酸化炭素は、主に人類が原因の、気候変動の要因であると考えられる。よって、COを隔離する及び/又は有用な生成物へ変換する方法が必要である。 Carbon dioxide is thought to be a cause of climate change, mainly due to humanity. Thus, there is a need for a method of sequestering CO 2 and / or converting it to useful products.

Oloman及びWatkinsonは、米国特許Nos. 3,969,201及び4,118,305 (本願に引用して援用する)において、酸素をアルカリ過酸化物へと電気還元するトリクルベッド(trickle bed)反応器を記載している。各種形態において、電気化学セルは、少なくとも1つの電極が、バリア・ウォールにより対電極から分離した、流体浸透性の導体塊の形態である、空間的に離れた1組の電極を含む。上記電極塊は、粒子若しくは固定した多孔質マトリックスの層の形態とし得る。電子伝導材料は、上記反応を実行するための良好な電気触媒(electrocatalyst)である表面から構成される。   Oloman and Watkinson are registered in US Pat. 3,969,201 and 4,118,305 (incorporated by reference) describe a trickle bed reactor for electroreducing oxygen to alkaline peroxide. In various configurations, the electrochemical cell includes a set of spatially separated electrodes, wherein at least one electrode is in the form of a fluid permeable conductor mass separated from the counter electrode by a barrier wall. The electrode mass may be in the form of particles or a layer of a fixed porous matrix. The electron conducting material is composed of a surface that is a good electrocatalyst for performing the above reaction.

電極塊を経て(例えば、電極間の電流の方向と通常垂直の方向に)電解質とガスとを並流で移動させるために、液体電解質及びガスを電極塊に供給する入口が設けられる。流体浸透性の導体塊からの反応生成物を含む溶液を移動させるために出口が設けられる。   In order to move electrolyte and gas in parallel flow through the electrode mass (eg, in a direction generally perpendicular to the direction of current between the electrodes), an inlet is provided for supplying liquid electrolyte and gas to the electrode mass. An outlet is provided to move the solution containing the reaction product from the fluid permeable conductor mass.

〔発明の概要〕
各種実施形態において、上記発明は、二酸化炭素をギ酸塩若しくはギ酸に変換する等の、二酸化炭素の還元のための電気化学的方法を提供する。選択された実施形態では、3次元陰極と2相(気体/液体)陰極液流とを有する連続反応器の操作が、二酸化炭素の電気的還元のための有利な状態を提供する。これら実施形態において、選択された気体/液体の体積比における、陰極液溶媒及び二酸化炭素ガスの連続した2相の流れは、比較的高い有効表面電流密度(effective superficial current densities)でのCOの電気的還元に有利に働く動的条件を提供する。幾つかの実施形態では、陰極室における比較的高い内部ガス滞留量(供給流における、液相に対するガスの体積比が1より大きい、又は多孔性の電極内で0.1より大きいことは明らかである)を、液相における平衡CO濃度よりも大きくなるように供給することができ、比較的高い有効表面電流密度を容易にすることができる。幾つかの実施形態では、これらの特性は、例えば、陰極液のpH>7及び比較的低いCO分圧(<10bar)において実現され得る。
[Summary of the Invention]
In various embodiments, the invention provides an electrochemical method for the reduction of carbon dioxide, such as converting carbon dioxide to formate or formic acid. In selected embodiments, operation of a continuous reactor having a three-dimensional cathode and a two-phase (gas / liquid) catholyte stream provides an advantageous condition for the electroreduction of carbon dioxide. In these embodiments, a continuous two-phase flow of catholyte solvent and carbon dioxide gas at a selected gas / liquid volume ratio results in the CO 2 at relatively high effective superficial current densities. Provide dynamic conditions that favor electrical reduction. In some embodiments, the relatively high internal gas retention in the cathode chamber (the volume ratio of gas to liquid phase in the feed stream is clearly greater than 1 or greater than 0.1 in the porous electrode. Can be supplied to be greater than the equilibrium CO 2 concentration in the liquid phase, which can facilitate a relatively high effective surface current density. In some embodiments, these properties can be achieved, for example, at catholyte pH> 7 and relatively low CO 2 partial pressure (<10 bar).

従来とは異なる形態として、上記発明は、陰極液混合物に、電気化学反応器の陰極室を連続的に通過させることを含む。陰極液混合物には、二酸化炭素ガスと、溶解した二酸化炭素を含む液体陰極液溶媒とを含有し得る。上記陰極液溶媒は、例えば、水系溶媒とすることができる。また、溶解したアルカリ金属、若しくは重炭酸アンモニウムが含まれてもよく、約6以上約9以下の範囲等の所望のpHに維持され得る。陰極液での液体に対する気体(G/L)の容積比は、液体陰極液の溶媒の体積に対する二酸化炭素ガスの体積の比となるように維持され得る。上記G/L比は、陰極室(例えば、供給流において、又は陰極室内の多孔性陰極において)において維持され得る。例えば、上記方法は、上記G/L比がしきい値よりも大きくなるように(例えば、供給において1より大きくなるように、又は多孔性(3D)陰極内において0.1より大きくなるように)実施され得る。   As a form different from the prior art, the above invention involves continuously passing the catholyte mixture through the cathode chamber of the electrochemical reactor. The catholyte mixture may contain carbon dioxide gas and a liquid catholyte solvent containing dissolved carbon dioxide. The catholyte solvent can be, for example, an aqueous solvent. Also, dissolved alkali metal or ammonium bicarbonate may be included, and can be maintained at a desired pH, such as in the range of about 6 to about 9. The volume ratio of gas (G / L) to liquid in the catholyte can be maintained to be the ratio of the volume of carbon dioxide gas to the volume of solvent in the liquid catholyte. The G / L ratio can be maintained in the cathode chamber (eg, in the feed stream or in the porous cathode in the cathode chamber). For example, the method may be such that the G / L ratio is greater than a threshold (eg, greater than 1 in the supply or greater than 0.1 in a porous (3D) cathode). ) Can be implemented.

本発明の1つの形態には、電流を陰極室の陰極と陽極との間で通過させ、溶解した二酸化炭素を還元し、所望の生成物を形成することが含まれる。幾つかの実施形態では、陰極における有効表面電流密度が、しきい値(例えば、1kA/m(又は、1.5、2、2.5、3、3.5、4、4.5若しくは5kA/m))よりも大きくなるように、上記方法は行われ得る。系内の上記電流は、例えば、電気化学セル電圧により駆動する直流であってもよく、幾つかの実施形態では、上記方法は、比較的低い電気化学セル電圧(例えば、10V未満)で実施させることができる。 One form of the invention involves passing an electric current between the cathode and anode of the cathode chamber to reduce dissolved carbon dioxide to form the desired product. In some embodiments, the effective surface current density at the cathode is a threshold (eg, 1 kA / m 2 (or 1.5, 2 , 2.5, 3, 3.5, 4, 4.5 or The method can be carried out such that it is greater than 5 kA / m 2 )). The current in the system may be, for example, a direct current driven by an electrochemical cell voltage, and in some embodiments, the method is performed at a relatively low electrochemical cell voltage (eg, less than 10V). be able to.

上記発明の各種形態は、幾つかの実施形態において、上記発明の方法の経済的な側面を改善し得る、方法のパラメータの選定を容易にすることについて役に立つ。幾つかの実施形態では、本発明の上記方法は、比較的希薄な投入ガス流と共に用いられる。例えば、供給ガスにおける二酸化炭素ガスの濃度は1%以上100%以下、即ちこの範囲内の任意の数値であってもよい(陰極室における二酸化炭素の分圧はしきい値(例えば3、5若しくは10bar)未満となる幾つかの実施形態において)。同様に、例えば、上記陰極室は、1、2、3、4若しくは5bar(1bar=100kPa(abs))等の最小値と、6、7、8、9若しくは10bar等のより高い最大値以下の範囲内の、比較的低い、系の圧力を使用し得る。幾つかの実施形態では、冷却する必要がない高温(例えば、20、25、30、35、40、45、50℃等の所望のしきい値を超える陰極温度)で、上記発明の方法を効果的に行い得る。これに関連して、陰極室の圧力及び温度は、陰極の高さに沿って変化し得ることが理解できるであろう。例えば、上記入口圧は出口圧よりも大きくし得る(幾つかの実施形態では、上記圧力低下は、例えば、約10、20、30、40若しくは50kPa等の最低値で、約500、600、700、800若しくは900kPaの最大値以下におよび得る)。同様に、上記出口温度は、温度が入口から出口に約1℃以上100℃以下(即ち、この範囲の任意の数値)上昇するように、入口温度よりも大きくし得る。上記ガス組成(特にCO濃度)及び全圧がCO分圧(即ち、ppCO=(CO割合)×(全圧))を決定することが理解できるであろう。 The various aspects of the invention are useful in some embodiments for facilitating the selection of method parameters that may improve the economic aspects of the method of the invention. In some embodiments, the above method of the invention is used with a relatively lean input gas stream. For example, the concentration of carbon dioxide gas in the supply gas may be 1% or more and 100% or less, that is, any value within this range (the partial pressure of carbon dioxide in the cathode chamber is a threshold value (eg, 3, 5, or In some embodiments, less than 10 bar)). Similarly, for example, the cathode chamber has a minimum value such as 1, 2, 3, 4 or 5 bar (1 bar = 100 kPa (abs)) and a lower maximum value such as 6, 7, 8, 9 or 10 bar. A relatively low system pressure within the range may be used. In some embodiments, the method of the invention is effective at high temperatures that do not need to be cooled (eg, cathode temperatures above desired thresholds such as 20, 25, 30, 35, 40, 45, 50 ° C., etc.). Can be done manually. In this context, it will be appreciated that the pressure and temperature of the cathode chamber can vary along the height of the cathode. For example, the inlet pressure may be greater than the outlet pressure (in some embodiments, the pressure drop is about 500, 600, 700, for example, at a minimum value such as about 10, 20, 30, 40, or 50 kPa. Up to a maximum of 800 or 900 kPa). Similarly, the outlet temperature may be greater than the inlet temperature so that the temperature rises from about 1 ° C. to 100 ° C. (ie, any value in this range) from the inlet to the outlet. It will be appreciated that the gas composition (especially the CO 2 concentration) and total pressure determine the CO 2 partial pressure (ie ppCO 2 = (CO 2 ratio) × (total pressure)).

上記発明に用いられる陰極は、多孔質陰極のような、電流フローの次元における有効厚さを有し得る。これらは、3次元(3D)電極としてみなされるかもしれない。このような電極は、6、5、4、3、2、1若しくは0.5mm未満等の選択された厚さと、5%以上95%以下等の選択された空隙率若しくは多孔率の範囲(即ち、30、40、50、60若しくは70%等の、この範囲の任意の数値)とを有し得る。上記発明の陰極は、多種多様の電気活性材料から選択的に作られ得る。電気活性材料としては、例えば、スズ、鉛、ピューター、水銀、インジウム、亜鉛、カドミウム、又は電気活性材料が選択的にコーティングされた、電気導電性若しくは非導電性物質(例えば、スズメッキした銅、水銀を融合した銅(mercury amalgamated copper)、スズメッキしたグラファイト、又はスズメッキしたガラス)等のその他の材料が挙げられる。   The cathode used in the invention can have an effective thickness in the dimension of current flow, such as a porous cathode. These may be considered as three-dimensional (3D) electrodes. Such electrodes have a selected thickness, such as less than 6, 5, 4, 3, 2, 1, or 0.5 mm, and a selected porosity or porosity range, such as 5% or more and 95% or less (ie, , 30, 40, 50, 60 or 70%, etc.). The cathode of the above invention can be selectively made from a wide variety of electroactive materials. Electroactive materials include, for example, tin, lead, pewter, mercury, indium, zinc, cadmium, or electrically conductive or non-conductive materials selectively coated with electroactive materials (eg, tin plated copper, mercury And other materials such as copper (mercury amalgamated copper), tin-plated graphite, or tin-plated glass).

上記陽極は陽極室中にあり、当該陽極室は、電気化学セル膜により陰極室から分離され得る。陽極室における陽極液は、水系の陽極液とすることができる。当該陽極液は、例えば、溶解したアルカリ金属水酸化物、塩(アンモニウム塩を含む)又は酸が含まれ、約0以上約14以下のpH範囲(即ち、任意のpH値若しくは当該範囲内の任意の範囲)とすることができる。   The anode is in the anode chamber, which can be separated from the cathode chamber by an electrochemical cell membrane. The anolyte in the anodic chamber can be an aqueous anolyte. The anolyte contains, for example, dissolved alkali metal hydroxide, salt (including ammonium salt) or acid, and has a pH range of about 0 to about 14 (that is, any pH value or any value within the range). Range).

上記電気化学セル膜は、例えば、選択したイオンに当該膜を横切らせ、方法での化学両論のバランスをとる膜のような、カチオン浸透性のある膜とすることができる。   The electrochemical cell membrane can be a cation permeable membrane, such as a membrane that balances the stoichiometry of the method by allowing selected ions to cross the membrane.

上記方法の所望の生成物には、ギ酸アンモニウム、ギ酸カリウム及びギ酸ナトリウムのようなギ酸塩、又はギ酸が含まれる。上記所望の生成物は、各種方法により陰極液溶媒から分離され得る。例えば、一部の陰極液溶媒、リサイクルした陰極液溶媒は、陰極室出口から陰極室入口へとリサイクルすることができ、そして、所望の生成物は当該リサイクル陰極液溶媒から分離され得る。同様に、上記陽極液の少なくとも一部は、陽極液室出口から陽極液室入口へとリサイクルすることができ、陽極での共生成物は当該リサイクル陽極液から分離され得る。   Desired products of the above process include formates such as ammonium formate, potassium formate and sodium formate, or formic acid. The desired product can be separated from the catholyte solvent by various methods. For example, some catholyte solvent, recycled catholyte solvent can be recycled from the cathode chamber outlet to the cathode chamber inlet, and the desired product can be separated from the recycled catholyte solvent. Similarly, at least a portion of the anolyte can be recycled from the anolyte chamber outlet to the anolyte chamber inlet, and co-products at the anode can be separated from the recycled anolyte.

選択された実施形態では、上記陽極液のジュール加熱は、加熱された陽極液を提供するために使用され得る。そして当該加熱された陽極液は、例えば、分別結晶を伴う蒸発、または減圧蒸留により、上記リサイクル陰極液を加熱し、当該リサイクル陰極液溶媒から所望の生成物を分離することに使用され得る。幾つかの実施形態において、ギ酸塩を含むリサイクル陰極液は、酸分解反応により所望の生成物が得られるように陽極液と反応し得る。   In selected embodiments, joule heating of the anolyte can be used to provide a heated anolyte. The heated anolyte can then be used to heat the recycled catholyte, for example, by evaporation with fractional crystallization, or vacuum distillation, to separate the desired product from the recycled catholyte solvent. In some embodiments, a recycled catholyte containing formate can react with the anolyte so that the desired product is obtained by an acidolysis reaction.

〔発明の詳細な説明〕
各種形態において、上記発明は、COの電気的還元のための連続反応器を提供する。上記連続反応器は、例えば、水を加えた二酸化炭素の供給を、ギ酸イオンに変換し(反応1)、結果としてギ酸塩若しくはギ酸を製造する方法に使用し得る。
Detailed Description of the Invention
In various embodiments, the invention provides a continuous reactor for an electrical reduction of CO 2. The continuous reactor can be used, for example, in a method for converting a supply of carbon dioxide added with water into formate ions (reaction 1), resulting in the production of formate or formic acid.

CO + HO + 2e → HCO + OH 反応1
幾つかの形態において、上記発明は、Oloman及びWatkinsonにより米国特許Nos.3,969,201及び4,118,305に記載されているトリクルベッド反応器に類似した電気化学反応器を利用し得る。このような実施形態において、上記発明は、空間的に離れた1組の電極を有する電気化学セルを含み、気体反応を含む電気化学反応を実施するための装置を利用し得る。上記電極の少なくとも1つは、例えば、流体浸透性の導体塊の形態で、イオン伝導性はある電気的絶縁層(例えば、膜若しくは多孔性隔膜)により、カウンター電極から分離している陰極である。上記反応器は、3D陰極を経る反応ガス及び陰極液の並流を伴う「トリクルベッド」モードで操作され得る。実施例で説明するように、上記発明の方法のパラメータは、この反応器が有利となる反応剤供給(例えば、高いガス空間速度、反応容器容量を超える体積ガス供給流量比のように明らかである)、並びに物質移動特性が実現されるように調整され得る。上記陰極における並流流量は、重力に対する任意の方向において存在し得る。
CO 2 + H 2 O + 2e - → HCO 2 - + OH - reaction 1
In some forms, the above invention is disclosed by Oloman and Watkinson in US Pat. An electrochemical reactor similar to the trickle bed reactor described in 3,969,201 and 4,118,305 may be utilized. In such an embodiment, the invention may utilize an apparatus for performing an electrochemical reaction including a gas reaction, including an electrochemical cell having a pair of spatially separated electrodes. At least one of the electrodes is, for example, in the form of a fluid permeable conductor mass, a cathode separated from the counter electrode by an electrically insulating layer (eg a membrane or a porous diaphragm) that is ionically conductive. . The reactor can be operated in a “trickle bed” mode with cocurrent flow of reaction gas and catholyte through a 3D cathode. As illustrated in the examples, the parameters of the method of the invention described above are evident, such as the reactant feed (for example, high gas space velocity, volumetric gas feed flow ratio over the reaction vessel capacity) that this reactor favors. ), As well as mass transfer characteristics can be adjusted. The cocurrent flow at the cathode can exist in any direction with respect to gravity.

上記発明の反応器において、入口は、液体電解質及びガスを流体浸透性の導体塊に供給するために設けることができ、出口は、導体塊から反応生成物を含む溶液を移動させるために設けることができる。上記入口及び出口は、電解質及びガスが導体塊を経て並流で移動するように(例えば、通常、電極間の電流の流れに対して垂線方向に)、配置することができる。上記反応器は、例えば、(例えば、Hui及びOloman,2005に記載されているような)カチオン膜セパレータと共に配置され得る。他の実施形態では、他の種類の反応器を使用し得る。   In the reactor of the above invention, the inlet can be provided to supply liquid electrolyte and gas to the fluid-permeable conductor mass, and the outlet is provided to move the solution containing the reaction product from the conductor mass. Can do. The inlet and outlet can be arranged so that the electrolyte and gas move in parallel through the conductor mass (eg, typically perpendicular to the current flow between the electrodes). The reactor can be arranged with, for example, a cationic membrane separator (eg as described in Hui and Oloman, 2005). In other embodiments, other types of reactors may be used.

所望の生成物及び全体の物質収支により、方法の仕込みには、金属水酸化物及び/又は金属塩(例えば、MOH、MCl、MCO、MSO、及びMPO(ここで、Mは、通常はアルカリ金属(Na、K等)若しくはNH);HSO、HPO、若しくはHCl等の酸;又はアンモニア(NH)が含まれ得る。 Depending on the desired product and the overall mass balance, the process can be charged with metal hydroxides and / or metal salts (eg MOH, MCl, M 2 CO 3 , M 2 SO 4 , and M 3 PO 4 (here And M can typically include alkali metals (Na, K, etc.) or NH 4 ); acids such as H 2 SO 4 , H 3 PO 4 , or HCl; or ammonia (NH 3 ).

各種ある程度詳細に記述したフローシートは、上記発明により含まれる実施形態の範囲を説明する図1、5、6、7、8及び9における別法のため与えられる。選択された実施形態では、上記方法で仕込まれるCOの流れは、濃縮してもよく、例えば、80体積%COを超える濃度で濃縮してもよい。代わりに、例えば、化石燃料(通常は、約10体積%のCOを含む)の燃焼から生成するガスのような、相対的に低濃度のガス流を使用してもよい。上記仕込みCO流の他の潜在的な反応性成分には、酸素、硫黄酸化物、窒化酸化物、及び硫化水素が含まれる。これらは、各種方法での方法で処理し得る。例えば、反応器に入る仕込み流れにおいて、これらが無くなる、若しくは低濃度(例えば、約1体積%未満)となるように、1以上の初期のガス洗浄工程において除去され得る。仕込みCO流れの全圧及び温度は、比較的広い範囲(例えば、約100kPa(abs)以上1000kPa(abs)以下、約250K以上550K以下)で変化し得る。陰極液の液体をリサイクルすることに加えて、変換されていないCOガスをリサイクルするための設備が上記発明に含まれ得るように、電気化学反応器を経た1パスあたりのCOの変換は100%未満となり得る。 Flow sheets, described in some detail, are provided for alternatives in FIGS. 1, 5, 6, 7, 8 and 9 illustrating the scope of embodiments encompassed by the present invention. In selected embodiments, the CO 2 stream charged in the above method may be concentrated, for example, at a concentration greater than 80% by volume CO 2 . Alternatively, a relatively low concentration gas stream may be used, such as, for example, a gas generated from the combustion of fossil fuels (usually containing about 10% by volume CO 2 ). Other potential reactive components of the feed CO 2 stream include oxygen, sulfur oxides, nitride oxides, and hydrogen sulfide. These can be processed in various ways. For example, in the feed stream entering the reactor, they can be removed in one or more initial gas scrubbing steps such that they are eliminated or have a low concentration (eg, less than about 1 volume%). The total pressure and temperature of the charged CO 2 stream can vary over a relatively wide range (eg, about 100 kPa (abs) to 1000 kPa (abs), about 250 K to 550 K). In addition to recycling the catholyte liquid, the conversion of CO 2 per pass through the electrochemical reactor is such that equipment for recycling unconverted CO 2 gas can be included in the invention. It can be less than 100%.

図5における方法の工程1〜5には、上記発明の幾つかの実施形態が含まれ得、上記図における注釈を参照して、手短に以下のようにみなされ得る。   Steps 1-5 of the method in FIG. 5 may include several embodiments of the invention described above and can be considered briefly as follows with reference to the annotations in the figure.

工程1.混合する:(任意の補給(make-up)試薬を加えた)仕込み水を、その後反応器の陰極室へ連続的に供給されるリサイクル陰極液と連続的に混合する。   Step 1. Mix: Feed water (with optional make-up reagent added) is continuously mixed with recycled catholyte which is then continuously fed to the cathodic chamber of the reactor.

工程2.反応する:[C]陰極 副反応である、水の電気的還元で水素を生じさせる反応2と共に、連続的に反応1を促進させる。   Step 2. Reaction: [C] Cathode The reaction 1 is continuously promoted together with the reaction 2 which produces hydrogen by electroreduction of water, which is a side reaction.

2HO + 2e → H + 2OH 反応2
[A]陽極 その性質が、上記方法からの所望の生成物により決まる、相補的な(complimentary)陽極反応を促進する。例えば、もし、所望の主生成物がギ酸塩であり、副産物が酸素である場合、陽極酸化は反応3となり得る。
2H 2 O + 2e → H 2 + 2OH Reaction 2
[A] Anode Promotes a complementary anodic reaction, the nature of which depends on the desired product from the above process. For example, if the desired main product is formate and the byproduct is oxygen, anodization can be reaction 3.

2OH → 1/2O + HO + 2e 反応3
もし所望の主生成物がギ酸であり、副生産物が酸素若しくは塩素であれば、上記陽極反応は、反応4若しくは5それぞれとなり得る。他の陽極反応には、ペルオキシ二硫化塩(2SO → S 2− + 2e)のような、ペルオキシ酸のペルオキシ塩の発生が含まれ得る。
2OH 1/2 O 2 + H 2 O + 2e Reaction 3
If the desired main product is formic acid and the by-product is oxygen or chlorine, the anodic reaction can be reaction 4 or 5, respectively. Other anodic reactions can include the generation of peroxy salts of peroxy acids, such as peroxy disulfide salts (2SO 4 → S 2 O 8 2 + + 2e ).

2HO → O + 2H + 2e 反応4
2Cl → Cl + 2e 反応5
上記反応器における電極室は、所望の化学量論の平衡を保つ量でカチオンを陽極から陰極へ選択的に移動させる膜によって分離され得る。もし、所望の主生成物がギ酸塩であれば、これらカチオンは、水酸化物、塩、若しくはNHガスとして陽極液に供給されるアルカリ金属イオン(例えば、Na、K若しくはNH )となり得る。ここで、もし所望の主生成物がギ酸であれば、輸送されるカチオンには、反応4で発生するプロトン(H)及び/又は酸として陽極液に供給されるプロトン(H)が含まれ得る。
2H 2 O → O 2 + 2H + + 2e - Reaction 4
2Cl - → Cl 2 + 2e - reaction 5
The electrode chambers in the reactor can be separated by a membrane that selectively moves cations from the anode to the cathode in an amount that balances the desired stoichiometry. If the desired main product is a formate salt, these cations can be alkali metal ions (eg, Na + , K + or NH 4 + supplied to the anolyte as hydroxide, salt, or NH 3 gas. ) Here, if the desired main product is formic acid, the cations to be transported include protons (H + ) generated in reaction 4 and / or protons (H + ) supplied to the anolyte as acid. Can be.

ステップ3.分離する:主生成物(ギ酸塩若しくはギ酸)及び副生物(水素)をリサイクル陰極液から連続的に分離する。   Step 3. Separate: The main product (formate or formic acid) and by-product (hydrogen) are continuously separated from the recycled catholyte.

ステップ4.混合する:必須の陽極試薬及び水をリサイクル陽極液と連続的に混合する。   Step 4. Mix: Continuously mix the essential anodic reagent and water with the recycled anolyte.

ステップ5.分離する:陽極副産物をリサイクル陽極液から連続的に分離する。   Step 5. Separate: Continuously separate the anode by-product from the recycled anolyte.

上記方法の各種工程では、二酸化炭素及び水は、他の反応(例えば、反応器若しくは方法における他の場所で生じる反応6、7及び8)において消費及び/又は発生し得る。   In the various steps of the method, carbon dioxide and water may be consumed and / or generated in other reactions (eg, reactions 6, 7, and 8 occurring elsewhere in the reactor or process).

CO + OH → HCO 反応6
HCO + H → HO + CO 反応7
+ OH → HO 反応8
幾つかの実施形態では、上記方法は、比較的高い表面電流密度(例えば、0.5kA/mより高い)及び電流効率(例えば、ギ酸塩生成(例えば50%より高い))で、反応器を駆動させることが含まれ得る。上記発明の方法では、低エネルギー原単位を維持すると同時に、各種方法の工程での材料及びエネルギーの必要量を、必須の、方法の化学量論量に適合するようにバランスを保つことが含まれ得る。例えば、温度300K、CO圧200kPa(abs)での反応器電圧3V、1.3kA/mでのギ酸塩に対する電流効率75%で、上記発明の方法を実証した。水の管理は、物質収支にとって重要と成り得、水が、その反応、電気浸透移動、及び蒸発の速度に適合するように、陰極及び/又は陽極経路に供給されることが要求され得る。電気化学反応、加熱、冷却、ポンプによる揚水におけるエネルギー消費量は、上記方法のコストに寄与するかもしれず、適切な反応器設計及び方法における熱負荷の合理化により、比較的低く保たれ得る。幾つかの実施形態では、非金属触媒が使用され得る。例えば、米国特許Nos.5284563及びUS5382332では、二酸化炭素還元に使用され得るニッケルアルキルシクラム(nickel alkyl cyclam)触媒が開示されている。
CO 2 + OH - → HCO 3 - Reaction 6
HCO 3 + H + → H 2 O + CO 2 reaction 7
H + + OH → H 2 O Reaction 8
In some embodiments, the method provides a reactor with a relatively high surface current density (eg, greater than 0.5 kA / m 2 ) and current efficiency (eg, formate production (eg, greater than 50%)). Can be included. The method of the invention includes maintaining low energy intensity while balancing the material and energy requirements in the various process steps to match the required, stoichiometric amount of the process. obtain. For example, the method of the invention was demonstrated with a current efficiency of 75% for formate at a reactor voltage of 3 V at a temperature of 300 K, a CO 2 pressure of 200 kPa (abs), and 1.3 kPa / m 2 . Water management can be important for mass balance, and it can be required that water be supplied to the cathode and / or anode path to match the rate of reaction, electroosmosis transfer, and evaporation. The energy consumption in electrochemical reactions, heating, cooling, pumping water may contribute to the cost of the method and can be kept relatively low by rationalizing the heat load in the appropriate reactor design and method. In some embodiments, non-metallic catalysts can be used. For example, US Pat. 5284563 and US5382332 disclose nickel alkyl cyclam catalysts that can be used for carbon dioxide reduction.

幾つかの実施形態では、比較的高いガス/液体(G/L)相供給体積流量比が、高いガス空間速度(例えば、>100h−1)と同様に、電気化学反応器において用いられ得る(例えば、G/L流れ=1以上1000以下若しくは10以上200以下)。上記発明の選択された反応器では、G/Lを約5から100へ増加させることにより、電圧が10%未満増加する。最適G/L相容量(「G/L滞留量」として示す)比は、通常、実効陰極液伝導度(通常、G/L滞留量の増加と共に減少する)と、CO物質移動容量(通常、G/L滞留量の増加と共に増加する)と、バルク陰極液液相における非反応性の重炭酸塩/炭酸塩種へのCO変換での本質的な温度及びpHに依存する反応速度との間のバランスにより決まる。 In some embodiments, a relatively high gas / liquid (G / L) phase feed volume flow ratio can be used in an electrochemical reactor, as can a high gas space velocity (eg,> 100 h −1 ) ( For example, G / L flow = 1 to 1000 or 10 to 200). In selected reactors of the above invention, increasing the G / L from about 5 to 100 increases the voltage by less than 10%. The optimal G / L phase capacity (shown as “G / L retention”) ratio is usually the effective catholyte conductivity (usually decreases with increasing G / L residence) and CO 2 mass transfer capacity (usually , And increases with increasing G / L retention) and the intrinsic temperature and pH dependent reaction rates for CO 2 conversion to non-reactive bicarbonate / carbonate species in the bulk catholyte liquid phase, and Determined by the balance between

各種実施形態において、重要となり得る、2つの分離したガス/液体(G/L)比がある。
(i)STPに修正したガス体積流量を有する、反応器供給流れにおける体積G/L比であり、これには、例えば、約1以上1000以下、1以上500以下、10以上200以下、又は10以上100以下の範囲、又はこれら範囲内の任意の数値が含まれ得る。例えば、ガス流量が1000ml/分(STPに修正)であり、液体流量が20ml/分であり、G/L[流量]=1000/20=50となり得る。
(ii)多孔性の陰極内の体積G/L比、即ち、上記陰極における液体滞留量に対するガス滞留量の比であり、例えば、約0.1以上10以下、約0.2以上2以下、0.2以上4以下の範囲、またはこれら範囲内の任意の数値若しくは範囲が含まれ得る。例えば、ガス滞留量が0.6、液体滞留量が(1−0.6)であり、G/L[滞留量]=0.6/0.4=1.5となり得る。ここで、「滞留量」は、ある瞬間における指定された相により占有された(3D陰極における)間隙の割合である。上記反応器の定常動作で一定になると思われる。陰極において、気体は液体よりも滞留時間が短いため、G/L[流量]はG/L[滞留量]と同じでない(即ち、気体は液体を通り越して「抜ける」)。(ii)の上記値は、陰極の特性(例えば、多孔率(若しくは空隙率)、形状係数、及び粒径)と共に、(i)の上記値によって決まるため、(i)及び(ii)の供給流れ及び内部滞留量の値は、もちろん関連している。同様に、(i)の上記値は、(ii)の上記値に影響を及ぼし、陰極におけるCO物質移動容量及び反応器のガス空間速度とも関連する。
In various embodiments, there are two separate gas / liquid (G / L) ratios that can be important.
(I) Volume G / L ratio in the reactor feed flow with a gas volume flow corrected to STP, for example, about 1 to 1000 or less, 1 to 500 or less, 10 to 200 or less, or 10 The range of 100 or less or any numerical value within these ranges can be included. For example, the gas flow rate is 1000 ml / min (corrected to STP), the liquid flow rate is 20 ml / min, and G / L [flow rate] = 1000/20 = 50.
(Ii) The volume G / L ratio in the porous cathode, that is, the ratio of the gas residence amount to the liquid residence amount in the cathode, for example, about 0.1 to 10 and about 0.2 to 2 A range from 0.2 to 4 or any numerical value or range within these ranges may be included. For example, the gas retention amount is 0.6, the liquid retention amount is (1-0.6), and G / L [retention amount] = 0.6 / 0.4 = 1.5. Here, “residence” is the fraction of the gap (in the 3D cathode) occupied by a specified phase at a certain moment. It appears to be constant during steady state operation of the reactor. At the cathode, gas has a shorter residence time than liquid, so G / L [flow rate] is not the same as G / L [retention volume] (ie, gas “exits” past the liquid). Since the above value of (ii) is determined by the above value of (i) along with the properties of the cathode (eg, porosity (or porosity), shape factor, and particle size), the supply of (i) and (ii) Flow and internal dwell values are of course related. Similarly, the value of (i) affects the value of (ii) and is also related to the CO 2 mass transfer capacity at the cathode and the gas space velocity of the reactor.

上記条件は、以下のように調整され得る(ここで、CDは電流密度):
CO圧<3barにおける、実効CD > 1.5kA/m
実効CD=[表面CD]×[所望の生成物(例えば、ギ酸塩)での電流効率]
1パスでのギ酸塩(Format)生成物濃度 > 0.5M
3kA/mでの全反応器の電圧 < 5V
上記「表面電流密度」は、上記セルを経て通過する電流を、陰極等の関連した成分の投影表面積で割ったものである。陰極等の成分の上記「投影表面積」とは、当該成分に対して平行な面上の成分の突出物の表面積である。平板成分の場合では、上記投影表面積は、他の伝導性成分に面する成分の面の面積と等しい(例えば、陽極に面する陰極の投影表面積)。平面のメッシュの形態の成分では、上記投影表面積は、連続的な平面の表面上に投影したような、当該メッシュの外形内の面積である。
The above conditions can be adjusted as follows (where CD is the current density):
Effective CD> 1.5 kA / m 2 at CO 2 pressure <3 bar
Effective CD = [surface CD] × [current efficiency with desired product (eg, formate)]
Formate product concentration in 1 pass> 0.5M
Voltage of all reactors at 3 kA / m 2 <5V
The “surface current density” is the current passing through the cell divided by the projected surface area of the relevant component such as the cathode. The “projected surface area” of the component such as the cathode is the surface area of the protrusion of the component on the plane parallel to the component. In the case of a flat component, the projected surface area is equal to the area of the component facing the other conductive component (eg, the projected surface area of the cathode facing the anode). For a component in the form of a planar mesh, the projected surface area is the area within the outer shape of the mesh as projected onto a continuous planar surface.

上記「電流効率」(CE)は、電流の全てが、二酸化炭素の還元等の該当する反応により消費されるセルを経て通過する場合に達成されるであろう反応速度に対する、実際の反応速度の百分率として通常表される。   The “current efficiency” (CE) is a measure of the actual reaction rate relative to the reaction rate that would be achieved if all of the current passed through the cell consumed by the relevant reaction, such as the reduction of carbon dioxide. Usually expressed as a percentage.

幾つかの実施形態では、上記発明は断熱若しくはそれに近い条件で作用し得る(Toutは最大約90℃)。幾つかの実施形態では、陰極液におけるCOの溶解度を低下させると同時に、温度を増加させることは、二酸化炭素の電気還元(ERC)の固有反応速度を実際に有利にし、良好なCEは、連続反応器におけるCOの物質移動を促進する要因を巧みに操ることにより、より高い温度で得ることができる。連続反応器における断熱に近い条件下での高CDでのジュール加熱の効果は、最大約80℃まで反応温度を自動的に増加し得るため、幾つかの実施形態では、高温で実施する能力が重要となるかもしれない。 In some embodiments, the invention can operate at or near thermal insulation (Tout up to about 90 ° C.). In some embodiments, increasing the temperature while simultaneously reducing the solubility of CO 2 in the catholyte actually favors the intrinsic rate of carbon dioxide electroreduction (ERC), and good CE is By manipulating the factors that promote mass transfer of CO 2 in a continuous reactor, it can be obtained at higher temperatures. Since the effect of Joule heating at high CD under conditions close to adiabatic in a continuous reactor can automatically increase the reaction temperature up to about 80 ° C., in some embodiments, the ability to perform at high temperatures is possible. May be important.

〔実施例1〕
図1は、二酸化炭素の電気的還元(ERC)のこの実施例を反映する方法の流れ図を示す。純粋なCO若しくはCO(ガス)とN(ガス)との混合物を、T接合部(混合器)において、陰極液(液体)と混合し、当該混合物からのガス及び液体は、上記底から陰極室へ入るようにスラグ流として進ませた。よって、電気化学反応器は、陰極側上の並流で上向きの多相(G/L)流により動作させた。KOH水溶液である上記陽極液もまた陽極室を経て上向きに流れ、陽極液貯蔵タンクへリサイクルさせた。全ての気体及び液体は、個々のロタメータを経て通過させた。反応器における適切な気体及び液体を充填することを確実にするため、液体の流れはポンプにより制御し、気体の流れは手動弁により制御した。上記反応器入口及び出口の圧力及び温度は、フローシート中に示したポイントにおいて、視覚的な計測器により測定した。動作している間、陰極液生成物温度を制御した動作では、陽極液及び陰極液の両方の前冷却若しくは前加熱を、所望のレベルに温度を保つために採用した。液体生成物は、サンプリングポイントから回収され、ギ酸濃度を分析した。ガス/液体セパレータ(グラファイトフェルトの充填層)からの気体生成物は、CO及びCO分析のためのオルザットガス分析計、流量測定のためのウェットガス流量計、又はガスクロマトグラフによる事後炭化水素分析のためのテドラーサンプリングバッグの何れか一方への3ウェイバルブにより制御した。
[Example 1]
FIG. 1 shows a flow diagram of a method reflecting this embodiment of carbon dioxide electroreduction (ERC). Pure CO 2 or a mixture of CO 2 (gas) and N 2 (gas) is mixed with catholyte (liquid) at the T junction (mixer), and the gas and liquid from the mixture are It was advanced as a slag flow to enter the cathode chamber. Thus, the electrochemical reactor was operated with a cocurrent and upward multiphase (G / L) flow on the cathode side. The anolyte, which is a KOH aqueous solution, also flowed upward through the anode chamber and was recycled to the anolyte storage tank. All gases and liquids were passed through individual rotameters. The liquid flow was controlled by a pump and the gas flow was controlled by a manual valve to ensure proper gas and liquid charge in the reactor. The reactor inlet and outlet pressures and temperatures were measured by visual instruments at the points indicated in the flow sheet. In operation where the catholyte product temperature was controlled during operation, precooling or preheating of both the anolyte and catholyte was employed to keep the temperature at the desired level. The liquid product was recovered from the sampling point and analyzed for formic acid concentration. Gaseous products from gas / liquid separators (graphite felt packed beds) can be used for post-hoc hydrocarbon analysis with an Orsat gas analyzer for CO 2 and CO analysis, a wet gas flow meter for flow measurement, or a gas chromatograph. Controlled by a 3-way valve to either of the Tedlar sampling bags.

COの定電流電解は、陽極及び陰極を横切って接続される直流電源により実施した。電圧計は、反応器電圧を測定する構成単位と接続した。全ての電圧には、陽極電位、陰極電位及びIRドロップを含めた。個々の電極電位は測定しなかった。 The constant current electrolysis of CO 2 was performed with a DC power source connected across the anode and cathode. The voltmeter was connected to the structural unit that measures the reactor voltage. All voltages included anodic potential, cathodic potential and IR drop. Individual electrode potentials were not measured.

自動圧力調整バルブを、陽極液製品ラインで、陰極室での圧力に対する、陽極室での圧力のバランスをとるために使用した。このような圧力平衡には、陰極液が3−D陰極を迂回して通過すること(by-passing)及び/又は陰極圧力が陽極圧力を超える場合に生じ得る膜の破裂を防止することが要求される。   An automatic pressure regulating valve was used in the anolyte product line to balance the pressure in the anode chamber against the pressure in the cathode chamber. Such pressure equilibrium requires that the catholyte be bypassed by a 3-D cathode and / or prevent rupture of the membrane that can occur when the cathode pressure exceeds the anode pressure. Is done.

ほとんどの動作は、大気圧で陰極出口で行われる。反応器Bでの幾つかの動作では、陰極液出口における超常圧を維持するために、手動背圧制御バルブ及び圧力計を陰極液製品ラインに設置した。   Most operations take place at the cathode outlet at atmospheric pressure. In some operations in reactor B, a manual back pressure control valve and pressure gauge were installed in the catholyte product line to maintain superatmospheric pressure at the catholyte outlet.

上記発明の方法は、スケールアップの効果を証明するために、最初に反応器A(小さい反応器)、そして次に7倍大きい反応器B(大きい反応器)で行った。両反応器は、図2中に示す構造を有する。上記反応器は、陰極フィーダー板及び3−D陰極、ナフィオンカチオン交換膜セパレータ、陽極スペーサ/膜支持体、陽極フィーダー板、及びガスケットからなる。上記陰極メッシュ、陽極メッシュ及び陽極スペーサは、シリコーン接着剤により、これら端部において塞がれ、当該セル組立品は、絶縁軟鋼板の間に挟まれ、バランスのとれた流体分布が生じるように、均一にSSボルトにより圧縮された。   The above inventive process was carried out first in reactor A (small reactor) and then in 7 times larger reactor B (large reactor) to demonstrate the effect of scale-up. Both reactors have the structure shown in FIG. The reactor comprises a cathode feeder plate and a 3-D cathode, a Nafion cation exchange membrane separator, an anode spacer / membrane support, an anode feeder plate, and a gasket. The cathode mesh, anode mesh, and anode spacer are closed at their ends with silicone adhesive, and the cell assembly is sandwiched between insulated mild steel sheets to create a balanced fluid distribution. Compressed by SS bolt.

図3は、単一セル反応器Aの切断された正面図を示す。この反応器の上記「フロー・バイ(flow-by)」陰極の寸法は、幅30mm及び高さ150mm(幾何学的表面)であった。上記陰極の厚さは、使用した3−D陰極材料により決定した。スズでコートされた銅メッシュ陰極では、メッシュの単一層若しくは多層を、上記膜と陰極フィーダーとの間に設置し、陰極の厚さはこれらの全ての層の厚さであり、0.38mm以上1.83mm以下である。グラファイトフェルト及び金属顆粒若しくはショットでは、陰極材料は、陰極フィーダーと接触して、陰極の背部と一体としてネオプレンガスケットの2層中に組み込んだ。それゆえ、上記陰極の厚さは、ガスケットの厚さであり、即ち、3.2mmであった。電流と垂直の、幾何学の(別名、外見上の)陰極面積は、4.5×10−3(150mm×約30mm)であった。反応器Aでは、加える電流は1A以上14A以下の範囲であり、対応する表面電流密度は0.22kAm−2以上3.11kAm−2以下であった。 FIG. 3 shows a cut front view of single cell reactor A. FIG. The “flow-by” cathode dimensions of the reactor were 30 mm wide and 150 mm high (geometric surface). The thickness of the cathode was determined by the 3-D cathode material used. In a copper mesh cathode coated with tin, a single layer or multiple layers of mesh are placed between the membrane and the cathode feeder, the thickness of the cathode being the thickness of all these layers, 0.38 mm or more 1.83 mm or less. In graphite felt and metal granules or shots, the cathode material was incorporated into two layers of neoprene gasket in contact with the cathode feeder and integrated with the back of the cathode. Therefore, the thickness of the cathode was that of the gasket, i.e. 3.2 mm. The geometric (also known as apparent) cathode area perpendicular to the current was 4.5 × 10 −3 m 2 (150 mm × about 30 mm). In the reactor A, the applied current was in the range of 1 A to 14 A, and the corresponding surface current density was 0.22 kAm −2 to 3.11 kAm −2 .

反応器Bでは、スズでコートされた銅メッシュ陰極又はスズ顆粒陰極を使用した。図4は、寸法の入った正面図、及びスズ顆粒固定層陰極を有する反応器Bの対応する寸法を示す。上記陰極層の端における陰極液のバイパス形成を最小化するため、ガスケットは、意図的に、陰極の中心へ向かう流れを方向付ける各側面上の5つの三角形で作った。これら三角形により取られる面積を差し引いた、外見上の陰極面積は3.22×10−2であり、反応器A(4.5×10−3)の約7倍であった。反応器Bに加えられる電流は、20A以上101A以下の範囲であり、対応する表面電流密度は0.62kAm−2以上3.20kAm−2以下であった。 In reactor B, a copper mesh cathode or tin granule cathode coated with tin was used. FIG. 4 shows a dimensioned front view and the corresponding dimensions of reactor B with a tin granule fixed layer cathode. In order to minimize catholyte bypass formation at the edge of the cathode layer, the gasket was intentionally made of five triangles on each side that directed the flow towards the center of the cathode. The apparent cathode area minus the area taken by these triangles was 3.22 × 10 −2 m 2 , about 7 times that of reactor A (4.5 × 10 −3 m 2 ). The current applied to reactor B ranged from 20 A to 101 A, and the corresponding surface current density was from 0.62 kAm -2 to 3.20 kAm -2 .

反応器Bは、以下の手順に従って、スズ顆粒固定層陰極と共に組み立てられた。
(1)砂地の(sanded)スズ板(99.99重量%Sn、厚さ3mm)陰極フィーダーをネオプレンガスケットの上に配置した。
(2)前処理したスズ顆粒を、上記スズ板上の耐久ガスケット(厚さ3.2mm)へ均一に広げた。流体を配送し、膜を支持するために、ネトロンスクリーンの層を、陰極液流の入口及び出口領域へ挿入した。
(3)湿ったナフィオン117膜をスズ顆粒層の表面上に置き、PVCスクリーンスペーサ、陽極SSメッシュ、及び陽極フィーダー(SS板)を、この順で、互いの上に置いた。
(4)最後に、セル本体を設置し、24 3/8インチのボルトを使用して挟み込み、セルを均一に圧縮した。
Reactor B was assembled with a tin granule fixed layer cathode according to the following procedure.
(1) A sanded tin plate (99.99 wt% Sn, 3 mm thick) cathode feeder was placed on the neoprene gasket.
(2) The pretreated tin granules were uniformly spread on a durable gasket (thickness 3.2 mm) on the tin plate. A layer of netron screen was inserted into the inlet and outlet regions of the catholyte stream to deliver fluid and support the membrane.
(3) A wet Nafion 117 membrane was placed on the surface of the tin granule layer, and a PVC screen spacer, anode SS mesh, and anode feeder (SS plate) were placed on top of each other in this order.
(4) Finally, the cell body was installed and sandwiched using 24 3/8 inch bolts to uniformly compress the cell.

各種陰極材料は、本発明の別の状況での使用に利用できる。二酸化炭素は、周期律表における、ほとんど全ての金属グループで電気化学的に還元することができ、異なった選択性のレベルの各種生成物が得られる。特に、以下の陰極材料は、特定の実施形態に適しているかもしれない。グラファイトフェルト上に堆積した、ナノ構造を有するCu;グラファイトフェルト上に堆積した、Cu/Sn合金;Snメッシュ上の、ナノ構造を有するSn、Snコートされたプラスチックメッシュ、Cuメッシュ;グラファイトフェルト上に堆積したSn;Snコートされた銅メッシュ;Pb板、ショット、顆粒、グリッド及びPb−C微粒子;Snショット及び顆粒。上述の材料の最後の5つは、当面の実施例のための別の実施形態において使用した。幾つかの実施形態では、3D基板上の、高い(特定の)表面積のマイクロ若しくはナノの構造を有する堆積物が望ましい。他の潜在的な陰極は、電気活性表面としてのPb、In又はHgの替わりに、Cuメッシュ上の、ナノ構造を有するCu、Snメッシュ上の、ナノ構造を有するSn、又はSnコートされたプラスチックメッシュである。   Various cathode materials are available for use in other situations of the present invention. Carbon dioxide can be electrochemically reduced on almost all metal groups in the periodic table, resulting in different products with different levels of selectivity. In particular, the following cathode materials may be suitable for certain embodiments. Cu with nanostructures deposited on graphite felt; Cu / Sn alloy deposited on graphite felt; Sn with nanostructure, Sn-coated plastic mesh on Cu mesh, Cu mesh; on graphite felt Deposited Sn; Sn coated copper mesh; Pb plates, shots, granules, grids and Pb-C particulates; Sn shots and granules. The last five of the above materials were used in another embodiment for the current example. In some embodiments, a deposit having a high (specific) surface area micro- or nanostructure on a 3D substrate is desirable. Other potential cathodes are instead of Pb, In or Hg as electroactive surfaces, Cu with nanostructures on Cu mesh, Sn with nanostructures on Sn mesh, or Sn-coated plastic It is a mesh.

粒状のスズ陰極(99.9重量%Sn)及び100%COの供給ガスを使用する反応器Aは、スズメッキした銅メッシュ陰極のものよりも、若干良好なパフォーマンスを示した。7倍スケールアップした反応器Bは、100%COの供給ガスを、水溶性陰極液及び陽極液[0.5M KHCO + 2MKCl]及び2MKOHそれぞれと共に、350kPa(abs)以上600kPa(abs)以下の入口圧、及び295K以上325K以下の出口温度で使用した。0.6kAm−2〜3.1kAm−2の表面電流密度において、反応器Bは、反応器Aにおけるものと同じ範囲の反応器電圧(2.7V以上4.3V以下)で、91%〜63%の対応するギ酸塩の電流効率を達成した。反応器Bの1パスにより、最大1Mのギ酸塩が陰極液生成物として得られた。 Reactor A using a granular tin cathode (99.9 wt% Sn) and a feed gas of 100% CO 2 performed slightly better than that of a tin plated copper mesh cathode. Reactor B, scaled up 7-fold, supplied a 100% CO 2 feed gas with a water-soluble catholyte and an anolyte [0.5M KHCO 3 + 2MKCl] and 2MKOH, respectively, from 350 kPa (abs) to 600 kPa (abs). And an outlet temperature of 295K to 325K. At a surface current density of 0.6 kAm −2 to 3.1 kAm −2 , the reactor B has a reactor voltage in the same range as that in the reactor A (2.7 V or more and 4.3 V or less), and 91% to 63%. % Corresponding formate current efficiency was achieved. In one pass of reactor B, a maximum of 1M formate was obtained as the catholyte product.

〔実施例2〕[陰極活性の再生]
実施例1で記載した電気化学反応器を以下のように構成し、動作させた。
・陽極フィーダー=316ステンレス鋼板
・陽極=304ステンレス鋼、ナンバー10メッシュ(10メッシュ/インチ)
・陽極スペーサ=PVC「フライ・スクリーン」 10メッシュ
・セパレータ=ナフィオン117カチオン膜
・陰極=約50メッシュのスズ顆粒(高さ150mm、幅32mm、厚さ3mm)
・陰極表面積=45E−4m
・陰極フィーダー=銅板上に支持されたスズ箔
動作条件:
・電流=6A(例えば、1.3kA/m
・陰極液=0.45M KHCO+2M KCl、陽極液=1M KOH、陽極液流量=40ml/分
・COガス流量=364ml(STP)/分、陰極液流量=20ml/分
・温度=300K、圧力=140kPa(abs)以上170kPa(abs)以下
未使用のスズ顆粒の陰極を用いた、ギ酸塩の電流効率(CE)は、動作時間30分における約60%から、動作時間250分における50%へ低下した。電流効率の再生は、次のことにより達成した。
[Example 2] [Regeneration of cathode activity]
The electrochemical reactor described in Example 1 was configured and operated as follows.
・ Anode feeder = 316 stainless steel plate ・ Anode = 304 stainless steel, number 10 mesh (10 mesh / inch)
-Anode spacer = PVC "fly screen" 10 mesh-Separator = Nafion 117 cationic membrane-Cathode = Tin granule of about 50 mesh (height 150 mm, width 32 mm, thickness 3 mm)
-Cathode surface area = 45E-4m 2
Cathode feeder = Tin foil supported on a copper plate Operating conditions:
-Current = 6A (eg 1.3 kA / m 2 )
Catholyte = 0.45M KHCO 3 + 2M KCl, anolyte = 1M KOH, anolyte flow = 40 ml / min CO 2 gas flow = 364 ml (STP) / min, catholyte flow = 20 ml / min Temperature = 300K, Pressure = 140 kPa (abs) or more and 170 kPa (abs) or less The current efficiency (CE) of formate using a cathode of unused tin granules is about 60% at 30 minutes operating time to 50% at 250 minutes operating time. Fell to. The regeneration of the current efficiency was achieved by the following.

(i)陰極の化学処理及びリサイクル:使用した陰極スズ顆粒を、2分間、室温で11重量%硝酸で処理し、脱イオン水で洗浄し、反応器で再使用した。表1は、この処理により30分動作時間における陰極活性が再生したことを示す。   (I) Cathodic chemical treatment and recycling: The used cathode tin granules were treated with 11 wt% nitric acid for 2 minutes at room temperature, washed with deionized water and reused in the reactor. Table 1 shows that this treatment regenerated the cathode activity at 30 minutes operating time.

Figure 2009511740
使用したスズ顆粒の塩酸及び/又は水酸化カリウムでの処理によっても、陰極再生について同様の結果が得られた。
Figure 2009511740
Similar results for cathodic regeneration were obtained by treatment of the used tin granules with hydrochloric acid and / or potassium hydroxide.

(ii)極性の反転:上記と同様の条件下で、未使用のスズ顆粒により、ギ酸塩の電流効率は、動作時間30分における約65%から、動作時間360分における48%へ低下した。極性の反転は、1Aで5分間上記反応器に適用した。上記ギ酸塩の電流効率は、その後増加し、動作時間400分において65%に戻った。   (Ii) Polarity reversal: Under the same conditions as above, unused tin granules reduced the formate current efficiency from about 65% at 30 minutes operating time to 48% at 360 minutes operating time. Polarity reversal was applied to the reactor at 1A for 5 minutes. The formate current efficiency then increased and returned to 65% at 400 minutes operating time.

〔実施例3〕[スケール−アップ]
実施例1に記載の電気化学反応器を以下のように構成し、動作させた。
・陽極フィーダー=316ステンレス鋼板
・陽極=304ステンレス鋼、ナンバー10メッシュ(10メッシュ/インチ)
・陽極スペーサ=PVC「フライ・スクリーン」、10メッシュ
・セパレータ=ナフィオン117カチオン膜
・陰極=約50メッシュのスズ顆粒(高さ680mm、幅50mm、厚さ3mm)
・陰極表面積=340E−4m
・陰極フィーダー=厚さ2mmのスズ板
動作条件:
・陰極液=0.45M KHCO + 2MKCl、陽極液=2M KOH、陽極液流量=60ml/分
・COガス流量=1600ml(STP)/分以上2200ml(STP)/分以下、陰極液流量=20ml/分
・温度in-out=300K以上314K以下、圧力in-out=600kPa(abs)以下100kPa(abs)以上
表2に、この反応器のパフォーマンスを示す。
[Example 3] [Scale-up]
The electrochemical reactor described in Example 1 was configured and operated as follows.
・ Anode feeder = 316 stainless steel plate ・ Anode = 304 stainless steel, number 10 mesh (10 mesh / inch)
-Anode spacer = PVC "fly screen", 10 mesh-Separator = Nafion 117 cationic membrane-Cathode = approx. 50 mesh tin granules (height 680 mm, width 50 mm, thickness 3 mm)
-Cathode surface area = 340E-4m 2
-Cathode feeder = 2 mm thick tin plate operating conditions:
Catholyte = 0.45M KHCO 3 + 2MKCl, anolyte = 2M KOH, anolyte flow rate = 60 ml / min CO 2 gas flow rate = 1600 ml (STP) / min to 2200 ml (STP) / min, catholyte flow rate = 20 ml / min / temperature in-out = 300 K or more and 314 K or less, pressure in-out = 600 kPa (abs) or less and 100 kPa (abs) or more Table 2 shows the performance of this reactor.

Figure 2009511740
〔実施例4〕[酸性陽極液]
反応器を実施例1のように構成し、動作は実施例2のように行った。但し、陽極液は以下のような酸性の硫酸ナトリウム溶液に置き換えた。
動作条件:
・陰極液=0.45M KHCO + 2M KCl
・陽極液=0.5M以上2M以下のNaSO + 0.5M以上4M以下のHSO、陽極液流量=40ml/分
・COガス流量=500ml(STP)/分、陰極液流量=20ml/分
・温度=300K、圧力=140kPa(abs)以上170kPa(abs)以下
上記反応器は、1A〜14A(0.2kA/m〜3.1kA/m)の電流で、80%〜30%の対応するギ酸塩CE、3.5V〜8.0Vの反応器電圧で動作させた。
Figure 2009511740
[Example 4] [Acid anolyte]
The reactor was configured as in Example 1 and the operation was performed as in Example 2. However, the anolyte was replaced with an acidic sodium sulfate solution as follows.
Operating conditions:
Catholyte = 0.45M KHCO 3 + 2M KCl
・ Anolyte = 0.5M or more and 2M or less Na 2 SO 4 + 0.5M or more and 4M or less H 2 SO 4 , anolyte flow = 40 ml / min ・ CO 2 gas flow = 500 ml (STP) / min, catholyte Flow rate = 20 ml / min, temperature = 300 K, pressure = 140 kPa (abs) or more and 170 kPa (abs) or less The above reactor has a current of 1 A to 14 A (0.2 kA / m 2 to 3.1 kA / m 2 ), 80 % -30% of the corresponding formate CE, operated at a reactor voltage of 3.5V-8.0V.

この結果は、上記方法が酸性の陽極液によっても実施できることを示す。陽極液におけるNa/Hの各種比は、異なるギ酸塩電流効率を与え、ギ酸塩CEは、陽極液組成を操作することにより改良できることが示された。 This result shows that the method can be carried out with an acidic anolyte. Various ratios of Na + / H + in the anolyte gave different formate current efficiencies, indicating that formate CE can be improved by manipulating the anolyte composition.

〔実施例5〕[アンモニウムカチオン]
幾つかの実施形態では、ギ酸アンモニウム塩を生成させるために、上記発明はアンモニウムカチオンを利用し得る。
[Example 5] [Ammonium cation]
In some embodiments, the invention can utilize an ammonium cation to produce an ammonium formate salt.

上記陰極液のカリウムカチオンをアンモニウムに置き換え、上記陽極液を酸性の硫酸アンモニウム溶液に置き換えたことを除いては、以下のように、反応器を実施例1と同様に構成し、実施例4と同様に動作させた。
動作条件:
・電流=4A(即ち、0.89kA/m
・陰極液=0.45M NHHCO + 2M NHCl
・陰極液=0.93M (NHSO + 0.754M HSO、陽極液流量=40ml/分
・COガス流量=500ml(STP)/分、陰極液流量=20ml/分
・温度=300K、圧力=140kPa(abs)以上170kPa(abs)以下
上記反応器を、35%以上70%以下のギ酸塩CEの範囲、4.6V以上5.2V以下の反応器電圧で、2時間以上動作させた。
The reactor was configured in the same manner as in Example 1 as in Example 4 except that the potassium cation in the catholyte was replaced with ammonium and the anolyte was replaced with an acidic ammonium sulfate solution. It was made to work.
Operating conditions:
Current = 4A (ie 0.89kA / m 2 )
Catholyte = 0.45M NH 4 HCO 3 + 2M NH 4 Cl
Catholyte = 0.93M (NH 4 ) 2 SO 4 + 0.754MH 2 SO 4 , anolyte flow rate = 40 ml / min CO 2 gas flow rate = 500 ml (STP) / min, catholyte flow rate = 20 ml / min Temperature = 300K, pressure = 140 kPa (abs) or more and 170 kPa (abs) or less The above reactor is in the range of 35% or more and 70% or less formate CE, with a reactor voltage of 4.6V or more and 5.2V or less, 2 Operated for more than an hour.

この結果は、上記方法は、アンモニウムカチオンを陰極液中単独で使用できることを明らかにした。アンモニウムカチオンを使用する能力は、ギ酸若しくはギ酸アンモニウムの生成のためのプロセスフローシートB及びCで説明されている。   This result revealed that the above method can use the ammonium cation alone in the catholyte. The ability to use ammonium cations is illustrated in process flow sheets B and C for the production of formic acid or ammonium formate.

〔実施例6〕[鉛陰極]
実施例1に記載した電気化学反応器が構成され、以下のように動作させた。
・陽極フィーダー=316ステンレス鋼板
・陽極=304ステンレス鋼、ナンバー10メッシュ(10メッシュ/インチ)
・陽極スペーサ=PVC「フライ・スクリーン」10メッシュ
・セパレータ=ナフィオン117カチオン膜
・陰極=直径0.5mmの鉛ショット(高さ150mm、幅32mm、厚さ3mm)
・陰極表面積=45E−4m
・陰極フィーダー=鉛板
動作条件:
・電流=6A(即ち、1.3kA/m
・陰極液=0.45M KHCO + 2M KCl、陽極液=1M KOH、陽極液流量=40ml/分
・COガス流量=364ml(STP)/分、陰極液流量=20ml/分
・温度=300K、圧力=140kPa(abs)以上180kPa(abs)以下
2時間以上6時間以下での上記反応器の動作により、31+/−1%の一定のギ酸塩電流効率を示した。
[Example 6] [Lead cathode]
The electrochemical reactor described in Example 1 was constructed and operated as follows.
・ Anode feeder = 316 stainless steel plate ・ Anode = 304 stainless steel, number 10 mesh (10 mesh / inch)
-Anode spacer = PVC "fly screen" 10 mesh-Separator = Nafion 117 cationic membrane-Cathode = lead shot with a diameter of 0.5 mm (height 150 mm, width 32 mm, thickness 3 mm)
-Cathode surface area = 45E-4m 2
・ Cathode feeder = Lead plate Operating conditions:
Current = 6A (ie 1.3 kA / m 2 )
Catholyte = 0.45M KHCO 3 + 2M KCl, anolyte = 1M KOH, anolyte flow = 40 ml / min. CO 2 gas flow = 364 ml (STP) / min, catholyte flow = 20 ml / min. Temperature = 300K Pressure = 140 kPa (abs) or more and 180 kPa (abs) or less The operation of the reactor for 2 hours or more and 6 hours or less showed a constant formate current efficiency of 31 +/− 1%.

〔実施例7〕[プロセスフローシートA]
この実施例の方法は、図6において説明し、二酸化炭素、水及び水酸化ナトリウムからギ酸ナトリウムの電気合成を示す。
[Example 7] [Process Flow Sheet A]
The method of this example is illustrated in FIG. 6 and shows the electrosynthesis of sodium formate from carbon dioxide, water and sodium hydroxide.

図5のコンセプトに基づいて、この方法(図6)はCOをNaHCO(ギ酸ナトリウム)及びNaHCO3(重炭酸ナトリウム)へと、H(水素)の副生物及びO(酸素)の副産物と共に変換する。リサイクルCOを加えた供給は、約300kPa(abs)に圧縮され、リサイクル陰極液、NaHCO及びNaHCOの水溶液と共に、電気化学反応の陰極に供給される。上記陰極出口は、ガス/液体セパレータへ進み、ガス/液体セパレータからの液体は、直接リサイクルと流れとに分離され、当該流れからのNaHCO及びNaHCOは、主陰極生成物(NaHCO及びNaHCO)を与えるために、蒸発及び分別晶出により分離される。上記陰極出口ガスは、水素を再生し、変換されていないCOをリサイクルへ送るガス分離システム(例えば、圧力スイング吸着法)へ進む。この方法の陽極側では、NaOH(水酸化ナトリウム)が、ガス/液体セパレータからの副産物として再生される酸素へと変換される間、NaOHのナトリウム量(Na)がカチオン膜を横切って移動する、NaOHの供給が含まれる。この方法での上記リサイクルの流れには、反応器の温度を約300K以上350K以下の範囲に制御する熱交換器(例えば、C1、C2、C3)と共に、必要なコンプレッサー及びポンプが含まれる。 Based on the concept of FIG. 5, this method (FIG. 6) converts CO 2 to NaHCO 2 (sodium formate) and NaHCO 3 (sodium bicarbonate), by-products of H 2 (hydrogen) and O 2 (oxygen). Convert with by-products. The feed plus recycled CO 2 is compressed to about 300 kPa (abs) and fed to the cathode of the electrochemical reaction along with the recycled catholyte, NaHCO 2 and NaHCO 3 aqueous solutions. The cathode outlet goes to a gas / liquid separator where the liquid from the gas / liquid separator is separated directly into a recycle and stream, and the NaHCO 2 and NaHCO 3 from the stream are the main cathode products (NaHCO 2 and NaHCO 3). 3 ) separated by evaporation and fractional crystallization to give. The cathode outlet gas proceeds to a gas separation system (eg, pressure swing adsorption) that regenerates hydrogen and sends unconverted CO 2 to recycle. On the anode side of this method, the sodium amount of NaOH (Na + ) moves across the cation membrane while NaOH (sodium hydroxide) is converted to oxygen regenerated as a by-product from the gas / liquid separator. , NaOH supply is included. The recycle flow in this process includes the necessary compressors and pumps, as well as heat exchangers (eg, C1, C2, C3) that control the reactor temperature to a range of about 300K to 350K.

図7はプロセスフローシートAを説明し、600トン/日COを基に、定常状態の物質収支の流れ表を以下に示す。ギ酸塩電流効率=77%、CO変換/パス=72%である。 FIG. 7 illustrates process flow sheet A and shows a steady state mass balance flow table based on 600 tons / day CO 2 . Formate current efficiency = 77%, CO 2 conversion / pass = 72%.

Figure 2009511740
〔実施例8〕[プロセスフローシートB]
図8は、二酸化炭素及び水からギ酸の電気合成を説明する。例示された方法では、COを、H(水素)の副生物及びO(酸素)の副産物と共に、HCOH(ギ酸)へ変換する。リサイクルCOを加えた供給は、約300kPa(abs)に圧縮され、(必要に応じて)NHCl若しくは(NHSO等の支持電解質を加えた、リサイクル陰極液、NHHCO及びNHHCOの水溶液と共に、電気化学反応器(U1)の陰極へ供給される。上記陰極出口の流れは、ガス/液体セパレータ(U3)へ進行し、U3からの液体は、熱化学的酸分解反応器/セパレータ(U6、U7)へ通過する直接リサイクル及び流れの中へ分配される(U5)。ここで、ギ酸が硫酸(陽極液で生成)との反応9により得られ、部分減圧下で蒸留され、ギ酸水溶液のオーバーヘッド生成物と、混合器U8を経て陽極へリサイクルされる(NHSOのボトム溶液とが得られる。U3からのガスの流れは、Hが再生され、COが混合器U2を経て、原料が送り込まれる反応器へリサイクルされるセパレータ(U4)を、酸分解反応器での副反応7により生成するCOと共に通る。
Figure 2009511740
[Example 8] [Process Flow Sheet B]
FIG. 8 illustrates the electrosynthesis of formic acid from carbon dioxide and water. In the illustrated method, CO 2 is converted to HCO 2 H (formic acid) along with by-products of H 2 (hydrogen) and by-products of O 2 (oxygen). The supply with recycled CO 2 is compressed to about 300 kPa (abs) and, if necessary, recycled catholyte, NH 4 HCO with support electrolyte such as NH 4 Cl or (NH 4 ) 2 SO 4 added. Together with an aqueous solution of 2 and NH 4 HCO 3 , it is fed to the cathode of the electrochemical reactor (U1). The cathode exit stream proceeds to the gas / liquid separator (U3), and the liquid from U3 is distributed into the direct recycle and stream passing to the thermochemical acidolysis reactor / separator (U6, U7). (U5). Here, formic acid is obtained by reaction 9 with sulfuric acid (generated with anolyte), distilled under partial vacuum, and recycled to the anode via an overhead product of aqueous formic acid and a mixer U8 (NH 4 ) 2 A bottom solution of SO 4 is obtained. The gas flow from U3 is produced by side reaction 7 in the acidolysis reactor where H 2 is regenerated and CO 2 is recycled to the reactor through which the raw material is fed through the mixer U2. through with CO 2 to.

(NHSO及びHSOの水溶液は、カチオン膜を経て陰極液へ輸送するNH 及びHカチオンを供給するために、陽極経路を経てリサイクルされる。上記副産物Oガスは、反応4により陽極においてプロトン(H)と共に生成し、ガス/液体セパレータ(U9)から再生される。上記リサイクル酸性陽極液は、酸分解反応(U6)のためのHSOを供給するために分離され(U10)、当該酸分解反応からの使用済み反応物質は陽極液と再度混合される(U8)。 An aqueous solution of (NH 4 ) 2 SO 4 and H 2 SO 4 is recycled via the anodic route to supply NH 4 + and H + cations that are transported to the catholyte via the cation membrane. The by-product O 2 gas is produced together with protons (H + ) at the anode by reaction 4 and is regenerated from the gas / liquid separator (U9). The recycled acidic anolyte is separated (U10) to supply H 2 SO 4 for the acid decomposition reaction (U6), and the spent reactants from the acid decomposition reaction are mixed again with the anolyte ( U8).

2NaHCO + HSO → 2HCOH + NaSO 反応9
フローシートBでの、定常状態で動作される原料及びエネルギー(M&E)バランスを、以下の流れ表に示す。このM&Eバランスは、ギ酸塩電流効率が80%であり、電気化学反応器を経た1パスあたりのCO変換率が80%であるとの想定に立っている。
2NaHCO 2 + H 2 SO 4 → 2HCO 2 H + Na 2 SO 4 reaction 9
The raw material and energy (M & E) balance operated in steady state in Flow Sheet B is shown in the following flow table. This M & E balance is based on the assumption that the formate current efficiency is 80% and the CO 2 conversion per pass through the electrochemical reactor is 80%.

フローシートBでの第1及び第2の実質的な反応は、それぞれ反応10及び11である。   The first and second substantial reactions in flow sheet B are reactions 10 and 11, respectively.

CO + HO → HCOH + 1/2O 反応10
O → H + 1/2O 反応11
この方法の条件は、主な実質的な反応10を促進するように選択され得る。反応10を促進する、この実施例の方法の特性は、以下のように選択され得る。
i.電気化学反応器における、適切な電極材料、電流密度、流体組成、流体負荷、圧力及び温度
ii.陰極反応1及び2の比のバランスをとり、所望の範囲に陰極液pHを保持する、正確な比(例えば、H/NH )で膜を横切るカチオン輸送をもたらす酸及び塩に関して、陽極液組成を維持すること
iii.約4以上10以下(好ましくは6以上8以下)の範囲でのバルク陰極液pH
iv.陽極液組成を維持し、そして、U6でのHCOHを生成し、U7での蒸発によりギ酸水溶液を再生させることを可能にする、酸分解反応のためのプロトンをもたらすように流すこと
v.1Mを超える、陰極液の酸(例えば、HSO)濃度
vi.陰極液のギ酸塩濃度を、U6でのHCOHの形成及び分離を可能とするのに十分高く維持すること
vii.約1Mより高い、好ましくは約5Mより高い、リサイクル陰極液中のギ酸塩(HCO )濃度
viii.U1、U6及びU7での電気化学及び熱化学方法の両者を容易にする水バランスと電解質濃度とを維持するため、適切な比で、陰極及び/又は陽極経路に水を供給すること
ix.U6でのギ酸の蒸発のための電気化学反応器のジュール加熱を利用するのに十分高く、リサイクル陽極液の流れ及び温度を維持すること
x.上記方法で利用される加熱の必要性を低減するエネルギーバランスにより決定される陽極液の流れと同時に、約320Kより高いリサイクル陽極液温度
上記方法の実施は、通常、上記リストアップした条件i〜x間での相互の影響によって決まる。この実施形態のモデリングは、80%の電流効率及び80%のCO変換率/パスを生じる、105トン/日COに基づいた、定常状態の原料及びエネルギーバランスを与える。プロセスフローシートBに対応した、上記原料及びエネルギーバランス流れ表を、3つの従属する表にわたって続く表により以下に示す。
CO 2 + H 2 O → HCO 2 H + 1 / 2O 2 reaction 10
H 2 O → H 2 + 1 / 2O 2 reaction 11
The conditions of this process can be selected to promote the main substantial reaction 10. The properties of this example method that promote reaction 10 can be selected as follows.
i. Appropriate electrode materials, current density, fluid composition, fluid load, pressure and temperature in electrochemical reactors
ii. With respect to acids and salts that provide cation transport across the membrane at the exact ratio (eg, H + / NH 4 + ) that balances the ratio of cathodic reactions 1 and 2 and maintains the catholyte pH in the desired range. Maintaining liquid composition
iii. Bulk catholyte pH in the range of about 4 to 10 (preferably 6 to 8)
iv. Flow to provide protons for acidolysis reactions that maintain the anolyte composition and produce HCO 2 H at U6 and allow the aqueous formic acid to be regenerated by evaporation at U7. Catholyte acid (eg, H 2 SO 4 ) concentration above 1M
vi. Maintain the formate concentration of the catholyte high enough to allow the formation and separation of HCO 2 H at U6.
vii. Formate (HCO 2 ) concentration in recycled catholyte higher than about 1M, preferably higher than about 5M
viii. Supply water to the cathode and / or anode path at an appropriate ratio to maintain water balance and electrolyte concentration that facilitates both electrochemical and thermochemical methods at U1, U6 and U7.
ix. Maintaining recycle anolyte flow and temperature high enough to utilize Joule heating of the electrochemical reactor for evaporation of formic acid at U6 x. At the same time as the anolyte flow determined by the energy balance that reduces the need for heating utilized in the above method, the recycle anolyte temperature above about 320 K. The implementation of the above method is usually performed under the conditions i to x listed above. It depends on the mutual influence between them. The modeling of this embodiment provides a steady state feed and energy balance based on 105 tons / day CO 2 that yields 80% current efficiency and 80% CO 2 conversion / pass. The raw material and energy balance flow table corresponding to process flow sheet B is shown below with a table that continues over three dependent tables.

Figure 2009511740
Figure 2009511740

Figure 2009511740
Figure 2009511740

Figure 2009511740
〔実施例9〕[プロセスフローシートC]
図9は、二酸化炭素、アンモニア及び水からのギ酸アンモニウムの電気合成を説明する。この方法は、CO及びNHをNHHCO(ギ酸アンモニウム)へ、H(水素)の副生物及びO(酸素)の副産物と共に変換する。
Figure 2009511740
[Example 9] [Process Flow Sheet C]
FIG. 9 illustrates the electrosynthesis of ammonium formate from carbon dioxide, ammonia and water. This method converts CO 2 and NH 3 to NH 4 HCO 2 (ammonium formate), with by-products of H 2 (hydrogen) and by-products of O 2 (oxygen).

リサイクルCOを加えた供給は圧縮され、リサイクル陰極液、少量のNHHCO(重炭酸アンモニウム、例えば0.1M)を有するNHHCO水溶液(例えば、>1M)と共に、電気化学反応器の陰極へ供給される。上記陰極出口流れは、NHHCO溶液、プラス副生物水素を回収し、消費した陰極液をリサイクルする分離システムへ進む。 Feed with recycled CO 2 is compressed and electrochemical reactor with recycled catholyte, NH 4 HCO 2 aqueous solution (eg> 1M) with a small amount of NH 4 HCO 3 (ammonium bicarbonate, eg 0.1M) To the cathode. The cathode outlet flow proceeds to a separation system that recovers NH 4 HCO 2 solution, plus by-product hydrogen, and recycles the spent catholyte.

アンモニア(NHガス若しくは水溶液)は、(NHSO(硫酸アンモニウム)を形成するように混合する、陽極液経路へ供給される。(NHSO及びHSOの水溶液は、次に、陽極経路を経てリサイクルされ、カチオン膜を経て陰極液へ輸送するためにNH 及びHカチオンを供給する。共生成物のOガスは、反応4により陽極においてプロトン(H)と共に発生し、ガス/液体セパレータから再生される。上記[NH ]/[H]の比は、約4以上8以下のpHの範囲で、反応1及び2の化学量論のバランスをとり、大部分のギ酸アンモニウムの陰極液溶液を生成する比率で、これらの種を陰極液に供給するように、陽極液において維持される。 Ammonia (NH 3 gas or aqueous solution) is supplied to the anolyte path, which mixes to form (NH 4 ) 2 SO 4 (ammonium sulfate). The aqueous solution of (NH 4 ) 2 SO 4 and H 2 SO 4 is then recycled via the anodic pathway and supplies NH 4 + and H + cations for transport to the catholyte via the cation membrane. The co-product O 2 gas is generated with protons (H + ) at the anode by reaction 4 and regenerated from the gas / liquid separator. The ratio of [NH 4 + ] / [H + ] is in the pH range of about 4 or more and 8 or less, balancing the stoichiometry of Reactions 1 and 2 to produce most of the ammonium formate catholyte solution. In the anolyte so that these species are fed to the catholyte at a ratio.

フローシートCにおける第1及び第2の実質的な反応は、それぞれ反応12及び13である。   The first and second substantial reactions in the flow sheet C are reactions 12 and 13, respectively.

CO + HO + NH → NHHCO + 1/2O 反応12
O → H2 + 1/2O 反応13
この各種スキームには、例えば、(NHPO及びHPO若しくはNHCl及びHClによる、陽極液での(NHSO及びHSOの交換が含まれ得る。後者の場合では、上記陽極副産物は、反応5によるClとなり得る。陽極副産物には、反応14による、過硫酸アンモニウム(NH、若しくは過硫酸H等のような、ペルオキシ化合物が含まれ得る。
CO 2 + H 2 O + NH 3 → NH 4 HCO 2 + 1 / 2O 2 reaction 12
H 2 O → H 2 + 1 / 2O 2 reaction 13
The various schemes can include, for example, exchange of (NH 4 ) 2 SO 4 and H 2 SO 4 in the anolyte with (NH 4 ) 3 PO 4 and H 3 PO 4 or NH 4 Cl and HCl. . In the latter case, the anode by-product can be Cl 2 from reaction 5. Anode by-products can include peroxy compounds, such as ammonium persulfate (NH 4 ) 2 S 2 O 8 , or persulfate H 2 S 2 O 8 , from reaction 14.

2SO → S +2e 反応14
〔参考文献〕
Kirk-Othmer - Encyclopedia of Chemical Technology. John Wiley, NewYork, 1991
R. Chaplin and A.Wragg. "Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation". J.Appl.Electrochem. 33:1107-1123 (2003)
C.M.Sanchez et al. "Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation". Pure Appl.Chem. 73(12), 1917-1927, 2001
Y.Akahori et al. "New electrochemical process for CO2 reduction to formic acid from combustion flue gases" .Denki Kagaku (Electrochemistry) 72(4) 266-270 (2004)
Li Hui and C.Oloman. "The electro-reduction of carbon dioxide in a continuous reactor". J.Appl. Electrochem. 35, 955-965, (2005)
K.Hara and T.Sakata. "Electrocatlytic formation of CH4 from CO2on a Pt gas diffusion electrode". J.EIectrochem. Soc. 144(2),539-545 (1997)
M.N. Mahmood, D.Masheder and C.J.Harty. "Use of gas-diffusion electrodes for high rate electrochemical reduction of carbon dioxide". J. Appl. Electrochem. 17:1159-1170 (1987)
K.S. Udupa, G.S. Subramamian and H.V.K. Udupa. Electrochim Acta 16, 1593, 1976
上記発明の各種実施形態はここで開示されているが、多様な適応及び修正は、当業者の一般的な知識に基づいた発明の範囲内で成され得る。このような修正には、実質的に同じ方法で同じ結果を達成するための、上記発明の任意の特徴における周知の同等物の置換も含まれる。数値範囲には、上記範囲を規定している数が含まれる。単語「含む(comprising)」は、ここでは制限のない言葉として使用され、実質的に語句「含む(including)」と同じであるが、限定されず、単語「含む(comprising)」は、対応する意味を有する。ここで使用されるように、単数形「a」、「an」及び「the」は、文脈が他を指示していない限り、明確に複数の支持対象を含む。よって、例えば、「a thing」の言及には、1以上のこのようなthingが含まれる。ここでの引用文献の言及は、このような引用文献が本発明の従来技術であることの承認ではない。この明細書で言及する特許及び特許出願を含むが、これらには限定されない任意の従来文献及び全ての出版物は、個々の出版物が、明確にそして個々に、本願に引用して援用されることを示唆しているかのように、そして完全にここで記載されているかのように、本願に引用して援用される。上記発明は、上述し、実施例及び図面により参照したように、全ての実施形態及びバリエーションを実質的に含む。
2SO 4 - → S 2 O 8 - + 2e - reaction 14
[References]
Kirk-Othmer-Encyclopedia of Chemical Technology. John Wiley, NewYork, 1991
R. Chaplin and A. Wragg. "Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation". J. Appl. Electrochem. 33: 1107-1123 (2003)
CMSanchez et al. "Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation". Pure Appl. Chem. 73 (12), 1917-1927, 2001
Y. Akahori et al. "New electrochemical process for CO 2 reduction to formic acid from combustion flue gases" .Denki Kagaku (Electrochemistry) 72 (4) 266-270 (2004)
Li Hui and C. Oloman. "The electro-reduction of carbon dioxide in a continuous reactor". J. Appl. Electrochem. 35, 955-965, (2005)
K. Hara and T. Sakata. "Electrocatlytic formation of CH 4 from CO 2 on a Pt gas diffusion electrode". J. EIectrochem. Soc. 144 (2), 539-545 (1997)
MN Mahmood, D.Masheder and CJHarty. "Use of gas-diffusion electrodes for high rate electrochemical reduction of carbon dioxide". J. Appl. Electrochem. 17: 1159-1170 (1987)
KS Udupa, GS Subramamian and HVK Udupa. Electrochim Acta 16, 1593, 1976
While various embodiments of the above invention have been disclosed herein, various adaptations and modifications can be made within the scope of the invention based on the general knowledge of those skilled in the art. Such modifications also include the substitution of known equivalents in any feature of the invention described above to achieve the same result in substantially the same way. The numerical range includes a number defining the above range. The word “comprising” is used herein as an unrestricted word and is substantially the same as the phrase “including” but is not limited and the word “comprising” Has meaning. As used herein, the singular forms “a”, “an”, and “the” clearly include plural support objects unless the context indicates otherwise. Thus, for example, reference to “a thing” includes one or more such things. Reference herein to a cited document is not an admission that such a cited document is prior art to the present invention. Any conventional literature and all publications, including but not limited to the patents and patent applications mentioned in this specification, are individually and individually incorporated by reference in their entirety. Is incorporated herein by reference as if implied and as if fully set forth herein. The invention described above substantially includes all embodiments and variations as referred to above by way of example and drawings.

図1は、実施例1の方法の特徴を説明するプロセスフローシートであり、A=電流計、P=圧力計、T=温度計、V=電圧計、W=ウェットガス流量計、PC=圧力コントロールである。FIG. 1 is a process flow sheet for explaining the characteristics of the method of Example 1, where A = ammeter, P = pressure gauge, T = thermometer, V = voltmeter, W = wet gas flow meter, PC = pressure. It is a control. 図2は、実施例1に記載の上記発明の電気化学セルの略図であり、図中の参照数字は、以下の成分、1及び2:セル本体、2,7及び9:ガスケット、3:陽極フィーダー、4:陽極スペーサ、5:膜、6:3−D陰極(スズでコートされた銅メッシュ、スズショット/顆粒、並びにPbショット/顆粒)、8:陰極フィーダー、を示す。FIG. 2 is a schematic diagram of the electrochemical cell of the invention described in Example 1, wherein the reference numerals in the figure refer to the following components: 1 and 2: cell body, 2, 7 and 9: gasket, 3: anode Feeder, 4: anode spacer, 5: membrane, 6: 3-D cathode (tin coated copper mesh, tin shot / granule, and Pb shot / granule), 8: cathode feeder. 図3は、実施例1におけるより詳細に記載した反応器Aとして、上記発明の単一セル反応器の断面での正面図を示す。FIG. 3 shows a front view in cross section of a single cell reactor of the invention as reactor A described in more detail in Example 1. 図4は、実施例1におけるより詳細に記載した反応器Bとして、上記発明の単一セル反応器の断面での正面図を示す。FIG. 4 shows a front view in section of a single cell reactor of the invention as reactor B described in more detail in Example 1. 図5は、陰極液及び陽極液のリサイクルを含む、COのギ酸塩若しくはギ酸への変換のための連続方法の各種特徴を説明するプロセスフローシートである。FIG. 5 is a process flow sheet illustrating various features of a continuous process for the conversion of CO 2 to formate or formic acid, including the recycling of catholyte and anolyte. 図6は、COを、H(水素)の副生物及びO(酸素)の共生成物と共に、NaHCO(ギ酸ナトリウム)及びNaHCO(重炭酸ナトリウム)へ変換するための方法の実施形態説明するプロセスフローシート(フローシート”A”)である。FIG. 6 illustrates the implementation of a method for converting CO 2 to NaHCO 2 (sodium formate) and NaHCO 3 (sodium bicarbonate), along with by-products of H 2 (hydrogen) and co-products of O 2 (oxygen). It is a process flow sheet (flow sheet “A”) for explaining the form. 図7は、約600トン/日の二酸化炭素ガスを、ギ酸ナトリウムに変換する方法のための、定常状態の物質収支流れ表に基づいて作られる、プロセスフローシートAの形式化したバージョンである。FIG. 7 is a formalized version of process flow sheet A made on the basis of a steady state mass balance flow chart for a method of converting about 600 tons / day of carbon dioxide gas to sodium formate. 図8は、プロセスフローシートBを説明するものであり、当該プロセスフローシートBのための、上記実施例において、対応する材料及びエネルギーバランス流れ表である。FIG. 8 illustrates the process flow sheet B, and is a corresponding material and energy balance flow table in the above embodiment for the process flow sheet B. 図9は、上記実施例のプロセスフローシートCを説明するものである。FIG. 9 illustrates the process flow sheet C of the above embodiment.

Claims (33)

二酸化炭素を還元する電気化学的方法であり、
a)電気化学反応器の陰極室を経て、陰極液混合物を連続的に通過させ、当該陰極液混合物は、二酸化炭素ガスと、溶解した二酸化炭素を含む液体陰極液溶媒とを含有する工程と、
b)陰極室における、液体陰極液溶媒の体積に対するガスの体積の比が約0.1より大きくなるように、陰極液の液体に対するガスの容量滞留量比を維持する工程と、
c)溶解した二酸化炭素を還元して所望の生成物を形成するように、陰極室における陰極と陽極との間に電流を通過させる工程と、
を含む方法。
An electrochemical method for reducing carbon dioxide,
a) passing the catholyte mixture continuously through the cathodic chamber of the electrochemical reactor, the catholyte mixture containing carbon dioxide gas and a liquid catholyte solvent containing dissolved carbon dioxide;
b) maintaining a volumetric retention ratio of gas to catholyte liquid such that the ratio of the volume of gas to the volume of liquid catholyte solvent in the cathode chamber is greater than about 0.1;
c) passing an electric current between the cathode and the anode in the cathode chamber so as to reduce the dissolved carbon dioxide to form the desired product;
Including methods.
液体に対する上記ガス(STPに修正)の、陰極室への体積供給割合が約1より大きい、請求項1に記載の方法。   The method of claim 1, wherein a volumetric supply rate of the gas (modified to STP) to the liquid to the cathode chamber is greater than about one. 上記陰極における有効表面電流密度が1kA/mより大きい、請求項1又は2に記載の方法。 Effective surface current density at the cathode is greater than 1 kA / m 2, The method of claim 1 or 2. 上記陰極室における二酸化炭素ガス分圧が10bar未満である、請求項1、2又は3に記載の方法。   The method according to claim 1, 2 or 3, wherein the partial pressure of carbon dioxide gas in the cathode chamber is less than 10 bar. 上記電流が電気化学セル電圧により駆動される直流電流である、請求項1〜4の何れか1項に記載の方法。   The method according to claim 1, wherein the current is a direct current driven by an electrochemical cell voltage. 上記電気化学セル電圧が10V未満である、請求項5に記載の方法。   The method of claim 5, wherein the electrochemical cell voltage is less than 10V. 陰極室における流体が、20℃より高い陰極温度に維持される、請求項1〜6の何れか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein the fluid in the cathode chamber is maintained at a cathode temperature higher than 20 ° C. 上記陰極室は陰極圧力に維持され、
上記陰極圧力は、1bar(100kPa(abs))以上10bar(1000kPa(abs))以下の範囲内である、請求項1〜7の何れか1項に記載の方法。
The cathode chamber is maintained at cathode pressure;
The method according to any one of claims 1 to 7, wherein the cathode pressure is in a range of 1 bar (100 kPa (abs)) to 10 bar (1000 kPa (abs)).
上記陰極液が水溶液である、請求項1〜8の何れか1項に記載の方法。   The method according to any one of claims 1 to 8, wherein the catholyte is an aqueous solution. 上記陰極液溶媒は、溶解したアルカリ金属の重炭酸塩若しくはギ酸塩、又は溶解した重炭酸アンモニウム若しくはギ酸アンモニウムを含む、請求項9に記載の方法。   10. The method of claim 9, wherein the catholyte solvent comprises dissolved alkali metal bicarbonate or formate, or dissolved ammonium bicarbonate or formate. 陰極液溶媒のバルクpHが4以上10以下の範囲内である、請求項9に記載の方法。   The method according to claim 9, wherein the bulk pH of the catholyte solvent is in the range of 4 to 10. 上記陰極液溶媒がアンモニウムカチオンを含む、請求項9に記載の方法。   The method of claim 9, wherein the catholyte solvent comprises an ammonium cation. 電流フローの次元での上記陰極の厚さが0.5mm以上10mm以下である、請求項1〜12の何れか1項に記載の方法。   The method according to any one of claims 1 to 12, wherein the thickness of the cathode in the dimension of current flow is 0.5 mm or more and 10 mm or less. 上記陰極が約5%以上約95%以下の多孔率若しくは空隙率を有する、請求項13に記載の方法。   The method of claim 13, wherein the cathode has a porosity or porosity of about 5% or more and about 95% or less. 上記陰極がスズ若しくは鉛を含む、請求項1〜14の何れか1項に記載の方法。   15. A method according to any one of claims 1 to 14, wherein the cathode comprises tin or lead. 上記陽極は陽極室にあり、
当該陽極室は、電気化学セル膜により陰極室から分離している、請求項1〜15の何れか1項に記載の方法。
The anode is in the anode chamber,
The method according to claim 1, wherein the anode chamber is separated from the cathode chamber by an electrochemical cell membrane.
上記陽極室が陽極液を含む、請求項16に記載の方法。   The method of claim 16, wherein the anodic chamber comprises an anolyte. 上記陽極液が水性の陽極液である、請求項17に記載の方法。   The method of claim 17, wherein the anolyte is an aqueous anolyte. 上記陽極液は、
a)溶解したアルカリ金属水酸化物、
b)溶解したアルカリ金属若しくはアンモニウム塩、
c)HSO、HCl、又はHPOとなる溶解した酸、
d)溶解した硫酸及び硫酸アンモニウム、又は
e)溶解した硫酸及び硫酸ナトリウム、
を含む、請求項18に記載の方法。
The anolyte is
a) dissolved alkali metal hydroxide,
b) dissolved alkali metal or ammonium salt,
c) a dissolved acid that becomes H 2 SO 4 , HCl, or H 3 PO 4 ;
d) dissolved sulfuric acid and ammonium sulfate, or e) dissolved sulfuric acid and sodium sulfate,
The method of claim 18 comprising:
上記陽極液がアンモニウムイオンを含む、請求項18に記載の方法。   The method of claim 18, wherein the anolyte comprises ammonium ions. 上記電気化学セル膜がカチオン浸透性膜である、請求項16の方法。   The method of claim 16, wherein the electrochemical cell membrane is a cation permeable membrane. 上記電気化学セル膜が、方法の化学量論のバランスをとるように、選択したイオンに上記膜を横断させる、請求項16に記載の方法。   The method of claim 16, wherein the electrochemical cell membrane causes selected ions to traverse the membrane so as to balance the stoichiometry of the method. 上記所望の生成物はギ酸塩若しくはギ酸を含む、請求項1〜22の何れか1項に記載の方法。   23. A method according to any one of claims 1-22, wherein the desired product comprises formate or formic acid. 上記ギ酸塩がギ酸アンモニウムである、請求項23に記載の方法。   24. The method of claim 23, wherein the formate salt is ammonium formate. 上記陰極液溶媒から所望の生成物を分離する工程を更に含む、請求項1〜24の何れか1項に記載の方法。   25. A method according to any one of the preceding claims, further comprising the step of separating the desired product from the catholyte solvent. 上記陰極液溶媒、リサイクル陰極液溶媒の少なくとも一部を、陰極室出口から陰極室入口へとリサイクルする工程を更に含む、請求項1〜24の何れか1項に記載の方法。   The method according to any one of claims 1 to 24, further comprising a step of recycling at least a part of the catholyte solvent and the recycled catholyte solvent from the cathode chamber outlet to the cathode chamber inlet. 上記リサイクル陰極液溶媒から、所望の生成物を分離する工程を更に含む、請求項26に記載の方法。   27. The method of claim 26, further comprising separating the desired product from the recycled catholyte solvent. 陽極液、リサイクル陽極液の少なくとも一部を、陽極液室出口から陽極液室入口へとリサイクルする工程を更に含む、請求項1〜27の何れか1項に記載の方法。   The method according to any one of claims 1 to 27, further comprising a step of recycling at least part of the anolyte and the recycled anolyte from the anolyte chamber outlet to the anolyte chamber inlet. 上記リサイクル陽極液から陽極副産物を分離する工程を更に含む、請求項28に記載の方法。   30. The method of claim 28, further comprising separating an anode byproduct from the recycled anolyte. 加熱した陽極液をもたらす、上記陽極液をジュール加熱する工程を更に含む、請求項1〜29の何れか1項に記載の方法。   30. A method according to any one of claims 1 to 29, further comprising Joule heating the anolyte to provide a heated anolyte. 加熱した陽極液をもたらす、上記陽極液をジュール加熱する工程を更に含み、
上記加熱した陽極液は、蒸発によりリサイクル陰極液溶媒から水若しくは上記所望の生成物を分離するために、リサイクル陰極液溶媒を加熱することに使用される、請求項27に記載の方法。
Further comprising the step of joule heating the anolyte, resulting in a heated anolyte,
28. The method of claim 27, wherein the heated anolyte is used to heat the recycled catholyte solvent to separate water or the desired product from the recycled catholyte solvent by evaporation.
酸分解反応により上記所望の生成物を得るため、ギ酸塩を含むリサイクル陰極液を、上記陽極液と反応させる工程を更に含む、請求項26に記載の方法。   27. The method of claim 26, further comprising reacting a recycled catholyte containing formate with the anolyte to obtain the desired product by an acidolysis reaction. 上記陽極液、リサイクル陽極液の少なくとも一部を、陽極液室出口から陽極液室入口へとリサイクルする工程を含み、
上記所望の生成物を得るために使用される陽極液が上記リサイクル陽極液の一部である、請求項32に記載の方法。
Recycling at least part of the anolyte and recycle anolyte from the anolyte chamber outlet to the anolyte chamber inlet,
The method of claim 32, wherein the anolyte used to obtain the desired product is part of the recycled anolyte.
JP2008534843A 2005-10-13 2006-10-13 Continuous cocurrent electrochemical reduction of carbon dioxide Pending JP2009511740A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72564205P 2005-10-13 2005-10-13
PCT/CA2006/001743 WO2007041872A1 (en) 2005-10-13 2006-10-13 Continuous co-current electrochemical reduction of carbon dioxide

Publications (1)

Publication Number Publication Date
JP2009511740A true JP2009511740A (en) 2009-03-19

Family

ID=37942282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008534843A Pending JP2009511740A (en) 2005-10-13 2006-10-13 Continuous cocurrent electrochemical reduction of carbon dioxide

Country Status (7)

Country Link
US (3) US20080223727A1 (en)
EP (1) EP1951933A4 (en)
JP (1) JP2009511740A (en)
CN (1) CN101657568B (en)
AU (1) AU2006301857A1 (en)
CA (1) CA2625656C (en)
WO (1) WO2007041872A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118065A1 (en) * 2011-02-28 2012-09-07 国立大学法人長岡技術科学大学 System for reducing and immobilizing carbon dioxide, method for reducing and immobilizing carbon dioxide, and method for producing useful carbon resources
WO2012128148A1 (en) * 2011-03-18 2012-09-27 国立大学法人長岡技術科学大学 System for reducing and fixing carbon dioxide, method for reducing and fixing carbon dioxide, and method for producing useful carbon resource
JP2013510238A (en) * 2009-11-04 2013-03-21 エフエフジーエフ・リミテッド Hydrocarbon production
JP2013538285A (en) * 2010-07-04 2013-10-10 ダイオキサイド マテリアルズ,インコーポレイティド New catalyst mixture
JP2013544957A (en) * 2010-09-24 2013-12-19 デット ノルスケ ベリタス エーエス Method and apparatus for electrochemical reduction of carbon dioxide
JP2014205878A (en) * 2013-04-12 2014-10-30 株式会社日立製作所 Cathode electrode and electrolyzer using the same
JP2015535825A (en) * 2012-09-19 2015-12-17 リキッド・ライト・インコーポレーテッドLiquid Light Incorporated An integrated method for producing carboxylic acids from carbon dioxide.
JP2016041427A (en) * 2010-03-26 2016-03-31 ダイオキサイド マテリアルズ,インコーポレイティド Novel catalyst mixtures and electrochemical devices for electrochemically converting carbon dioxide
JP2016132800A (en) * 2015-01-20 2016-07-25 千代田化工建設株式会社 Organic matter production method and organic matter production system
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
WO2017171114A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Electrolysis system and electrolysis method using same
WO2017171113A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Electrolytic bath and electrolysis method
WO2017171115A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Formic acid preparation apparatus and formic acid preparation method
KR101825087B1 (en) * 2017-09-28 2018-02-02 (주) 테크윈 electrolysis system and electrolysis method using the electrolysis system
US9957624B2 (en) 2010-03-26 2018-05-01 Dioxide Materials, Inc. Electrochemical devices comprising novel catalyst mixtures
CN108570690A (en) * 2017-03-14 2018-09-25 株式会社东芝 Carbon dioxide electrolysis unit
US10173169B2 (en) 2010-03-26 2019-01-08 Dioxide Materials, Inc Devices for electrocatalytic conversion of carbon dioxide
KR101936791B1 (en) 2017-09-28 2019-01-11 (주) 테크윈 System and method for manufacturing formic acid of high efficiency using open type carbon dioxide dissolving apparatus
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
JP2019183286A (en) * 2019-08-05 2019-10-24 千代田化工建設株式会社 Organic matter production method and organic matter production system
US10647652B2 (en) 2013-02-24 2020-05-12 Dioxide Materials, Inc. Process for the sustainable production of acrylic acid
JP2022023047A (en) * 2018-09-19 2022-02-07 株式会社東芝 Electrochemical reaction device
JP7414944B2 (en) 2019-09-17 2024-01-16 株式会社東芝 Control method for electrochemical reaction device

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753618B2 (en) 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
MX2009013821A (en) 2007-06-28 2010-02-03 Calera Corp Desalination methods and systems that include carbonate compound precipitation.
US9005422B2 (en) * 2007-08-31 2015-04-14 Energy & Environmental Research Center Foundation Electrochemical process for the preparation of nitrogen fertilizers
US7754169B2 (en) 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US20100239467A1 (en) 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
GB2460910B8 (en) * 2007-12-28 2010-07-14 Calera Corp Methods of sequestering CO2.
US7749476B2 (en) 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
WO2010009273A1 (en) 2008-07-16 2010-01-21 Calera Corporation Co2 utilization in electrochemical systems
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
WO2010008896A1 (en) 2008-07-16 2010-01-21 Calera Corporation Low-energy 4-cell electrochemical system with carbon dioxide gas
WO2010007460A1 (en) * 2008-07-18 2010-01-21 Ferenc Meszaros Method and equipment for reduction of the contaminating emission of flue gases
WO2010007461A1 (en) * 2008-07-18 2010-01-21 Ferenc Meszaros Method and equipment for reduction of the contaminating emission of flue gases
WO2010007459A2 (en) * 2008-07-18 2010-01-21 Ferenc Meszaros Method and equipment for reduction of the contaminating emission of flue gases
US20110162975A1 (en) * 2008-07-18 2011-07-07 Ffgf Limited The production of hydrogen, oxygen and hydrocarbons
CN101868806A (en) 2008-09-11 2010-10-20 卡勒拉公司 CO2 commodity trading system and method
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
AU2009287462B2 (en) 2008-09-30 2011-10-06 Arelac, Inc. CO2-sequestering formed building materials
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
TW201033121A (en) 2008-10-31 2010-09-16 Calera Corp Non-cementitious compositions comprising CO2 sequestering additives
US7790012B2 (en) * 2008-12-23 2010-09-07 Calera Corporation Low energy electrochemical hydroxide system and method
CA2696075A1 (en) * 2009-01-28 2010-07-28 Calera Corporation Low-energy electrochemical bicarbonate ion solution
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
WO2010093716A1 (en) 2009-02-10 2010-08-19 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatlytic electrodes
US9758881B2 (en) 2009-02-12 2017-09-12 The George Washington University Process for electrosynthesis of energetic molecules
JP2012519076A (en) 2009-03-02 2012-08-23 カレラ コーポレイション Gas flow complex contaminant control system and method
AU2010201373A1 (en) 2009-03-10 2010-09-30 Calera Corporation System and methods for processing CO2
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US9790161B2 (en) 2010-03-26 2017-10-17 Dioxide Materials, Inc Process for the sustainable production of acrylic acid
US20130015064A1 (en) 2011-06-29 2013-01-17 Masel Richard I Sensors For Carbon Dioxide And Other End Uses
US9012345B2 (en) 2010-03-26 2015-04-21 Dioxide Materials, Inc. Electrocatalysts for carbon dioxide conversion
US9815021B2 (en) 2010-03-26 2017-11-14 Dioxide Materials, Inc. Electrocatalytic process for carbon dioxide conversion
US8956990B2 (en) 2010-03-26 2015-02-17 Dioxide Materials, Inc. Catalyst mixtures
US9193593B2 (en) 2010-03-26 2015-11-24 Dioxide Materials, Inc. Hydrogenation of formic acid to formaldehyde
WO2016064440A1 (en) 2014-10-21 2016-04-28 Dioxide Materials Electrolyzer and membranes
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US20130180865A1 (en) * 2010-07-29 2013-07-18 Liquid Light, Inc. Reducing Carbon Dioxide to Products
US8524066B2 (en) * 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) * 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
CN102190573B (en) * 2011-03-30 2013-11-27 昆明理工大学 Method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide
SA112330516B1 (en) * 2011-05-19 2016-02-22 كاليرا كوربوريشن Electrochemical hydroxide systems and methods using metal oxidation
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
CN102240497A (en) * 2011-06-28 2011-11-16 天津大学 Method and device for preparing methanoic acid from carbon dioxide recovered from flue gas by utilizing electric power at night
EP2729600A2 (en) 2011-07-06 2014-05-14 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
JP2014518335A (en) * 2011-07-06 2014-07-28 リキッド・ライト・インコーポレーテッド Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8349587B2 (en) 2011-10-31 2013-01-08 Ginkgo Bioworks, Inc. Methods and systems for chemoautotrophic production of organic compounds
CN103160851B (en) * 2011-12-12 2015-11-25 清华大学 Membrane reactor
CN103160850B (en) * 2011-12-12 2015-09-30 清华大学 Membrane reactor
WO2013112619A1 (en) 2012-01-23 2013-08-01 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
US20130256124A1 (en) 2012-04-02 2013-10-03 King Fahd University Of Petroleum And Minerals Electrocatalyst for electrochemical conversion of carbon dioxide
US20130256123A1 (en) 2012-04-02 2013-10-03 King Abdulaziz City For Science And Technology Electrocatalyst for electrochemical conversion of carbon dioxide
US8641885B2 (en) 2012-07-26 2014-02-04 Liquid Light, Inc. Multiphase electrochemical reduction of CO2
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US8845875B2 (en) 2012-07-26 2014-09-30 Liquid Light, Inc. Electrochemical reduction of CO2 with co-oxidation of an alcohol
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US20140206896A1 (en) 2012-07-26 2014-07-24 Liquid Light, Inc. Method and System for Production of Oxalic Acid and Oxalic Acid Reduction Products
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
AU2013316029B2 (en) * 2012-09-14 2018-03-29 Avantium Knowledge Centre B.V. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
WO2014043651A2 (en) 2012-09-14 2014-03-20 Liquid Light, Inc. High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
EP2897899A4 (en) * 2012-09-19 2015-10-28 Liquid Light Inc Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode
AU2013200983C1 (en) * 2012-09-19 2022-08-11 Unique Global Possibilities (Australia) Pty Ltd Hydrogen production
WO2014047661A2 (en) 2012-09-24 2014-03-27 Dioxide Materials, Inc. Devices and processes for carbon dioxide conversion into useful fuels and chemicals
US20150315599A1 (en) 2012-12-07 2015-11-05 Ginkgo Bioworks, Inc Methods and Systems for Methylotrophic Production of Organic Compounds
KR101372532B1 (en) 2013-02-28 2014-03-17 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide using solution containing potassium sulfate
FR3007424B1 (en) 2013-06-20 2016-07-01 Ifp Energies Now PROCESS FOR THE PRODUCTION OF FORMIC ACID BY ELECTROCATALYTIC REDUCTION IN THE GAS PHASE OF CO2
FR3007425B1 (en) * 2013-06-20 2016-07-01 Ifp Energies Now NOVEL PROCESS FOR THE PRODUCTION OF FORMIC ACID
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 Electrochemical hydroxide systems and methods using metal oxidation
DE102013224202A1 (en) * 2013-11-27 2015-05-28 Siemens Aktiengesellschaft Electrolytic cell and process for the production of chemical products by means of an electrolytic cell
JP6230451B2 (en) * 2014-03-11 2017-11-15 株式会社東芝 Photochemical reaction apparatus and chemical reaction apparatus
WO2015139136A1 (en) * 2014-03-19 2015-09-24 Brereton Clive M H Co2 electro-reduction process
WO2015143560A1 (en) * 2014-03-25 2015-10-01 Colin Oloman Process for the conversion of carbon dioxide to formic acid
US9255057B2 (en) 2014-04-14 2016-02-09 Alstom Technology Ltd Apparatus and method for production of formate from carbon dioxide
US20160097136A1 (en) * 2014-04-24 2016-04-07 The University Of North Carolina At Chapel Hill NanoTin Catalysts for Electrochemical Reduction of Carbon Dioxide to Formate
WO2015184388A1 (en) 2014-05-29 2015-12-03 Liquid Light, Inc. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US20170121831A1 (en) * 2014-06-19 2017-05-04 Liquid Light, Inc. Integrated Process for Co-Production of Carboxylic Acids and Halogen Products from Carbon Dioxide
DE102014212069B4 (en) * 2014-06-24 2018-01-25 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Process for the preparation of organic compounds
US10689768B2 (en) * 2014-08-01 2020-06-23 Sogang University Research Foundation Amalgam electrode, producing method thereof, and method of electrochemical reduction of carbon dioxide using the same
KR20160038363A (en) 2014-09-30 2016-04-07 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide and apparatus therefor
US10774431B2 (en) 2014-10-21 2020-09-15 Dioxide Materials, Inc. Ion-conducting membranes
US10975480B2 (en) 2015-02-03 2021-04-13 Dioxide Materials, Inc. Electrocatalytic process for carbon dioxide conversion
US20160222528A1 (en) * 2015-02-03 2016-08-04 Alstom Technology Ltd Method for electrochemical reduction of co2 in an electrochemical cell
US10730751B2 (en) 2015-02-26 2020-08-04 C2Cnt Llc Methods and systems for carbon nanofiber production
WO2016190942A1 (en) * 2015-05-27 2016-12-01 3 D Clean Coal Emissions Stack, Llc Clean coal stack
DE102015212504A1 (en) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Electrolysis system and reduction process for electrochemical carbon dioxide recovery, alkali carbonate and alkali hydrogen carbonate production
WO2017004705A1 (en) * 2015-07-08 2017-01-12 Elod Lajos Gyenge Redox flow battery with carbon dioxide based redox couple
EP3325692B1 (en) 2015-07-22 2020-09-16 Coval Energy Ventures B.V. Method and reactor for electrochemically reducing carbon dioxide
WO2017066295A1 (en) 2015-10-13 2017-04-20 Clarion Energy Llc Methods and systems for carbon nanofiber production
EP3368502B1 (en) 2015-10-28 2020-09-02 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
WO2017176600A1 (en) 2016-04-04 2017-10-12 Dioxide Materials, Inc. Electrocatalytic process for carbon dioxide conversion
WO2017176599A1 (en) 2016-04-04 2017-10-12 Dioxide Materials, Inc. Ion-conducting membranes
AU2016401931B2 (en) 2016-04-04 2019-03-07 Dioxide Materials, Inc. Catalyst layers and electrolyzers
EP3954807A3 (en) 2016-05-03 2022-06-29 Opus 12 Incorporated Reactor with advanced architecture for the electrochemical reaction of co2, co, and other chemical compounds
US9840670B2 (en) * 2016-05-12 2017-12-12 M. K. Carter Chemical conversion of carbon dioxide and water to hydrocarbon fuels
DE102016211822A1 (en) * 2016-06-30 2018-01-04 Siemens Aktiengesellschaft Arrangement and method for carbon dioxide electrolysis
KR101714601B1 (en) * 2016-08-03 2017-03-09 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide and apparatus therefor
WO2018062952A1 (en) * 2016-09-30 2018-04-05 서강대학교산학협력단 Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
KR101793711B1 (en) * 2016-11-04 2017-11-07 한국에너지기술연구원 Device and Method for preparing carbonate and/or formate from carbon dioxide
JP6672211B2 (en) * 2017-03-21 2020-03-25 株式会社東芝 Carbon dioxide electrolysis apparatus and carbon dioxide electrolysis method
DE102017213471A1 (en) * 2017-08-03 2019-02-07 Siemens Aktiengesellschaft Apparatus and method for the electrochemical use of carbon dioxide
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
WO2019144135A1 (en) 2018-01-22 2019-07-25 Opus-12 Incorporated System and method for carbon dioxide reactor control
US11299811B2 (en) 2018-01-29 2022-04-12 Board Of Regents, The University Of Texas System Continuous flow reactor and hybrid electro-catalyst for high selectivity production of C2H4 from CO2 and water via electrolysis
CN108385129B (en) * 2018-03-29 2020-04-10 碳能科技(北京)有限公司 Preparation method of formic acid
US11053597B2 (en) * 2018-04-05 2021-07-06 Lawrence Livermore National Security, Llc Flow-through reactor for electrocatalytic reactions
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
JP6951310B2 (en) 2018-09-19 2021-10-20 株式会社東芝 Electrochemical reactor
EP3887578A1 (en) 2018-11-28 2021-10-06 Opus 12 Incorporated Electrolyzer and method of use
CN110344071B (en) * 2019-08-14 2020-11-17 碳能科技(北京)有限公司 Electroreduction of CO2Apparatus and method
CN110867601A (en) * 2019-11-19 2020-03-06 东华大学 Carbon dioxide electrochemical reduction reactor with continuous multi-compartment type fuel cell membrane electrode structure
CN115380132A (en) 2019-11-25 2022-11-22 十二益公司 Membrane electrode assembly for COx reduction
CN111304672B (en) * 2020-03-18 2022-03-29 大连理工大学 H-shaped fixed bed carbon dioxide reduction electrolytic cell and application
DE102020206447A1 (en) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Method for controlling an electrolysis device
EP4259771A1 (en) 2020-12-08 2023-10-18 Calidris Bio Method for producing a fermentation product
JP7176025B2 (en) * 2021-03-11 2022-11-21 本田技研工業株式会社 generator
EP4071278A1 (en) 2021-04-06 2022-10-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Heat integrated electrochemical conversion
CN113430547B (en) * 2021-05-06 2023-07-25 盐城工学院 Device and method for preparing potassium formate by electrolyzing carbon dioxide
FR3126998B1 (en) * 2021-09-13 2024-04-05 Fairbrics Membraneless electrolysis cell and its use in electrolysis reactions
WO2024035474A1 (en) 2022-08-12 2024-02-15 Twelve Benefit Corporation Acetic acid production
SE545957C2 (en) * 2023-02-03 2024-03-26 Superstate AB Continuous production of ammonia by electrolysis of a lithium salt with changing polarity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
JPS58110684A (en) * 1981-12-11 1983-07-01 ザ・ブリテイツシユ・ペトロレアム・コンパニ−・ピ−・エル・シ− Electrochemical process
JPH01205088A (en) * 1988-02-10 1989-08-17 Tanaka Kikinzoku Kogyo Kk Method for electrolytically reducing carbon dioxide
JPH06173058A (en) * 1992-07-01 1994-06-21 Sachem Inc Method of reducing amount of acid content of hydroxylamine salt solution and producing hydroxylamine from hydroxylamine salt
JPH10202263A (en) * 1997-01-17 1998-08-04 Akai Electric Co Ltd Continuous electrolytic ionized water generator provided with cleaning function

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743295A (en) * 1951-03-21 1956-04-24 Rudolph Koepp & Co Chem Fab Ag Production of formic acid from its salts
US3523755A (en) * 1968-04-01 1970-08-11 Ionics Processes for controlling the ph of sulfur dioxide scrubbing system
US3897319A (en) * 1971-05-03 1975-07-29 Carus Corp Recovery and recycle process for anodic oxidation of benzene to quinone
US3969201A (en) * 1975-01-13 1976-07-13 Canadian Patents And Development Limited Electrolytic production of alkaline peroxide solutions
US4384937A (en) * 1979-05-29 1983-05-24 Diamond Shamrock Corporation Production of chromic acid in a three-compartment cell
US4547273A (en) * 1984-06-07 1985-10-15 Energy Conversion Devices, Inc. Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
US4673473A (en) * 1985-06-06 1987-06-16 Peter G. Pa Ang Means and method for reducing carbon dioxide to a product
US4608133A (en) * 1985-06-10 1986-08-26 Texaco Inc. Means and method for the electrochemical reduction of carbon dioxide to provide a product
US4978430A (en) * 1986-12-06 1990-12-18 Ube Industries, Ltd. Method for dehydration and concentration of aqueous solution containing organic compound
GB9119613D0 (en) * 1991-09-13 1991-10-23 Ici Plc Electrochemical process
JP4322327B2 (en) * 1998-04-14 2009-08-26 月島環境エンジニアリング株式会社 Separation method of target components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495508A (en) * 1977-12-05 1979-07-28 Rca Corp Storage of solar energy
JPS58110684A (en) * 1981-12-11 1983-07-01 ザ・ブリテイツシユ・ペトロレアム・コンパニ−・ピ−・エル・シ− Electrochemical process
JPH01205088A (en) * 1988-02-10 1989-08-17 Tanaka Kikinzoku Kogyo Kk Method for electrolytically reducing carbon dioxide
JPH06173058A (en) * 1992-07-01 1994-06-21 Sachem Inc Method of reducing amount of acid content of hydroxylamine salt solution and producing hydroxylamine from hydroxylamine salt
JPH10202263A (en) * 1997-01-17 1998-08-04 Akai Electric Co Ltd Continuous electrolytic ionized water generator provided with cleaning function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011063769; LI H., OLOMAN C.: 'The electro-reduction of carbon dioxide in a continuous reactor' Journal of Applied Electrochemistry Vol.35, No.10, 20051003, pp.955-965 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510238A (en) * 2009-11-04 2013-03-21 エフエフジーエフ・リミテッド Hydrocarbon production
KR20140015147A (en) * 2009-11-04 2014-02-06 에프에프지에프 리미티드 The production of hydrocarbon
KR101698794B1 (en) * 2009-11-04 2017-01-23 에프에프지에프 리미티드 The production of hydrocarbon
JP2016041427A (en) * 2010-03-26 2016-03-31 ダイオキサイド マテリアルズ,インコーポレイティド Novel catalyst mixtures and electrochemical devices for electrochemically converting carbon dioxide
US10023967B2 (en) 2010-03-26 2018-07-17 Dioxide Materials, Inc. Electrochemical devices employing novel catalyst mixtures
US10173169B2 (en) 2010-03-26 2019-01-08 Dioxide Materials, Inc Devices for electrocatalytic conversion of carbon dioxide
US9957624B2 (en) 2010-03-26 2018-05-01 Dioxide Materials, Inc. Electrochemical devices comprising novel catalyst mixtures
JP2013538285A (en) * 2010-07-04 2013-10-10 ダイオキサイド マテリアルズ,インコーポレイティド New catalyst mixture
US9566574B2 (en) 2010-07-04 2017-02-14 Dioxide Materials, Inc. Catalyst mixtures
JP2013544957A (en) * 2010-09-24 2013-12-19 デット ノルスケ ベリタス エーエス Method and apparatus for electrochemical reduction of carbon dioxide
JP6021074B2 (en) * 2011-02-28 2016-11-02 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
JPWO2012118065A1 (en) * 2011-02-28 2014-07-07 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
WO2012118065A1 (en) * 2011-02-28 2012-09-07 国立大学法人長岡技術科学大学 System for reducing and immobilizing carbon dioxide, method for reducing and immobilizing carbon dioxide, and method for producing useful carbon resources
JP6083531B2 (en) * 2011-03-18 2017-02-22 国立大学法人長岡技術科学大学 Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources
WO2012128148A1 (en) * 2011-03-18 2012-09-27 国立大学法人長岡技術科学大学 System for reducing and fixing carbon dioxide, method for reducing and fixing carbon dioxide, and method for producing useful carbon resource
JP2015535825A (en) * 2012-09-19 2015-12-17 リキッド・ライト・インコーポレーテッドLiquid Light Incorporated An integrated method for producing carboxylic acids from carbon dioxide.
US10647652B2 (en) 2013-02-24 2020-05-12 Dioxide Materials, Inc. Process for the sustainable production of acrylic acid
JP2014205878A (en) * 2013-04-12 2014-10-30 株式会社日立製作所 Cathode electrode and electrolyzer using the same
JP2016132800A (en) * 2015-01-20 2016-07-25 千代田化工建設株式会社 Organic matter production method and organic matter production system
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
WO2017171114A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Electrolysis system and electrolysis method using same
KR101794843B1 (en) * 2016-03-29 2017-11-07 (주)테크윈 electrolysis system and electrolysis method using the electrolysis system
KR101794840B1 (en) * 2016-03-29 2017-11-07 (주)테크윈 Apparatus and method for fabricating formic acid
WO2017171113A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Electrolytic bath and electrolysis method
WO2017171115A1 (en) * 2016-03-29 2017-10-05 (주) 테크윈 Formic acid preparation apparatus and formic acid preparation method
JP2018150595A (en) * 2017-03-14 2018-09-27 株式会社東芝 Carbon dioxide electrolysis device
CN108570690A (en) * 2017-03-14 2018-09-25 株式会社东芝 Carbon dioxide electrolysis unit
US11130723B2 (en) 2017-03-14 2021-09-28 Kabushiki Kaisha Toshiba Carbon dioxide electrolytic device
KR101936791B1 (en) 2017-09-28 2019-01-11 (주) 테크윈 System and method for manufacturing formic acid of high efficiency using open type carbon dioxide dissolving apparatus
KR101825087B1 (en) * 2017-09-28 2018-02-02 (주) 테크윈 electrolysis system and electrolysis method using the electrolysis system
JP2022023047A (en) * 2018-09-19 2022-02-07 株式会社東芝 Electrochemical reaction device
JP7176073B2 (en) 2018-09-19 2022-11-21 株式会社東芝 electrochemical reactor
JP2019183286A (en) * 2019-08-05 2019-10-24 千代田化工建設株式会社 Organic matter production method and organic matter production system
JP7414944B2 (en) 2019-09-17 2024-01-16 株式会社東芝 Control method for electrochemical reaction device

Also Published As

Publication number Publication date
WO2007041872B1 (en) 2007-07-19
EP1951933A1 (en) 2008-08-06
US20080223727A1 (en) 2008-09-18
US20140299482A1 (en) 2014-10-09
AU2006301857A1 (en) 2007-04-19
CA2625656C (en) 2014-12-09
CN101657568B (en) 2013-05-08
CN101657568A (en) 2010-02-24
EP1951933A4 (en) 2011-08-24
WO2007041872A1 (en) 2007-04-19
US20160068974A1 (en) 2016-03-10
CA2625656A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP2009511740A (en) Continuous cocurrent electrochemical reduction of carbon dioxide
AU2012202601B2 (en) Continuous co-current electrochemical reduction of carbon dioxide
KR101793711B1 (en) Device and Method for preparing carbonate and/or formate from carbon dioxide
US9518329B2 (en) Method for electrochemically converting carbon dioxide
US9217202B2 (en) Membrane reactor
JP6396990B2 (en) Electrochemical synthesis of ammonia in alkaline media
Peng et al. Electrochemical C–N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds
CN103233240B (en) The lasting co-current electrochemical reduction of carbonic acid gas
KR101360269B1 (en) Compact reactor for converting carbon dioxide electrochemically
US9145614B2 (en) Membrane reactor
WO2015139136A1 (en) Co2 electro-reduction process
Prajapati et al. CO2-free high-purity ethylene from electroreduction of CO2 with 4% solar-to-ethylene and 10% solar-to-carbon efficiencies
US20240084462A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
CN111979558B (en) Method and apparatus for preparing hydrogen selenide by electrolytic process
WO2015143560A1 (en) Process for the conversion of carbon dioxide to formic acid
EP3161185A1 (en) Narrow gap, undivided electrolysis cell
Jüttner Technical scale of electrochemistry
Lowy et al. Electroreduction of carbon dioxide
Paidar et al. 13 Membrane electrolysis
Perazio et al. Low‐Voltage Acidic CO2 Reduction Enabled by a Diaphragm‐Based Electrolyzer
Schroeder Electrolytic Recovery of Chlorine from Hydrochloric Acid
CN117702149A (en) Electrolysis device and control method for electrolysis device
Park et al. Simultaneous Brine Electrolysis and Co2 Conversion for Efficient and Selective Production of Nahco3
GB2513876A (en) Chlor-Alkali Process and Plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022