EP2893106B1 - Shock-resistant motorized locking device - Google Patents
Shock-resistant motorized locking device Download PDFInfo
- Publication number
- EP2893106B1 EP2893106B1 EP13756626.1A EP13756626A EP2893106B1 EP 2893106 B1 EP2893106 B1 EP 2893106B1 EP 13756626 A EP13756626 A EP 13756626A EP 2893106 B1 EP2893106 B1 EP 2893106B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lever
- locking
- locking device
- displacement
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000035939 shock Effects 0.000 title description 13
- 238000006073 displacement reaction Methods 0.000 claims description 17
- 230000005291 magnetic effect Effects 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 11
- 230000009471 action Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 230000005294 ferromagnetic effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000803 paradoxical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/0001—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B15/00—Other details of locks; Parts for engagement by bolts of fastening devices
- E05B15/0053—Other details of locks; Parts for engagement by bolts of fastening devices means providing a stable, i.e. indexed, position of lock parts
- E05B15/0073—Other details of locks; Parts for engagement by bolts of fastening devices means providing a stable, i.e. indexed, position of lock parts magnetically operated
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/0001—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof
- E05B47/0002—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets
- E05B47/0003—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets having a movable core
- E05B47/0005—Operating or controlling locks or other fastening devices by electric or magnetic means with electric actuators; Constructional features thereof with electromagnets having a movable core said core being rotary movable
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/06—Controlling mechanically-operated bolts by electro-magnetically-operated detents
- E05B47/0603—Controlling mechanically-operated bolts by electro-magnetically-operated detents the detent moving rectilinearly
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C1/00—Fastening devices with bolts moving rectilinearly
- E05C1/08—Fastening devices with bolts moving rectilinearly with latching action
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/14—Pivoting armatures
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B2047/0072—Operation
- E05B2047/0073—Current to unlock only
- E05B2047/0074—Current to unlock only holding means other than current (mechanical, magnetic)
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B2047/0093—Operating or controlling locks or other fastening devices by electric or magnetic means including means for preventing manipulation by external shocks, blows or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T292/00—Closure fasteners
- Y10T292/08—Bolts
- Y10T292/096—Sliding
- Y10T292/1014—Operating means
- Y10T292/102—Lever
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T292/00—Closure fasteners
- Y10T292/11—Magnetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T292/00—Closure fasteners
- Y10T292/62—Bolt casings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T292/00—Closure fasteners
- Y10T292/96—Latch-spindle catches
Definitions
- the invention relates to the field of electrical devices to provide a locking function, such as motorized locks or mechatronic positioning sets, comprising an electric actuating element and a pivoting lever for locking the device.
- a locking function such as motorized locks or mechatronic positioning sets, comprising an electric actuating element and a pivoting lever for locking the device.
- the present invention relates more particularly to the holding of high security locks, having a high resistance to mechanical shocks assenées during an external attack of the device.
- the invention also relates to a mechatronic system to withstand an external shock or a high frequency vibration, as may be subject to actuators embedded in automobiles or aircraft in an accident.
- the European patent EP2412901 discloses another example of an electronic lock, comprising a stator and a rotor, a rotor locking member and a lever movable between a locking position, and unlocking.
- An arm memory is rotated between a rest position and storage under the action of a magnet. This arm comes into contact with a mechanical stop.
- the patent US5010750B1 also discloses an electronic lock, comprising a stator and a rotor, a rotor locking member and a lever movable in rotation between a locking and unlocking position.
- This lock further comprises an actuator for moving the lever between its locking and unlocking positions.
- the locking member is in contact, at rest and in the locking position, with a mechanical stop against which it relies. Therefore, by applying violent or periodic shocks, at a given frequency, it can cause the unblocking of this unexpected body. Shock vibrations applied to the frame are transmitted by the stop to the movable member, and the transmitted energy causes the displacement of this member and the undesired release of the lock.
- the invention relates, in its most general sense, to a locking device comprising a movable locking member, the displacement of which can be prevented by a locking member interacting with a motorized lever, characterized in that said motorized lever is rotatable about a axis relative to the frame, the center of gravity of said lever being located on said axis, said lever being maintained in a determined stable position and without rigid mechanical contact of the lever with the frame out of its axis of rotation.
- the mechanical wave propagating in a structure during an impact is transferred to the locking lever by the mechanical contact points that it has with the fixed frame.
- the shock wave is propagated by the pivot axis on the one hand and by the capture device (at the above-mentioned point of contact) on the other hand.
- the device is insensitive to what is transmitted by the axis, it is however sensitive to the force transmitted to the capture device. This is similar to what happens in a Newton's pendulum when the end ball is ejected because of the kinetic energy transmitted to it by the dropped ball.
- the invention thus proposes a locking device comprising an electric actuator displacing, within a frame, a locking lever in rotation about a fixed axis relative to the frame, said lever having its center of gravity on said fixed axis characterized in that said lever is maintained in a determined stable position and, at rest, without rigid mechanical contact of the lever with the frame out of its axis of rotation.
- the invention eliminates this rigid connection between frame and lever to make the lever insensitive to any external shock because the impact energy is never transmitted elsewhere than the center of gravity of the lever, which does not generates no torque and maintains a position.
- the stable position is achieved without power consumption.
- the suspension without rigid contact of the lever can thus be obtained by elastic elements (at least one mechanical spring) or preferably by magnetic elements (connection without contact magnet / magnet or magnet / ferromagnetic material).
- This suspension can be independent, or integrated with the actuating means of the locking lever.
- suspension means without rigid contact create a mechanical filter type "low-pass" which excludes transmission of shocks and vibrations at high frequency (relative to the resonant frequency of the device).
- the actuator moving the locking lever also realizes the magnetic force maintaining the stable position of the lever.
- the invention also aims at providing an actuator for a locking device driving in rotation about a fixed axis a locking lever characterized in that the locking lever has its center of gravity on said fixed axis and in that the actuator comprises at least one magnet and has a variable gap to ensure a stable position without power consumption.
- the gap is minimum when the lever is in its locked stability position and maximum in the unlocked position.
- a lock (1) comprising a frame (3), and a bolt (9) movable between translation relative to the frame (3), the displacement of which can be blocked by the engagement head of a piston (6) in a housing (10).
- This piston (6) is movable in translation in a direction perpendicular to the direction of movement of the bolt (109).
- a spring (16) pushes the piston (6) to rest in the direction of the bolt (9), so as to keep the piston head in the engaged position in the housing (10).
- the piston head (6) has a truncated or conical shape, complementary to the shape of the housing (10), so that the displacement of the bolt (9) pushes the piston (6) due to the transverse component (perpendicular the axis of movement of the bolt (9)) of the forces exerted by the inner edge of the housing (10) on the piston head (6).
- the lock further comprises a lever (5) movable between a locking position in which it prevents the displacement of the piston (6), and therefore the release of its head, and an unlocking position where it allows the displacement of the piston and the releasing the bolt (9) when the piston head (6) is completely out of the housing (10).
- the object of the invention is to prevent shocks exerted on the bolt (9) or any other accessible part of the lock propagate with sufficient energy to the lever (5) and inadvertently causes its displacement the locking position in another position where it no longer ensures the blocking movement of the piston (6).
- FIGS 1, 2a, 2b and 2c represent a motorized locking device (1) in a first embodiment.
- This lock mechanism comprises a rotary actuator (2), integral with the frame (3), electrically controlled by a polyphase switched motor, a torque motor or a proportional actuator or variable reluctance.
- the rotor (4) of the actuator (2) is mechanically coupled to the locking lever (5), the design of which allows the latter to disengage the passage of a third part (piston (6) in the drawing) when it has performed its rotational movement generated by the supply of the actuator (2).
- This lever (5) has, in association with the rotor (4) of the actuator (2) with which it is connected, a center of gravity on its axis of rotation (7).
- the lever (5) consists of a ferromagnetic material.
- the magnetic circuit is designed so that it generates a stable position of the lever at least in one position.
- Figures 2a, 2b and 2c show three states of operation of a locking device employing this first embodiment.
- the figure 2a represents the locked state.
- the bolt (9) is shown in the extended position.
- a piston (6) of linear stroke is engaged in the bolt (9) in the high position under the action of the spring (16).
- the figure 2b represents the lever (5) when it is rotated by the actuator (2) supplied with electric current. Under the action of the created torque, of greater intensity than the magneto-static torque generated by the polarized structure (8) which tends to keep it in vertical stable position, the lever (5) is pivoted.
- the Figure 2c represents the mechanism in the unlocked position.
- the bolt (9) undergoes an effort that tends to translate it. Due to the respective shapes of the piston (6) and the bolt (9), the piston (6) is driven in translation. Since the lever (5) has been pivoted, the piston (6) can continue its travel until it is completely disengaged from the bolt (9). The lock is then in an unlocked state.
- the figures 3 and 4 represent a second embodiment of a mechatronic locking device (1) according to the invention having an operation as described in the explanations of the Figures 1, 2a, 2b and 2c .
- the difference is the locking lever (5) which is designed to provide the rotor function to the actuating device as well as the magnetic interaction stability function.
- the lever (5) is balanced and polarized by the addition of a magnet (11).
- a stator (12) fixed to the frame (3) consists of ferromagnetic parts and is provided with a coil (13) generating a magnetic field. When feeding the coil (13), the magnetic field produced is channeled by the ferromagnetic structure of the stator (12).
- the interaction with the magnetic field created by the magnet (11) of the lever (5) generates a torque between the lever (5) and the stator (11), which induces the rotation of the lever (5).
- the assembly is designed so that the air gap between the lever (5) and the stator (11) varies as a function of the rotation of the lever (5). It is thus possible to achieve a minimum air gap when the lever (5) is in its stability position and maximum in the unlocked position. In doing so, when the coil (13) is no longer energized, the lever (5) undergoes a torque which tends to keep it in the stable position of minimum air gap.
- FIG 4a the device is shown in the locked position.
- the piston (6) is engaged in the bolt (9) and its travel is hampered by the vertical position of the locking lever (5).
- the air gap between the locking lever (5) and the poles (14) of the stator (12) is minimum.
- the torque exerted without contact between the lever (5) and the stator (12) is zero in this position.
- the torque on the lever (5) as a function of its position and the current flowing through the coil (13) surrounding the stator (12) is represented on the figure 5 .
- figure 4c the device is shown in an unlocked state.
- the lever (5) has been rotated from its vertical position, thus releasing the piston (6) which is then likely to descend under the action of a force on the bolt (9).
- the figure 5 presents the couples obtained on the axis of the locking lever of an actuator as presented in the descriptions of the figures 3 , 4a, 4b and 4c .
- the vertical stable position with the minimum air gap corresponds to the 0 ° position. Due to the air gap increase as the lever (5) is rotated, the currentless torque in the coil (13) describes the central solid curve, which is similar to a mechanical stiffness of magnetic origin.
- the lower - cross - and upper - squares - curves are the pairs obtained for opposite polarity currents in the coil (13). It is therefore possible to go from the locked position 0 ° to the unlocked position -30 ° by applying a current> 0 in the coil (13).
- the figure 6 presents an example which does not form part of the invention based on the use of a rotary solenoid type actuator as presented, for example, in the patent FR2834119 .
- This structure does not include a magnet, it can be doubled to increase the torque on the lever (5).
- the coil (13) When the coil (13) is energized, the created magnetic flux is channeled by the stator (12), stator (12) which is in two distinct parts, and loops back through the ferromagnetic locking lever (5). In doing so, it appears a force of attraction between the stator (12) and the lever (5).
- the actuator (2) is not polarized, we use here a mechanical spring (15) to ensure the stability of the lever (5) in vertical position.
- the mechanical spring (15) is advantageously attached to the lever (5) in the vicinity of the axis of rotation, in order to damp the transmission of the shock wave when the lock (1) undergoes an external shock.
- FIGs 7a, 7b and 7c present in detail the three distinct states of the solution presented in figure 6 .
- the lever (5) is held in a stable position without current by the elastic stiffness of the torsion spring.
- feeding the coils (12) generates a torque on the locking lever (5) which pivots by compressing the torsion spring (15).
- the lever (5) has made its entire stroke, under the action of the magnetic field generated by the stator (12). The piston (6) can then slide and release the bolt (9).
- FIGS 8a and 8b present another example which is not part of the invention as presented on the figure 6 , with the difference that the mechanical spring (15) employee is of linear type (here tension spring).
- the Figures 8a and 8b respectively represent the device in the locked and unlocked state.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Lock And Its Accessories (AREA)
Description
L'invention concerne le domaine des dispositifs électriques devant assurer une fonction de verrouillage, comme par exemple des serrures motorisées ou des ensembles mécatroniques de positionnement, comportant un élément d'actionnement électrique et un levier de pivotement assurant le blocage du dispositif.The invention relates to the field of electrical devices to provide a locking function, such as motorized locks or mechatronic positioning sets, comprising an electric actuating element and a pivoting lever for locking the device.
La présente invention concerne plus particulièrement la tenue de serrures haute sécurité, présentant une résistance élevée aux chocs mécaniques assénés lors d'une attaque extérieure du dispositif. L'invention concerne aussi un système mécatronique devant résister à un choc extérieur ou à une vibration haute fréquence, comme peuvent y être soumis les actionneurs embarqués dans les automobiles ou les avions lors d'accident.The present invention relates more particularly to the holding of high security locks, having a high resistance to mechanical shocks assenées during an external attack of the device. The invention also relates to a mechatronic system to withstand an external shock or a high frequency vibration, as may be subject to actuators embedded in automobiles or aircraft in an accident.
On connaît dans l'état de la technique le brevet français
Le brevet européen
Le brevet
Dans les solutions de serrures électroniques de l'art antérieur, l'organe de blocage est en contact, au repos et en position de verrouillage, avec une butée mécanique contre laquelle il s'appuie. De ce fait, en appliquant des chocs violents ou périodiques, à une fréquence donnée, on peut provoquer le déblocage inopiné de cet organe. Les vibrations chocs appliqués au bâti sont transmis par la butée jusqu'à l'organe mobile, et l'énergie transmise provoque le déplacement de cette organe et la libération non désirée du verrou.In the solutions of electronic locks of the prior art, the locking member is in contact, at rest and in the locking position, with a mechanical stop against which it relies. Therefore, by applying violent or periodic shocks, at a given frequency, it can cause the unblocking of this unexpected body. Shock vibrations applied to the frame are transmitted by the stop to the movable member, and the transmitted energy causes the displacement of this member and the undesired release of the lock.
L'homme du métier est donc confronté à une situation paradoxale où il est nécessaire d'assurer le blocage mécanique d'un organe de verrouillage en s'interdisant tout contact mécanique susceptible d'assurer une transmission d'énergie mécanique.The skilled person is therefore confronted with a paradoxical situation where it is necessary to ensure the mechanical locking of a locking member by preventing any mechanical contact capable of ensuring mechanical energy transmission.
L'invention concerne selon son acception la plus générale un dispositif de verrouillage comprenant organe de verrouillage mobile dont le déplacement peut être empêché par un organe de blocage interagissant avec un levier motorisé caractérisé en ce que ledit levier motorisé est mobile en rotation autour d'un axe par rapport au bâti, le centre de gravité dudit levier étant situé sur ledit axe, ledit levier étant maintenu en une position stable déterminée et sans contact mécanique rigide du levier avec le bâti hors de son axe de rotation. L'onde mécanique se propageant dans une structure lors d'un choc se transfert au levier de verrouillage par les points de contacts mécaniques qu'il a avec le bâti fixe. Ainsi, l'onde de choc se propage par l'axe de pivotement d'une part et par le dispositif de capture (au point de contact susnommé) d'autre part. Si, en raison de l'équilibrage du levier, le dispositif est insensible à ce qui est transmis par l'axe, il est en revanche sensible à l'effort transmis au dispositif de capture. Cela s'apparente à ce qui se passe dans un pendule de Newton lorsque la bille d'extrémité est éjectée en raison de l'énergie cinétique qui lui est transmise par la bille lâchée.The invention relates, in its most general sense, to a locking device comprising a movable locking member, the displacement of which can be prevented by a locking member interacting with a motorized lever, characterized in that said motorized lever is rotatable about a axis relative to the frame, the center of gravity of said lever being located on said axis, said lever being maintained in a determined stable position and without rigid mechanical contact of the lever with the frame out of its axis of rotation. The mechanical wave propagating in a structure during an impact is transferred to the locking lever by the mechanical contact points that it has with the fixed frame. Thus, the shock wave is propagated by the pivot axis on the one hand and by the capture device (at the above-mentioned point of contact) on the other hand. If, due to the balancing of the lever, the device is insensitive to what is transmitted by the axis, it is however sensitive to the force transmitted to the capture device. This is similar to what happens in a Newton's pendulum when the end ball is ejected because of the kinetic energy transmitted to it by the dropped ball.
Ainsi, quel que soit l'effort de capture généré entre le levier rotatif et le bâti, il existera toujours un risque de propagation d'un choc d'intensité suffisante permettant d'éjecter le levier de sa position de stabilité et donc de déverrouiller la serrure.Thus, regardless of the capture force generated between the rotary lever and the frame, there will always be a risk of propagation of a shock of sufficient intensity to eject the lever from its stability position and thus unlock the lock.
L'invention propose ainsi un dispositif de verrouillage comprenant un actionneur électrique déplaçant, à l'intérieur d'un bâti, un levier de verrouillage en rotation autour d'un axe fixe par rapport au bâti, ledit levier ayant son centre de gravité sur ledit axe fixe caractérisé en ce que ledit levier est maintenu en une position stable déterminée et, au repos, sans contact mécanique rigide du levier avec le bâti hors de son axe de rotation.The invention thus proposes a locking device comprising an electric actuator displacing, within a frame, a locking lever in rotation about a fixed axis relative to the frame, said lever having its center of gravity on said fixed axis characterized in that said lever is maintained in a determined stable position and, at rest, without rigid mechanical contact of the lever with the frame out of its axis of rotation.
On entend par « au repos » au sens du présent brevet l'état du dispositif lorsqu'il est verrouillé et qu'aucun effort n'est exercé sur un quelconque de ses composants.The term "at rest" in the sense of this patent means the state of the device when it is locked and no effort is exerted on any of its components.
La notion de contact mécanique rigide est généralement mise en oeuvre lorsque le levier est en contact mécanique avec une pièce rigide solidaire du bâti. Cette liaison rigide transmet alors l'énergie du choc au levier lorsque le bâti est frappé.The notion of rigid mechanical contact is generally implemented when the lever is in mechanical contact with a rigid part integral with the frame. This rigid connection then transmits the energy of the shock to the lever when the frame is struck.
Au contraire, l'invention supprime cette liaison rigide entre bâti et levier afin de rendre insensible le levier à tout choc extérieur du fait que l'énergie de choc n'est jamais transmise ailleurs qu'au centre de gravité du levier, ce qui ne génère pas de couple de rotation et assure un maintien en position.On the contrary, the invention eliminates this rigid connection between frame and lever to make the lever insensitive to any external shock because the impact energy is never transmitted elsewhere than the center of gravity of the lever, which does not generates no torque and maintains a position.
De manière avantageuse la position stable est réalisée sans consommation électrique. Advantageously the stable position is achieved without power consumption.
Divers modes de réalisation de cette fonction ont été imaginés. La suspension sans contact rigide du levier peut ainsi être obtenue par des éléments élastiques (au moins un ressort mécanique) ou préférentiellement par des éléments magnétiques (liaison sans contact aimant/aimant ou aimant/matériau ferromagnétique). Cette suspension peut être indépendante, ou intégrée aux moyens d'actionnement du levier de verrouillage.Various embodiments of this function have been devised. The suspension without rigid contact of the lever can thus be obtained by elastic elements (at least one mechanical spring) or preferably by magnetic elements (connection without contact magnet / magnet or magnet / ferromagnetic material). This suspension can be independent, or integrated with the actuating means of the locking lever.
Ces moyens de suspension sans contact rigide créent un filtre mécanique de type « passe-bas » qui exclut toute transmission des chocs et vibrations à haute fréquence (par rapport à la fréquence de résonance du dispositif).These suspension means without rigid contact create a mechanical filter type "low-pass" which excludes transmission of shocks and vibrations at high frequency (relative to the resonant frequency of the device).
Dans un mode de réalisation particulier, l'actionneur déplaçant le levier de verrouillage réalise aussi l'effort magnétique maintenant la position stable du levier.In a particular embodiment, the actuator moving the locking lever also realizes the magnetic force maintaining the stable position of the lever.
L'invention vise aussi à proposer un actionneur pour un dispositif de verrouillage entrainant en rotation autour d'un axe fixe un levier de verrouillage caractérisé en ce que le levier de verrouillage a son centre de gravité sur ledit axe fixe et en ce que l'actionneur comprend au moins un aimant et présente un entrefer variable permettant d'assurer une position stable sans consommation électrique.The invention also aims at providing an actuator for a locking device driving in rotation about a fixed axis a locking lever characterized in that the locking lever has its center of gravity on said fixed axis and in that the actuator comprises at least one magnet and has a variable gap to ensure a stable position without power consumption.
Avantageusement, l'entrefer est minimum lorsque le levier est dans sa position de stabilité verrouillée et maximum dans la position déverrouillée.Advantageously, the gap is minimum when the lever is in its locked stability position and maximum in the unlocked position.
On pourra mieux comprendre la pertinence de l'invention au travers de la description des différentes figures suivantes, présentant différentes déclinaisons possibles :
- La
figure 1 est une représentation en perspective d'un dispositif complet de serrure électromécanique basé sur l'emploi d'un moteur électrique et d'un dispositif stabilisateur sans contact selon un premier mode de réalisation. - Les
figures 2a, 2b et 2c sont des vues de face en détail du dispositif de lafigure 1 , représenté dans trois états différents. - La
figure 3 est une représentation de l'invention selon un deuxième mode de réalisation du dispositif d'actionnement, qui présente intrinsèquement une caractéristique de stabilité sans courant réalisée par l'actionneur. - Les
figures 4a, 4b et 4c sont des vues de face en détail du dispositif de lafigure 3 , représenté dans trois états différents. - La
figure 5 est un tracé du couple qui s'exerce sur le levier de verrouillage en fonction de l'alimentation de l'actionneur et de la position du levier selon la réalisation présentée enfigure 3 . - La
figure 6 est une représentation en perspective d'un dispositif complet de serrure électromécanique dans un exemple qui ne fait pas partie de l'invention basé sur l'emploi d'un actionneur de type solénoïde à palette et d'un stabilisateur à base de ressorts élastiques. - Les
figures 7a, 7b et 7c sont des vues de face de détail selon 3 états de la structure présentée enfigure 6 . - Les
figures 8a et 8b sont des vues de face de détail selon 2 états d'une variante de la structure présentée enfigure 6 .
- The
figure 1 is a perspective representation of a complete electromechanical lock device based on the use of an electric motor and a non-contact stabilizer device according to a first embodiment. - The
Figures 2a, 2b and 2c are front views in detail of the device of thefigure 1 , represented in three different states. - The
figure 3 is a representation of the invention according to a second embodiment of the actuating device, which intrinsically has a characteristic of stability without current carried by the actuator. - The
Figures 4a, 4b and 4c are front views in detail of the device of thefigure 3 , represented in three different states. - The
figure 5 is a plot of the torque that is exerted on the locking lever according to the supply of the actuator and the position of the lever according to the embodiment presented infigure 3 . - The
figure 6 is a perspective view of a complete electromechanical lock device in an example which does not form part of the invention based on the use of a solenoid-type paddle actuator and a spring-elastic stabilizer. - The
Figures 7a, 7b and 7c are front views of detail according to 3 states of the structure presented infigure 6 . - The
Figures 8a and 8b are detailed front views according to 2 states of a variant of the structure presented infigure 6 .
La description qui suit se réfère à un exemple non limitatif de réalisation sous la forme d'une serrure avec un pêne mobile. Mais l'invention n'est pas limité à la réalisation d'une serrure et s'étend à tout type de dispositif de verrouillage comportant un organe mobile pouvant être immobilisé transitoirement par l'intermédiaire d'un élément interagissant avec un levier motorisé.The description which follows refers to a nonlimiting example of embodiment in the form of a lock with a movable bolt. But the invention is not limited to the production of a lock and extends to any type of locking device comprising a movable member that can be immobilized transiently via an element interacting with a motorized lever.
Les exemples de réalisation décrits à titre non limitatif concernent une serrure (1) comprenant un bâti (3), et un pêne (9) mobile entre translation par rapport au bâti (3), dont le déplacement peut être bloqué par l'engagement la tête d'un piston (6) dans un logement (10).The embodiments described in a nonlimiting manner relate to a lock (1) comprising a frame (3), and a bolt (9) movable between translation relative to the frame (3), the displacement of which can be blocked by the engagement head of a piston (6) in a housing (10).
Ce piston (6) est mobile en translation, selon une direction perpendiculaire à la direction de déplacement du pêne (109). Un ressort (16) repousse au repos le piston (6) en direction du pêne (9), de façon à maintenir la tête du piston en position engagée dans le logement (10). La tête du piston (6) présente une forme tronquée ou conique, complémentaire de la forme du logement (10), de manière à ce que le déplacement du pêne (9) repousse le piston (6) du fait de la composante transversale (perpendiculaire à l'axe de déplacement du pêne (9)) des efforts exercés par le bord intérieur du logement (10) sur la tête du piston (6).This piston (6) is movable in translation in a direction perpendicular to the direction of movement of the bolt (109). A spring (16) pushes the piston (6) to rest in the direction of the bolt (9), so as to keep the piston head in the engaged position in the housing (10). The piston head (6) has a truncated or conical shape, complementary to the shape of the housing (10), so that the displacement of the bolt (9) pushes the piston (6) due to the transverse component (perpendicular the axis of movement of the bolt (9)) of the forces exerted by the inner edge of the housing (10) on the piston head (6).
La serrure comporte en outre un levier (5) mobile entre une position de verrouillage dans laquelle il empêche le déplacement du piston (6), et donc le dégagement de sa tête, et une position de déverrouillage où il autorise le déplacement du piston et la libération du pêne (9) lorsque la tête du piston (6) est complètement sortie du logement (10).The lock further comprises a lever (5) movable between a locking position in which it prevents the displacement of the piston (6), and therefore the release of its head, and an unlocking position where it allows the displacement of the piston and the releasing the bolt (9) when the piston head (6) is completely out of the housing (10).
Le but de l'invention est d'éviter que des chocs exercés sur le pêne (9) ou toute autre partie accessible de la serrure ne se propagent avec une énergie suffisante jusqu'au levier (5) et ne provoque de manière intempestive son déplacement de la position de verrouillage dans une autre position où il n'assurerait plus le blocage du déplacement du piston (6).The object of the invention is to prevent shocks exerted on the bolt (9) or any other accessible part of the lock propagate with sufficient energy to the lever (5) and inadvertently causes its displacement the locking position in another position where it no longer ensures the blocking movement of the piston (6).
Les
Ce levier (5) présente, en association avec le rotor (4) de l'actionneur (2) avec lequel il est lié, un centre de gravité sur son axe de rotation (7). Selon ce mode de réalisation, le levier (5) est constitué d'un matériau ferromagnétique. Le levier (5) est ainsi sensible au champ magnétique généré par une structure polarisée (8) (= aimantée) solidaire du bâti (3). Le circuit magnétique est conçu de manière à ce qu'il génère une position stable du levier au moins dans une position. Ainsi, en absence d'alimentation de l'actionneur (2), l'ensemble du rotor (4) subit une attraction magnétique, via le levier (5), qui tend à le repositionner dans la position stable verticale. Sur d'autres mécanismes, on peut aussi imaginer avoir plusieurs positions de stabilité (états verrouillé et déverrouillé).This lever (5) has, in association with the rotor (4) of the actuator (2) with which it is connected, a center of gravity on its axis of rotation (7). According to this embodiment, the lever (5) consists of a ferromagnetic material. The lever (5) is thus sensitive to the magnetic field generated by a polarized structure (8) (= magnetized) integral with the frame (3). The magnetic circuit is designed so that it generates a stable position of the lever at least in one position. Thus, in the absence of supply of the actuator (2), the entire rotor (4) undergoes a magnetic attraction, via the lever (5), which tends to reposition it in the vertical stable position. On other mechanisms, one can also imagine having several positions of stability (states locked and unlocked).
De la gauche vers la droite, les
La
Il ne peut descendre en raison de la présence du levier (5) de verrouillage. L'engagement du piston (6) dans le pêne (9) est réalisé grâce à un logement (10) dans le pêne (9). Ainsi, si un effort est appliqué sur le pêne (9), de manière à le faire translater, il est transmis au piston (6) selon deux composantes. Une composante horizontale supportée par le bâti (3) et d'autre part une composante verticale, plus faible, transmise au levier (5) de verrouillage. Le levier étant dans sa position stable verticale, il transmet cet effort au bâti, en raison d'une déformation élastique de l'axe qui le lie au moteur, ou du support de l'actionneur (2). Le piston (6) ne peut donc pas se désengager du pêne (9), la serrure est verrouillée.It can not go down because of the presence of the lever (5) locking. The engagement of the piston (6) in the bolt (9) is achieved through a housing (10) in the bolt (9). Thus, if a force is applied to the bolt (9), so as to translate it, it is transmitted to the piston (6) in two components. A horizontal component supported by the frame (3) and on the other hand a vertical component, lower, transmitted to the lever (5) locking. The lever being in its vertical stable position, it transmits this force to the frame, due to an elastic deformation of the axis which links it to the motor, or the support of the actuator (2). The piston (6) can not disengage the bolt (9), the lock is locked.
La
La
Les
En
En
Enfin, en
La
La
Les
Les
Claims (9)
- Locking device comprising:- a frame (3);- a blocking unit (6);- a motorised lever (5);- a mobile locking unit (9), the displacement of which can be prevented by the blocking unit interacting with the motorised lever (5) in order to maintain the locking device in a locked state, the said motorised lever (5) being mobile in rotation around an axis (7) relative to the frame (3), between a locking position, in which it prevents the displacement of the blocking unit, in order to maintain the locking device in the locked state, and an unlocking position, in which it permits the displacement of the blocking unit, in the locking position, the lever (5) being in mechanical contact with the frame (3) only by means of its axis of rotation (7); and- an actuator (2) which can displace the lever (5) between its locking and unlocking positions,characterised in that:- the centre of gravity of the said lever (5) is situated on the said axis (7); and- the said lever (5) is maintained in a determined stable position corresponding to the locking position, without electrical consumption, by the action of a magnetic force acting without any mechanical contact on the lever (5).
- Locking device according to Claim 1, characterised in that:- the mobile locking unit (9) comprises a receptacle (10);- the blocking unit (6) can prevent the displacement of the locking unit (9) by engaging its head in the receptacle (10);- in the locking position, the lever (5) can prevent the displacement of the blocking unit (6), and thus the release of the head of the blocking unit (6) from the receptacle (10);- in the unlocking position, the lever (5) can permit the displacement of the blocking unit (6) and the release of the locking unit (9) when the head of the blocking unit (6) is completely extracted from the receptacle (10).
- Locking device according to either of the preceding claims, characterised in that the locking device is a lock.
- Device according to either of Claims 2 to 3, wherein:- the locking unit (9) is a bolt which is mobile in translation relative to the frame (3);- the blocking unit (6) is a piston which is mobile in translation in a direction perpendicular to the direction of displacement of the bolt;- the locking device comprises a spring (16) which thrusts the piston (6) at rest back in the direction of the bolt (9), such as to maintain the head of the piston in position engaged in the receptacle (10);- the head of the piston (6) has a truncated or conical form which is complementary to the form of the receptacle (10), such that the displacement of the bolt (9) thrusts the piston (6) back because of the transverse component, perpendicular to the direction of displacement of the bolt (9), of the forces exerted by an inner edge of the receptacle (10) on the head of the piston (6).
- Locking device according to any one of the preceding claims, wherein the axis of rotation (7) is fixed.
- Locking device according to any one of the preceding claims, wherein the actuator (2) can also provide the magnetic force which maintains the said lever (5) in the determined stable position corresponding to the locking position.
- Locking device according to Claim 6, wherein the actuator (2) comprises at least one magnet (11) and has a variable air gap which makes it possible to ensure the said stable position without electrical consumption.
- Locking device according to Claim 7, characterised in that the air gap is minimum when the lever (5) is in its locking position, and is maximum in its unlocking position.
- Device according to Claim 7, wherein:- the magnet (11) is secured on the lever (5);- the actuator comprises a stator (12) which is secured on the frame (3), this stator (12) being constituted by ferromagnetic parts, and being equipped with a coil (13) which generates a magnetic field, the said ferromagnetic parts being able, when the coil (13) is supplied with power, to channel the magnetic field produced and interact with the magnetic field created by the magnet (11) of the lever (5), such as to generate a torque between the lever (5) and the stator (12), which gives rise to the rotation of the lever (5);- the air gap is situated between the lever (5) and the stator (11), and varies according to the rotation of the lever (5), the air gap being minimum when the lever (5) is in its locking position, and maximum in its unlocking position, such that, when the coil (13) is no longer supplied with power, the lever (5) is subjected to a torque which tends to maintain it in the locking position, where the air gap is minimum.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1258222A FR2994997B1 (en) | 2012-09-04 | 2012-09-04 | MOTORIZED LOCKING DEVICE RESISTANT TO SHOCKS |
PCT/FR2013/051835 WO2014037639A1 (en) | 2012-09-04 | 2013-07-30 | Shock-resistant motorized locking device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2893106A1 EP2893106A1 (en) | 2015-07-15 |
EP2893106B1 true EP2893106B1 (en) | 2019-02-13 |
Family
ID=47624207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13756626.1A Active EP2893106B1 (en) | 2012-09-04 | 2013-07-30 | Shock-resistant motorized locking device |
Country Status (5)
Country | Link |
---|---|
US (1) | US10550603B2 (en) |
EP (1) | EP2893106B1 (en) |
JP (1) | JP6301928B2 (en) |
FR (1) | FR2994997B1 (en) |
WO (1) | WO2014037639A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9890562B2 (en) * | 2012-03-20 | 2018-02-13 | Piotr Leonard Kowalczyk | Locking arrangement |
GB2520666B (en) * | 2013-08-02 | 2020-09-16 | Surelock Mcgill Ltd | Lock System |
CN104213775B (en) * | 2014-08-29 | 2016-08-24 | 江苏思瑞德物联科技有限公司 | Physical-distribution intelligent locks dual locking clutch |
FR3075240B1 (en) * | 2017-12-14 | 2019-12-06 | Cogelec | ELECTRONIC LOCK |
US10968660B2 (en) | 2018-02-28 | 2021-04-06 | Passivebolt, Inc. | Electronic door lock |
US11377877B1 (en) | 2018-12-03 | 2022-07-05 | Rockwell Collins, Inc. | Collinear latch and lock |
US11505967B2 (en) * | 2019-08-22 | 2022-11-22 | Janus International Group, Llc | Controllable door lock |
EP4290035A3 (en) * | 2019-08-22 | 2024-04-03 | Carrier Corporation | Latch assembly for vertical door |
KR102136971B1 (en) * | 2019-10-11 | 2020-07-24 | 한국전력공사 | Locking apparatus for electric device |
US11002061B1 (en) | 2020-01-04 | 2021-05-11 | Passivebolt, Inc. | Electronic door system |
SE544328C2 (en) * | 2020-08-26 | 2022-04-12 | Assa Abloy Ab | Electromagnetic arrangement for lock device, lock device comprising arrangement and method |
CN113053698B (en) * | 2021-04-09 | 2022-02-11 | 燕山大学 | Energy-saving electric locking system based on electric push rod and used for narrow and small space work |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132077U (en) * | 1982-03-02 | 1983-09-06 | 昭和ロツク株式会社 | latch lock |
JPH0735706B2 (en) * | 1987-02-23 | 1995-04-19 | 国際技術開発株式会社 | Electric lock |
DE3902992C1 (en) * | 1989-02-02 | 1990-03-29 | Dom-Sicherheitstechnik Gmbh & Co Kg, 5040 Bruehl, De | |
US5592838A (en) * | 1992-02-20 | 1997-01-14 | Mas-Hamilton Group | Anti-attack interlocks for a combination lock mechanism |
FR2945065B1 (en) * | 2009-05-03 | 2011-07-01 | Cogelec | ELECTRONIC LOCK |
FR2963043B1 (en) * | 2010-07-26 | 2012-07-27 | Cogelec | ELECTRONIC LOCK |
-
2012
- 2012-09-04 FR FR1258222A patent/FR2994997B1/en active Active
-
2013
- 2013-07-30 US US14/425,467 patent/US10550603B2/en active Active
- 2013-07-30 WO PCT/FR2013/051835 patent/WO2014037639A1/en active Application Filing
- 2013-07-30 JP JP2015529091A patent/JP6301928B2/en active Active
- 2013-07-30 EP EP13756626.1A patent/EP2893106B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2015526621A (en) | 2015-09-10 |
US20150225983A1 (en) | 2015-08-13 |
US10550603B2 (en) | 2020-02-04 |
FR2994997B1 (en) | 2014-08-29 |
WO2014037639A1 (en) | 2014-03-13 |
JP6301928B2 (en) | 2018-03-28 |
FR2994997A1 (en) | 2014-03-07 |
EP2893106A1 (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2893106B1 (en) | Shock-resistant motorized locking device | |
EP2337193B1 (en) | Power generation device and remote control for such a device | |
EP3488517B1 (en) | Electromagnetic energy converter | |
FR2945065A1 (en) | Electronic lock for door, has stator including magnetized part to retain movable stop in position without consuming energy in permanent manner when jerks are applied on lock, and rotor mounted at rotation in stator with channel | |
FR3005274A1 (en) | LABORATORY CENTRIFUGE PROVIDED WITH MEANS FOR LOCKING A COVER IN ITS CLOSED POSITION | |
EP3106933A1 (en) | Magnetic pivoting device for an arbour in a clock movement | |
EP2248971B1 (en) | Electronic lock | |
WO2011069879A1 (en) | Electric energy generating device | |
FR2816102A1 (en) | ACTUATOR WITH BALLS | |
FR2897992A1 (en) | Direct current electric motor assembly device, has carrier member with mechanical elements to retain brush holders in assembly position outside of central passage, where holders urge brushes into contact position | |
EP2589733A1 (en) | Electromagnetic locking device with linear support | |
EP2148027A1 (en) | Electromechanical locking device | |
EP1421590B1 (en) | Electromagnetic actuator with two stable end-of-travel positions, in particular for controlling air intake duct valves for internal combustion engines | |
EP3688866B1 (en) | Electromagnetic energy converter | |
FR2970157A1 (en) | Rack for e.g. storing propane gas bottles in fuel dispensing station, has lock comprising ring, and movable hook mounted on edge of electric lock that is fitted into ring and removed from ring, where hook is moved between two positions | |
EP2586940B1 (en) | Locking device of a wing | |
FR3036421A1 (en) | DEVICE FOR LOCKING A RETAINING FINGER CONNECTED TO A COVER | |
EP3729618B1 (en) | Actuator with open-loop control direct drive | |
EP1632970B1 (en) | Electromagnetic trip and electronic circuit breaker containing it | |
EP0693765A1 (en) | Electromagnetic actuator for a low tension circuit breaker | |
EP1836713B1 (en) | Microsystem with integrated reluctant magnetic circuit | |
EP1376639B1 (en) | Electromagnetic trip device with a linear plunger movement | |
EP0389728A2 (en) | Dual bolt security lock actuated by electric motor | |
CH698945B1 (en) | Secured electromagnet for controlling lock of bank note dispenser, has movable armature to carry out successive or simultaneous movements of rotation and translation under effect of magnetic field generated by current pulse in coil | |
FR2992014A1 (en) | Electromagnetic suction cup for use in access control field to maintain locked door, has magnetic material plate swinging from first state to second state during swinging of cup to locked and unlocked states, respectively |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
19A | Proceedings stayed before grant |
Effective date: 20150930 |
|
19F | Resumption of proceedings before grant (after stay of proceedings) |
Effective date: 20180102 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COGELEC |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013050761 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: E05B0047000000 Ipc: E05C0001080000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E05B 47/00 20060101ALI20180803BHEP Ipc: H01F 7/14 20060101ALI20180803BHEP Ipc: E05C 1/08 20060101AFI20180803BHEP Ipc: E05B 47/06 20060101ALI20180803BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180827 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1096329 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013050761 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190514 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190513 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1096329 Country of ref document: AT Kind code of ref document: T Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013050761 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
26N | No opposition filed |
Effective date: 20191114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190730 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130730 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240726 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240724 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240724 Year of fee payment: 12 |