EP2882874B1 - Hot-blast lance - Google Patents
Hot-blast lance Download PDFInfo
- Publication number
- EP2882874B1 EP2882874B1 EP13737131.6A EP13737131A EP2882874B1 EP 2882874 B1 EP2882874 B1 EP 2882874B1 EP 13737131 A EP13737131 A EP 13737131A EP 2882874 B1 EP2882874 B1 EP 2882874B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shell
- hot
- innermost
- hot air
- lance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010410 layer Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 229910010293 ceramic material Inorganic materials 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 claims description 11
- 238000005260 corrosion Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000007667 floating Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000007664 blowing Methods 0.000 claims description 3
- 239000006261 foam material Substances 0.000 claims description 3
- 238000010310 metallurgical process Methods 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims description 2
- 239000002318 adhesion promoter Substances 0.000 claims 2
- 238000005422 blasting Methods 0.000 claims 1
- 239000003112 inhibitor Substances 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000010309 melting process Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000005496 tempering Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 208000004860 Blast Crisis Diseases 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- -1 flame spraying Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4606—Lances or injectors
- C21C5/4613—Refractory coated lances; Immersion lances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/16—Introducing a fluid jet or current into the charge
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2250/00—Specific additives; Means for adding material different from burners or lances
- C21C2250/02—Hot oxygen
Definitions
- the invention relates to a hot blast lance for use in metallurgical processes, such as bpsw. steel production, with which hot air is blown above a molten bath of a steel converter, which consists of an outer shell, and at least one inner shell, and disposed between the outer and an inner shell at least one coolant-flowing gap or cooling channel, according to the preamble of claim 1.
- both pig iron and scrap are used as feedstock.
- sponge iron in the form of DRI (Direct Reduced Iron) or HBI (Hot Briquetted Iron) can be used.
- An example of this is from the EP 1 920 075 B1 known.
- WO 03/006693 A1 a gas injection lance is known, which is cooled in an inner jacket and an outer jacket. The gas injection lance is thus well protected as such, but it is withdrawn when using hot wind relatively much heat energy from the hot blast, which is then bad for the overall energy balance, if you want to go with high scrap rates.
- Hot air is understood as meaning an oxygen-containing gas heated to 1,200 ° C. (500-1,400 ° C.).
- the gas is typically composed of the main components oxygen, nitrogen and argon.
- the oxygen content is in the range of normal air (21%) and can be up to 35% or even 50% enriched with oxygen.
- a synthesis gas could be understood as a hot blast, which is obtained, for example, from the exhaust gases of a combustion reaction of a fuel such as blast furnace gas, coke gas, converter gas or natural gas or other gaseous or liquid hydrocarbon with air.
- the O 2 content of the synthesis gas can be adjusted by the air ratio of the combustion and, if appropriate, simultaneous enrichment of the combustion air with oxygen and / or the mixing of the combustion exhaust gases with pure oxygen.
- the hot blast produced in this process has levels of CO2 and water as combustion products.
- the invention is therefore the object of further developing a hot blast lance that hot blast can be particularly effective, so with minimal temperature losses in a reaction vessel, eg a steel converter can be introduced, and the lance better adapted to this environment of use.
- the core of the invention is that the inner jacket or the innermost jacket at least partially consists of a thermally insulating additional jacket, or a thermally insulating jacket, or is coated with a thermally insulating layer.
- the H finallyluftnachverbrennung requires a special device for forwarding the hot blast from the hot blast source and for introducing the hot blast in the reaction vessel, via a corresponding, designed here according to the invention hot blast lance.
- a converter can be used, as it is known from steel production. Basically, an afterburning can be done with Hot wind also operate in any other usual in metallurgy reaction vessel, it is irrelevant whether the walls of the vessel are completely, partially or not cooled with cooling water.
- a metallurgical reaction vessel In the interior of a metallurgical reaction vessel typically prevail temperatures of about 1,000 ° C, wherein in the gas phase, temperatures of up to 2,000 ° C can be achieved.
- temperatures of up to 2,000 ° C can be achieved.
- a permanent operation of a blowing lance in the region of a reaction vessel for example.
- it is essential to cool the injection lance above the liquid bath surface, it is essential to cool the injection lance, in this case so the hot blast lance intensively with water. Water cooling protects the hot blast lance from the high gas temperatures prevailing in the upper chamber of the reaction vessel.
- the high gas temperatures go to a considerable extent on the in the reaction vessel (eg, in a steel converter) running and possibly.
- the injection lance maintained idR exothermic reactions. As such, water-cooled lances are known per se.
- the water-cooled shell of juxtaposed, cooling water pipes is constructed, which are interconnected with narrow, solid webs.
- two adjacent tubes are connected at one end to a manifold, the other two ends are each connected to a flow and a return header.
- a pipe-to-pipe construction is introduced in which the pipes are welded directly to each other without web.
- three tubes of ever smaller diameter are arranged concentrically to each other. This creates between the outer and the middle tube, as well as between the middle and the inner tube each have a concentric space. If one connects the outer and the inner pipe at one end of the lance and shortens the middle pipe, the result is a geometry in which the two interspaces can be used as supply and return for the lance cooling water.
- spacers are introduced between the tubes. Often these spacers are designed as welded in the longitudinal direction on the respective thinner pipe narrow webs.
- the described water-cooled device is used with regard to protection of heat entry.
- a special feature lies in the fact that hot wind is not a cold but a typical one 1200 ° C hot medium is.
- the hot-blast process is not always a continuous process, but is a batch process, especially in the converter process. Accordingly, the plant components provided for this purpose are always exposed to hot blast phases, whereby the plant parts cool down during the process breaks regularly. The result is an uneven load profile, which leads to a significant thermal cycling (TWB) of the applied equipment parts. This results in a special requirement profile on the side facing the media of the hot blast lance. This is taken into account with the present invention.
- the material surface of the innermost of the three tubes through which hot wind flows is exposed to high thermal, oxidative and abrasive loads. To protect the side facing the hot wind, this can be protected by a suitable coating against the aforementioned loads. In view of the considerable thermal load, it will generally be possible to work only with thin ( ⁇ 10 ⁇ m) layers, since thicker layers tend to embrittle and chip due to the different thermal expansion compared to the base material.
- Suitable layer systems are ceramic layers, overlay layers or application layers, which can be applied by conventional application methods, chemical vapor deposition or thermal vapor deposition, thermal spraying, build-up welding or application of SolGel systems, the layers possibly still being formed by a thermal step (by curing, diffusion, crosslinking, etc.) can be improved in their functionality.
- the inner shell or the innermost shell is provided at least on the inside with a protective layer or coating.
- the lance advantageously still has a good resistance to abrasion and corrosion. This is important insofar as the flow rate of hot air because of the lower density of the hot air compared to air under normal conditions is significantly larger.
- the mechanical load of the inner shell of the lance due to the flow of hot air is thereby greater than is the case with an oxygen lance, in which the oxygen is conveyed substantially in a cold state and usually under high pressure through the lance.
- the outer jacket is cooled against the high ambient temperatures in converter operation. Nevertheless, it can be achieved that the hot air flowing through the inner jacket, if necessary, is cooled to a slight extent.
- the cooling channel through which water flows is separated by two walls from the inner tube of the lance, through which the hot air flows. Due to the flowing hot air, the inner tube is mechanically, thermally and chemically stressed comparatively strong. This can lead to cracks in the jacket of the inner tube.
- the intermediate jacket is then advantageously achieved that in case of damage to the inner tube by the flowing hot air not immediately coolant can reach the interior of the lance and is conveyed from there with the flowing hot air into the converter. In the described embodiment, only hot air then passes into the region between the inner jacket and the intermediate jacket. Because the Hot air there can not continue to flow with the comparatively high flow velocity, the intermediate coat is then no longer mechanically stressed.
- the inner shell or the innermost shell consists of several layers, and that at least the innermost of these layers, namely layer consists of an abrasion and / or corrosion resistant material.
- the inner shell or the innermost shell consists of a ceramic material or is coated with the same. Ceramic materials advantageously meet the requirements outlined above.
- the abrasion and / or corrosion-resistant material or the ceramic material is provided on the adhering to the inner or innermost shell side with a temperature-resistant bonding agent or liner.
- the bonding agent or liner is so elastic that it compensates for the difference in the coefficient of expansion of the inner or innermost shell to abrasions- and / or corrosion-resistant material or to the ceramic material.
- the abrasion- and / or corrosion-resistant material or the ceramic material consists of a layer system in which the surface to which the hot wind flows consists of a dense ceramic material and the surface facing away from the hot wind consists of a ceramic foam material.
- the ceramic foam material has a higher elasticity than the solid ceramic material.
- the coating is relatively thin. This makes it possible to keep the weight of the lance within limits. This proves to be advantageous insofar as the lance must be moved in the vertical direction relative to the converter during operation. A small layer thickness also proves advantageous because of the thermal cycling of the hot air lance in converter operation. This alternating stress is due to the fact that before the tapping of the converter, the lance is moved out. This stops the delivery of hot air through the lance. The lance then cools until hot air is conveyed through the lance at the next converter operation. The lance is heated again accordingly.
- a suitable material for a coating may consist, for example, of Al 2 O 3 , SiC, SiSiC or a super-Alloy. This material can be applied for example by sputtering, electrochemical or electrolytic coating, flame spraying, paint comparable to a color or by applying a suspension in which the liquid evaporates and the solid particles cover the outer surface or inner surface of the inner shell of the lance.
- this ceramic material has good thermal insulation properties (ie low thermal conductivity).
- the material is also sufficiently mechanically stable (especially against abrasion) and has a sufficient Shock resistance to the occurring temperature fluctuations.
- the operation is intermittent. This means that hot air is not continuously conveyed through the inner jacket.
- the hot blast source in the form of a pebble heater is re-fired to store heat for the production of hot air for the next melting process.
- no hot air is conveyed through the lance, so that the inner jacket of the lance cools.
- hot air is again conveyed through the inner shell of the lance, so that the inner shell is then exposed to correspondingly high temperatures.
- At least one intermediate jacket or gap is arranged, and is flowed through with coolant.
- a Temper istskanal is disposed between the outer shell and the innermost shell, which in Blas humor the hot blast is also flowed through with hot blast.
- the inner jacket may be kept at a high temperature on its outside as well, due to the hot air flowing in the tempering channel.
- the hot air, which flows through the inner jacket, is introduced largely without cooling at a high temperature in the converter.
- the hot air, which flows through the Temper istskanal is cooled in this embodiment to some extent.
- This hot air which has flowed through the tempering channel, can be introduced via diffusely distributed outlet nozzles on the outlet side of the lance into the space of the converter above the steel bath. In this case, it must be avoided by the design of the nozzles that this hot air, which has flowed through the tempering channel, is mixed with the hot air which has been conveyed through the inner shell. As a result, mixing these two hot air components would nevertheless mean a reduction of the hot air temperature for the process.
- the tempering channel As an alternative to introducing the hot air which has flowed through the tempering channel into the gas space of the converter, it is also possible to design the tempering channel in such a way that the hot air in the tempering channel is circulated from the upper end (inlet end of the hot air into the lance) to the lower end (lance head, Outlet end of the hot air from the lance into the converter) flows and is returned from there in the Temper michskanal, in the direction the upper end of the lance. From there, the hot air can then be led out of the lance and released to the environment. For this purpose, this hot air flowing out of the tempering channel is advantageously led out of the hall of the factory. In the converter then only the hot air is introduced, which was conveyed through the inner shell of the lance.
- At least the inner or innermost shell along its longitudinal direction consists of several sections or sleeves, which are designed partially overlapping at the points of contact of the individual sections or sleeves.
- An embodiment is particularly advantageous when the floating inner shell of the hot blast lance is provided with an insulating layer, such as rock wool, in relation to the water-cooled jacket area.
- the innermost surface or coating surface which is in direct contact with the hot blast, is structurally or microstructured with reduced flow resistance and / or reduced adhesion.
- the inner surface of the inner shell with a surface profile in order to improve the flow profile.
- This surface profile can be designed, for example, in the manner of a sharkskin.
- This surface profile can be produced by a corresponding processing of the surface or by a corresponding coating.
- FIG. 1 shows a hot wind source as a so-called Pebble Heater 30.
- the Pebble Heater is a special type of regenerator. Here, cold wind is passed through a previously heated with burner gas firing stocking of bulk material, and withdrawn as a heated hot blast.
- the hot blast outlet of the Pebble Heater 30 or regenerator opens into a hot blast line, not shown here, which is connected to the hot air lance or is connected to the hot blast line in the inflating operating position.
- the converter operation is a batch operation
- the hot blast only for the time of the batch operated To be available.
- the burner is then operated in the Pebble Heater, and this heats up the stocking of bulk material in this time again until hot wind is generated again by cold wind supply in the Pebble Heater for the next converter batch.
- FIG. 2 shows the hot blast lance 10 in the operating position in which it is retracted in a converter 20.
- the components listed above in the text are additionally added via the bottom nozzles and also oxygen is blown in on the bottom side. This presentation is the above already made statements again.
- FIG. 3 now shows the in FIG. 2 illustrated hot blast lance 10 in its layer structure according to the invention.
- FIG. 3 shows only one side of a short section a longitudinal section through the hot blast lance.
- the dashed line represents the central axis of the hot blast lance.
- the wall of the hot blast lance 10 is shown here for simplicity only on one side of the central axis. Nevertheless, the layer or sheath sequence becomes clear from outside to inside.
- the outer shell 1 forms here together with the inner shell 2 a composite with a gap 3.
- the intermediate space 3 is designed as a cooling jacket, which is flowed through by a coolant.
- This inner shell 2 can be coated with a thin layer 41, which serves as a transition layer to a another inner jacket 42 is used.
- This jacket 42 may already be a ceramic tube, or a ceramic coated tube.
- the innermost tube or the innermost jacket 45 may be provided as a floating tube, and at least on the innermost surface in turn be provided with a corrosion and / or abrasion resistant layer 46.
- the given between the innermost floating jacket or tube 45 space 5 can be filled with rock wool, or other thermally well insulating materials.
- a structure like this follows several measures at the same time, namely on the one hand a good thermal insulation from the inside out, so that the hot air does not cool in the hot blast lance, and on the other hand causes the coating system that a good corrosion and abrasion resistance.
- the floating support of the innermost tube or shell 46 allows for different thermally induced linear expansion of different materials used.
- adhesion-promoting layers or liners can at least partially absorb thermal stresses in a compensatory manner.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Furnace Charging Or Discharging (AREA)
Description
Die Erfindung betrifft eine Heißwindlanze für den Einsatz in metallurgischen Prozessen, wie bpsw. der Stahlherstellung, mit welcher Heißwind oberhalb eines Schmelzbades eines Stahlkonverters einblasbar ist, welche aus einem äußeren Mantel, sowie mindestens einem inneren Mantel besteht, und zwischen dem äußeren und einem inneren Mantel zumindest ein mit Kühlmittel durchflossener Zwischenraum oder Kühlkanal angeordnet ist, gemäß Oberbegriff des Patentanspruches 1.The invention relates to a hot blast lance for use in metallurgical processes, such as bpsw. steel production, with which hot air is blown above a molten bath of a steel converter, which consists of an outer shell, and at least one inner shell, and disposed between the outer and an inner shell at least one coolant-flowing gap or cooling channel, according to the preamble of claim 1.
Bei der Stahlherstellung in Reaktionsgefäßen, wie bspw. in Konvertern wird sowohl Roheisen als auch Schrott als Einsatzmaterial verwendet. Zusätzlich kann aber auch im sogenannten Direktreduktionsverfahren hergestellter Eisenschwamm in Form von DRI (Direct Reduced Iron) oder HBI (Hot Briquetted Iron) eingesetzt werden. Ein Beispiel hierfür ist aus der
Ein weiteres Verfahren ist aus der
Another procedure is from the
Soweit ist die Kombination der bodenseitigen Einblasung mit Sauerstoff sowie die Aufblasung von Heißwind auf die Schmelze als solche bekannt.So far, the combination of the bottom-side insufflation with oxygen and the inflating hot blast on the melt is known as such.
Unter Heißwind wird ein auf 1.200 °C (500 - 1.400 °C) aufgeheiztes sauerstoffhaltiges Gas verstanden. Das Gas ist typischerweise aus den Hauptkomponenten Sauerstoff, Stickstoff und Argon zusammengesetzt. Der Sauerstoffgehalt liegt im Bereich von normaler Luft (21%) und kann durch Anreicherung mit Sauerstoff aber Gehalte bis zu 35% oder sogar 50% aufweisen. Grundsätzlich könnte als Heißwind auch ein Synthesegas verstanden werden, das bspw. aus den Abgasen einer Verbrennungsreaktion eines Brennstoffs wie zum Beispiel Hochofengas, Koksgas, Konvertergas oder Erdgas oder eines anderen gasförmigen oder flüssigen Kohlenwasserstoffs mit Luft gewonnen wird. Der 02-Gehalt des Synthesegases lässt sich durch die Luftzahl der Verbrennung und eine ggfs. gleichzeitige Anreicherung der Verbrennungsluft mit Sauerstoff und/oder der Vermischung der Verbrennungsabgase mit reinem Sauerstoff einstellen.Hot air is understood as meaning an oxygen-containing gas heated to 1,200 ° C. (500-1,400 ° C.). The gas is typically composed of the main components oxygen, nitrogen and argon. The oxygen content is in the range of normal air (21%) and can be up to 35% or even 50% enriched with oxygen. In principle, a synthesis gas could be understood as a hot blast, which is obtained, for example, from the exhaust gases of a combustion reaction of a fuel such as blast furnace gas, coke gas, converter gas or natural gas or other gaseous or liquid hydrocarbon with air. The O 2 content of the synthesis gas can be adjusted by the air ratio of the combustion and, if appropriate, simultaneous enrichment of the combustion air with oxygen and / or the mixing of the combustion exhaust gases with pure oxygen.
Im Unterschied zu normalem Heißwind weist der hierbei erzeugte Heißwind Gehalte an CO2 und Wasser als Produkte der Verbrennung auf.In contrast to normal hot blast, the hot blast produced in this process has levels of CO2 and water as combustion products.
Der Erfindung liegt daher die Aufgabe zugrunde eine Heißwindlanze dahingend weiterzuentwickeln, dass Heißwind besonders effektiv, also unter möglichst geringen Temperaturverlusten in ein Reaktionsgefäß, bspw einen Stahlkonverter eingebracht werden kann, und die Lanze besser an diese Einsatzumgebung angepasst ist.The invention is therefore the object of further developing a hot blast lance that hot blast can be particularly effective, so with minimal temperature losses in a reaction vessel, eg a steel converter can be introduced, and the lance better adapted to this environment of use.
Die gestellte Aufgabe wird bei einer Heißwindlanze der gattungsgemäßen Art durch die kennzeichnenden Merkmal des Patentanspruches 1 gelöst.The object is achieved in a hot blast lance of the generic type by the characterizing feature of claim 1.
Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen 2 bis 12 angegeben.Further advantageous embodiments are specified in the dependent claims 2 to 12.
Eine entsprechende Verwendung einer solchen Lanze ist in Anspruch 13 angegeben.A corresponding use of such a lance is specified in claim 13.
Kern der Erfindung ist, dass der innere Mantel oder der innerste Mantel zumindest teilweise aus einem thermisch isolierenden weiteren Mantel, oder einem thermisch isolierenden Mantel besteht, oder mit einer thermisch isoliernden Schicht beschichtet ist. Damit wird die Heißwindlanze erheblich robuster und kann in Verfahren eingesetzt werden, bei denen die Reaktionsabläufe bspw beim Stahlerzeugungsprozess im Konverter ganz wesentlich durch die Anwendung von Heißwind beinflusst und optimiert werden. Durch die damit bewirkte Nachverbrennung und die Übertragung der hierbei freigesetzten Wärme auf das Schmelzbad wird die einsetzbare Schrottrate deutlich höher.The core of the invention is that the inner jacket or the innermost jacket at least partially consists of a thermally insulating additional jacket, or a thermally insulating jacket, or is coated with a thermally insulating layer. This makes the hot blast lance considerably more robust and can be used in processes in which the reaction processes, for example, in the steelmaking process in the converter, are significantly influenced and optimized by the application of hot blast. As a result of the resulting afterburning and the transfer of the heat released in this way to the molten bath, the usable scrap rate becomes significantly higher.
Die Heißluftnachverbrennung bedarf einer speziellen Vorrichtung zur Weiterleitung des Heißwinds aus der Heißwindquelle und zur Einleitung des Heißwinds in das Reaktionsgefäß, über eine entsprechende, hier erfindungsgemäß ausgestaltete Heißwindlanze.The Heißluftnachverbrennung requires a special device for forwarding the hot blast from the hot blast source and for introducing the hot blast in the reaction vessel, via a corresponding, designed here according to the invention hot blast lance.
Als Reaktionsgefäß kann ein Konverter verwendet werden, wie er aus der Stahlherstellung bekannt ist. Grundsätzlich lässt sich eine Nachverbrennung mit Heißwind auch in jedem anderen in der Metallurgie üblichen Reaktionsgefäß betreiben, wobei es unerheblich ist, ob die Wände des Gefäßes ganz, teilweise oder gar nicht mit Kühlwasser gekühlt werden.As a reaction vessel, a converter can be used, as it is known from steel production. Basically, an afterburning can be done with Hot wind also operate in any other usual in metallurgy reaction vessel, it is irrelevant whether the walls of the vessel are completely, partially or not cooled with cooling water.
Im Inneren eines metallurgischen Reaktionsgefäßes herrschen typischerweise Temperaturen von über 1.000 °C vor, wobei in der Gasphase auch Temperaturen von bis zu 2.000 °C erreicht werden können. Für einen dauerhaften Betrieb einer Einblaslanze im Bereich eines Reaktionsgefäßes, bspw. für metallurgische Reaktionen, oberhalb der flüssigen Badoberfläche ist es unabdingbar, die Einblaslanze, in diesem Fall also die Heißwindlanze intensiv mit Wasser zu kühlen. Die Wasserkühlung schützt die Heißwindlanze vor den im Oberraum des Reaktionsgefäßes vorherrschenden hohen Gastemperaturen. Die hohen Gastemperaturen gehen zu einem erheblichen Teil auf die im Reaktionsgefäß (bspw in einem Stahlkonverter) ablaufenden und ggfs. die Einblaslanze unterhaltenen idR exothermen Reaktionen zurück. Als solches sind wassergekühlte Lanzen an sich bekannt.In the interior of a metallurgical reaction vessel typically prevail temperatures of about 1,000 ° C, wherein in the gas phase, temperatures of up to 2,000 ° C can be achieved. For a permanent operation of a blowing lance in the region of a reaction vessel, for example. For metallurgical reactions, above the liquid bath surface, it is essential to cool the injection lance, in this case so the hot blast lance intensively with water. Water cooling protects the hot blast lance from the high gas temperatures prevailing in the upper chamber of the reaction vessel. The high gas temperatures go to a considerable extent on the in the reaction vessel (eg, in a steel converter) running and possibly. The injection lance maintained idR exothermic reactions. As such, water-cooled lances are known per se.
Bei einer Lanze in Rohr-Steg-Rohr Bauweise ist der wassergekühlte Mantel aus nebeneinander liegenden, Kühlwasser führenden Rohren aufgebaut, die untereinander mit schmalen, massiven Stegen verbunden sind. In der Regel werden je zwei nebeneinander liegende Rohre an einem Ende mit einem Krümmer verbunden, wobei die beiden anderen Enden jeweils mit einem Vorlauf- und einem Rücklaufsammler verbunden sind. Als Sonderfall dieser Ausführungsform ist eine Rohr-an-Rohr Bauweise eingeführt, bei der die Rohre ohne Steg direkt miteinander verschweißt werden.In a lance in pipe-web-tube construction, the water-cooled shell of juxtaposed, cooling water pipes is constructed, which are interconnected with narrow, solid webs. In general, two adjacent tubes are connected at one end to a manifold, the other two ends are each connected to a flow and a return header. As a special case of this embodiment, a pipe-to-pipe construction is introduced in which the pipes are welded directly to each other without web.
Bei einer Ausführung der Lanze in Rohr-in Rohr Bauweise, werden drei Rohre mit immer geringer werdendem Durchmesser konzentrisch zueinander angeordnet. Hierdurch entsteht zwischen dem äußeren und den mittleren Rohr, sowie zwischen dem mittleren und dem inneren Rohr jeweils ein konzentrischer Zwischenraum. Verbindet man am einen Ende der Lanze das äußere mit dem inneren Rohr und verkürzt das mittlere Rohr, so entsteht eine Geometrie, bei der die beiden Zwischenräume als Vor- und Rücklauf für das Lanzenkühlwasser benutzt werden können. Um auch bei großer Lanzenlänge eine konzentrische Positionierung der drei ineinander verlaufenden Rohre zu gewährleisten, werden zwischen den Rohren Abstandshalter eingebracht. Oft sind diese Abstandhalter als in Längsrichtung auf dem jeweils dünneren Rohr aufgeschweißte schmale Stege ausgeführt.In an embodiment of the lance in tube-in-tube construction, three tubes of ever smaller diameter are arranged concentrically to each other. This creates between the outer and the middle tube, as well as between the middle and the inner tube each have a concentric space. If one connects the outer and the inner pipe at one end of the lance and shortens the middle pipe, the result is a geometry in which the two interspaces can be used as supply and return for the lance cooling water. In order to ensure a concentric positioning of the three tubes running into each other even with a large lance length, spacers are introduced between the tubes. Often these spacers are designed as welded in the longitudinal direction on the respective thinner pipe narrow webs.
Wesentliches Auslegungsmerkmal einer effizienten Wasserkühlung ist ein möglichst hoher Wärmeübertritt von der heißen Umgebungsatmosphäre im Reaktionsgefäß in das Kühlwasser hinein. Nur so ist ein gleichbleibend ausreichend niedriges Temperaturniveau an der Materialoberfläche des wassergekühlten Bauteils sicher gestellt. Zur Gewährleistung dieser Eigenschaften werden Wasserkühlungen so ausgelegt, dass sie vom Kühlwasser mit einer Fließgeschwindigkeit von 2m/s (1 bis 3 m/s) durchströmt werden.An essential design feature of efficient water cooling is the highest possible heat transfer from the hot ambient atmosphere in the reaction vessel into the cooling water. Only then is a consistently sufficiently low temperature level ensured on the material surface of the water-cooled component. To ensure these properties, water cooling systems are designed so that they flow through the cooling water at a flow rate of 2m / s (1 to 3 m / s).
Bei der hier vorliegenden technischen Aufgabe der Weiter- und Einleitung von Heißwind in ein Reaktionsgefäß findet in Bezug auf Schutz eines Wärmezutritts die beschriebene wassergekühlte Vorrichtung Anwendung.In the present technical task of continuing and introducing hot blast into a reaction vessel, the described water-cooled device is used with regard to protection of heat entry.
Eine Besonderheit liegt nun darin, dass es sich bei Heißwind nicht um ein kaltes sondern ein typischerweise 1200 °C heißes Medium handelt. Weiterhin handelt es sich bei dem mit Heißwind betriebenen Prozess nicht immer um einen kontinuierlich ablaufenden Prozess, sondern insbesondere beim Konverterverfahren um einen Chargenprozess. Entsprechend werden die hierfür vorgesehenen Anlagenteile immer phasenweise mit Heißwind beaufschlagt, wodurch die Anlagenteile in den Prozesspausen regelmäßig auskühlen. Es ergibt sich ein ungleichmäßiges Lastprofil, welches zu einer erheblichen Temperaturwechselbeanspruchung (TWB) der beaufschlagten Anlagenteile führt. Hieraus ergibt sich auf der medienzugewandten Seite der Heißwindlanze ein besonderes Anforderungsprofil. Dies ist mit der vorliegenden Erfindung berücksichtigt.A special feature lies in the fact that hot wind is not a cold but a typical one 1200 ° C hot medium is. Furthermore, the hot-blast process is not always a continuous process, but is a batch process, especially in the converter process. Accordingly, the plant components provided for this purpose are always exposed to hot blast phases, whereby the plant parts cool down during the process breaks regularly. The result is an uneven load profile, which leads to a significant thermal cycling (TWB) of the applied equipment parts. This results in a special requirement profile on the side facing the media of the hot blast lance. This is taken into account with the present invention.
Die Werkstoffoberfläche des von Heißwind durchströmten innersten der drei Rohre ist hoher thermischer, oxidativer sowie abrasiver Belastung ausgesetzt. Zum Schutz der dem Heißwind zugewandten Seite kann diese durch eine geeignete Beschichtung gegen die genannten Belastungen geschützt werden. Im Hinblick auf die erhebliche thermische Belastung wird man im Allgemeinen nur mit dünnen (< 10 µm) Schichten arbeiten können, da dickere Schichten aufgrund der im Vergleich zum Grundmaterial unterschiedlichen thermischen Ausdehnung zur Versprödung und Abplatzung neigen. Als Schichtsysteme kommen keramische Schichten, Überfangsschichten oder Auftragsschichten in Betracht, die sich mit den gängigen Auftragsverfahren, chemische Abscheidung aus der Gas- oder Dampfphase, thermisches Spritzen, Auftragsschweißen oder Auftrag von SolGel Systemen applizieren lassen, wobei die Schichten ggfs. noch durch einen thermischen Schritt (durch Aushärten, Eindiffundieren, Vernetzen, etc.) in ihrer Funktionsfähigkeit verbessert werden können.The material surface of the innermost of the three tubes through which hot wind flows is exposed to high thermal, oxidative and abrasive loads. To protect the side facing the hot wind, this can be protected by a suitable coating against the aforementioned loads. In view of the considerable thermal load, it will generally be possible to work only with thin (<10 μm) layers, since thicker layers tend to embrittle and chip due to the different thermal expansion compared to the base material. Suitable layer systems are ceramic layers, overlay layers or application layers, which can be applied by conventional application methods, chemical vapor deposition or thermal vapor deposition, thermal spraying, build-up welding or application of SolGel systems, the layers possibly still being formed by a thermal step (by curing, diffusion, crosslinking, etc.) can be improved in their functionality.
Es hat sich gezeigt, dass sich durch den wassergekühlten Aufbau der Lanze ausreichend hohe Standzeiten beim Betrieb in Hochtemperatur Reaktionsgefäßen erreichen lassen. Überraschenderweise hat sich aber auch gezeigt, dass durch die Wasserkühlung auch ein erheblicher Wärmaustrag aus dem Heißwindstrom in die wassergekühlte Wand der Heißwindlanze erfolgt. Dieser Effekt wird insbesondere dadurch verstärkt, dass im Hinblick auf noch baulich handhabbare äußere Abmessungen die Lanze so ausgelegt werden muss, dass der Heißwind notgedrungen mit Geschwindigkeiten von 100 bis 300 m/s, vorzugsweise 150 m/s durch die Lanze strömt. Mit steigender Geschwindigkeit erhöht sich aber auch der Wärmeaustrag aus dem Heißwindstrom in dem Heißwindstrom zugewandte Wandung des innersten Lanzenrohrs.It has been shown that can be achieved by the water-cooled construction of the lance sufficiently long service life when operating in high-temperature reaction vessels. Surprisingly, however, it has also been shown that the water cooling also causes a considerable heat release from the hot blast stream into the water-cooled wall of the hot blast lance. This effect is in particular reinforced by the fact that with regard to still structurally manageable external dimensions, the lance must be designed so that the hot wind inevitably flows through the lance at speeds of 100 to 300 m / s, preferably 150 m / s. With increasing speed but also increases the heat loss from the hot blast stream in the hot blast stream facing wall of the innermost lance tube.
Dem wird entgegengewirkt durch die erfindungsgemäße Bauform.This is counteracted by the design according to the invention.
Die weiteren vorteilhaften Ausgestaltungen stützen daher die obigen Ausführungen in erfindungsgemäßer Weise.The further advantageous embodiments therefore support the above statements in accordance with the invention.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass der innere Mantel oder der innerste Mantel zumindest auf der Innenseite mit einer Schutzschicht bzw Beschichtung versehen ist.In a further advantageous embodiment is stated that the inner shell or the innermost shell is provided at least on the inside with a protective layer or coating.
Zumindest auf der Innenseite des inneren Mantels weist die Lanze vorteilhaft noch eine gute Beständigkeit gegen Abrasion sowie auch gegen Korrosion auf. Dies ist insofern von Bedeutung, als die Strömungsgeschwindigkeit von Heißluft wegen der geringeren Dichte der Heißluft gegenüber Luft unter Normalbedingungen deutlich größer ist. Die mechanische Belastung des Innenmantels der Lanze aufgrund der Strömung der Heißluft ist dadurch größer als dies bei einer Sauerstofflanze der Fall ist, bei der der Sauerstoff im Wesentlichen in kaltem Zustand und in der Regel unter hohem Druck durch die Lanze gefördert wird.At least on the inside of the inner shell, the lance advantageously still has a good resistance to abrasion and corrosion. This is important insofar as the flow rate of hot air because of the lower density of the hot air compared to air under normal conditions is significantly larger. The mechanical load of the inner shell of the lance due to the flow of hot air is thereby greater than is the case with an oxygen lance, in which the oxygen is conveyed substantially in a cold state and usually under high pressure through the lance.
Durch die thermisch isolierende Wirkung des Materials lässt sich vorteilhaft umsetzen, dass der äußere Mantel gegenüber den hohen Umgebungstemperaturen im Konverterbetrieb gekühlt wird. Dennoch lässt sich damit erreichen, dass die Heißluft, die durch den inneren Mantel strömt, allenfalls in geringem Maße gekühlt wird.Due to the thermally insulating effect of the material can be advantageous implement that the outer jacket is cooled against the high ambient temperatures in converter operation. Nevertheless, it can be achieved that the hot air flowing through the inner jacket, if necessary, is cooled to a slight extent.
Dies hat sich als wichtig erwiesen, um die Heißluft mit einer möglichst hohen Temperatur in den Konverter einbringen zu können.This has proven to be important in order to bring the hot air with the highest possible temperature in the converter can.
Bei dieser Ausgestaltung erweist es sich weiterhin als vorteilhaft, dass der von Wasser durchströmte Kühlkanal durch zwei Wände von dem Innenrohr der Lanze getrennt ist, durch das die Heißluft strömt. Durch die strömende Heißluft wird das Innenrohr mechanisch, thermisch und chemisch vergleichsweise stark beansprucht. Dies kann dazu führen, dass eventuell Risse im Mantel des Innenrohres auftreten. Durch die beschriebene Ausführungsform mit dem Zwischenmantel wird dann vorteilhaft erreicht, dass bei einer Beschädigung des Innenrohres durch die strömende Heißluft nicht sofort Kühlflüssigkeit in das Innere der Lanze gelangen kann und von dort mit der strömenden Heißluft in den Konverter gefördert wird. Bei der beschriebenen Ausgestaltung gelangt dann lediglich Heißluft in den Bereich zwischen dem inneren Mantel und dem Zwischenmantel. Da die Heißluft dort nicht weiter strömen kann mit der vergleichsweise großen Strömungsgeschwindigkeit, wird der Zwischenmantel dann auch nicht mehr mechanisch belastet.In this embodiment, it also proves to be advantageous that the cooling channel through which water flows is separated by two walls from the inner tube of the lance, through which the hot air flows. Due to the flowing hot air, the inner tube is mechanically, thermally and chemically stressed comparatively strong. This can lead to cracks in the jacket of the inner tube. By the embodiment described with the intermediate jacket is then advantageously achieved that in case of damage to the inner tube by the flowing hot air not immediately coolant can reach the interior of the lance and is conveyed from there with the flowing hot air into the converter. In the described embodiment, only hot air then passes into the region between the inner jacket and the intermediate jacket. Because the Hot air there can not continue to flow with the comparatively high flow velocity, the intermediate coat is then no longer mechanically stressed.
Weiterhin ist ausgestaltet, dass der innere Mantel oder der innerste Mantel aus mehreren Schichten besteht, und dass zumindest die innerste dieser Schichten, nämlich Schicht aus einem abrasions- und/oder korrosionsbeständigen Werkstoff besteht.Furthermore, it is configured that the inner shell or the innermost shell consists of several layers, and that at least the innermost of these layers, namely layer consists of an abrasion and / or corrosion resistant material.
Weiterhin ist ausgestaltet, dass der innere Mantel oder der innerste Mantel aus einem keramischen Werkstoff besteht oder mit demselben beschichtet ist.
Keramische Werkstoffe erfüllen auf vorteilhafte Weise die oben ausgeführten Anforderungen.Furthermore, it is configured that the inner shell or the innermost shell consists of a ceramic material or is coated with the same.
Ceramic materials advantageously meet the requirements outlined above.
Daher ist vorteilhaft vorgesehen, dass das abrasions- und/oder korrosionsbeständige Material bzw der keramische Werkstoff an der an dem inneren oder innersten Mantel anhaftenden Seite mit einem temperaturbeständigen Haftvermittler oder Liner versehen ist.Therefore, it is advantageously provided that the abrasion and / or corrosion-resistant material or the ceramic material is provided on the adhering to the inner or innermost shell side with a temperature-resistant bonding agent or liner.
Dabei ist der Haftvermittler oder Liner derart elastisch, dass er den Unterschied des Ausdehnungskoeffizienten des inneren oder innersten Mantels zum abrasions- und/oder korrosionsbeständigen Material bzw zum keramischen Werkstoff ausgleicht.In this case, the bonding agent or liner is so elastic that it compensates for the difference in the coefficient of expansion of the inner or innermost shell to abrasions- and / or corrosion-resistant material or to the ceramic material.
Eine besondere spezifische Ausgestaltung ist, dass das abrasions- und/oder korrosionsbeständige Material bzw der keramische Werkstoff aus einem Schichtsystem besteht, bei welchem die zum vom Heißwind beströmten Oberfläche aus einem dichten keramischen Werkstoff und die vom Heißwind abgewandte Oberfläche aus einem Keramikschaumwerkstoff besteht. Der Keramikschaumwerkstoff weist dabei eine höhere Elastizität auf, als der massiv ausgeführte Keramikwerkstoff.A particular specific embodiment is that the abrasion- and / or corrosion-resistant material or the ceramic material consists of a layer system in which the surface to which the hot wind flows consists of a dense ceramic material and the surface facing away from the hot wind consists of a ceramic foam material. The ceramic foam material has a higher elasticity than the solid ceramic material.
Dabei erweist es sich als vorteilhaft, dass die Beschichtung vergleichsweise dünn ist. Damit lässt sich das Gewicht der Lanze in Grenzen halten. Dies erweist sich insofern als vorteilhaft, weil die Lanze im laufenden Betrieb gegenüber dem Konverter in vertikaler Richtung bewegt werden muss. Eine geringe Schichtdicke erweist sich auch als vorteilhaft wegen der thermischen Wechselbeanspruchung der Heißluftlanze im Konverterbetrieb. Diese Wechselbeanspruchung liegt daran, dass vor dem Abstich des Konverters die Lanze herausgefahren wird. Damit wird die Förderung von Heißluft durch die Lanze beendet. Die Lanze kühlt dann ab, bis beim nächsten Konverterbetrieb wieder Heißluft durch die Lanze gefördert wird. Die Lanze wird dabei wieder entsprechend erwärmt.It proves to be advantageous that the coating is relatively thin. This makes it possible to keep the weight of the lance within limits. This proves to be advantageous insofar as the lance must be moved in the vertical direction relative to the converter during operation. A small layer thickness also proves advantageous because of the thermal cycling of the hot air lance in converter operation. This alternating stress is due to the fact that before the tapping of the converter, the lance is moved out. This stops the delivery of hot air through the lance. The lance then cools until hot air is conveyed through the lance at the next converter operation. The lance is heated again accordingly.
Ein geeignetes Material für eine Beschichtung kann beispielsweise aus Al2O3, SiC, SiSiC oder einem Super-Alloy bestehen. Dieses Material kann beispielsweise aufgebracht werden durch Sputtern, elektrochemische oder elektrolytische Beschichtung, Flammspritzen, Anstrich vergleichbar einer Farbe oder auch durch Aufbringen einer Suspension, bei der die Flüssigkeit verdunstet und die Festkörperpartikel flächig die äußere bzw. innere Oberfläche des inneren Mantels der Lanze bedecken.A suitable material for a coating may consist, for example, of Al 2 O 3 , SiC, SiSiC or a super-Alloy. This material can be applied for example by sputtering, electrochemical or electrolytic coating, flame spraying, paint comparable to a color or by applying a suspension in which the liquid evaporates and the solid particles cover the outer surface or inner surface of the inner shell of the lance.
Dabei hat sich gezeigt, dass dieses keramische Material gute thermische Isolationseigenschaften (d.h. eine geringe Wärmeleitfähigkeit) aufweist. Das Material ist auch ausreichend mechanisch stabil (insbesondere gegenüber Abrasion) und hat eine ausreichende Schockfestigkeit gegenüber den auftretenden Temperaturschwankungen.It has been found that this ceramic material has good thermal insulation properties (ie low thermal conductivity). The material is also sufficiently mechanically stable (especially against abrasion) and has a sufficient Shock resistance to the occurring temperature fluctuations.
Es ist dabei zu beachten, dass der Betrieb intermittierend ist. Das bedeutet, dass nicht kontinuierlich Heißluft durch den inneren Mantel gefördert wird. Wenn der Konverter entleert wird und nach dem Entleeren vorbereitet wird, für den nächsten Erschmelzungsprozess, beispielsweise durch Entfernen von Schlacke aus dem Konverter, Erneuern bzw. Ausbessern der Feuerfestauskleidung des Stahlkonverters. Es wird während dieser Zeit die Heißwindquelle in Form eines Pebble Heaters wieder befeuert, um Wärme zu speichern für die Erzeugung von Heißluft für den nächsten Erschmelzungsprozess. Während dieser Zeit wird keine Heißluft durch die Lanze gefördert, so dass der innere Mantel der Lanze abkühlt. Mit Beginn des nächsten Erschmelzungsprozesses wird wiederum Heißluft durch den inneren Mantel der Lanze gefördert, so dass der innere Mantel dann wieder entsprechend hohen Temperaturen ausgesetzt ist.It should be noted that the operation is intermittent. This means that hot air is not continuously conveyed through the inner jacket. When the converter is emptied and prepared after emptying, for the next melting process, for example, by removing slag from the converter, refurbishing the refractory lining of the steel converter. During this time, the hot blast source in the form of a pebble heater is re-fired to store heat for the production of hot air for the next melting process. During this time, no hot air is conveyed through the lance, so that the inner jacket of the lance cools. At the beginning of the next melting process hot air is again conveyed through the inner shell of the lance, so that the inner shell is then exposed to correspondingly high temperatures.
Zur integrierten Kühlmittelführung ist angegeben, dass zwischen dem inneren Mantel und dem äußeren Mantel ein wenigstens ein Zwischenmantel oder Zwischenraum angeordnet ist, und mit Kühlmittel durchflossen ist.For integrated coolant guidance is stated that between the inner shell and the outer shell, at least one intermediate jacket or gap is arranged, and is flowed through with coolant.
Es kann aber auch von Vorteil sein, wenn der Raum zwischen dem äußeren Mantel und dem inneren Mantel evakuiert ist.But it may also be advantageous if the space between the outer jacket and the inner jacket is evacuated.
In weiterer vorteilhafter Ausgestaltung ist angegeben, dass zwischen dem äußeren Mantel und dem innersten Mantel ein Temperierungskanal angeordnet ist, welcher im Blasbetrieb des Heißwindes ebenfalls mit Heißwind durchströmbar ist.In a further advantageous embodiment, it is stated that a Temperierungskanal is disposed between the outer shell and the innermost shell, which in Blasbetrieb the hot blast is also flowed through with hot blast.
Dabei kann es möglich sein, dass der innere Mantel auch auf seiner Außenseite durch die im Temperierungskanal strömende Heißluft auf einer hohen Temperatur gehalten wird. Die Heißluft, die durch den inneren Mantel durchströmt, wird dabei weitgehend ohne Abkühlung mit einer hohen Temperatur in den Konverter eingebracht.It may be possible for the inner jacket to be kept at a high temperature on its outside as well, due to the hot air flowing in the tempering channel. The hot air, which flows through the inner jacket, is introduced largely without cooling at a high temperature in the converter.
Die Heißluft, die durch den Temperierungskanal strömt, wird bei dieser Ausgestaltung in gewissem Maße abgekühlt.The hot air, which flows through the Temperierungskanal is cooled in this embodiment to some extent.
Diese durch den Temperierungskanal geströmte Heißluft kann über diffus verteilende Auslassdüsen an der Austrittsseite der Lanze in den Raum des Konverters oberhalb des Stahlbades eingebracht werden. Dabei muss durch die Ausgestaltung der Düsen vermieden werden, dass diese durch den Temperierungskanal geströmte Heißluft mit der Heißluft vermischt wird, die durch den inneren Mantel durchgefördert wurde. Ein Mischen dieser beiden Heißluftanteile würde dann im Ergebnis doch eine Erniedrigung der Heißlufttemperatur für den Prozess bedeuten.This hot air, which has flowed through the tempering channel, can be introduced via diffusely distributed outlet nozzles on the outlet side of the lance into the space of the converter above the steel bath. In this case, it must be avoided by the design of the nozzles that this hot air, which has flowed through the tempering channel, is mixed with the hot air which has been conveyed through the inner shell. As a result, mixing these two hot air components would nevertheless mean a reduction of the hot air temperature for the process.
Alternativ zur Einbringung der durch den Temperierungskanal geströmten Heißluft in den Gasraum des Konverters ist es auch möglich, den Temperierungskanal so auszugestalten, dass die Heißluft in dem Temperierungskanal in einem Kreislauf vom oberen Ende (Eintrittsende der Heißluft in die Lanze) zum unteren Ende (Lanzenkopf, Austrittsende der Heißluft aus der Lanze in den Konverter) strömt und von dort in dem Temperierungskanal wieder zurückgeführt wird, in Richtung des oberen Endes der Lanze. Von dort kann die Heißluft dann aus der Lanze herausgeführt und an die Umgebung abgegeben werden. Dazu wird diese aus dem Temperierungskanal ausströmende Heißluft vorteilhaft aus der Halle des Werkes herausgeführt. In den Konverter wird dann nur die Heißluft eingebracht, die durch den inneren Mantel der Lanze durchgefördert wurde.As an alternative to introducing the hot air which has flowed through the tempering channel into the gas space of the converter, it is also possible to design the tempering channel in such a way that the hot air in the tempering channel is circulated from the upper end (inlet end of the hot air into the lance) to the lower end (lance head, Outlet end of the hot air from the lance into the converter) flows and is returned from there in the Temperierungskanal, in the direction the upper end of the lance. From there, the hot air can then be led out of the lance and released to the environment. For this purpose, this hot air flowing out of the tempering channel is advantageously led out of the hall of the factory. In the converter then only the hot air is introduced, which was conveyed through the inner shell of the lance.
Gerade bei dieser Ausgestaltung der Lanze wird es vorteilhaft auch möglich, bereits vor dem eigentlichen Erschmelzungsprozess in dem Konverter einen Aufwärmbetrieb der Leitungen zu realisieren, durch die die Heißluft beim Erschmelzungsprozess gefördert werden soll. Wenn der Pebble-Heater bereits aufgeheizt ist, wird dann vor dem eigentlichen Erschmelzungsprozess bereits Heißluft durch die Zuführleitung der Heißluft aus dem Pebble-Heater zur Lanze gefördert. Dabei ist vorteilhaft, dass der Bereich durch einen Schieber absperrbar ist, bei dem im Erschmelzungsprozess die Heißluft durch den inneren Mantel der Lanze in den Konverter eingebracht wird. In diesem Aufwärmbetrieb wird die Heißluft dann durch den Temperierungskanal gefördert und anschließend abgeführt. Dadurch werden vorteilhaft die Leitungen vorgewärmt, durch die im Erschmelzungsprozess die Heißluft dem Konverter zugeführt wird. Dadurch wird vorteilhaft vermieden, dass gerade zu Beginn des Erschmelzungsprozesses die Temperatur der Heißluft abgekühlt wird, weil die Heißluft in dieser Phase zunächst wieder Wärme an die Leitungen abgibt.Especially in this embodiment of the lance, it is advantageously also possible to realize before the actual melting process in the converter a Aufwärmbetrieb the lines through which the hot air is to be promoted during the melting process. If the pebble heater is already heated, hot air is then conveyed from the pebble heater to the lance through the supply line of the hot air before the actual melting process. It is advantageous that the area can be shut off by a slide, in which the hot air is introduced through the inner shell of the lance in the converter during the melting process. In this Aufwärmbetrieb the hot air is then conveyed through the Temperierungskanal and then discharged. As a result, the lines are advantageously preheated, through which the hot air is supplied to the converter in the melting process. This advantageously prevents the temperature of the hot air from being cooled, especially at the beginning of the melting process, because the hot air initially releases heat to the lines in this phase.
Es ist Teil der Erfindung, wenn der innerste Mantel in der Heißwindlanze schwimmend gelagert ist. Dies erweist sich als erforderlich, weil dadurch ein Wärmeaustausch zwischen dem inneren Mantel und dem äußeren Mantel bzw. dem Zwischenmantel durch mechanische Befestigung und Kontaktierung vermieden wird. Ebenso wird dadurch erreicht, dass die mechanischen Spannungen innerhalb der Lanze reduziert werden. Durch den intermittierenden Betrieb, bei dem in Zeitspannen des Konverterbetriebs Heißluft durch die Lanze gefördert wird und in Phasen der Vorbereitung des nächsten Konverterbetriebs keine Heißluft durch die Lanze gefördert wird, unterliegt vor allen Dingen der innere Mantel der Lanze starken Temperaturschwankungen. Durch die Kühlung treten an dem äußeren Mantel nur vergleichsweise geringe Temperaturschwankungen auf. Im Hinblick auf die mechanischen Spannungen ist es daher erforderlich, wenn der innere Mantel schwimmend in der Lanze gelagert ist. Die Längenänderungen infolge der Temperaturänderungen führen dann nur zu einer geringeren mechanischen Belastung der Lanze, weil durch die schwimmende Lagerung die Längenänderung des inneren Mantels weitgehend unabhängig von der Längenänderung des äußeren Mantels erfolgen kann.It is part of the invention when the innermost shell is floatingly mounted in the hot blast lance. This proves to be necessary because a heat exchange between the inner shell and the outer jacket or the intermediate jacket is avoided by mechanical fastening and contacting. Likewise, this achieves that the mechanical stresses within the lance are reduced. Due to the intermittent operation, in which hot air is conveyed through the lance in periods of converter operation and in phases of preparation of the next converter operation no hot air is conveyed through the lance, especially the inner jacket of the lance is subject to strong temperature fluctuations. Due to the cooling, only comparatively small temperature fluctuations occur on the outer jacket. In view of the mechanical stresses, it is therefore necessary when the inner shell is floatingly mounted in the lance. The length changes due to the temperature changes then only lead to a lower mechanical load on the lance, because by the floating bearing, the change in length of the inner shell can be made largely independent of the change in length of the outer shell.
Um die hohen thermischen Längenausdehnungen bei den besagten hohen Temperaturen schadlos zuzulassen, ist weiter ausgestaltet, dass zumindest der innere oder der innerste Mantel entlang seiner Längsrichtung aus mehreren Teilstücken oder Muffen besteht, welche an den Berührungsstellen der einzelnen Teilstücke oder Muffen teilüberlappend ausgestaltet sind.In order to allow the high thermal length expansions at the said high temperatures harmless, is further configured that at least the inner or innermost shell along its longitudinal direction consists of several sections or sleeves, which are designed partially overlapping at the points of contact of the individual sections or sleeves.
Dabei erweist es sich als vorteilhaft, wenn in Strömungsrichtung der Heißluft das hintere Ende eines Teilstücks aufgeweitet ist zur Aufnahme des Endes des in Strömungsrichtung der Heißluft davor liegenden Teilstückes dient.It proves to be advantageous if in the flow direction of the hot air, the rear end of a section is widened to receive the end of the upstream in the flow direction of the hot air section is used.
Durch diese Art der Verbindung der Teilstücke können die Längenänderungen bei den Temperaturschwankungen des inneren Mantels besser aufgenommen werden.By this type of connection of the sections, the changes in length in the temperature fluctuations of the inner shell can be better absorbed.
Besonders vorteilhaft ist eine Ausführung, wenn der schwimmend gelagtere innerste Mantel der Heißwindlanze gegenüber dem wassergekühlten Mantelbereich mit einer Dämmschicht wie bspw Steinwolle versehen ist.An embodiment is particularly advantageous when the floating inner shell of the hot blast lance is provided with an insulating layer, such as rock wool, in relation to the water-cooled jacket area.
Grund dafür ist, dass der Wärmeübertrag durch Temperaturstrahlung aus dem innersten Mantel in den wassergekühlen Mantel insbesondere im Temperaturbereich oberhalb 800°C besonders effektiv behindert wird. Noch etwas weiter ausführen. Dem Grunde nach genügt sogar eine Temperaturabstrahlungsbehinderung in Form einer dünnen Schicht als eine Art Strahlungschirmung damit die Abfuhr von Energie aus dem Heißwind ins Kühlwasser starker unterbunden wird.The reason for this is that the heat transfer due to temperature radiation from the innermost shell into the water-cooled shell is impeded especially effectively in the temperature range above 800 ° C. Carry on a little further. Basically enough even a temperature radiation obstruction in the form of a thin layer as a kind of radiation shield so that the removal of energy from the hot wind into the cooling water is stronger prevented.
Weiterhin ist in vorteilhafter Ausgestaltung vorgesehen, dass die direkt mit dem Heißwind in strömender Verbindung stehende innerste Oberfläche oder Beschichtungsoberfläche strömungswiderstands- und/oder haftungsreduziert strukturiert oder mikrostrukturiert ist.Furthermore, in an advantageous embodiment, it is provided that the innermost surface or coating surface, which is in direct contact with the hot blast, is structurally or microstructured with reduced flow resistance and / or reduced adhesion.
Es ist eine Verwendung einer Heißwindlanze nach einem der Ansprüche 1 bis 12, zum Einblasen von Heißwind oberhalb eines Stahbades und/oder eines Schrotthaufens, und/oder eines Haufwerkes in einem Stahlkonverter, vorgesehen. Die weiter oben beschriebene thermische Isolierung erweist sich gerade bei einem Prozess als vorteilhaft, bei dem bei der Erschmelzung Heißluft in den Konverter eingebracht wird. Bei dem verbreiteten Einbringen von reinem Sauerstoff bei der Erschmelzung von Stahl zum Frischen kommt es prozessbedingt nicht auf die Temperatur des Sauerstoffs an. Demgegenüber erweist sich die Anwendung einer der vorgenannten Ausgestaltungen einer Lanze aber gerade bei dem Einbringen von Heißluft in den Konverter als vorteilhaft.It is a use of a hot blast lance according to one of claims 1 to 12, for blowing hot blast above a steel bath and / or a scrap heap, and / or a heap in a steel converter provided. The thermal insulation described above proves to be particularly advantageous in a process in which hot air is introduced into the converter during the melting process. In the widespread introduction of Pure oxygen in the melting of steel for refining does not depend on the temperature of the oxygen due to the process. In contrast, the application of one of the aforementioned embodiments of a lance but especially in the introduction of hot air proves to be advantageous in the converter.
Gegebenenfalls kann es bei einer Lanze nach den vorstehend beschriebenen Ausführungsformen noch sinnvoll sein, die Innenfläche des inneren Mantels mit einem Oberflächenprofil zu versehen, um damit das Strömungsprofil zu verbessern. Dieses Oberflächenprofil kann beispielsweise nach Art einer Haifischhaut ausgelegt sein. Dieses Oberflächenprofil kann durch eine entsprechende Bearbeitung der Oberfläche hergestellt werden oder auch durch eine entsprechende Beschichtung.Optionally, it may be useful in a lance according to the embodiments described above, to provide the inner surface of the inner shell with a surface profile in order to improve the flow profile. This surface profile can be designed, for example, in the manner of a sharkskin. This surface profile can be produced by a corresponding processing of the surface or by a corresponding coating.
Der Heißwindaustritt des Pebble Heater 30 oder Regenerators mündet in eine hier nicht weiter dargestellte Heißwindleitung, die mit der Heiwindlanze verbunden ist bzw in Aufblas-Betriebsposition mit der Heißwindleitung verbunden ist.The hot blast outlet of the
Da der Konverterbetrieb ein Chargenbetrieb ist, muss der Heißwind nur für die Zeit der betriebenen Charge zur Verfügung stehen. Zwischen den Chargen wird dann der Brenner im Pebble Heater betrieben, und dieser heizt den Besatz aus Schüttgutt in dieser Zeit wieder auf, bis wieder durch Kaltwindzuführung in den Pebble Heater für die nächste Konvertercharge Heißwind erzeugt wird.Since the converter operation is a batch operation, the hot blast only for the time of the batch operated To be available. Between the batches, the burner is then operated in the Pebble Heater, and this heats up the stocking of bulk material in this time again until hot wind is generated again by cold wind supply in the Pebble Heater for the next converter batch.
Der Prozess läuft dabei in der oben bereits beschriebenen Weise ab.The process runs in the manner already described above.
Das innerste Rohr stellt dabei in der Regel das sogenannte eigentliche Blasrohr dar.
Der Aussenmantel 1 bildet hier zusammen mit dem inneren Mantel 2 einen Verbund mit einem Zwischenraum 3. Der Zwischraum 3 wird dabei als Kühlmantel ausgestaltet, welcher von einem Kühlmittel durchströmt wird. Dieser innere Mantel 2 kann dabei mit einer dünnen Schicht 41 beschichtet sein, die als Übergangsschicht zu einem weiteren inneren Mantel 42 dient. Dieser Mantel 42 kann dabei schon ein keramisches Rohr, oder ein keramisch beschichtetes Rohr sein. Das innerste Rohr bzw der innerste Mantel 45 kann als schwimmendes Rohr vorgesehen sein, und zumindest an der innersten Oberfläche wiederum mit einer korrosions- und/oder abrasionsbeständigen Schicht 46 versehen sein.The outer shell 1 forms here together with the inner shell 2 a composite with a gap 3. The intermediate space 3 is designed as a cooling jacket, which is flowed through by a coolant. This inner shell 2 can be coated with a thin layer 41, which serves as a transition layer to a another inner jacket 42 is used. This jacket 42 may already be a ceramic tube, or a ceramic coated tube. The innermost tube or the
Der sich zwischen dem innersten schwimmend gelagerten Mantel oder Rohr 45 gegebene Zwischenraum 5 kann dabei auch mit Steinwolle, oder anderen thermisch gut isolierenden Werkstoffen gefüllt sein.The given between the innermost floating jacket or
Ein Aufbau wie dieser folgt gleich mehreren Maßgaben zugleich, nämlich erfolgt zum einen einer guten thermischen Isolation von innen nach außen, sodass der Heißwind nicht schon in der Heißwindlanze abkühlt, und zum anderen bewirkt das Beschichtungssystem, dass eine gute Korrosions- und Abrasionsfestigkeit entsteht.A structure like this follows several measures at the same time, namely on the one hand a good thermal insulation from the inside out, so that the hot air does not cool in the hot blast lance, and on the other hand causes the coating system that a good corrosion and abrasion resistance.
Insbesondere die schwimmende Lagerung des innersten Rohres oder Mantels 46 lässt unterschiedliche thermisch bedingte Längenausdehnungen unterschiedlicher verwendeter Materialien zu.In particular, the floating support of the innermost tube or
Auch bei den Beschichtungen kann dies nochmals berücksichtigt werden, indem wie oben beschrieben, haftvermittelnde Schichten oder Liner zumindest abschnittweise thermische Spannungen kompensierend aufnehmen können.This can also be taken into account again in the case of coatings, in that, as described above, adhesion-promoting layers or liners can at least partially absorb thermal stresses in a compensatory manner.
- 11
- äußerer Mantelouter coat
- 22
- innerer Mantelinner coat
- 33
- Zwischenraumgap
- 44
- Weiterer innerer MantelAnother inner coat
- 55
- Zwischenraumgap
- 41, 43, 44, 4641, 43, 44, 46
- Beschichtungencoatings
- 4242
- Mantelcoat
- 4545
- innerster Mantel, schwimmend gelagertinnermost coat, floating
Claims (13)
- Hot-blast lance for use in metallurgical processes, such as for example steel production, with which hot air can be blown in above a molten bath of a steel converter, which consists of an outer shell (1) and at least one inner shell (2) and an innermost shell, and arranged between the outer shell and an inner shell is at least one intermediate space (3) or cooling channel through which coolant flows, characterized in that the innermost shell is defined by an innermost lance tube through which hot air can flow, and the inner shell (2) or the innermost shell (4) consists at least partially of a thermally insulating further shell (4), or a thermally insulating shell, or is provided with such a shell, or is coated with a thermally insulating layer, and the innermost shell (45) is mounted in the hot-blast lance in a floating manner.
- Hot-blast lance according to Claim 1, characterized in that the inner shell (2) or the innermost shell (4) is provided at least on the inner side with a protective layer (41) or (46).
- Hot-blast lance according to Claim 1 or 2, characterized in that the inner shell (2) or the innermost shell (4) consists of a number of layers (41, 42, 43, 44, 45, 46), and in that at least the innermost of these layers, to be specific layer (46) or layer (43), consists of an abrasion- and/or corrosion-resistant material.
- Hot-blast lance according to one of Claims 1 to 3, characterized in that the inner shell (2) or the innermost shell (4) consists of a ceramic material or is coated with the same.
- Hot-blast lance according to Claim 3 or 4, characterized in that the abrasion- and/or corrosion-resistant material or the ceramic material is provided on the side adhering to the inner or innermost shell with a temperature-resistant adhesion promoter or liner.
- Hot-blast lance according to Claim 5, characterized in that the adhesion promoter or liner is elastic in such a way that it compensates for the difference in the coefficient of expansion of the inner or innermost shell and the abrasion- and/or corrosion-resistant material or the ceramic material.
- Hot-blast lance according to one of Claims 1 to 6, characterized in that the abrasion- and/or corrosion-resistant material or the ceramic material consists of a system of layers in which the surface facing the hot air consists of a dense ceramic material and the surface facing away from the hot air consists of a ceramic foam material.
- Hot-blast lance according to one of Claims 1 to 7, characterized in that at least one intermediate shell or intermediate space (3) is arranged between the inner shell (2) and the outer shell (1) and is flowed through by a coolant.
- Hot-blast lance according to Claims 1 to 7, characterized in that, to ensure protection from heat transfer by thermal radiation, the space (3) between the outer shell (1) and the inner shell (2) is filled with a thermal radiation inhibitor or is provided with a thin thermal radiation inhibiting layer.
- Hot-blast lance according to Claims 1 to 7, characterized in that arranged between the outer shell (1) and the innermost shell (46) is a temperature control channel, which during hot-air blasting operation can likewise be flowed through by hot air.
- Hot-blast lance according to one of Claims 1 to 10, characterized in that at least the inner shell (42) or the innermost shell (45) consists along its longitudinal direction of a number of pieces or sleeves, which are designed as partially overlapping at the points of contact of the individual pieces or sleeves.
- Hot-blast lance according to one of Claims 1 to 11, characterized in that the innermost surface (46) or coating surface that is directly in flow connection with the hot air is structured or microstructured in a flow-resistance and/or adhesion reduced manner.
- Use of a hot-blast lance according to one of Claims 1 to 12, for blowing in hot air above a steel bath and/or a pile of scrap and/or a pile in a steel converter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012016143.3A DE102012016143A1 (en) | 2012-08-08 | 2012-08-08 | Hot blast lance |
PCT/EP2013/001825 WO2014023372A1 (en) | 2012-08-08 | 2013-06-20 | Hot-blast lance |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2882874A1 EP2882874A1 (en) | 2015-06-17 |
EP2882874B1 true EP2882874B1 (en) | 2019-08-07 |
Family
ID=48793155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13737131.6A Active EP2882874B1 (en) | 2012-08-08 | 2013-06-20 | Hot-blast lance |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2882874B1 (en) |
DE (1) | DE102012016143A1 (en) |
WO (1) | WO2014023372A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107354312A (en) * | 2017-09-12 | 2017-11-17 | 侯锦峰 | Four-way oxygen fine coal spray gun |
WO2023164076A1 (en) * | 2022-02-25 | 2023-08-31 | Sierra Energy | Lances for injecting reactants into gasifiers |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792348A (en) * | 1971-12-28 | 1973-03-30 | Uss Eng & Consult | PROCESS FOR BINDING SEALS IN METAL TUBES |
LU80250A1 (en) * | 1978-09-18 | 1979-06-01 | R Hubert | ASSEMBLY WITH EJECTOR NOZZLES, CALLED "LANCE NOSE", USED TO BLOW GAS, VEHICULATING SOLID MATERIALS OR NOT, ON OR IN A FUSION METAL BATH |
DE4238970C1 (en) * | 1992-11-19 | 1994-04-21 | Kct Tech Gmbh | Process for blowing oxidizing gases into metal melts |
DE4343957C2 (en) | 1993-12-22 | 1997-03-20 | Tech Resources Pty Ltd | Converter process for the production of iron |
ES2250755T3 (en) * | 1998-08-28 | 2006-04-16 | Voest-Alpine Industrieanlagenbau Gmbh | PROCEDURE TO PRODUCE A METAL BRASS THROUGH A MULTIFUNCTION LAUNCH. |
US6503442B1 (en) * | 2001-03-19 | 2003-01-07 | Praxair S.T. Technology, Inc. | Metal-zirconia composite coating with resistance to molten metals and high temperature corrosive gases |
AUPR624801A0 (en) * | 2001-07-10 | 2001-08-02 | Technological Resources Pty Limited | A gas injection lance |
JP4801732B2 (en) | 2006-01-04 | 2011-10-26 | サールスタール アーゲー | How to preheat iron agglomerates |
AT506984B1 (en) * | 2008-06-17 | 2010-06-15 | Siemens Vai Metals Tech Gmbh | OXYGEN BLASLANT WITH PROTECTIVE ELEMENT |
-
2012
- 2012-08-08 DE DE102012016143.3A patent/DE102012016143A1/en not_active Withdrawn
-
2013
- 2013-06-20 EP EP13737131.6A patent/EP2882874B1/en active Active
- 2013-06-20 WO PCT/EP2013/001825 patent/WO2014023372A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2014023372A1 (en) | 2014-02-13 |
EP2882874A1 (en) | 2015-06-17 |
DE102012016143A1 (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1466022B1 (en) | Method for the pyrometallurgical treatment of metals, metal melts and/or slags and injection device | |
DE60203911T2 (en) | GASSPÜLLANZE | |
DE69720729T2 (en) | INJECTION LAMP TO BE USED FROM ABOVE | |
DE4031403A1 (en) | CERAMIC WELDING PROCESS AND LANCE FOR USE IN SUCH A PROCESS | |
DE10103605A1 (en) | Device for feeding solid particulate matter into a boiler | |
EP2882874B1 (en) | Hot-blast lance | |
AT527022A2 (en) | Composite oxygen-carbon spray gun | |
DE68908299T2 (en) | Wear-resistant metallurgical nozzle. | |
DE102014104232A1 (en) | Combustible dust burner and air flow gasifier for the production of synthesis gas | |
EP1285096B1 (en) | Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore | |
DE69400900T2 (en) | Process for influencing the formation of deposits on a fuel-oxygen nozzle | |
DE102006052937A1 (en) | Manifold for tube splitters | |
DE3315431C2 (en) | Process for increasing the service life of water-cooled tuyeres when operating a blast furnace | |
DE112004001926B4 (en) | A tube segment for a transport line for transporting hot particulate material | |
EP2659008B1 (en) | Method for the pyrometallurigical treatment of metals, molten metals, and/or slags | |
DE2633061A1 (en) | BLOW PROCESS FOR OVEN WITH MELTING CHAMBER AND THIS TO PERFORM THE PROCESS | |
EP2882876B1 (en) | Hot blast lance with a nozzle brick arranged at the hot blast outlet | |
DE102009006573A1 (en) | Process for melting feedstock in a cupola furnace | |
EP1007882B1 (en) | Coating for a burner nozzle | |
EP0533866B1 (en) | Process and reduction and melting furnace for producing liquid metal from fine metal oxide particles | |
DE102009060827A1 (en) | Lance head for a lance with a ceramic nozzle insert | |
EP2882873B1 (en) | Method for operating a reaction vessel for steel production, and a steel converter arrangement itself | |
DE102008013505A1 (en) | Metallurgical process and installation for this | |
EP2846092B1 (en) | Burner | |
DE102004034211A1 (en) | Method for NOx-low combustion especially in furnaces operates with burner using fuel and oxidation agent or furnace waste gas supplied as mixture to burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180509 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190312 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1163960 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013013325 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191108 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191207 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013013325 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20210621 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1163960 Country of ref document: AT Kind code of ref document: T Effective date: 20220620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 12 |