EP2897720A1 - Micro-encapsulation d'additifs de lubrifiant - Google Patents

Micro-encapsulation d'additifs de lubrifiant

Info

Publication number
EP2897720A1
EP2897720A1 EP13762685.9A EP13762685A EP2897720A1 EP 2897720 A1 EP2897720 A1 EP 2897720A1 EP 13762685 A EP13762685 A EP 13762685A EP 2897720 A1 EP2897720 A1 EP 2897720A1
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
polar
microcapsules
base stock
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13762685.9A
Other languages
German (de)
English (en)
Inventor
Peter Calcavecchio
Liehpao Oscar Farng
John Michael KRYLOWSKI
Martin N. Webster
Vera Minak-Bernero
Evelyn N. Drake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of EP2897720A1 publication Critical patent/EP2897720A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/58Elastohydrodynamic lubrication, e.g. for high compressibility layers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/12Micro capsules
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the formulated lubricating oils contain a major amount of a iionpoiar lubricating oil base stock and a minor amount of microcapsules.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing said core.
  • the microcapsules are dispersed in the lubricating oil such that the lubricating oil exhibits improved anti-wear performance and improved engine fuel efficiency.
  • the improved efficiency is enabled by the reduction of friction and improved elastohvdrodynamic lubrication (EHL) film formation while using lower viscosity base stocks.
  • EHL elastohvdrodynamic lubrication
  • Lubricants in commercial use today are prepared from a variety of natural and synthetic base stocks admixed with various additive packages and solvents depending upon their intended application.
  • the base stocks typically include mineral oils, poly alpha olefins (PAO), gas-to-liquid base oils (GTL), silicone oils, phosphate esters, diesters, polyoi esters, and the like.
  • PCEOs passenger car engine oils
  • PAOs passenger car engine oils
  • GTL stocks highly saturated base stocks
  • Group V base stocks such as ester to improve additive and deposit solubility
  • This disclosure relates to a lubricating oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in the nonpolar lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing the core.
  • the solubility of the polar lubricating oil additives in the nonpolar lubricating oil base stock is improved as compared to solubility achieved using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules.
  • This disclosure also relates in part to a method of improving solubility of polar lubricating oil additives in a nonpolar lubricating oil base stock.
  • the method comprises providing a lubricating oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in the lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosmg the core.
  • the solubility of the polar lubricating oil additives in the nonpolar lubricating oil base stock is improved as compared to solubility achieved using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules.
  • This disclosure further relates in part to a lubricating oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in the nonpolar lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing the core.
  • the surface performance (e.g., anti-wear and anti- corrosion performance) in an engine is improved as compared to surface performance in an engine using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules.
  • This disclosure yet further relates in part to a method of improving surface performance (e.g., anti-wear and anti-corrosion performance) of a lubricating oil in an engine lubricated with the lubricating oil.
  • the method comprises using as the lubricating oil a formulated oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in the lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosmg the core.
  • This disclosure also relates in part to a lubricating oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in thed nonpolar lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing the core.
  • EH L film formation at lubricating oil contacts in an engine is improved as compared to EHL film formation at lubricating oil contacts in an engine using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules.
  • This disclosure further relates in part to a method of improving elastohydrodynamic lubrication (EHL) film formation at lubricating oil contacts in an engine lubricated with a lubricating oil.
  • the method comprises using as the lubricating oil a formulated oil comprising a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component.
  • the microcapsules are dispersed in the lubricating oil base stock.
  • the microcapsules comprise (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing the core.
  • EHL film formation at lubricating oil contacts in an engine is improved as compared to EHL film formation at lubricating oil contacts in an engine using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules.
  • the advantages afforded by this disclosure include, for example, improved additive solubility beyond normal hydrocarbon base oil solubility limits, clarity and homogeneous finished lubricant phase, and enhanced surface performance through proper delivery of the performance additives. Enhanced performance is also achieved through improved EHL film formation.
  • Fig. 1 graphically depicts the elastohydrodynamic lubrication (EHL) measurement of film thickness at 40°C of the NB:25417-145 ⁇ 3 encapsulated system, Spectrasyn®-4, and Mobil- 1 , OW-20, as set forth in Example 1.
  • EHL elastohydrodynamic lubrication
  • Fig. 2 graphically depicts the elastohydrodynamic lubrication (EHL) measurement of film thickness at 60°C of the NB:25417-145-3 encapsulated system, Spectrasyn® ⁇ 4, and Mobil- 1, OW-20, as set forth in Example 1.
  • EHL elastohydrodynamic lubrication
  • Fig. 3 graphically depicts the elastohydrodynamic lubrication (EHL) measurement of film thickness at 80°C of the NB:25417-145-3 encapsulated system, Spectrasyn®-4, and Mobil- 1, OW-20, as set forth in Example 1.
  • EHL elastohydrodynamic lubrication
  • Fig. 4 graphically depicts the elastohydrodynamic lubrication (EHL) measurement of film thickness at 100°C of the NB:25417-145-3 encapsulated system, Spectrasyn®-4, and Mobil- 1 , OW-20, as set forth in Example I .
  • EHL elastohydrodynamic lubrication
  • Fig. 5 graphically depicts friction versus temperature comparisons for encapsulated and imencapsulated ammonium tetrathiomolybdate including base stock control, dispersant control and tetraethylene glycol control.
  • Fig, 6 depicts an encapsulation system showing a polar solvent core with dissolved additive encapsulated within a lubricant.
  • Fig, 7 graphically depicts the measurement of capsule size using a Horiba laser light scattering particle size analyzer.
  • Fig. 8 is a l OOx objective photograph of a macrocapsule (without polymer film) of polystyrene sulfonic acid (sodium salt) dissolved in tetraethylene glycol that is dispersed in oil without a dispersant.
  • Fig. 9 is a lOOx objective photograph of a macrocapsule (with polymer film) of polystyrene sulfonic acid (sodium salt) dissolved in tetraethylene glycol that is dispersed in oil with a dispersant (i.e., PIBSA-PAM).
  • PIBSA-PAM a dispersant
  • This disclosure is a special encapsulation technology for lubricants, which provides for the incorporation of sub-micron spheres of an insoluble polar solvent into a nonpolar basestock.
  • This disclosure also provides a method of stabilizing the interface of the sphere with surfactants and an encapsulating polymer film.
  • the invisible dispersed spheres provide the advantage of forming thick lubricating films while the surrounding basestock provides a relatively low overall viscosity to the oil.
  • the encapsulated polar solvent can also be used to dissolve polar additives which are not soluble in the basestock and/or incorporate higher concentrations of additives which have low solubility in the basestock.
  • This encapsulation system can be used to efficiently transport polar molecules with a higher viscosity than the basestock to the contacts requiring elastohydrodynamic lubrication such as journal bearings.
  • This system can be further used to solubilize and cany in the base-stock surface active ingredients such as friction modifiers, anti-wear additives and antioxidants critical to all lubricated contacts.
  • the surfactant and polymer protective coating of the dispersed capsules also efficiently provides a sequestration and time-release mechanism which delivers the active ingredients at the high shear contacts where the capsules are ruptured.
  • a means of incorporating hydrocarbon insoluble compounds into lubricant formulations It also provides a protective system of nano-size capsules to carry additives and efficiently deliver them by capsule rupture in the high shear environment of the lubricated contact. These encapsulated additives can be designed to impart better friction, anti-wear and antioxidant properties to the lubricant.
  • An additional benefit of this disclosure is the polar hydrocarbon carrier in which the additive is dissolved.
  • the viscosity of this earner can be maximized to provide a shear triggered protective film at the lubricated contact.
  • the encapsulation of the high viscosity carrier provides the benefit of high film thickness within a relatively low viscosity lubricant.
  • the polar hydrocarbon core can provide other benefits such as trapping and neutralizing acids formed during the oils use and providing a means to increase the thermal conductivity of the oil.
  • the lubricating engine oils of this disclosure can also be useful for applications irrespective of viscosity grade and/or base stock type.
  • the lubricating engine oils of this disclosure can be useful in automotive, marine, aviation, and industrial engine and machine components.
  • the microencapsulation system of this disclosure can be used for a variety of applications, for example, isolating reactive additives, trapping water in lubricants, and the like.
  • the lubricating oils of this disclosure can also be useful for lubricating machine components such as industrial paper machines, metal wOrking tools, compressors, bearing greases, wind turbines, and the like.
  • this disclosure relates to microcapsules including a core containing one or more polar solvents and one or more lubricating oil additives in which the microcapsules are dispersed in one or more lubricating base oils of mineral, synthetic or natural origin, and optionally a polymer shell.
  • This disclosure also relates to lubricating oils including the microcapsules.
  • This disclosure further relates to the use of microcapsules as anti-wear, antioxidant and/or friction modifier additives for lubricant compositions.
  • microencapsulation is a process via which a product is enclosed in hollow microparticles optionally comprising a shell or membrane (typically polymeric) enclosing a solid or liquid core containing the product. These microparticles, whose diameter is typically between 0.01 and 1000 ⁇ , are designated under the term of microcapsules.
  • applications are found in the areas of agriculture (fertilizers, pesticides), health (medications), cosmetics, textiles, and the like.
  • Lubricating base oils that are useful in the present disclosure are both natural oils, and synthetic oils, and unconventional oils (or mixtures thereof) can be used unrefined, refined, or rerefmed (the latter is also known as reclaimed or reprocessed oil).
  • Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one lubricating oil property.
  • Groups 1, II, HI, IV and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
  • Group I base stocks have a viscosity index of between 80 to 120 and contain greater than 0.03% sulfur and/or less than 90% saturates.
  • Group II base stocks have a viscosity index of between 80 to 120, and contain less than or equal to 0.03%) sulfur and greater than or equal to 90% saturates.
  • Group III stocks have a viscosity index greater than 120 and contain less than or equal to 0.03 % sulfur and greater than 90% saturates.
  • Group IV includes polyalphaolefins (PAO).
  • Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.
  • Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-napbthe ic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted.
  • Group II and/or Group II I hydroprocessed or hydrocracked basestocks including synthetic oils such as polyalphaolefins, alkyl aromatics and synthetic esters are also well known basestock oils.
  • Synthetic oils include hydrocarbon oil.
  • Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutvlenes, polypropylenes, propylene isobutylene copolymers, ethylene -olefin copolymers, and ethylene-alphaolefin copolymers, for example).
  • Polyalphaolefm (PAO) oil base stocks are commonly used synthetic hydrocarbon oil.
  • PAOs derived from Cg, C 10 , C 12, C 14 olefins or mixtures thereof may be utilized. See U.S. Patent Nos. 4,956,122; 4,827,064; and 4,827,073.
  • the number average molecular weights of the PAOs which are known materials and generally available on a major commercial scale from suppliers such as ExxonMobil Chemical Company, Chevron Phillips Chemical Company, BP, and others, typicall vary from 250 to 3,000, although PAO's may be made in viscosities up to 100 cSt (100°C).
  • the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefms which include, but are not limited to, C 2 to C32 alphaoiefms with the C to C 16 alphaolefms, such as 1-octene, 1-decene, 1-dodecene and the like, being preferred.
  • the preferred polyalphaolefms are poly- 1-octene, poly- 1-decene and poly- 1-dodecene and mixtures thereof and mixed olefin- derived polyolefms.
  • the dimers of higher olefins in the range of C 14 to C 18 may be used to provide low viscosity basestocks of acceptably low volatility.
  • the PAOs may be predominantly trimers and tetramers of the startmg olefins, with minor amounts of the higher oligomers, having a viscosity range of 1.5 to 12 cSt,
  • the PAO fluids may be conveniently made by the polymerization of an alphaolefm in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boro
  • the hydrocarbyl aromatics can be used as base oil or base oil component and can be any hydrocarbyl molecule that contains at least 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
  • These hydrocarbyl aromatics include alkvl benzenes, alkvl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
  • the aromatic can be mono-alkylated, diaikylated, polyalkylated, and the like.
  • the aromatic can be mono- or poly-functionalized.
  • the hydrocarbyl groups can also be comprised of mixtures of aikyl groups, alkenyl groups, alkynyl, cycloalkyl groups, eycloalkenyl groups and other related hydrocarbyl groups.
  • the hydrocarbyl groups can range from Ce up to Ceo with a range of Cg to C 2 o often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to three such substituents may be present.
  • the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
  • the aromatic group can also be derived from natural (petroleum) sources, provided at least 5% of the molecule is comprised of an above-type aromatic moiety.
  • Viscosities at 100°C of approximately 3 cSt to 50 cSt are preferred, with viscosities of approximately 3.4 cSt to 20 cSt often being more preferred for the hydrocarbyl aromatic component.
  • an alkyl naphthalene where the alkyl group is primarily comprised of l-hexadeeene is used.
  • Other alkylates of aromatics can be advantageously used .
  • Naphthalene or methyl naphthalene, for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
  • Useful concentrations of hydrocarbyl aromatic in a lubricant oi l composition can be 2% to 25%, preferably 4% to 20%, and more preferably 4% to 15%, depending on the application.
  • Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be sec ured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
  • Esters of the former type include, for example, the esters of dicarboxylic acids such as phthaiic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maieic acid, azelaic acid, suberic acid, sebacic acid, fumarie acid, adipic acid, linoleic acid dimer, malonic acid, alkyl maionic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
  • dicarboxylic acids such as phthaiic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maieic acid, azelaic acid, suberic acid, sebacic acid, fumarie acid, adipic acid, linoleic acid dimer, malonic acid, alkyl maionic acid, al
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooetyl azelate, diisodecyl azeiate, dioctyl phthaiate, didecyl phthalate, dieicosyl sebacate, etc.
  • Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyois, e.g., neopentyl glycol, trimethyloi ethane, 2-methyl-2 ⁇ propyi-l ,3-propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least 4 carbon atoms, preferably C5 to C30 acids such as saturated straight chain fatty acids including capryiic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and belienic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials,
  • the hindered polyols such as the neopentyl polyois
  • Suitable synthetic ester components include the esters of trimethyiol propane, trimethylol butane, trimethyiol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containmg from 5 to 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters of ExxonMobil Chemical Company).
  • Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.
  • Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well, as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffmate, hydrocrackate, thermal erackates, or other mineral, mineral oil, or even non- petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shal e oil , and mixtures of such base stocks.
  • GTL Gas-to-Liquids
  • GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
  • GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon- containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
  • GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1 ) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point;
  • synthesized wax isomerates comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons;
  • hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates
  • F-T Fischer-Tropsch
  • GTL base stoek(s) and/or base oil(s) derived from GTL materials are characterized typically as having kinematic viscosities at 100°C of from 2 mnv7s to 50 mm7s (ASTM D445). They are further characterized typically as having pour points of -5°C to -40°C or lower (ASTM D97). They are also characterized typically as having viscosity indices of 80 to 140 or greater (ASTM D2270).
  • GTL base stock(s) and/or base oil(s) are typically highly paraffmie (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffms in combination wit non-cyclic isoparaffms.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • GTL base stock(s) and/or base oil(s) obtained from F-T material is essentially nil.
  • the absence of phosphorous and aromatics make this materially especially suitable for the formulation of low S AP products.
  • GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.
  • the GTL material, from which the GTL base stock(s) and/or base oii(s) is/are derived is preferably an F-T materia! (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • the GTL base stock(s) and/or base oil(s) are typically highly paraffmic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) and hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • GTL base stock(s) and/or base oii(s) obtained from F-T material is essential!' nil.
  • the absence of phosphorous and aromatics make this material especially suitable for the formulation of low sulfur, sulfated ash, and phosphorus (low SAP) products.
  • Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group II I, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features.
  • Minor quantities of Group I stock such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluents/carrier oil for additives used on an "as-received" basis.
  • Even in regard to the Group II stocks it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 ⁇ VI ⁇ 120.
  • the base oil constitutes the major component of the engine oil lubricant composition of the present disclosure and typically is present in an amount ranging from 50 to 99 weight percent, preferably from 70 to 95 weight percent, and more preferably from 85 to 95 weight percent, based on the total weight of the composition.
  • the base oil may be selected from any of the synthetic or natural oils typically used as crankcase lubricating oils for spark-ignited and compression-ignited engines.
  • the base oil conveniently has a kinematic viscosity, according to ASTM standards, of 2.5 cSt to 12 cSt (or mm" /s) at 100°C and preferably of 2.5 cSt to 9 cSt (or mm 7s) at 100°C. Mixtures of synthetic and natural base oils may be used if desired.
  • microcapsules means hollow microcapsules comprising a solid or liquid core and optionally a shell or membrane (typically polymeric) enclosing the solid or liquid core.
  • the microcapsules contain a polar solvent and one or more polar lubricating oil additives to be protected and to be released in controlled manner.
  • These microparticles having a diameter typically of less than 1000 ⁇ , in particul ar of between 0.01 and 1000 ⁇ , are designated under the term of microcapsules.
  • the microcapsules of this disclosure are approximately of spherical shape. When speaking in terms of diameter, or size of the microcapsules, reference is made to their largest dimension.
  • the diameter of the microcapsules according to this disclosure is preferably between 0.01 and 50 ⁇ , more preferably between 0.1 and 10 ⁇ , or between 0.1 and 1.5 ⁇ , or between 0.3 and 4 or between 0.4 and 3 or between 0.1 and 1 ⁇ . It is desirable that the microcapsules should be of homogeneous size.
  • the core of the micro particles according to this disclosure comprises at least one polar solvent and at least one polar lubricating oil additive.
  • Illustrative polar solvents useful in the microparticl.es include, for example, glycols, alcohols, esters, ethers, carboxyiic acids, amines, and other organic compounds containing one or more polar functional groups (e.g., phosphate, sulfonate, sulfate, silicone).
  • polar functional groups e.g., phosphate, sulfonate, sulfate, silicone
  • useful polar solvents include monoethyiene glycol, diethyiene glycol, methylene glycol, tetraethylene glycol, polyethylene glycol, methylene glycol monomethyl ether, triethylene glocol dimethyl ether, tripropylene glycol, tripropylene glycol butyl ether (also known as DowanolTM TPnB), tripropylene glycol methyl ether (also known as DowanolTM TPM), diethyiene glycol dimethyl ether (also known as diglyme), and the like.
  • Illustrative polar lubricating oil additives useful in the microparticles include, for example, dispersants, detergents, corrosion inhibitors, rust inhibitors, metal deactivators, antioxidants, anti-wear agents and/or extreme pressure additives, antiseizure agents, wax modifiers, viscosity index improvers, viscosity modifiers, fluid-loss additives, seal compatibility agents, friction modifiers, lubricity agents, a sti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, antifoam agents, and pour point depressants.
  • illustrative polar lubricating oil additives include friction modifiers such as ammonium tetrathiomoiybdate, ammonium molybdate, sodium molybdate, sodium molybdenum dehydrate, molybdenum disulfide, molybdenum carbide, molybdenum (VI) oxide, molybdenum di-n-butyl dithiocarbamate, (propyl cyeioperstadienyi molybdenum tricarbony!
  • friction modifiers such as ammonium tetrathiomoiybdate, ammonium molybdate, sodium molybdate, sodium molybdenum dehydrate, molybdenum disulfide, molybdenum carbide, molybdenum (VI) oxide, molybdenum di-n-butyl dithiocarbamate, (propyl cyeioperstadienyi molybdenum tricarbony!
  • antioxidants such as butylated hydroxytoluene (BHT), 2,6-di-tert-butyl phenol, 2,6-di-tert-butyl cresol, alkylated diphenylamines, and the like
  • anti-wear agents such as zinc dialkyldithiophosphate (ZDDP), tricresyl phosphate, sulturized olefins, elemental sulfur and compounds which produce sulfur in situ such as ammonium or sodium thiosulfate dissolved in the polar capsule core, and the like.
  • the microcapsules of this disclosure can optionally have a shell or membrane enclosing the core.
  • the protective shell can insulate the polar solvent and polar lubricating oil additives from the outside environment, providing controlled release thereof in particular through rupture of the shell.
  • the walls of the microcapsules can be slightly porous, formed of strongly cross-linked polymer.
  • di- or tri-functional monomers i.e., monomers having several times the chemical function involved in the polymerization reaction, may be used.
  • the constituent polymers of the shell of the microcapsules according to this disclosure can have good heat resistance (i.e., do not degrade at extreme temperatures which may be encountered when in sendee, i.e., of the order of 150°C to I60°C), and good mechanical strength so that they can withstand the high shear levels encountered in engines.
  • the shell of the mieroparticles according to this disclosure may be formed for example of polymers of polystyrene sulfonic acid (or salt), polyester, polyamide, polyurethane, polyurea type, or the copolymers thereof, optionally with other monomers, polyacryionitriles, vinyl resins or aminoplast resins. Polyureas, known for their good properties, are particularly preferred. They also have good mechanical resistance and good heat resistance.
  • the microcapsules of this disclosure can be prepared by conventional methods known in the art.
  • a polar lubricating oil additive can be mixed with a polar solvent and the resulting product can be added to a lubricating oil base stock.
  • the resulting product can be mixed under low and/or high shear conditions for a time (e.g., from 5 minutes to 2 hours) and at a temperature (e.g., from ! 5°C to 80°C) sufficient to form a homogeneous lubricant containing microcapsules.
  • the shell or membrane (typically polymeric) enclosing the solid or liquid core can be prepared by conventional methods known in the art.
  • an oil soluble cross-linking agent can be added to the oil continuous phase after the polar phase is dispersed.
  • the functional groups on additive(s) in the oil continuous phase can be used to react with polymer(s) in the polar core and form a polymer film at the capsule interface.
  • the nonpolar lubricating oil base stock is present in an amount from 70 weight percent to 95 weight percent, preferably from 75 weight percent to 95 weight percent, and more preferably from 80 weight percent to 95 weight percent, based on the total weight of the lubricating oil.
  • the microcapsules are present in the lubricating oil in an amount sufficient to impart to the lubricating oil improved anti-wear performance and improved engine fuel efficiency.
  • the microcapsules can be present in an amount from 0.1 weight percent to 10 weight percent or greater, preferably from 0.25 weight percent to 9.5 weight percent, and more preferably from 0.5 weight percent to 9 weight percent, based on the total wei ght of the lubricating oil.
  • the formulated lubricating oil useful in the present disclosure may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to dispersants, detergents, corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear agents and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity index improvers, viscosity modifiers, fluid- loss additives, seal compatibility agents, friction modifiers, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
  • dispersants including but not limited to dispersants, detergents, corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear agents and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity index improvers, viscosity modifiers, fluid
  • Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
  • Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So-called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal-free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenat.es, stearates, carbamates, thiocarbamates, phosphorus derivatives.
  • a particularly useful class of dispersants are the aikenylsuccinie derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil is normally a polyisobutylene group.
  • Hydrocarbyl-substituted succmic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants.
  • succmimide, succinate esters, or succmate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
  • Succimmides are formed by the condensation reaction between hydrocarbvl substituted succinic anhydrides and amines. Molar ratios can vary depending on the poiyamine. For example, the molar ratio of hydrocarbvl substituted succinic anhydride to TEPA can vary from 1 : 1 to 5: 1. Representative examples are shown in U.S. Patent Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No. 1,094,044.
  • Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can va ' depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyammes, propoxylated polyalkylpolyammes and polyalkenyipoiyamines such as polyethylene poiyamines.
  • propoxylated hexamethylenedi amine Representative examples are shown in U.S. Patent No. 4,426,305.
  • the molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid.
  • the above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from 0.1 to 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Patent Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alkyl- substituted hydroxyaromatics or HN®?. group-containing reactants.
  • Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from 500 to 5000 or a mixture of such hydrocarbylene groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich ad ducts, their capped derivatives, and other related components.
  • a preferred dispersant is polyisobutylene succinimide polyamine (P!BSA-PAM), Such additives may be used in an amount of 0.1 to 20 weight percent, preferably 0.5 to 8 weight percent.
  • a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
  • the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxyiie acid, phosphorous acid, phenol, or mixtures thereof.
  • the counterion is typically an alkaline earth or alkali metal,
  • Salts that contain a substantially stoichiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
  • TBN total base number
  • Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
  • a metal compound a metal hydroxide or oxide, for example
  • an acidic gas such as carbon dioxide
  • Useful detergents can be neutral, mildly overbased, or highly overbased.
  • the overbased material has a ratio of metallic ion to anionic portion of the detergent of 1.05: 1 to 50: 1 on an equivalent basis. More preferably, the ratio is from 4: 1 to 25: 1.
  • the resulting detergent is an overbased detergent that will typically have a TBN of 150 or higher, often 250 to 450 or more.
  • the overbasing cation is sodium, calcium, or magnesium.
  • a mixture of detergents of differing TBN can be used in the present disclosure.
  • Preferred detergents include the alkali or alkaline earth metal salts of sulfonates, phenates, carboxylates, phosphates, and salicylates, e.g., a mixture of magnesium sulfonate and calcium salicylate.
  • Sulfonates may be prepared from sulfonic acids that are typically obtained by sulfonation of alky! substituted aromatic hydrocarbons.
  • Hydrocarbon examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, bi phenyl and their halogenated derivatives (chlorobenzene, chlorotoluene, and chloronaphthaiene, for example).
  • the alkylating agents typically have 3 to 70 carbon atoms.
  • the aikaryl sulfonates typically contain 9 to 80 carbon or more carbon atoms, more typically from 16 to 60 carbon atoms.
  • Alkaline earth phenates are another useful class of detergent.
  • detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO. Mg(OH) 2 , for example) with an aikyi phenol or sulfurized alkylphenol.
  • Useful alky! groups include straight chain or branched C 1 -C30 alkyl groups, preferably, C4-C 2 o- Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like. It should be noted that starting alkylphenols may contain more than one aikyi substituent that are each independently straight chain or branched.
  • the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
  • sulfurizing agent including elemental sulfur, sulfur halides such as sulfur dichloride, and the like
  • Metal salts of carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
  • Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
  • Useful salicylates include long chain alkyl salicylates.
  • One useful family of compositions is of the formula
  • R is an alkyl group having 1 to 30 carbon atoms
  • n is an integer from 1 to 4
  • M is an alkaline earth metal.
  • Preferred R groups are alkyl chains of at least Crs , preferably C 13 or greater.
  • R may be optionally substituted with substituents that do not interfere with the detergent's function.
  • M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
  • Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction (see U.S. Patent No. 3,595,791).
  • the metal salts of the hydrocarbyl- substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
  • Alkaline earth metal phosphates are also used as detergents and are known in the art.
  • Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.
  • Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents) in any combination.
  • a preferred detergent includes magnesium sulfonate and calcium salicylate.
  • the detergent concentration in the lubricating oils of this disclosure can range from 1.0 to 6.0 weight percent, preferably 2.0 to 5.0 weight percent, and more preferably from 2.0 weight percent to 4.0 weight percent, based on the total weight of the lubricating oil .
  • Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
  • One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example.
  • Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenoiics which are the ones which contain a sterically hindered hydroxvl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodeeyl phenol; 2,6-di- t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4 ⁇ dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl. phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
  • Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
  • Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure.
  • ortho-coupled phenols include: 2,2 ' -bis(4 ⁇ heptyl ⁇ 6 ⁇ T -butyl-phenol); 2,2 '-bis(4-octyl-6-t-butyl-phenol); and
  • Para-coupled bisphenols include for example 4,4 ' -bis(2,6-di-t-butyl phenol) and 4,4'-metbyiene-bis(2,6-di-t-butyl phenol ).
  • Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenoiics.
  • Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R i0 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 1 is H, alkyl, aryl or R n S(0)xR 12 where R' 3 is an alkylene, aikenyleiie, or aralkylene group, R " is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
  • the aliphatic group R 8 may contain from 1 to 20 carbon atoms, and preferably contains from 6 to 12 carbon atoms.
  • the aliphatic group is a saturated aliphatic group.
  • both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
  • Aromatic groups R and R may be joined together with other groups such as S.
  • Typical aromatic amines antioxidants have alkyl substituent groups of at least 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyi. Generally, the aliphatic groups will not contain more than 14 carbon atoms.
  • the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylammes, phenothiazines, imidodibenzyls and diphenyl phenyiene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also he used.
  • aromatic amine antioxidants useful in the present disclosure include: p, '-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl- alpha-naphthyiamine.
  • Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, most preferably zero.
  • a metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate is a component of the lubricating oils of this disclosure.
  • ZDDP can be primary, secondary or mixtures thereof.
  • ZDDP compounds generally are of the formula Zn[SP(S)(OR l )(OR 2 )] 2 where R 1 and R 2 are C] -C]g alkyl groups, preferably ( ⁇ > alkyl groups. These alkyl groups may be straight chain or branched.
  • Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations "LZ 677A”, “LZ 1095” and “LZ 1371", from for example Chevron Oronite under the trade designation “OLOA 262” and from for example Afton Chemical under the trade designation "HITEC 7169".
  • the ZDDP is typically used in amounts of from 0,4 weight percent to 1.2 weight percent, preferably from 0.5 weight percent to 1.0 weight percent, and more preferably from 0.6 weight percent to 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously.
  • the ZDDP is a secondary ZDDP and present in an amount of from 0.6 to 1.0 weight percent of the total weight of the lubricating oil.
  • ZDDP is one of the most successful anti-wear additives ever used in lubricants. This additive is fairly cost effective and provides exceptionally durable anti- wear tribofilms on ferrous surfaces under extreme lubrication conditions. ZDDP forms protective films on ferrous surfaces within a very short period of time. This additive forms pad-like polymeric tribofilms at the rubbing contact and thus prevents wear. It is believed that ZDDP undergoes thermal decomposition at the tribological contact followed by the reactions with reactive iron surfaces or iron oxides that forms glassy phosphate films. These films contain minimal iron meaning that the formation of tribofilm requires minimal loss of iron from the rubbed surfaces. The chain lengths of the phosphate decreases with the depth of the tribofilm and the layers near the surface were mostly dominated by iron sulphides and iron oxides.
  • Uniform anti-wear tribofilms are desirable over the no -uniform patchy tribofilms. This is because the uniform tribofilm can resist the applied load more uniformly and thereby generates distributed stresses within the tribofilm. In contrast, in the case of non-uniform tribofilms, the applied load is mainly taken by the high spots resulting in more concentrated stresses and thereby causing more failure of tri.bofi.lms. This disclosure reveals that NGP materials enable the formation of uniform ZDDP tribofiims by controlling the initial wear process.
  • pour point depressants also known as lube oil flow improvers
  • pour point depressants may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include polymethacryl ates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpol.ym.ers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
  • Seal compatibility agents help to swell el.astom.eric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butyibenzyl phthalate, for example), and poiybutenyl succinic anhydride. Such additives may be used in an amount of 0.01 to 3 weight- percent, preferably 0.01 to 2 weight percent.
  • Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent.
  • a friction modifier is any materia! or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such materiai(s).
  • Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof.
  • Metal-containing friction modifiers may include metal salts or metalligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others.
  • Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarbamates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazol.es, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Mo-containing compounds can be particularly effective such as for example Mo-dithiocarbamates, Mo(DTC), Mo-dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo-alcohol- amides, etc. See U.S. Patent Nos. 5,824,627, 6,232,276, 6,153,564, 6,143,701, 6,1 10,878, 5,837,657, 6,010,987, 5,906,968, 6,734,150, 6,730,638, 6,689,725, 6,569,820; WO 99/66013; WO 99/47629; and WO 98/26030.
  • Ashless friction modifiers may also include lubricant materials that contain effective amounts of polar groups, for example, hydroxyl-coiitaining hydrocarbyl base oils, glycerides, partial glycerides, glyceride derivatives, and the like.
  • Polar groups in friction modifiers may include hydrocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination.
  • friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like.
  • salts both ash-containing and ashless derivatives
  • fatty acids fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates
  • fatty alcohols, amides, esters hydroxy carboxylates
  • comparable synthetic long-chain hydrocarbyl acids alcohols, amides, esters, hydroxy carboxylates, and the like.
  • fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
  • Useful concentrations of friction modifiers may range from 0.01 weight percent to 10-15 weight percent or more, often with a preferred range of 0.1 weight percent to 5 weight percent. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 10 ppm to 3000 ppm or more, and often with a preferred range of 20-2000 ppm, and in some instances a more preferred range of 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
  • Viscosity index improvers also known as VI improvers, viscosity modifiers, and viscosity improvers
  • VI improvers also known as VI improvers, viscosity modifiers, and viscosity improvers
  • the method of this disclosure obtains improvements in fuel economy without sacrificing durability by a reduction of high-temperature high-shear (HTHS) viscosity to a level lower than 2.6 cP through reduction or removal of viscosity index improvers or modifiers.
  • HTHS high-temperature high-shear
  • Viscosity index improvers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
  • Suitable viscosity index improvers include high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant. Typical molecular weights of these polymers are between 10,000 to 1,500,000, more typically 20,000 to 1,200,000, and even more typically between 50,000 and 1,000,000.
  • suitable viscosity index improvers are linear or star-shaped polymers and copolymers of methaerylate, butadiene, olefins, or alkylated styrenes.
  • Polyisobutylene is a commonly used viscosity index improver.
  • Another suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
  • suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length aerylates, for example). Specific examples include styrene-isoprene or styrene-butadiene based polymers of 50,000 to 200,000 molecular weight.
  • Olefin copolymers are commercially available from Chevron Oronite Company LLC under the trade designation "PARATONE®” (such as “PARATONE® 8921 “ and “PARATONE® 8941”); from Afton Chemical Corporation under the trade designation “HiTEC®” (such as “HiTEC® 5850B”; and from The Lubrizol Corporation under the trade designation "Lubrizol® 7067C”.
  • PARATONE® such as "PARATONE® 8921 “ and “PARATONE® 8941”
  • HiTEC® such as "HiTEC® 5850B”
  • Lubrizol® 7067C Low-butyrene copolymers
  • Polyisoprene polymers are commercially available from mfineum International Limited, e.g. under the trade designation "SV200”
  • diene-styrene copolymers are commercially available from Jnfmeum International Limited, e.g. under the trade designation "SV 260”.
  • the viscosity index improvers may be used in an amount of less than 2.0 weight percent, preferably less than 1.0 weight percent, and more preferably less than 0.5 weight percent, based on the total weight of the formulated oil or lubricating engine oil.
  • the viscosity index improvers may ⁇ be used in an amount of from 0.0 to 2.0 weight percent, preferably 0.0 to 1.0 weight percent, and more preferably 0.0 to 0.5 weight percent, based on the total weight of the formulated oil or lubricating engine oil.
  • lubricating oil compositions contain one or more of the additives discussed above, the addifive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table A below.
  • Anti-foam Agent 0.001 -3 0.001 -0.15
  • additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package wil l take the requisite use of the ultimate composition into account.
  • Figs. 1-4 show the film forming properties of ammonium tetrathiomolvbdate dissolved in tetraethylene glycol and encapsulated in Spectrasyn®-4 (referred to as NB:25417-145-3 in Figs. 1-4).
  • the ammonium tetrathiomolvbdate was first dissolved in tetraethylene glycol and the resulting product was added to Spectrasyn®-4 under low shear mixing followed by high shear mixing.
  • Spectrasyn®-4 is a commercially available metallocene polyalphaolefin (mPAO). The data shown in Figs.
  • NB:25417-145-3 encapsulated system was compared to Spectrasyn®-4 alone as a control, and also commercially available Mobil- 1 , OW-20, a fully formulated motor oil.
  • composition of the encapsulated system NB:25417- 1.45-3 was as follows:
  • the encapsulated system B:25417-145-3 shows superior retention of film thickness as a function of temperature compared to the unencapsulated control (i.e., Spectrasyn®-4) and fully formulated motor oil (i.e., Mobil- 1, OW-20).
  • Example 2 The encapsulated system B:25417-145-3 shows superior retention of film thickness as a function of temperature compared to the unencapsulated control (i.e., Spectrasyn®-4) and fully formulated motor oil (i.e., Mobil- 1, OW-20).
  • the above system NB:25417-145-3 was further stabilized by forming a polymer film at the interface of the two phases. This was achieved by dissolving in the polar dispersed phase a high molecular weight polymer (i.e., polystyrene sulfonic acid (or salt)) that reacted at the interface with the polyamine head of the dispersant (i.e., PIBSA-PAM (poiyisobutylene succinimide polyamine)) molecule.
  • PIBSA-PAM poiyisobutylene succinimide polyamine
  • composition of the encapsulated system NB:25417 ⁇ 145-3 was as follows:
  • Fig. 5 shows friction versus temperature comparisons for encapsulated and unencapsulated ammonium tetrathiomolvbdate.
  • the device used for the comparisons was a High Frequency Reciprocating Rig (HFRR). Friction data was collected while ramping temperature from 30°C to 200°C.
  • HFRR High Frequency Reciprocating Rig
  • the blue line is PA04 basestock as a control.
  • the green line is PA04 basestock with poiyisobutylene succinimide polyamine (PIBSA-PAM ) dispersant. This is the external or continuous phase of the encapsulated system.
  • the turquoise line is encapsulated ammonium tetrathiomolybdate (NH 4 ) 2 MoS 4 of this disclosure.
  • the purple line is tetraethylene glycol which is the polar core solvent.
  • the pink line is unencapsulated ammonium tetrathiomolybdate dissolved in tetraethylene glycol (i.e., polar core with dissolved friction modifier).
  • the yellow line is molybdenum disulfide (MoS? solid) dispersed in PA04. Ammonium tetrathiomolybdate decomposes to molybdenum disulfide at high temperatures.
  • the red line is another tetraethylene glycol control for the polar core.
  • the turquoise line and pink line clearly show the benefit of the ammonium tetrathiomolybdate friction modifier unencapsulated in the polar core solvent and encapsulated in PA04.
  • the encapsulation system enables the additive to be dispersed in PA04 in invisible submicron capsules.
  • the encapsulated version also showed the best friction reduction at the highest test temperature (200°C).
  • Fig. 6 shows a model encapsulation system of a polar core solvent, i.e., tetraethylene glycol, with a dissolved additive, i.e., ammonium tetrathiomolybdate, encapsulated within a lubricant, i.e., PA04.
  • the shell of the microparticles according to this disclosure can be formed of polymers of polystyrene sulfonic acid (or salt).
  • PIBSA-PAM is a dispersant useful in this disclosure.
  • Fig. 7 shows the measurement of capsule size using a Horiba LA910 laser light scattering particle size analyzer.
  • the device measured a mean particle size of 0.096 microns for the microencapsulation system.
  • the encapsulation according to this disclosure is unique relative to typical emulsions in that the microcapsules can be infinitely diluted without coalescence. Particles of this size are not visible (completely clear), but are larger than a typical micro emulsion which is in the range of 5 to 200 nm.
  • Fig. 8 is a lOOx objective photograph of a macrocapsule (without polymer film) of polystyrene sulfonic acid (sodium salt) dissolved in tetraethylene glycol that is dispersed in oil without a dispersant.
  • Fig. 9 is a lOOx objective photograph of a macrocapsule (with polymer film) of polystyrene sulfonic acid (sodium salt) dissolved in tetraethylene glycol that is dispersed in oil with a dispersant (i.e., PIBSA-PAM).
  • the photographs are macrocapsules formed using very low shear to make them visible by optical microscopy.
  • the friction and EHL data set forth herein was generated without a polymer film.

Abstract

L'invention concerne une huile lubrifiante qui comprend une huile de base d'huile lubrifiante non polaire et des microcapsules comme composant mineur. Les microcapsules comprennent (i) un noyau contenant un solvant polaire et un ou plusieurs additifs d'huile lubrifiante polaire ayant une solubilité dans le solvant polaire et (ii) éventuellement, une écorce ou une membrane enveloppant le noyau. La solubilité des additifs d'huile lubrifiante polaire dans l'huile de base d'huile lubrifiante non polaire est améliorée par comparaison avec la solubilité obtenue à l'aide d'une huile lubrifiante contenant des additifs d'huile lubrifiante polaire dans une huile de base d'huile lubrifiante non polaire et ne contenant pas les microcapsules. L'invention concerne également un procédé d'amélioration de la solubilité d'additifs d'huile lubrifiante polaire dans une huile de base d'huile lubrifiante non polaire. Les huiles moteurs lubrifiantes selon l'invention peuvent être utiles dans les moteurs d'automobile, marins, d'aviation et industriels et dans des composants de machine.
EP13762685.9A 2012-09-24 2013-09-05 Micro-encapsulation d'additifs de lubrifiant Withdrawn EP2897720A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/625,281 US20140087982A1 (en) 2012-09-24 2012-09-24 Microencapsulation of lubricant additives
PCT/US2013/058146 WO2014046876A1 (fr) 2012-09-24 2013-09-05 Micro-encapsulation d'additifs de lubrifiant

Publications (1)

Publication Number Publication Date
EP2897720A1 true EP2897720A1 (fr) 2015-07-29

Family

ID=49170922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13762685.9A Withdrawn EP2897720A1 (fr) 2012-09-24 2013-09-05 Micro-encapsulation d'additifs de lubrifiant

Country Status (4)

Country Link
US (1) US20140087982A1 (fr)
EP (1) EP2897720A1 (fr)
SG (2) SG10201702257VA (fr)
WO (1) WO2014046876A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513867A (en) * 2013-05-07 2014-11-12 Mahle Int Gmbh Sliding engine component
US10611983B2 (en) 2014-05-15 2020-04-07 The George Washington University Microencapsulation of chemical additives
FR3024157B1 (fr) 2014-07-24 2018-02-23 Total Marketing Services Composition lubrifiante comprenant un compose anti-cliquetis
CN104531286A (zh) * 2014-11-12 2015-04-22 安徽荣达阀门有限公司 一种高性能防锈脂及其制备方法
CN104531275A (zh) * 2014-11-12 2015-04-22 安徽荣达阀门有限公司 一种抗氧化效果极佳的金属防锈脂及其制备方法
EP3310871B1 (fr) 2015-06-16 2020-01-08 Carrier Corporation Système de transfert de chaleur avec un tribofilm sur une surface de palier
CN108138861B (zh) 2015-10-21 2021-02-02 舍弗勒技术股份两合公司 用于制造湿式摩擦离合器的离合器片组的方法和摩擦离合器
US9915331B2 (en) 2016-01-15 2018-03-13 Schaeffler Technologies AG & Co. KG Wet friction materials including calcium silicate
US10377962B2 (en) 2016-02-26 2019-08-13 Exxonmobil Research And Engineering Company Lubricant compositions containing controlled release additives
WO2017146896A1 (fr) * 2016-02-26 2017-08-31 Exxonmobil Research And Engineering Company Compositions lubrifiantes contenant des additifs à libération contrôlée
US10132375B2 (en) 2016-05-18 2018-11-20 Schaeffler Technologies AG & Co. KG Wet friction materials having friction modifier carrier
CA3045480C (fr) 2016-12-23 2022-08-30 Saint-Gobain Abrasives, Inc. Abrasifs revetus a composition d'amelioration de performance
US10214704B2 (en) * 2017-04-06 2019-02-26 Baker Hughes, A Ge Company, Llc Anti-degradation and self-healing lubricating oil
WO2019118115A1 (fr) * 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Compositions d'huile lubrifiante contenant des additifs microencapsulés
JP6947943B2 (ja) * 2018-10-31 2021-10-13 クミアイ化学工業株式会社 マイクロカプセル組成物およびその製造方法、それを含有する農薬製剤および雑草防除方法
CN110724585B (zh) * 2019-10-31 2022-04-19 奎克化学(中国)有限公司 一种平整液及其制备方法和应用
CN111286391B (zh) * 2020-02-18 2022-02-01 东北石油大学 一种耐高温自润滑胶囊及其制备方法及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972275B2 (en) * 2002-06-28 2005-12-06 Exxonmobil Research And Engineering Company Oil-in-oil emulsion lubricants for enhanced lubrication
JP2005036212A (ja) * 2003-06-27 2005-02-10 Nsk Ltd 転動装置用潤滑剤組成物及び転動装置
JP2007177165A (ja) * 2005-12-28 2007-07-12 Nsk Ltd 潤滑剤組成物及び転動装置
JP2008031290A (ja) * 2006-07-28 2008-02-14 Nsk Ltd グリース組成物及びファンモータ用転がり軸受
FR2945754A1 (fr) * 2009-05-20 2010-11-26 Total Raffinage Marketing Nouveaux additifs pour huiles transmission
DE102009031342A1 (de) * 2009-07-01 2011-01-05 Daimler Ag Verwendung von Schmierölen mit mikrogekapselten Schmierstoffadditiven, Verwendung derselben in Schmierölen für Kraftfahrzeuge mit Verbrennungsmotor und Verbrennungsmotor mit mikrogekapselte Schmierstoffadditive enthaltenden Schmieröl
US8623796B2 (en) * 2011-05-27 2014-01-07 Exxonmobil Research And Engineering Company Oil-in-oil compositions and methods of making
US20130146009A1 (en) * 2011-12-07 2013-06-13 GM Global Technology Operations LLC Microencapsulated engine lubricant additives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014046876A1 *

Also Published As

Publication number Publication date
US20140087982A1 (en) 2014-03-27
WO2014046876A1 (fr) 2014-03-27
SG10201702257VA (en) 2017-04-27
SG11201500667XA (en) 2015-02-27

Similar Documents

Publication Publication Date Title
WO2014046876A1 (fr) Micro-encapsulation d'additifs de lubrifiant
US8703666B2 (en) Lubricant compositions and processes for preparing same
EP2867351B1 (fr) Amélioration de la performance de durabilité de lubrifiants au moyen de nanoplaquettes de phosphate de métal fonctionnalisé
US20140038862A1 (en) Anti-wear performance of lubricants using carbon nanoplatelets
EP2941476B1 (fr) Utilisation pour améliorer les performances à haute température dans un moteur
US10738262B2 (en) Lubricating oil compositions with engine wear protection
US20150175924A1 (en) Method for improving engine fuel efficiency
EP2773732A1 (fr) Lubrifiants présentant une économie améliorée de carburant basse température
US20140221260A1 (en) Method for improving engine fuel efficiency
EP2970816A1 (fr) Fluides conservant une faible énergie de traction et contenant des mélanges d'huile de base
EP2780437A1 (fr) Procédé d'amélioration du rendement du carburant pour moteur
US10377961B2 (en) Lubricant compositions containing controlled release additives
US20150275126A1 (en) Inverse micellar compositions containing lubricant additives
US10377962B2 (en) Lubricant compositions containing controlled release additives
WO2016200606A1 (fr) Compositions de micelles inverses contenant des additifs lubrifiants
EP3132011A1 (fr) Procede pour l'amelioration de performance anti-usure et de performance de demulsibilite
WO2015160473A1 (fr) Procédé pour améliorer la réduction des dépôts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603