EP2885792B1 - Supraleitende spuleneinrichtung mit spulenwicklung - Google Patents

Supraleitende spuleneinrichtung mit spulenwicklung Download PDF

Info

Publication number
EP2885792B1
EP2885792B1 EP13779543.1A EP13779543A EP2885792B1 EP 2885792 B1 EP2885792 B1 EP 2885792B1 EP 13779543 A EP13779543 A EP 13779543A EP 2885792 B1 EP2885792 B1 EP 2885792B1
Authority
EP
European Patent Office
Prior art keywords
coil
segments
neighboring
winding
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13779543.1A
Other languages
English (en)
French (fr)
Other versions
EP2885792A1 (de
Inventor
Marijn Pieter Oomen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2885792A1 publication Critical patent/EP2885792A1/de
Application granted granted Critical
Publication of EP2885792B1 publication Critical patent/EP2885792B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to a coil device having a coil winding of a superconducting band conductor.
  • HTS high-temperature superconductors or even high-T c superconductors
  • the most important material class of the so-called second-generation HTS conductors are compounds of the type RE-Ba 2 Cu 3 O x , where RE stands for a rare-earth element or a mixture of such elements.
  • RE stands for a rare-earth element or a mixture of such elements.
  • Many superconducting tape conductors with such ceramic superconducting layers are very sensitive to mechanical stresses and therefore must be protected from mechanical stresses such as tensile, compressive or shear stresses during manufacture as well as during operation of the superconducting coils.
  • Typical casting agents are epoxy resins, with which the coil can be cast, for example, with a Vakuumvergussclar.
  • the gluing or casting of the coil turns causes the finished coil to be protected from mechanical stresses, for example due to Lorentz forces in strong magnetic fields and / or due to centrifugal forces during fast rotation.
  • a problem with the use of superconducting coils is the differential thermal contraction of the various materials in the coils during cooling to operating temperature.
  • an operating temperature for example, 30 K to 70 K
  • the polymeric constituents of the adhesive and / or the potting compound as well as any existing insulating materials of a greater thermal shrinkage than the metallic and ceramic components of the strip conductor.
  • the differential thermal contraction leads to the formation of stresses during and after cooling, which can result in damage to the superconducting layer.
  • the use of a winding carrier with a greater thermal contraction than that of the strip conductor can cause the formation of radial tensile stresses perpendicular to the plane of the strip conductor and thus a compression of the superconducting layer.
  • the radial tensile stresses lead much easier than any radial compressive stresses to damage the superconducting properties to a delamination of the superconducting layer of the substrate of the strip conductor.
  • a radial pull causes inner layers of the coil winding to be pulled towards the coil interior, and thereby compressing the strip conductor in the longitudinal direction.
  • the damage hereby can lead to a decrease of the maximum operating current of up to 60%, which makes the conventional winding methods for superconducting coils with the today's 2G-HTS materials unsuitable.
  • JP 2010 267 835 A1 discloses a cylindrical superconducting coil of coaxial superconducting segments separated by regions of reduced adhesion.
  • the object of the present invention is to provide a superconducting coil device which avoids the disadvantages mentioned.
  • the coil device according to the invention comprises at least one superconducting band conductor which has a band-shaped substrate band and a superconducting layer arranged on the substrate band.
  • the coil device is subdivided into a plurality of segments, wherein within each segment adjacent turns are cast or glued together, and wherein in the intermediate region between two adjacent segments at least in one subregion the adjacent ones Windings are at most weakly connected or glued together.
  • the coil device according to the invention has a substantially reduced radial tensile stress of the strip conductor when cooled to its operating temperature.
  • the subdivision into segments causes the coil winding according to the invention to have at its operating temperature a substantially reduced tensile stress in the strip conductor, which is advantageously in the range of the tensile stress that the strip conductor of a coil with the winding number of a single segment would have.
  • the invention is thus based on the finding that the voltage caused by thermal shrinkage increases with the number of turns, and that this increase can be reduced by a subdivision into weakly connected segments.
  • the operating temperature of the superconductor is for example between 25 K and 77 K.
  • the coil device may additionally have the following features:
  • the adjacent windings may be connected at least in a partial area with such a weak adhesive that the compound is separated at a tension below 10 MPa.
  • the weak connection in the subregion is designed so that a radial tensile stress occurring on cooling of the superconductor to its operating temperature leads to a separation of the compound in this subregion, before the tensile stress can cause damage or even delamination of the superconducting layer.
  • the separation of the compound even at 5 MPa, particularly advantageous at 3 MPa.
  • 2G-HTS materials can withstand a tensile stress of several MPa.
  • At least a portion of the gap between adjacent turns may be free of adhesive bonding or potting compound. If the adjacent turns of the segments in the partial area are therefore not connected in this embodiment, then the segments in this partial area can deform independently of one another from the beginning. Even at low radial tensile stresses, the individual segments behave at least in the subregions as individual, independently thermally shrinking units.
  • the coil means may comprise a potting compound that envelops the adjacent turns within the segments.
  • This potting compound may advantageously be an epoxide.
  • the same potting compound may also be present between the segments in those sections that are outside the subregions with at most weakly connected adjacent turns.
  • the coil device may have a coating with a release agent or an inserted band of a release agent at least in a partial region of the intermediate region between two adjacent segments.
  • the coating or the inserted band of a release agent then advantageously prevent the wetting with the potting compound or the adhesive in these areas, so that then the potting or bonding is either completely prevented or the bond in comparison to other areas of the winding only extremely weak is.
  • the release agent may advantageously be PTFE.
  • the strip conductor in the intermediate region between two adjacent segments, may be provided, at least in a partial region, with an additional layer which is formed from a material having a coefficient of thermal expansion which is smaller than the coefficient of thermal expansion of the strip conductor is. It is advantageous if the thermal shrinkage of the additional layer by cooling to the operating temperature is below 0.3%, particularly advantageously below 0.1%. In this embodiment, there is no void between the adjacent segments in said subregion because the region between the unconnected or weakly connected band conductors is now filled by the less shrinkable interlayer.
  • This intermediate layer behaves like an effectively expanding layer in comparison to the other materials and thus has an increased relative space requirement during and after cooling. This results in no cavities and thus causes greater mechanical stability of the coil winding after cooling.
  • the additional layer may be formed of graphite having a very low coefficient of thermal expansion. Particularly advantageously, the material for the additional layer has a negative coefficient of thermal expansion.
  • the band conductor in the intermediate region between two adjacent segments, can be provided, at least in one subregion, with an additional layer which is formed from a flexible material with a tensile strength of less than 10 MPa.
  • the stresses between the segments can be compensated by yielding the flexible material of the additional layer. If the adjacent strip conductors are still weakly connected in this area, then the weak connection can advantageously remain even after cooling.
  • the coil winding is mechanically more stable than in the complete absence of connection and in the formation of cavities.
  • the coil winding is formed in a first embodiment of the invention as a racetrack coil or as a rectangular coil.
  • the coil winding is designed as a racetrack coil or as a rectangular coil, then there are several partial areas at most weak connection of the adjacent turns of adjacent segments within the curved portions of the racetrack or rectangular coil.
  • the subregions with at most weak connection can advantageously lie in the four corners of the racetrack or rectangular coil.
  • This embodiment has the advantage that on the straight portions of the coil, which form a large proportion of the entire length of the winding, all turns can be potted or glued together. This leads to a significantly improved mechanical stability of the coil winding.
  • This embodiment is based on the finding that the tensile stresses arising due to thermal shrinkage arise primarily in the curved regions and therefore can best be reduced there as well by dividing them into segments.
  • the winding can shrink relatively stress-relieved. This is comparable to the thermal shrinkage of a flat stack of tape conductors in which differences in the thermal expansion coefficients of the different materials can be compensated for by varying degrees of contraction in the tape conductor plane and perpendicular to the tape conductor plane.
  • the sub-regions with at most weak connection of the adjacent turns of adjacent segments may lie within the regions which comprise the curved regions of the coil winding and transition regions bordering on both sides.
  • straight transition areas are provided in which there is at most a weak connection between the segments.
  • the coil winding is formed as an approximately cylindrical winding and the segments are formed as radial segments.
  • the sections with at most weak connection of the adjacent turns in a non-inventive embodiment can extend over at least one complete turn of 360 degrees.
  • This embodiment has the advantage that a radial tensile stress which arises between the segments as a result of cooling is compensated as far as possible.
  • the effective strain relief due to the weak connection between the segments is particularly effective wherever the coil winding is curved, ie in the case of a cylindrical coil over the entire circumference of the coil.
  • the approximately cylindrical coil is also formed from alternating straight areas and bent areas. Depending on the number of total existing areas or angle segments, the cylindrical shape is then given only more or less approximately.
  • the subregions with at most weak connection of the adjacent turns of adjacent radial segments are advantageously located in the region of the bent regions. However, it should not be ruled out that the subregions with at most weak connection extend into transition regions on both sides of the bent regions, so that a bending of the strip conductor is advantageously avoided.
  • the superconducting layer of the coil device may comprise a high-temperature superconductor of the second generation, in particular ReBa 2 Cu 3 O x .
  • the coil means may comprise a cooling system, wherein the segments of the coil winding individually to the cooling system can be coupled.
  • This embodiment is particularly advantageous if the segments are connected to one another either over the entire circumference of the coil or over relatively large portions at most weakly. Then it is particularly important to ensure that the individual segments are thermally well coupled to the cooling system for cooling to the operating temperature of the superconductor.
  • Fig. 1 shows a cross section of a superconducting strip conductor 1, in which the layer structure is shown schematically.
  • the strip conductor in this example comprises a substrate strip 2, which here is a 100 ⁇ m thick substrate made of a nickel-tungsten alloy. Alternatively, steel bands or bands of an alloy such as Hastelloy can be used.
  • a 0.5 ⁇ m thick buffer layer 4 is arranged, which here contains the oxidic materials CeO 2 and Y 2 O 3 .
  • the actual superconducting layer 6, here a 1 ⁇ m thick layer of YBa 2 Cu 3 O x which in turn is covered with a 50 ⁇ m thick cover layer 8 made of copper.
  • the material YBa 2 Cu 3 O x it is also possible to use the corresponding compounds REBa 2 Cu 3 O x of other rare earths RE.
  • a further 50 .mu.m thick cover layer 8 made of copper is arranged here, followed by an insulator 10, which in this example is designed as a Kapton strip 25 .mu.m thick.
  • the Insulator 10 may also be constructed of other insulating materials such as other plastics.
  • the width of the insulator 10 is slightly larger than the width of the remaining layers of the strip conductor 1, so that windings W i , W i + 1 coming over one another are reliably insulated from one another in a winding of the coil device.
  • the strip conductor 1 may also comprise insulator layers on both outer surfaces, or the lateral regions of the superconducting strip conductor 1 may additionally be protected by insulating layers. It is also possible to wrap an insulator tape only in the preparation of the coil winding as a separate band in the coil device. This is particularly advantageous when several strip conductors are wound in parallel, which need not be isolated from each other. Then, for example, a packet of 2 to 6 superimposed strip conductors without their own insulator layer can be wound together with an additionally inserted insulator strip in common turns.
  • the substrate tape 2, the buffer layer 4, the superconducting layer 6 and the cover layers 8 in their entirety undergo a thermal contraction of about 0.3% when cooling from about 300 K to about 30 K.
  • the thermal contraction is much higher, at about 1.2%.
  • these differences can be compensated for by varying in-plane shrinkage and perpendicular to the plane of the strip conductor. In the curved areas, however, they lead to the formation of radial tensile stresses. In the following two embodiments it is shown how the radial tensile stresses can be reduced by the division into segments.
  • the layers with high thermal contraction are made as thin as possible, especially in the curved regions.
  • the in Fig. 1 illustrated band should be for both subsequent embodiments as a winding material based.
  • the insulator 10 with 25 microns is advantageously designed relatively thin compared to the rest of the total thickness of the strip conductor 1.
  • Fig. 2 shows a section of a first coil winding 12 according to a first embodiment.
  • the coil winding 12 is designed as a rectangular coil.
  • the clipping in Fig. 2 shows an area around one of the four curved corners of the rectangular coil. It puts Fig. 2 only a part of the coil winding 12, namely a portion of the winding with six superimposed turns of strip conductors 1, each according to the example in Fig. 1 are constructed.
  • three of the turns are part of an inner segment S i
  • three of the turns shown are part of an outer segment S i + 1 .
  • each segment includes even more than the three turns exemplified.
  • each segment may comprise between 10 and 200 turns, more preferably between 50 and 100 turns.
  • the entire coil winding may for example comprise between 2 and 50 such segments, more advantageously between 5 and 10 segments.
  • all windings W i are potted with an encapsulation compound 14 of epoxy in this exemplary embodiment.
  • the potting compound 14 has been introduced in this embodiment after the winding of the coil (so-called dry winding) by means of Vakuumverguss.
  • an impregnating resin or an adhesive may also be introduced during the winding of the coil winding (so-called wet winding), wherein the band conductor is typically wetted on both sides with the impregnating resin or adhesive before winding.
  • the adjacent windings W i-1 , W i are shed in several subsections in this exemplary embodiment.
  • the four straight sections 28 of the rectangular coil are in Fig. 2 two shown schematically. Within these sections 28 all windings W i of the entire coil with the potting compound 14th firmly connected to each other, even in the intermediate region 20 between two adjacent segments S i , S i + 1 .
  • the adjacent turns W i-1 , W i of different segments S i , S i + 1 are not connected to one another by potting compound 14.
  • the transition regions 26 adjoining each curved region 24 on both sides in which no potting compound 14 is also arranged between the adjacent turns W i-1 , W i of different segments S i , S i + 1 .
  • a PTFE tape 16 is inserted, which prevents that in the casting of the wound coil of this portion 22 is filled with potting compound 14.
  • the PTFE tape 16 has a similar layer thickness as the average thickness of the potting compound introduced during casting, here a thickness of 25 microns.
  • the inserted PTFE tape 16 thus advantageously prevents the adhesive bonding of the strip conductors 1 of adjacent turns W i-1 , W i to the potting compound 14 in said partial region 22, since the interposed PTFE strip 16 is not wetted by the potting compound 14. This also prevents the formation of a strong connection of the adjacent strip conductor 1 in this sub-area 22. In this embodiment, no chemical adhesive bond is formed in this portion 22.
  • the band conductor may also be coated with a release agent such as, for example, PTFE. Depending on the properties of the coating, either no adhesive bond or only a weak adhesive bond between the adjacent strip conductors 1 can then be formed.
  • a further layer may also be incorporated in the intermediate region 20.
  • the material of this further layer can either have a low or even negative thermal expansion coefficient, and / or the layer can have a flexible material with a tensile strength of less than 10 MPa.
  • the further layer contributes to reducing radial tensile stresses in the intermediate regions 20 and that the mechanical strength of the coil in the curved regions 24 and the adjacent transition regions 26 is increased.
  • the rectangular coil of the exemplary embodiment shown has four relatively long straight regions 32 and four relatively short curved regions 24, each having transition regions 26 adjoining on both sides. For the reduction of the tensile stress on the strip conductor, especially a mechanical decoupling and strain relief of the segments in the curved regions 24 is effective.
  • the rectangular coil can be completely potted in the straight portions 32 as in conventional methods and thereby retains much of the mechanical stability achieved with these methods.
  • the maximum weak connection of the adjacent strip conductor 1 between two adjacent segments S i , S i + 1 in addition to the curved portions 24 also in both adjacent transition regions 26, so that the transition of the straight portions 32 in the curved portions 24 and Transition of the strongly connected to the weakly connected intermediate areas do not form too high tensile, compressive or shear stresses.
  • Fig. 3 shows a second coil winding 30 according to a second embodiment in a schematic plan view.
  • This second coil winding 30 is formed as an approximately cylindrical winding, in which example the cylindrical shape is composed only approximately of straight portions 32 and curved portions 24.
  • the coil winding each comprises eight straight areas 22 and eight curved areas 24, however, the number of individual areas may also be much larger.
  • the coil winding comprises only two segments Si and Si + 1.
  • the number of segments can also be significantly greater, for example, it can be between 2 and 50 and more preferably between 5 and 10.
  • all adjacent turns are firmly connected to each other by potting compound, even across the boundary 36 of the two segments.
  • the potting compound between the adjacent strip conductors 1 is interrupted.
  • the strip conductors 1 adjoining the partial regions 22 are coated with the release agent PTFE, which acts as a wetting agent for the potting compound and thereby causes voids to be formed without potting compound in the partial regions 22.
  • the adjacent semiconductors are not connected to one another in this example, and the formation of the cavities effectively brings about a strain relief of the radial tensile stresses which increase in the curved regions 24. By spreading or compression of the cavities with changes in temperature, both tensile and compressive stresses on the strip conductors 1 of the coil winding 30 can be reduced.

Description

  • Die vorliegende Erfindung betrifft eine Spuleneinrichtung mit einer Spulenwicklung aus einem supraleitenden Bandleiter.
  • Auf dem Gebiet der supraleitenden Maschinen und der supraleitenden Magnetspulen sind Spuleneinrichtungen bekannt, bei denen supraleitende Drähte oder Bandleiter in Spulenwicklungen gewickelt werden. Für klassische Niedertemperatursupraleiter wie NbTi und Nb3Sn werden üblicherweise Leiter in Drahtform verwendet. Die Hochtemperatursupraleiter oder auch Hoch-Tc-Supraleiter (HTS) sind dagegen supraleitende Materialien mit einer Sprungtemperatur oberhalb von 25 K und bei einigen Materialklassen oberhalb von 77 K. Diese HTS-Leiter liegen typischerweise in Form von flachen Bandleitern vor, die ein bandförmiges Substratband und eine auf dem Substratband angeordnete Supraleitungsschicht aufweisen. Zusätzlich weisen die Bandleiter oft noch weitere Schichten wie Stabilisierungsschichten, Pufferschichten und in manchen Fällen auch Isolationsschichten auf.
  • Die wichtigste Materialklasse der sogenannten HTS-Leiter zweiter Generation (2G-HTS) sind Verbindungen des Typs RE-Ba2Cu3Ox, wobei RE für ein Element der seltenen Erden oder eine Mischung solcher Elemente steht. Viele supraleitende Bandleiter mit solchen keramischen supraleitenden Schichten sind sehr empfindlich gegenüber mechanischen Belastungen und müssen daher sowohl während der Herstellung als auch während des Betriebes der supraleitenden Spulen vor mechanischen Belastungen wie Zug-, Druck- oder Scherspannungen geschützt werden.
  • Werden elektrische Spulen aus supraleitenden Bandleitern hergestellt, dann werden aufeinanderfolgende Wicklungen der Bandleiter typischerweise entweder bereits beim Wickeln durch ein Imprägnierharz miteinander verklebt, oder die fertig gewickelte Spule wird anschließend mit einem Vergussmittel vergossen. Typische Vergussmittel sind hier Epoxidharze, mit denen die Spule beispielsweise mit einem Vakuumvergussverfahren vergossen werden kann. Die Verklebung oder der Verguss der Spulenwindungen bewirkt, dass die fertige Spule vor mechanischen Belastungen beispielsweise aufgrund von Lorentzkräften in starken Magnetfeldern und / oder aufgrund von Fliehkräften bei schneller Rotation geschützt wird.
  • Ein Problem bei der Verwendung von supraleitenden Spulen liegt in der unterschiedlichen thermischen Kontraktion der verschiedenen Materialien in den Spulen bei der Abkühlung auf Betriebstemperatur. Bei der Abkühlung auf eine Betriebstemperatur von beispielsweise 30 K bis 70 K unterliegen vor allem die polymeren Bestandteile des Klebemittels und / oder der Vergussmasse sowie von eventuell vorhandenen Isolatormaterialien einer stärkeren thermischen Schrumpfung als die metallischen und keramischen Bestandteile des Bandleiters. Die unterschiedliche thermische Kontraktion führt bei und nach der Abkühlung zur Ausbildung von Spannungen, die eine Schädigung der supraleitenden Schicht zur Folge haben können. Auch die Verwendung eines Wicklungsträgers mit einer größeren thermischen Kontraktion als der des Bandleiters kann die Ausbildung von radialen Zugspannungen senkrecht zur Ebene des Bandleiters und damit eine Kompression der supraleitenden Schicht bewirken. Vor allem die radialen Zugspannungen führen wesentlich leichter als eventuelle radiale Druckspannungen zu einer Schädigung der supraleitenden Eigenschaften bis hin zu einer Delamination der Supraleitungsschicht vom Substrat des Bandleiters. Ein radialer Zug bewirkt, dass innen liegende Lagen der Spulenwicklung in Richtung zum Spuleninneren gezogen werden, und dass dadurch der Bandleiter in Längsrichtung gestaucht wird. Die Schädigungen hierdurch können zu einer Abnahme des maximalen Betriebsstroms von bis zu 60 % führen, was die herkömmlichen Wickelverfahren für supraleitende Spulen mit den heutigen 2G-HTS-Materialien untauglich macht.
  • In der nicht vorveröffentlichten Anmeldung mit dem amtlichen Aktenzeichen 102011077457.2 (veröffentlicht als DE 10 2011 077 457 A1 ) wird eine Spulenwicklung beschrieben, bei der ein supraleitender Bandleiter so auf einen Wicklungsträger gewickelt wird, dass sowohl bei Raumtemperatur als auch bei einer Betriebstemperatur der Spule ein positiver radialer Druck zwischen den Lagen der Spulenwicklung besteht. Dies kann durch geeignete Wahl des Wicklungsträgers und des Wickelzugs erreicht werden sowie durch eine schwach ausgebildete Verbindung von Wicklung und Wicklungsträger. Doch auch mit entsprechend hergestellten Spulen, bei denen der Wicklungsträger nicht zur Ausbildung von Zugspannungen beiträgt, können alleine durch die Unterschiede in den thermischen Kontraktionen der verschiedenen Materialien in der Wicklung ungünstige Zugspannungen entstehen. Insbesondere bei großen Wicklungen mit mehr als beispielsweise 100 Windungen können durch diesen Effekt große Zugspannungen entstehen, die die supraleitenden Eigenschaften der Spule stark beeinträchtigen.
  • DE 10 2011 118 465 A1 betrifft eine supraleitende Spule. Nicht kreisförmige Spulenschichtabschnitte sind einander an Grenzabschnitten mit einer Haftkraft, die kleiner gesetzt ist als diejenige in anderen Abschnitten, benachbart. JP 2010 267 835 A1 offenbart eine zylindrische supraleitende Spule aus koaxialen supraleitenden Segmenten, die durch Bereiche mit reduzierter Haftung voneinander getrennt sind.
  • Aufgabe der vorliegenden Erfindung ist es, eine supraleitende Spuleneinrichtung anzugeben, die die genannten Nachteile vermeidet.
  • Diese Aufgabe wird durch die in Anspruch 1 beschriebene Spuleneinrichtung gelöst. Die erfindungsgemäße Spuleneinrichtung umfasst wenigstens einen supraleitenden Bandleiter, der ein bandförmiges Substratband und eine auf dem Substratband angeordnete Supraleitungsschicht aufweist. Die Spuleneinrichtung ist in mehrere Segmente unterteilt, wobei innerhalb jedes Segmentes benachbarte Windungen miteinander vergossen oder verklebt sind und wobei im Zwischenbereich zwischen zwei benachbarten Segmenten mindestens in einem Teilbereich die benachbarten Windungen höchstens schwach miteinander verbunden oder verklebt sind.
  • Hierdurch wird bewirkt, dass die erfindungsgemäße Spuleneinrichtung bei Abkühlung auf ihre Betriebstemperatur eine wesentlich reduzierte radiale Zugspannung des Bandleiters aufweist. Für geeignete Geometrien und Materialien bewirkt die Unterteilung in Segmente, dass die erfindungsgemäße Spulenwicklung bei ihrer Betriebstemperatur eine wesentlich reduzierte Zugspannung in dem Bandleiter aufweist, die vorteilhaft im Bereich der Zugspannung liegt, die der Bandleiter einer Spule mit der Windungszahl eines einzelnen Segmentes aufweisen würde. Die Erfindung beruht also auf der Erkenntnis, dass die durch thermische Schrumpfung verursachte Spannung mit der Zahl der Windungen steigt, und dass dieser Anstieg durch eine Unterteilung in schwach verbundene Segmente reduziert werden kann. Die Betriebstemperatur des Supraleiters liegt dabei beispielsweise zwischen 25 K und 77 K.
  • Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Spuleneinrichtung gehen aus den Unteransprüchen hervor. Demgemäß kann die Spuleneinrichtung zusätzlich folgende Merkmale aufweisen:
    Im Zwischenbereich zwischen zwei benachbarten Segmenten können die benachbarten Windungen mindestens in einem Teilbereich mit einem so schwachen Klebemittel verbunden sein, dass die Verbindung bei einer Spannung unterhalb von 10 MPa aufgetrennt wird. In dieser Ausführungsform ist die schwache Verbindung in dem Teilbereich so ausgelegt, dass eine bei Abkühlung des Supraleiters auf seine Betriebstemperatur auftretende radiale Zugspannung zu einer Auftrennung der Verbindung in diesem Teilbereich führt, bevor die Zugspannung eine Schädigung oder gar Delamination der supraleitenden Schicht bewirken kann. Vorteilhaft kann die Auftrennung der Verbindung auch schon bei 5 MPa, besonders vorteilhaft bei 3 MPa erfolgen. Derzeit verwendete 2G-HTS-Materialien können eine Zugspannung von einigen MPa aushalten.
  • Im Zwischenbereich zwischen zwei benachbarten Segmenten kann im Zwischenraum zwischen benachbarten Windungen mindestens ein Teilbereich frei von Verklebung oder Vergussmasse sein. Sind die benachbarten Windungen der Segmente in dem Teilbereich also in dieser Ausführungsform gar nicht verbunden, so können sich die Segmente in diesem Teilbereich von Anfang an unabhängig voneinander verformen. Schon bei geringen radialen Zugspannungen verhalten sich die einzelnen Segmente zumindest in den Teilbereichen wie einzelne, unabhängig voneinander thermisch schrumpfende Einheiten.
  • In einer weiteren Ausführungsform kann die Spuleneinrichtung eine Vergussmasse umfassen, die die benachbarten Windungen innerhalb der Segmente umhüllt. Diese Vergussmasse kann vorteilhaft ein Epoxid sein. Dieselbe Vergussmasse kann auch zwischen den Segmenten in denjenigen Abschnitten vorhanden sein, die außerhalb der Teilbereiche mit höchstens schwach verbundenen benachbarten Windungen liegen.
  • In einer weiteren Ausführungsform kann die Spuleneinrichtung mindestens in einem Teilbereich des Zwischenbereichs zwischen zwei benachbarten Segmenten eine Beschichtung mit einem Trennmittel oder ein eingelegtes Band aus einem Trennmittel aufweisen. Die Beschichtung oder das eingelegte Band aus einem Trennmittel verhindern dann vorteilhaft die Benetzung mit der Vergussmasse oder dem Klebemittel in diesen Bereichen, so dass dann der Verguss oder die Verklebung entweder vollständig verhindert wird oder die Verklebung im Vergleich zu anderen Bereichen der Wicklung nur äußerst schwach ausgeprägt ist. Das Trennmittel kann vorteilhaft PTFE sein.
  • In einer weiteren Ausführungsform kann im Zwischenbereich zwischen zwei benachbarten Segmenten der Bandleiter mindestens in einem Teilbereich mit einer zusätzlichen Schicht versehen sein, die aus einem Material mit einem kleineren thermischen Ausdehnungskoeffizienten als dem effektiven thermischen Ausdehnungskoeffizienten des Bandleiters ausgebildet ist. Vorteilhaft ist es, wenn die thermische Schrumpfung der zusätzlichen Schicht durch die Abkühlung auf die Betriebstemperatur unterhalb von 0,3% liegt, besonders vorteilhaft unter 0,1%. In dieser Ausführungsform entsteht zwischen den benachbarten Segmenten in dem genannten Teilbereich kein Hohlraum, denn der Bereich zwischen den unverbundenen oder schwach verbundenen Bandleitern wird nun durch die weniger stark schrumpfende Zwischenschicht ausgefüllt. Diese Zwischenschicht verhält sich im Vergleich zu den anderen Materialien wie eine sich effektiv ausdehnende Schicht und hat also bei und nach der Abkühlung einen erhöhten relativen Platzbedarf. Dies führt dazu, dass keine Hohlräume entstehen und bewirkt somit eine größere mechanische Stabilität der Spulenwicklung nach Abkühlung. Beispielsweise kann die zusätzliche Schicht aus Graphit ausgebildet sein, das einen sehr niedrigen thermischen Ausdehnungskoeffizienten besitzt. Besonders vorteilhaft hat das Material für die zusätzliche Schicht einen negativen thermischen Ausdehnungskoeffizienten.
  • In einer weiteren Ausführungsform kann im Zwischenbereich zwischen zwei benachbarten Segmenten der Bandleiter mindestens in einem Teilbereich mit einer zusätzlichen Schicht versehen sein, die aus einem flexiblen Material mit einer Zugfestigkeit von unter 10 MPa ausgebildet ist. In dieser Ausführungsform können die Spannungen zwischen den Segmenten durch Nachgeben des flexiblen Materials der zusätzlichen Schicht ausgeglichen werden. Sind die benachbarten Bandleiter in diesem Bereich noch schwach verbunden, so kann die schwache Verbindung vorteilhaft auch nach Abkühlung bestehen bleiben. In dieser Ausführungsform ist die Spulenwicklung mechanisch stabiler als bei völligem Fehlen einer Verbindung und bei der Ausbildung von Hohlräumen.
  • Die Spulenwicklung ist in einer ersten erfindungsgemäßen Ausbildung als Rennbahnspule oder als Rechteckspule ausgebildet.
  • Ist die Spulenwicklung als Rennbahnspule oder als Rechteckspule ausgebildet, dann liegen mehrere Teilbereiche mit höchstens schwacher Verbindung der benachbarten Windungen benachbarter Segmente innerhalb der gekrümmten Bereiche der Rennbahn- oder Rechteckspule. Insbesondere können die Teilbereiche mit höchstens schwacher Verbindung vorteilhaft in den vier Ecken der Rennbahn- oder Rechteckspule liegen. Diese Ausführungsform hat den Vorteil, dass auf den geraden Abschnitten der Spule, die einen großen Anteil an der gesamten Länge der Wicklung bilden, alle Windungen miteinander vergossen oder verklebt sein können. Dies führt zu einer deutlich verbesserten mechanischen Stabilität der Spulenwicklung. Dieser Ausführungsform liegt die Erkenntnis zugrunde, dass die durch thermische Schrumpfung entstehenden Zugspannungen vorrangig in den gekrümmten Bereichen entstehen und also auch dort am besten durch die Unterteilung in Segmente reduziert werden können. In den geraden Abschnitten einer Rechteck- oder Rennbahnspule kann die Wicklung relativ spannungsarm schrumpfen. Dies ist vergleichbar mit der thermischen Schrumpfung eines ebenen Stapels von Bandleitern, bei dem Unterschiede in den thermischen Expansionskoeffizienten der verschiedenen Materialien durch unterschiedlich starke Kontraktion in der Bandleiterebene und senkrecht zur Bandleiterebene ausgeglichen werden können.
  • In einer alternativen, nicht erfindungsgemäßen Ausführungsform können die Teilbereiche mit höchstens schwacher Verbindung der benachbarten Windungen benachbarter Segmente innerhalb der Bereiche liegen, die die gekrümmten Bereiche der Spulenwicklung und jeweils beidseitig angrenzende Übergangsbereiche umfassen. In dieser Ausführungsform sind also noch an die gekrümmten Bereiche angrenzende, gerade Übergangsbereiche vorgesehen, in denen zwischen den Segmenten höchstens eine schwache Verbindung vorliegt. Dies birgt den Vorteil, dass dort, wo die starke Verbindung der Segmente in eine schwache Verbindung der Segmente übergeht, noch keine großen radialen Zugspannungen durch die Abkühlung vorliegen. Es wird also ein Abknicken des Bandleiters in dem Bereich vermieden, wo die starke Verbindung der Segmente in eine schwache Verbindung der Segmente übergeht.
  • In einer weiteren erfindungsgemäßen Ausbildung ist die Spulenwicklung als annähernd zylindrische Wicklung ausgebildet und die Segmente sind als radiale Segmente ausgebildet.
  • Ist die Spuleneinrichtung als zylindrische Wicklung mit radialen Segmenten ausgebildet, dann können sich die Teilbereiche mit höchstens schwacher Verbindung der benachbarten Windungen in einer nicht erfindungsgemäßen Ausführungsform über jeweils mindestens eine ganze Windung von 360 Grad erstrecken. Diese Ausführungsform birgt den Vorteil, dass eine zwischen den Segmenten durch Abkühlung entstehende radiale Zugspannung möglichst weitgehend ausgeglichen wird. Die effektive Zugentlastung durch die schwache Verbindung zwischen den Segmenten ist überall dort besonders wirkungsvoll, wo die Spulenwicklung gekrümmt ist, bei einer zylindrischen Spule also auf dem gesamten Umfang der Wicklung.
  • Erfindungsgemäß ist die annähernd zylindrische Spule auch aus miteinander abwechselnden geraden Bereichen und gebogenen Bereichen ausgebildet. Je nach Anzahl der insgesamt vorliegenden Bereiche oder Winkelsegmente ist die zylindrische Form dann nur mehr oder weniger näherungsweise gegeben. In dieser Ausführungsform liegen vorteilhaft die Teilbereiche mit höchstens schwacher Verbindung der benachbarten Windungen benachbarter radialer Segmente im Bereich der gebogenen Bereiche. Es soll aber nicht ausgeschlossen sein, dass sich die Teilbereiche mit höchstens schwacher Verbindung in Übergangsbereiche zu beiden Seiten der gebogenen Bereiche erstrecken, so dass ein Abknicken des Bandleiters vorteilhaft vermieden wird.
  • Die Supraleitungsschicht der Spuleneinrichtung kann einen Hochtemperatursupraleiter der zweiten Generation, insbesondere ReBa2Cu3Ox umfassen.
  • Die Spuleneinrichtung kann ein Kühlsystem umfassen, wobei die Segmente der Spulenwicklung jeweils einzeln an das Kühlsystem angekoppelt sein können. Diese Ausgestaltung ist besonders vorteilhaft, wenn die Segmente entweder über den gesamten Umfang der Spule hinweg oder über relativ große Teilbereiche höchstens schwach miteinander verbunden sind. Dann ist es besonders wichtig, sicherzustellen, dass die einzelnen Segmente thermisch gut an das Kühlsystem zur Abkühlung auf die Betriebstemperatur des Supraleiters angekoppelt sind.
  • Die Erfindung wird nachfolgend anhand zweier bevorzugter Ausführungsbeispiele unter Bezugnahme auf die angehängten Zeichnungen beschrieben, in denen:
  • Fig. 1
    einen schematischen Querschnitt eines supraleitenden Bandleiters zeigt,
    Fig. 2
    einen Ausschnitt einer Spulenwicklung gemäß einem ersten Ausführungsbeispiel zeigt und
    Fig. 3
    eine Spulenwicklung gemäß einem zweiten Ausführungsbeispiel in schematischer Draufsicht zeigt.
  • Fig. 1 zeigt einen Querschnitt eines supraleitenden Bandleiters 1, in dem der Schichtaufbau schematisch dargestellt ist. Der Bandleiter umfasst in diesem Beispiel ein Substratband 2, das hier ein 100 µm dickes Substrat aus einer Nickel-WolframLegierung ist. Alternativ sind auch Stahlbänder oder Bänder aus einer Legierung wie z.B. Hastelloy verwendbar. Über dem Substratband 2 ist eine 0,5 µm dicke Pufferschicht 4 angeordnet, die hier die oxidischen Materialien CeO2 und Y2O3 enthält. Darüber folgt die eigentliche Supraleitungsschicht 6, hier eine 1 µm dicke Schicht aus YBa2Cu3Ox, die wiederum mit einer 50 µm dicken Deckschicht 8 aus Kupfer abgedeckt ist. Alternativ zu dem Material YBa2Cu3Ox können auch die entsprechenden Verbindungen REBa2Cu3Ox anderer seltener Erden RE verwendet werden. Auf der gegenüberliegenden Seite des Substratbandes 2 ist hier eine weitere 50 µm dicke Deckschicht 8 aus Kupfer angeordnet, gefolgt von einem Isolator 10, der in diesem Beispiel als 25 µm dickes Kaptonband ausgebildet ist. Der Isolator 10 kann aber auch aus anderen isolierenden Materialien wie beispielsweise anderen Kunststoffen aufgebaut sein. In dem gezeigten Beispiel ist die Breite des Isolators 10 etwas größer als die Breite der übrigen Schichten des Bandleiters 1, so dass bei einer Wicklung der Spuleneinrichtung übereinander zu liegen kommende Windungen Wi, Wi+1 zuverlässig gegeneinander isoliert sind. Alternativ zu dem gezeigten Beispiel kann der Bandleiter 1 auch auf beiden Außenflächen Isolatorschichten umfassen, oder es können auch die seitlichen Bereiche des supraleitenden Bandleiters 1 zusätzlich durch isolierende Schichten geschützt sein. Es ist weiterhin möglich, ein Isolatorband erst bei der Herstellung der Spulenwicklung als separates Band in die Spuleneinrichtung einzuwickeln. Dies ist besonders vorteilhaft, wenn mehrere Bandleiter parallel gewickelt werden, die nicht gegeneinander isoliert werden müssen. Dann kann beispielsweise ein Paket von 2 bis 6 übereinanderliegenden Bandleitern ohne eigene Isolatorschicht zusammen mit einem zusätzlich eingelegten Isolatorband in gemeinsamen Windungen gewickelt werden.
  • Typischerweise erfahren das Substratband 2, die Pufferschicht 4, die Supraleitungsschicht 6 und die Deckschichten 8 in ihrer Gesamtheit bei der Abkühlung von etwa 300 K auf etwa 30 K eine thermische Kontraktion von etwa 0,3 %. Für übliche Materialien des Isolators 10 und der als Vergussmasse oder Klebemasse eingesetzten Epoxide liegt die thermische Kontraktion dagegen wesentlich höher, bei etwa 1.2 %. Bei ebenen Stapeln von Bandleitern und auf den geraden Abschnitten einer Spulenwicklung können diese Unterschiede durch unterschiedliche Schrumpfung in der Ebene und senkrecht zur Ebene des Bandleiters ausgeglichen werden. In den gekrümmten Bereichen dagegen führen sie zu der Ausbildung von radialen Zugspannungen. In den folgenden beiden Ausführungsbeispielen wird gezeigt, wie die radialen Zugspannungen durch die Unterteilung in Segmente reduziert werden können. Besonders vorteilhaft ist es, wenn dabei die Schichten mit hoher thermischer Kontraktion vor allem in den gekrümmten Bereichen möglichst dünn ausgebildet sind. Der in Fig. 1 dargestellte Bandleiter soll für beide nachfolgenden Ausführungsbeispiele als Wicklungsmaterial zugrunde gelegt sein. Hier ist der Isolator 10 mit 25 µm vorteilhaft relativ dünn im Vergleich zur übrigen Gesamtdicke des Bandleiters 1 ausgestaltet.
  • Fig. 2 zeigt einen Ausschnitt einer ersten Spulenwicklung 12 gemäß einem ersten Ausführungsbeispiel. In diesem Beispiel ist die Spulenwicklung 12 als Rechteckspule ausgestaltet. Der Ausschnitt in Fig. 2 zeigt dabei einen Bereich um eine der vier gekrümmten Ecken der Rechteckspule. Dabei stellt Fig. 2 nur einen Teil der Spulenwicklung 12 dar, nämlich einen Abschnitt der Wicklung mit sechs übereinanderliegenden Windungen aus Bandleitern 1, die jeweils gemäß dem Beispiel in Fig. 1 aufgebaut sind. Dabei sind drei der Windungen Teil eines inneren Segmentes Si, und drei der dargestellten Windungen sind Teil eines äußeren Segmentes Si+1. Wie angedeutet, umfasst jedes Segment noch mehr als die drei beispielhaft dargestellten Windungen. Beispielsweise kann jedes Segment zwischen 10 und 200 Windungen umfassen, besonders vorteilhaft zwischen 50 und 100 Windungen. Die gesamte Spulenwicklung kann beispielsweise zwischen 2 und 50 solcher Segmente umfassen, besonders vorteilhaft zwischen 5 und 10 Segmente. Innerhalb jedes Segments Si, Si+1 sind in diesem Ausführungsbeispiel alle Windungen Wi mit einer Vergussmasse 14 aus Epoxid vergossen. Die Vergussmasse 14 ist in diesem Ausführungsbeispiel nach dem Wickeln der Spule (sogenanntes Dry Winding) mittels Vakuumverguss eingebracht worden. Alternativ kann auch bereits beim Wickeln der Spulenwicklung ein Imprägnierharz oder ein Klebemittel eingebracht werden (sogenanntes Wet Winding), wobei der Bandleiter vor dem Wickeln typischerweise auf beiden Seiten mit dem Imprägnierharz oder Klebemittel benetzt wird. Auch in den Zwischenbereichen 20 zwischen den Segmenten Si, Si+1 sind die benachbarten Windungen Wi-1, Wi in diesem Ausführungsbeispiel in mehreren Teilabschnitten miteinander vergossen. Von den vier geraden Teilabschnitten 28 der Rechteckspule sind in Fig. 2 zwei schematisch dargestellt. Innerhalb dieser Teilabschnitte 28 sind alle Windungen Wi der gesamten Spule mit der Vergussmasse 14 fest miteinander verbunden, auch im Zwischenbereich 20 zwischen zwei benachbarten Segmenten Si, Si+1. In den gekrümmten Bereichen 24, von denen die gesamte Rechteckspule vier umfasst, sind dagegen die benachbarten Windungen Wi-1, Wi unterschiedlicher Segmente Si, Si+1 nicht durch Vergussmasse 14 miteinander verbunden. Dasselbe gilt für die sich an jeden gekrümmten Bereich 24 beidseitig anschließenden Übergangsbereiche 26, in denen auch keine Vergussmasse 14 zwischen den benachbarten Windungen Wi-1, Wi unterschiedlicher Segmente Si, Si+1 angeordnet ist. Stattdessen ist in diesem gesamten Teilbereich 22 zwischen den Segmenten Si, Si+1 ein PTFE-Band 16 eingelegt, welches verhindert, dass bei dem Vergießen der gewickelten Spule dieser Teilbereich 22 mit Vergussmasse 14 aufgefüllt wird. In diesem Beispiel hat das PTFE-Band 16 eine ähnliche Schichtdicke wie die mittlere Dicke der beim Verguss eingebrachten Vergussmasse, hier eine Dicke von 25 µm. Das eingelegte PTFE-Band 16 verhindert so vorteilhaft die Verklebung der Bandleiter 1 benachbarter Windungen Wi-1, Wi mit der Vergussmasse 14 im genannten Teilbereich 22, da das zwischengelegte PTFE-Band 16 nicht von der Vergussmasse 14 benetzt wird. Damit wird außerdem die Ausbildung einer starken Verbindung der benachbarten Bandleiter 1 in diesem Teilbereich 22 vermieden. In diesem Ausführungsbeispiel ist gar keine chemische Klebeverbindung in diesem Teilbereich 22 ausgebildet. Alternativ zu diesem Beispiel kann im Teilbereich 22 der Bandleiter auch mit einem Trennmittel wie beispielsweise PTFE beschichtet sein. Je nach Eigenschaften der Beschichtung kann dann auch entweder gar keine Klebeverbindung oder nur eine schwache Klebeverbindung zwischen den benachbarten Bandleitern 1 ausgebildet sein. Alternativ oder zusätzlich zu dem hier dargestellten Trennmittel 16 kann auch eine weitere Schicht in dem Zwischenbereich 20 eingefügt sein. Das Material dieser weiteren Schicht kann entweder einen geringen oder sogar negativen thermischen Expansionskoeffizienten aufweisen, und / oder die Schicht kann ein flexibles Material mit einer Zugfestigkeit von unter 10 MPa aufweisen. In beiden Ausgestaltungen trägt die weitere Schicht dazu bei, dass radiale Zugspannungen in dem Zwischenbereichen 20 reduziert werden, und dass die mechanische Festigkeit der Spule in den gekrümmten Bereichen 24 und den angrenzenden Übergangsbereichen 26 erhöht wird.
  • Allen obenstehend beschriebenen Varianten ist gemeinsam, dass durch die höchstens schwache Verbindung der benachbarten Bandleiter 1 in den Teilbereichen 22 die Zugspannung auf den Windungen Wi der gesamten Spule reduziert wird. Durch die höchstens schwache Verbindung in diesen Teilbereichen 22 verhält sich die maximale Zugspannung auf dem Bandleiter 1 durch thermische Kontraktion der verschiedenen Materialien annähernd so wie in einer Spulenwicklung, die nur die Windungszahl eines einzelnen Segmentes Si aufweist. Die Rechteckspule des gezeigten Ausführungsbeispiels weist vier relativ lange gerade Bereiche 32 und vier relativ kurze gekrümmte Bereiche 24 mit jeweils beidseitig angrenzenden Übergangsbereichen 26 auf. Für die Reduktion der Zugspannung auf dem Bandleiter ist vor allem eine mechanische Entkopplung und Zugentlastung der Segmente in den gekrümmten Bereichen 24 effektiv. Daher kann die Rechteckspule in den geraden Bereichen 32 wie bei herkömmlichen Verfahren vollständig vergossen werden und behält dadurch einen Großteil der mit diesen Verfahren erreichten mechanischen Stabilität. Vorteilhaft liegt die höchstens schwache Verbindung der benachbarten Bandleiter 1 zwischen zwei benachbarten Segmenten Si, Si+1 neben den gekrümmten Bereichen 24 auch noch in beidseitig angrenzenden Übergangsbereichen 26 vor, damit sich beim Übergang der geraden Bereiche 32 in die gekrümmten Bereiche 24 und beim Übergang der stark verbundenen zu den schwach verbundenen Zwischenbereichen keine zu hohen Zug-, Druck- oder Scherspannungen ausbilden.
  • Fig. 3 zeigt eine zweite Spulenwicklung 30 gemäß einem zweiten Ausführungsbeispiel in schematischer Draufsicht. Diese zweite Spulenwicklung 30 ist als annähernd zylindrische Wicklung ausgebildet, wobei in diesem Beispiel die zylindrische Form nur näherungsweise aus geraden Bereichen 32 und gekrümmten Bereichen 24 zusammengesetzt ist. Im hier gezeigten Beispiel umfasst die Spulenwicklung jeweils acht gerade Bereiche 22 und acht gekrümmte Bereiche 24, allerdings kann die Zahl der einzelnen Bereiche auch noch wesentlich größer sein. Im gezeigten zweiten Ausführungsbeispiel umfasst die Spulenwicklung nur zwei Segmente Si und Si+1. Die Zahl der Segmente kann allerdings auch wesentlich größer sein, beispielsweise kann sie zwischen 2 und 50 und besonders vorteilhaft zwischen 5 und 10 liegen. Im gesamten vergossenen Bereich 34 des gezeigten zweiten Ausführungsbeispiels sind alle benachbarten Windungen durch Vergussmasse fest miteinander verbunden, auch über die Grenze 36 der beiden Segmente hinweg. Nur in den acht Teilbereichen 22 an der Grenze 36 der Segmente ist die Vergussmasse zwischen den benachbarten Bandleitern 1 unterbrochen. In diesem zweiten Ausführungsbeispiel sind die an die Teilbereichen 22 angrenzenden Bandleiter 1 mit dem Trennmittel PTFE beschichtet, das für die Vergussmasse entnetzend wirkt und dadurch bewirkt, dass sich in den Teilbereichen 22 Hohlräume ohne Vergussmasse ausbilden. In den Teilbereichen 22 sind also die benachbarten Halbleiter in diesem Beispiel nicht miteinander verbunden, und die Ausbildung der Hohlräume bewirkt effektiv eine Zugentlastung der in den gekrümmten Bereichen 24 verstärkt auftretenden radialen Zugspannungen. Durch ein Aufspreizen oder eine Kompression der Hohlräume bei Änderungen der Temperatur können sowohl Zug- als auch Druckspannungen auf den Bandleitern 1 der Spulenwicklung 30 reduziert werden.

Claims (9)

  1. Supraleitende Spuleneinrichtung mit einer Spulenwicklung (12, 30) aus mehreren Windungen (Wi) umfassend wenigstens einen supraleitenden Bandleiter (1), der ein bandförmiges Substratband (2) und eine auf dem Substratband (2) angeordnete Supraleitungsschicht (6) aufweist, wobei die Spulenwicklung (12, 30) in mehrere Segmente (Si) unterteilt ist, wobei innerhalb jedes Segmentes (Si) benachbarte Windungen (Wi, Wi+1) miteinander vergossen oder verklebt sind und wobei im Zwischenbereich (20) zwischen zwei benachbarten Segmenten (Si, Si+1) mindestens in einem Teilbereich (22) benachbarte Windungen (Wi-1, Wi) höchstens schwach miteinander verbunden oder verklebt sind, wobei die Spulenwicklung (12) entweder als Rennbahnspule oder Rechteckspule, wobei mehrere Teilbereiche (22) mit höchstens schwacher Verbindung der benachbarten Windungen (Wi-1, Wi) benachbarter Segmente (Si, Si+1) innerhalb der gekrümmten Bereiche (24) der Rennbahn- oder Rechteckspule liegen, oder als annähernd zylindrische Wicklung, bei der die Segmente (Si) als radiale Segmente (Si) ausgebildet sind und die aus miteinander abwechselnden geraden Bereichen (32) und gekrümmten Bereichen (24) ausgebildet ist, wobei die Teilbereiche (22) mit höchstens schwacher Verbindung der benachbarten Windungen (Wi-1, Wi) benachbarter radialer Segmente (Si) im Bereich der gekrümmten Bereiche (24) liegen, ausgebildet ist.
  2. Spuleneinrichtung nach Anspruch 1, wobei im Zwischenbereich (20) zwischen zwei benachbarten Segmenten (Si, Si+1) mindestens in einem Teilbereich (22) die benachbarten Windungen (Wi-1, Wi) höchstens mit einem so schwachen Klebemittel verbunden sind, dass die Verbindung bei einer Spannung unterhalb von 10 MPa aufgetrennt wird.
  3. Spuleneinrichtung nach Anspruch 1, wobei im Zwischenbereich (20) zwischen zwei benachbarten Segmenten (Si, Si+1) im Zwischenraum zwischen benachbarten Windungen mindestens ein Teilbereich (22) frei von Verklebung oder Vergussmasse ist.
  4. Spuleneinrichtung nach einem der vorhergehenden Ansprüche mit einer Vergussmasse (14), die die benachbarten Windungen (Wi, Wi+1) innerhalb der Segmente (Si) umhüllt.
  5. Spuleneinrichtung nach einem der vorhergehenden Ansprüche, die mindestens in einem Teilbereich (22) des Zwischenbereichs (20) zwischen zwei benachbarten Segmenten (Si, Si+1) eine Beschichtung mit einem Trennmittel (16) oder ein eingelegtes Band aus einem Trennmittel (16) aufweist.
  6. Spuleneinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Zwischenbereich (20) zwischen zwei benachbarten Segmenten (Si, Si+1) der Bandleiter (1) mindestens in einem Teilbereich (22) mit einer zusätzlichen Schicht versehen ist, die aus einem Material mit einem kleineren thermischen Ausdehnungskoeffizienten als dem effektiven thermischen Ausdehnungskoeffizienten des Bandleiters (1) ausgebildet ist.
  7. Spuleneinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Zwischenbereich (20) zwischen zwei benachbarten Segmenten (Si, Si+1) der Bandleiter (1) mindestens in einem Teilbereich (22) mit einer zusätzlichen Schicht versehen ist, die aus einem flexiblen Material mit einer Zugfestigkeit von unter 10 MPa ausgebildet ist.
  8. Spuleneinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Supraleitungsschicht (6) einen Hochtemperatursupraleiter der zweiten Generation, insbesondere ReBa2Cu3Ox, umfasst.
  9. Spuleneinrichtung nach einem der vorhergehenden Ansprüche, umfassend ein Kühlsystem, wobei die Segmente (Si) der Spulenwicklung (12, 30) jeweils einzeln an das Kühlsystem angekoppelt sind.
EP13779543.1A 2012-10-31 2013-10-10 Supraleitende spuleneinrichtung mit spulenwicklung Active EP2885792B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012219899.7A DE102012219899A1 (de) 2012-10-31 2012-10-31 Supraleitende Spuleneinrichtung mit Spulenwicklung
PCT/EP2013/071152 WO2014067759A1 (de) 2012-10-31 2013-10-10 Supraleitende spuleneinrichtung mit spulenwicklung

Publications (2)

Publication Number Publication Date
EP2885792A1 EP2885792A1 (de) 2015-06-24
EP2885792B1 true EP2885792B1 (de) 2019-09-04

Family

ID=49447530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13779543.1A Active EP2885792B1 (de) 2012-10-31 2013-10-10 Supraleitende spuleneinrichtung mit spulenwicklung

Country Status (5)

Country Link
US (1) US9721707B2 (de)
EP (1) EP2885792B1 (de)
KR (1) KR102050345B1 (de)
DE (1) DE102012219899A1 (de)
WO (1) WO2014067759A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015001746A1 (de) * 2015-02-11 2016-08-11 Karlsruher Institut für Technologie Schienengebundene Magnetschwebebahn
AU2019214510B2 (en) * 2018-02-01 2021-04-08 Tokamak Energy Ltd Partially-insulated HTS coils
DE102019202053A1 (de) * 2019-02-15 2020-08-20 Siemens Aktiengesellschaft Spulenelement und elektrische Maschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267835A (ja) * 2009-05-15 2010-11-25 Toshiba Corp 超電導コイル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434451C2 (de) * 1974-07-17 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Innenkontakt zwischen zwei Spulen in benachbarten Wicklungslagen einer supraleitenden Magnetwicklung
JP4752744B2 (ja) * 2006-11-30 2011-08-17 住友電気工業株式会社 超電導コイル
JP4864785B2 (ja) * 2007-03-27 2012-02-01 株式会社東芝 高温超電導線材、高温超電導コイルおよびその製造方法
JP5823116B2 (ja) * 2010-11-15 2015-11-25 株式会社東芝 超電導コイル
DE102011077457B4 (de) 2011-06-14 2017-09-28 Siemens Ag Verfahren zur Herstellung einer Spule mit Spulenwicklung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267835A (ja) * 2009-05-15 2010-11-25 Toshiba Corp 超電導コイル

Also Published As

Publication number Publication date
DE102012219899A1 (de) 2014-04-30
US9721707B2 (en) 2017-08-01
KR20150079814A (ko) 2015-07-08
WO2014067759A1 (de) 2014-05-08
EP2885792A1 (de) 2015-06-24
KR102050345B1 (ko) 2019-11-29
US20150279533A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
DE102011118465B4 (de) Supraleitende Spule
EP1797599B1 (de) Supraleitende strombegrenzereinrichtung vom resistiven typ mit bandförmiger hoch-tc-supraleiterbahn
EP2917922B1 (de) Supraleitende spuleneinrichtung mit spulenwicklung und kontakten
EP2987173B1 (de) Supraleitende spuleneinrichtung mit spulenwicklung und herstellungsverfahren
DE102010040272B4 (de) Hochtemperatur-Supraleiter (HTS)-Spule
DE112010005678T5 (de) Supraleitende Spule, Rotationsvorrichtung und Herstellungsverfahren für eine supraleitende Spule
EP1508175B1 (de) VERFAHREN ZUR HERSTELLUNG EINES VOLLTRANSPONIERTEN HOCH-Tc-VERBUNDSUPRALEITERS SOWIE NACH DEM VERFAHREN HERGESTELLTER LEITER
DE102018217983A1 (de) Rotor und Maschine mit supraleitendem Permanentmagneten in einem Rotorträger
EP2885792B1 (de) Supraleitende spuleneinrichtung mit spulenwicklung
DE102011077457B4 (de) Verfahren zur Herstellung einer Spule mit Spulenwicklung
AT406923B (de) Mehrfachparallelleiter für elektrische maschinen und geräte
EP2634779A1 (de) System mit einem dreiphasigen supraleitfähigen elektrischen Übertragungselement
DE102011079323B3 (de) Supraleitende Spulenanordnung und Verfahren zu deren Herstellung
WO2013045229A1 (de) Bandförmiger hochtemperatur-supraleiter und verfahren zur herstellung eines bandförmigen hochtemperatur-supraleiters
EP1797601A1 (de) VORRICHTUNG ZUR RESISTIVEN STROMBEGRENZUNG MIT BANDFÖRMIGER HOCH-Tc-SUPRALEITERBAHN
DE102006032972B3 (de) Supraleitende Strombegrenzereinrichtung vom resistiven Typ mit mehrteiligem Halteelement
DE102016206573A1 (de) Elektrische Spulenwicklung
DE2907083C2 (de) Supraleitende Magnetwicklung mit mehrren Wicklungslagen
DE102016213753A1 (de) Gewickelte Leiteranordnung mit Abstandselement
DE102011078592B4 (de) Supraleitende Spulenanordnung und Verfahren zu deren Herstellung
EP4297110A1 (de) Armierter hochtemperatursupraleitender bandleiter
DE102019202053A1 (de) Spulenelement und elektrische Maschine
DE102018217480A1 (de) Supraleitender Bandleiter mit flächiger Isolationsschicht
DE1564762C (de) Supraleitungsmagnetspule
DE1564762B1 (de) Supraleitungsmagnetspule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1176526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013532

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013532

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

26N No opposition filed

Effective date: 20200605

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013013532

Country of ref document: DE

Owner name: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191010

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1176526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191010

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210114 AND 20210120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221024

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221020

Year of fee payment: 10

Ref country code: GB

Payment date: 20221018

Year of fee payment: 10

Ref country code: DE

Payment date: 20221028

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528