EP2880314B1 - Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung - Google Patents

Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung Download PDF

Info

Publication number
EP2880314B1
EP2880314B1 EP13747957.2A EP13747957A EP2880314B1 EP 2880314 B1 EP2880314 B1 EP 2880314B1 EP 13747957 A EP13747957 A EP 13747957A EP 2880314 B1 EP2880314 B1 EP 2880314B1
Authority
EP
European Patent Office
Prior art keywords
capillary
transport
capillaries
liquid
directed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13747957.2A
Other languages
English (en)
French (fr)
Other versions
EP2880314B8 (de
EP2880314A1 (de
Inventor
Philipp COMANNS
Werner Baumgartner
Frank Bernhardt
Kai WINANDS
Kristian ARNTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2880314A1 publication Critical patent/EP2880314A1/de
Publication of EP2880314B1 publication Critical patent/EP2880314B1/de
Application granted granted Critical
Publication of EP2880314B8 publication Critical patent/EP2880314B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces

Definitions

  • the invention relates to a device for capillary transport of liquids according to the preamble of claim 1, the use of such a device and a method for producing such a device.
  • a capillary is a cavity in which fluid contained therein can dominate surface effects against viscosity and inertial effects. Taking advantage of this peculiarity, capillaries are used in various processes to process, investigate or even transport liquids in a targeted manner. Capillaries are also used in capillary pumps for autonomous microfluidic systems ( Zimmermann, M. et al .; Capillary pumps for autonomous capillary systems; Lab Chip 2007, 7, 119-125 ).
  • Capillaries may be closed or partially open.
  • the transport direction of the liquid is determined by the orientation of the capillary.
  • the transport effect is due to the surface tension of the liquid in the capillary and the interfacial tension between the liquid and the solid surface of the capillary. Furthermore, surface friction also plays a role.
  • the liquid rises in a capillary until the capillary force equals the counteracting gravity of the liquid.
  • the rise height depends on the properties of the capillary (eg material parameters, capillary cross-section) as well as the liquid (eg contact angle, surface tension).
  • Round-section closed-cap mathematical models are usually based on the Lukas-Washburn equation or its modifications. For closed capillaries of rectangular cross section, a hydraulic radius is introduced. For capillaries, whose circular cross section varies in sections, Young (2004) has modeled capillary liquid transport via the Lukas-Washburn equation.
  • capillaries z As partially open capillaries z. For example, described in the form of cavities between two parallel plates. Furthermore, there are also channel-shaped capillaries whose cross-section z. B. is V-shaped or U-shaped.
  • a device of the type mentioned is from the EP 2 339 184 A2 discloses a device for transporting liquids in the vertical or horizontal direction, are used in the partially open capillaries, wherein different contact angles between the liquid and the surface of the respective capillary to form a fluid transport controlling hydrodynamic force are utilized.
  • the aim is to minimize the consumption of energy-external sources.
  • Described are channels whose inner surface is divided into regions of different chemical compositions, which thereby have different contact angles or contact angle gradients.
  • Such chemical contact angle heterogeneities may be annular or helical and allow transport of liquid droplets.
  • the contact angle heterogeneities can also be generated by a sawtooth-shaped geometry on the inside or annular or helical protuberances. Overcoming any points of discontinuity is achieved by supplying external energy.
  • a capillary having an asymmetric, sawtooth-like internal surface structure is known.
  • the asymmetry refers to an axis of symmetry perpendicular to the capillary surface.
  • the disclosed nonmechanical fluid transport is based on the Leidenfrost effect and must be thermally driven.
  • Buguin (Ratchet-like topological structures for the control of microdrops; Appl. Phys. A 75,207 - 212 (2202 )) also describes directional drop movement in a sawtooth channel, but driven by an electric field or vibration.
  • capillaries with an asymmetric internal surface structure are known, which results in a resultant force in the case of a drop arranged therein.
  • additional energy eg. B. required by a fluid pressure to overcome the conditional by the roughness of the surface structure resistance force.
  • non-capillary surface structures are used in order to throttle the flow velocity in the edge region and thereby produce a more homogeneous flow in broad capillaries. The same is in EP 1 201 304 B1 disclosed. Non-capillary surface structures are also known from the above WO 2007/035511 A2 known.
  • the aforementioned prior art relates essentially to undirected spreading or the directional transport of individual liquid drops. It is thus the transport of very small amounts of liquid on usually short transport routes.
  • it has not yet been possible to transport liquids on surfaces or in materials with capillary properties both capillary and, from any desired location, exclusively or at least predominantly in one direction.
  • Appropriate approaches in microfluidics exist in partially open capillary systems, but due to the small size spectrum they can only be used to a limited extent and are also susceptible to wear.
  • the DE 103 09 695 A1 discloses a method for joining plastic pipes for producing capillary tube mats, in which a molding tool is used with which the internal cross section of a closed capillary tube to be welded to a collecting pipe can be formed.
  • the DE 10 2009 038 019 A1 discloses methods of making channel structures for a bioreactor using punching, laser ablation, embossing, or micro-milling techniques.
  • the EP 0 058 019 A2 discloses a tool for forming a spinneret capillary using spark erosion to form the spinneret orifice.
  • the invention concerned here is the technical problem of providing a device of the type mentioned above, with the capillary liquid transport can be made faster and directionally discriminated. Furthermore, uses of the device and methods for producing such a device are to be proposed.
  • the passive, ie without external force, directed liquid transport in the capillary is based on claim 1 that at least two of the capillaries are connected to each other in the transport direction of the liquid via at least one capillary passageway.
  • a passageway connecting the capillaries constitutes a functional connection designed in such a way that any local stopping of the liquid to be transported in the one capillary is overcome by liquid supply from the other capillary via the passageway.
  • the capillaries are preferably connected to one another via a plurality of passage channels, ie via at least two, more preferably at least three, more preferably at least 5, more preferably at least ten passage channels.
  • the passageway which is also capillary in nature, provides for the formation of another fluid front that connects to the stopped fluid front and thus creates a new entire fluid front that continues to passively move for at least a certain distance.
  • Liquid fronts are also referred to below as menisci.
  • the capillaries are connected to one another via the passage channels, which can change in cross section, ie are a communicating system, the overall structure of capillaries and passage channels forms a common capillary structure, to which the capillaries according to the claim definition belong as a substructure.
  • Passage channels in the sense of the invention are understood as meaning the regions of the capillary structure in which an additional meniscus forms in order to transport liquid from one capillary to the other.
  • the passageway ends in each case where an association with a meniscus of the supplied capillary takes place.
  • the device according to the invention may be designed such that the at least two capillaries each have a plurality of transport sections arranged successively in the direction of transport and arranged for passive capillary transport.
  • the transport sections each end in a stop position, which is suitable to interrupt the undisturbed passive directional liquid transport.
  • the passageways each have a channel exit near the stop location, in particular in the transport direction behind the stop location and adjacent to the stop location, so that a union of the meniscus of the passageway with the capillary to be supplied is achieved.
  • the meniscus of the capillary may also stop forward before the stop site. If the distance to the stop is sufficiently small, the menisci can nevertheless be united.
  • the mutually connected via the passageways capillaries provide each other alternately with the overcoming a stop point for the capillary onward transport required liquid.
  • the stop site may be, for example, an edge in a wall structure of the capillary.
  • the directional transport means that there is at least one preferred direction for the transport.
  • the capillary system may e.g. cause the transport in a forward direction, but completely prevent a reverse transport opposite thereto.
  • the directional transport but also includes a variant in which in addition to the forward transport and a reverse transport can take place, but is slowed down to the forward transport.
  • the asymmetric transport in different directions is particularly possible when the capillary system is driven by a fluid source, e.g. an overlying drop, is fed.
  • the directional transport also includes multidimensional systems in which the liquid transport can branch, so are more than two capillaries that extend two-dimensionally or three-dimensionally in different directions and the liquid transport in preferred directions is faster and slowed down or prevented in other directions of Kapillarverall becomes.
  • the directional transport further includes variants in which rear menisci are retightened in a preferred direction.
  • the sequence is, for example, as follows for two capillaries connected to one another via passage channels.
  • the liquid forms a first meniscus, which progresses due to capillary forces until it comes to rest in the region of a first stop position.
  • the following transport section is supplied with liquid from the second capillary via at least one of the passage channels in which a further meniscus forms. This is possible because in the second capillary also a liquid transport has taken place and a part of the liquid of the second capillary has entered the entrance of the passageway.
  • the further meniscus of the passage channel combines at the exit of the passageway with the one at the stop or in its vicinity first meniscus to a common meniscus that overcomes the stop, so that the directional transport in the stopper following transport section of the first capillary continues to the region of a second stop location.
  • the liquid of the first capillary passes the entrance of at least one further passageway, which then supplies the second capillary with liquid in a corresponding manner in order to overcome a stop of the liquid transport there.
  • This principle can also be realized in interaction with more than two capillaries, e.g. three or more capillaries are mutually connected by passageways. This can also be realized in such a way that a first passage channel connects a first and a second capillary, a second passageway connects the second and a third capillary, and a third passageway connects the third capillary again with the first capillary. This principle can be extended further.
  • a capillary with two or more capillaries is connected via passageways.
  • the structure of the capillaries can be designed so that the above-described effect of the passive transport by means of the passage channels is achieved only in a certain direction of the course of the involved capillary.
  • the structure of the capillaries is constructed asymmetrically in such a way that the additional menisci formed there stop in a direction opposite to the desired transport direction, without reaching the passage channel necessary for filling the cavity of the adjacent capillary, which is the respective meniscus.
  • the structures are selected such that the menisci directed backwards, that is, opposite to the desired transport direction, is a have significantly less curvature or assume a straight or convex (outwardly bent) shape.
  • the posterior meniscus in the capillaries preferably has a slightly concave shape or at least a smaller curvature than one of the anterior menisci in the capillaries.
  • the desired effect of the transport sections liquid passively by capillary force, i. without external force, to transport directionally, e.g. be achieved by a suitable geometry of the capillaries.
  • the transport sections have a decreasing in the transport direction cross-section.
  • the cross section can widen again, preferably discontinuously in a sudden cross-sectional widening, so that a new transport section which reduces in cross-section can follow.
  • the effect of the transport sections can also be achieved by the material of the inner surfaces of the capillary, e.g. by suitable coatings or by micro or nanostructuring.
  • a stop location may e.g. be formed by an expansion of the cross section of the capillary.
  • a stop may also include a change in the surface material or surface structure, e.g. the roughness, at least in a partial region of the capillary be achieved.
  • the capillary wall may be round in cross-section or have any cross-sectional shape, e.g. Include floor and / or side walls.
  • closed capillaries are meant those capillaries which, apart from inputs or outputs of Passageways which pierce the circumference and connect capillaries are closed on the full circumference.
  • Partially open are all capillaries that are not closed, z. For example, such as those produced by two parallel or substantially parallel plates, those with u-shaped, v-shaped cross-section or cross-sections with irregular shapes, which are open in at least one longitudinal direction.
  • front menisci and rear menisci are formed in the transport direction.
  • the front menisci move in the manner described above, even further due to the capillary forces steadily, while in the backward direction, the rear menisci remain at the latest at a stop point, unless external forces cause their overcoming, but at least in relation to speed the anterior menisci are much slower. Movement of the anterior menisci in the direction of transport continues as long as the fluid source feeds the capillaries.
  • the movement behavior of the supply from a liquid source can also depend in closed capillaries.
  • Capillaries may extend along a planar or curved surface or three-dimensionally, and z. B. create a sponge-like structure.
  • Capillaries according to the invention can also be formed by fiber material, for example from solid fibers or hollow fibers. Hollow fibers can form even closed capillaries. However, a hollow fiber can also have a first internal structure, as well may be fibrous. This internal structure may be regular or irregular on the surface.
  • the device according to the invention may also be a textile, for.
  • sanitary articles such as diapers or sanitary towels, or other liquid collecting fabrics, e.g. for picking up oil.
  • the device according to the invention may be part of a tool, in particular a cutting tool.
  • the capillaries thereon may be used, in particular, to supply liquid, e.g. Coolant, lubricant or cooling lubricant, serve at a processing point.
  • liquid e.g. Coolant, lubricant or cooling lubricant
  • closed or partially open capillaries can be provided. In this way, the liquid can be introduced a few millimeters away from the cutting edge in a supply area. This can reduce the amount of liquid. Furthermore, the energy for supplying the liquid can be reduced.
  • the device according to the invention can also be a tool mold.
  • the error-free removal of a component from a mold is a decisive process step.
  • a large amount of release agent is often used to avoid inadequate wetting of the mold.
  • the use of resources can be significantly reduced if the mold is provided with wetting capillaries.
  • the effectiveness and effectiveness of the wetting can be increased.
  • the device according to the invention may advantageously also be a means for the metered supply of liquid in other applications, in particular for the transport of solder material during the soldering of electronic components.
  • the amount of solder can be dosed in accordance with the application in order to achieve an optimum result when contacting the printed conductors.
  • the motherboards are structured prior to contacting with capillaries.
  • the device according to the invention can be a sensor.
  • the possible directional transport liquids can be fed to a sensor. It is possible to split liquids through the defined structure of the capillaries and to disassemble into individual components. In the case of blood, this can, for. As the separation of blood plasma and blood cells.
  • the microstructuring of the capillaries due to the given geometry can either lead the components into different channels or serve as a kind of particle trap in which the particles, e.g. As the blood cells, caught, the remaining liquid, however, continues to flow.
  • the capillaries would thus act as a filter here. It is conceivable, several such structure fields, eg. B. cascaded, to line up to produce filter stages.
  • a fluid could not only be split into two components (eg, liquid and solid), but optionally it would also be possible to separate different liquids and different solids at the same time, and even divert them into different component regions.
  • the device according to the invention can also serve as a moisture sensor.
  • moisture precipitation and sometimes associated with ice formation eg. As in the field of aviation, a critical point.
  • a device according to the invention can be designed so that the capillary microstructures on the sensor moisture from the environment, eg. B. condense the air and selectively lead to an area on the sensor to analyze there the degree of humidity or to detect an incipient ice formation by determining the amount of flow.
  • Another use of the condensation effect would be the dehumidification of interiors, especially of interiors of technical equipment, such. As of refrigerators to prevent too fast spoiling of food due to excessive air humidity or of electronic cabinets in which a high humidity can lead to short circuits and damage.
  • the capillary surface structures could trigger condensation and purposely drain the condensate into a reservoir.
  • the device according to the invention can be used for the separation of constituents from a fluid substance.
  • she can also for Oil / water separation can be used. This can be used advantageously in brake systems and bearings or in process engineering equipment, z. B. to prepare brake fluids and hydraulic oils or to clean reservoir in case of contamination.
  • the device according to the invention may also be a structure which is used for heat exchange or for heat removal.
  • So z. B. Destiller which are installed in process engineering plants, often made of copper.
  • the surfaces are easily provided with the capillary structures in the appropriate manner. As a result, the surface is quantitatively increased on the one hand and on the other hand can be influenced by the appropriate capillary structures of the liquid transport targeted to increase the cooling capacity or heat exchange.
  • the capillary structures of the device according to the invention can be produced by different reductive or generative methods, for example mechanically, for. B. by cutting, especially by micro-milling, thermally, for. B. by abrasive laser machining, chemical, z. B. by etching, electrically, for. B. by erosion or by a combination of these mechanisms, for. B. electrically electro-chemical processes, such as the ECM process.
  • capillary structures are forming processes, such.
  • embossing in which the capillary structures are produced by material displacement or material displacement, or urformende method, eg.
  • urformende method eg.
  • injection molding or die casting in which the capillary structures are generated by forming outlines in forms replicative or directly building by generative methods.
  • capillary structures may be formed by the processing of material fibers, e.g. Solid material fibers, hybrid material fibers or a combination with additional, enveloping hollow fibers and by the production of e.g. Fiber braids, fiber fabrics, fiber fabrics, fiber knitted or fiber knitted fabrics are produced.
  • material fibers e.g. Solid material fibers, hybrid material fibers or a combination with additional, enveloping hollow fibers
  • Fiber braids e.g. Fiber braids, fiber fabrics, fiber fabrics, fiber knitted or fiber knitted fabrics are produced.
  • the devices according to the invention may consist of different materials or be composed of different materials, preferably these materials are metals, metal alloys, hard metals or carbides, polymer or mineral based materials, glass, composites or ceramics.
  • the production of the capillary structures can be coupled to the manufacture of the device itself, so that no separate manufacturing step is necessary. This is particularly useful in connection with capillary structure devices made of fibers or fibrous materials.
  • the capillary structure can be incorporated in the manufacture of fibers, a fiber-operatively coupled part, a textile or a polymer-based, foamed or porous material.
  • Each individual fiber may itself have a capillary structure or e.g. the fiber composite as a whole form the capillary structure.
  • laser radiation can be used in a particularly advantageous manner.
  • very fine capillary structures can be brought to surfaces in an effective manner, which will generally be partially open capillaries.
  • the capillary structures can be too costly and expensive.
  • the negative structures can be incorporated into the Siriterform. This in turn can be done preferably with the aid of laser radiation, since the sintering mold can be used in many ways.
  • Fig. 4 shows a principle known from the prior art asymmetric, here half-sawtooth surface structure of a capillary 1 with a smooth side wall 2 and a sawtooth-shaped side wall 3, between which a liquid droplet 4 is located.
  • the capillary geometry causes different curvatures of a front liquid surface 5 and a rear liquid surface 6.
  • At the front liquid surface 5 there is a pressure difference, wherein the pressure P K, i directed into the drop interior is smaller than the outwardly directed pressure P K, a .
  • the curvature is directed opposite and the outward pressure P K, a is smaller than the pressure P K, i directed into the drop interior. If external forces are not present, it results from the pressure conditions that the liquid is transported capillary in the transport direction (arrow 7), the transport running until a stable position of the drop 4 has been found.
  • FIGS. 1 to 3 show schematically in cross section an embodiment of a capillary structure, as may be provided on a device according to the invention.
  • Fig. 1 shows two capillaries, which are referred to below as upper capillary 8 and lower capillary 9.
  • the properties "top” and “bottom” refer only to the pictorial representation and not to a possible orientation of the capillary in space.
  • This may be a partly open capillary structure with upper side wall 10 and lower side wall 11 between which a central structure 12 is arranged.
  • the capillary structure is limited perpendicular to the plane of the drawing down by a bottom not shown separately here.
  • the capillary structure is open.
  • the directed transport of the liquid mass 13 initially runs to the corner 15 of the middle structure 12.
  • the corner 15 is defined as well each vertex mentioned below, one stop each for liquid transport in the affected capillary.
  • the liquid mass in the upper capillary 8 runs due to the interplay of geometry and contact angle 16 to the vertex 25.
  • the upper meniscus 18 is shown for upper capillary 8 and the lower meniscus 19 for the lower capillary 9.
  • the position 18a of the meniscus 18 is additionally drawn in an earlier stage.
  • the liquid mass 13 in the upper capillary 8 has already exceeded the entrance of a passage 20 which connects the upper capillary 8 to the lower capillary 9 in the end position indicated by the meniscus 18.
  • the passageway 20 is in turn a capillary, which is why liquid from the liquid mass 13 from the upper capillary moves due to the capillary forces through the passageway 20 to the lower capillary 9 and there forms a further meniscus 21, which runs to the corner 15.
  • the two menisci 19 and 21 merge and unite into a common new meniscus 22, as in Fig. 2 is drawn in an intermediate position 22a and a preliminary end position 22.
  • the liquid mass 13 On the way to the preliminary end position 22, the liquid mass 13 has overflowed a second passage 23, which in turn connects the lower capillary 9 with the upper capillary 8.
  • a second passage 23 through the liquid passes from the lower liquid mass 13 due to the capillary forces into the upper capillary 8 and forms there the other meniscus 24, which combines at the vertex 25 with the other meniscus 18 to a new common meniscus 26, the in Fig. 3 is shown on its way to the corner 27.
  • the described behavior of the liquid mass 13 continues through the further passage channels 28 and 29, so that a further transport of the liquid mass 13 takes place in the transport direction 14.
  • z. B. is achieved by adding a drop of liquid to the open side of the capillary structure.
  • Fig. 5 shows the capillary structure of the FIGS. 1 to 3 mirrored, so that in the FIGS. 1 to 3 given transport direction 14 must be displayed here from right to left running. Contrary to the transport direction 14, the progression of the liquid mass 13 is reduced or prevented, since the capillaries in the region of the drawn menisci 30 and 31 expand in such a way that the menisci have a significantly smaller curvature or receive a straight or convex shape.
  • the liquid mass 13 in this direction does not reach or at least delays the passage channels 40 or 41, as a result of which a directed liquid transport is thus achieved by means of the capillaries 8 and 9.
  • a liquid droplet applied to such a structure or a plurality of such capillary structures thus distributes alone or at least predominantly in the transport direction 14.
  • FIG. 1 to 3 The graphic representation in the Fig. 1 to 3 serves for the schematic clarification of the principle.
  • a further variant of a capillary structure according to the invention is shown, which has been successfully tested in practice.
  • outer side walls 50 and 51 are provided with asymmetrical sequences of cross-sectional changes.
  • the transport of a liquid mass 52 runs in the direction of the arrow 53.
  • the liquid mass 52 moves in an upper capillary 54 in the transport direction 53 as far as a first stop location 56.
  • a liquid meniscus 57 assumes a substantially non-curved shape.
  • a lower branch of the liquid mass 52 forms a further meniscus 58, which is still strongly concave (curved toward the inside of the liquid) and advances in the lower capillary 55 in the transport direction 53.
  • FIGS. 6 and 7 An alternative capillary structure show the FIGS. 6 and 7 wherein the capillary structure is formed by fibers 32.
  • the fibers have an asymmetrical structure with respect to a plane perpendicular to their longitudinal direction, resulting in a directed transport through the capillaries 33 formed between the fibers 32.
  • sectional drawings "A”, “B” and “C” of the Fig. 7 the arrangement of the fibers 32 in a dense package becomes clear.
  • passageways 34 are shown in the sectional drawings "B” and "C”.
  • the capillary structure of FIGS. 6 and 7 can be limited by side walls, which are not shown here.
  • the capillary structure can be partially open or closed.
  • FIGS. 8 and 9 is in a corresponding representation to the FIGS. 6 and 7 an alternative arrangement of the fibers 32 shown with denser packing. After that, the fibers 32 are offset from each other in such a way that the asymmetry of the capillary cavities is increased.
  • the denser packing can make it easier to override stop sites by merging menisci.
  • Fig. 10 shows an outer hollow fiber 36, which wraps around an inner fiber 35 and having numerous openings 37 at its periphery.
  • another variant of a capillary structure can be formed by packing a plurality of such combinations of enveloping hollow fiber 36 and inner fiber 35 into a bundle.
  • the openings 37 form the passageways between adjacent capillaries.
  • the number of openings 37 can also be chosen to be much lower than in Fig. 10 shown. It is crucial that the function of passageways in accordance with the Invention is satisfied.
  • Each inner fiber 35 may be a solid fiber, as in FIG Fig. 10 represented, or a hollow fiber.
  • a plurality of inner fibers 35 may be provided in the hollow fiber 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum kapillaren Transport von Flüssigkeiten gemäß dem Oberbegriff des Anspruchs 1, die Verwendung einer solchen Vorrichtung sowie ein Verfahren zur Herstellung einer solchen Vorrichtung.
  • Eine Kapillare ist ein Hohlraum, in dem bei darin enthaltener Flüssigkeit Oberflächeneffekte gegenüber Viskositäts- und Trägheitseffekten dominieren können. Unter Ausnutzung dieser Besonderheit werden Kapillaren in verschiedenen Prozessen eingesetzt, um Flüssigkeiten zu verarbeiten, zu untersuchen oder auch gezielt zu transportieren. Anwendung finden Kapillaren auch in Kapillarpumpen für autonome Mikrofluidik-Systeme (M. Zimmermann et al; Capillary pumps for autonomous capillary systems; Lab Chip 2007, 7, 119-125).
  • Kapillaren können geschlossen oder teiloffen ausgeführt sein. In einer geschlossenen Kapillare ist die Transportrichtung der Flüssigkeit durch die Ausrichtung der Kapillare festgelegt. Die Transportwirkung ist eine Folge der Oberflächenspannung der in der Kapillare befindlichen Flüssigkeit und der sich zwischen der Flüssigkeit und der festen Oberfläche der Kapillare ergebenden Grenzflächenspannung. Des Weiteren spielt auch die Oberflächenreibung eine Rolle. Die Flüssigkeit steigt in einer Kapillare so lange, bis die Kapillarkraft gleich der entgegenwirkenden Schwerkraft der Flüssigkeit ist. Dabei ist die Steighöhe von den Eigenschaften der Kapillare (z. B. Materialparameter, Kapillarquerschnitt) sowie der Flüssigkeit (z. B. Kontaktwinkel, Oberflächenspannung) abhängig. Mathematische Modelle für geschlossene Kapillare mit rundem Querschnitt basieren in der Regel auf der Lukas-Washburn-Gleichung oder deren Modifikationen. Für geschlossene Kapillaren mit rechteckigem Querschnitt wird ein hydraulischer Radius eingeführt. Für Kapillaren, deren runder Querschnitt abschnittsweise variiert, hat Young (2004) den kapillaren Flüssigkeitstransport über die Lukas-Washburn-Gleichung modelliert.
  • Als teiloffene Kapillare werden z. B. solche in Form von Hohlräumen zwischen zwei parallelen Platten beschrieben. Des Weiteren gibt es auch rinnenförmige Kapillare, deren Querschnitt z. B. v-förmig oder u-förmig ist.
  • Eine Vorrichtung der eingangs genannten Art ist aus der EP 2 339 184 A2 bekannt, welche eine Vorrichtung zum Transport von Flüssigkeiten in vertikaler oder horizontaler Richtung offenbart, bei der teiloffene Kapillaren eingesetzt werden, wobei unterschiedliche Kontaktwinkel zwischen Flüssigkeit und Oberfläche der jeweiligen Kapillare zur Ausbildung einer den Flüssigkeitstransport steuernden hydrodynamischen Kraft ausgenutzt werden. Dabei soll der Verbrauch von energieexternen Quellen minimiert werden. Es werden Kanäle beschrieben, deren innere Oberfläche in Bereiche mit unterschiedlichen chemischen Zusammensetzungen aufgeteilt ist, die hierdurch unterschiedliche Kontaktwinkel oder Kontaktwinkelgradienten aufweisen. Solche chemischen Kontaktwinkelheterogenitäten können ringförmig oder helikal angeordnet sein und ermöglichen einen Transport von Flüssigkeitstropfen. Die Kontaktwinkelheterogenitäten können auch durch eine sägezahnförmige Geometrie an der Innenseite oder ringförmige bzw. helikale Protuberanzen erzeugt sein. Ein Überwinden eventueller Unstetigkeitsstellen wird durch Zufuhr externer Energie erreicht.
  • Aus der WO 2006/121534A1 ist eine Kapillare mit asymmetrischer, sägezahnähnlicher inneren Oberflächenstruktur bekannt. Die Asymmetrie bezieht sich auf eine Symmetrieachse senkrecht zu der kapillaren Oberfläche. Der offenbarte nichtmechanische Flüssigkeitstransport basiert auf dem Leidenfrost-Effekt und muss thermisch angetrieben werden.
  • A. Buguin (Ratchet-like topological structures for the control of microdrops; Appl. Phys. A 75,207 - 212 (2202)) beschreibt ebenfalls eine gerichtete Tropfenbewegung in einem Sägezahnkanal, die jedoch durch ein elektrisches Feld oder Vibration angetrieben wird.
  • Aus der WO 2007/035511A2 sind ebenfalls Kapillaren mit einer asymmetrischen inneren Oberflächenstruktur bekannt, die bei einem darin angeordneten Tropfen zu einer resultierenden Kraft führt. Gleichwohl wird zum Transport des Tropfens zusätzliche Energie, z. B. durch einen Fluiddruck benötigt, um die durch die Rauheit der Oberflächenstruktur bedingte Widerstandskraft zu überwinden.
  • Aus der WO 2008/114063A1 werden geschlossene Kapillaren mit einem Breite/Tiefeverhältnis von 10 bis 100 beschrieben, bei denen mindestens eine von vier Seitenwänden die Funktion der Geschwindigkeitsdrosselung aufweist und hierfür mikrostrukturiert ist.
  • In der Mikrofluidik werden nicht-kapillare Oberflächenstrukturen eingesetzt, um die Strömungsgeschwindigkeit im Randbereich zu drosseln und dadurch eine homogenere Strömung in breiten Kapillaren zu erzeugen. Dergleichen ist in EP 1 201 304 B1 offenbart. Nicht-kapillare Oberflächenstrukturen sind auch aus der bereits oben genannten WO 2007/035511 A2 bekannt.
  • Des Weiteren beschäftigt sich C. W. Extrand (Retention Forces of a Liquid Slug in a Rough Capillary Tube with Symmetrie or Asymmetric Features; Langmuir 2007, 23, 1867 - 1871) mit den Wirkungen von Oberflächenstrukturen, insbesondere asymmetrischen Oberflächenstrukturen in Kapillaren auf Flüssigkeiten. Es wird ausgeführt, dass ein in einer entsprechenden Kapillare eingeschlossener Tropfen erst ab Anwendung einer kritischen externen Kraft bewegt werden kann. Unterschiedliche Kontaktwinkel können auch bei einem Tropfen auf einer Oberfläche durch Heterogenitäten bzw. Rauheiten wesentlich beeinflusst werden. So kann hierdurch ein anisotropes Spreiten applizierter Tropfen verursacht werden.
  • Der vorgenannte Stand der Technik betrifft im Wesentlichen ungerichtetes Spreiten oder den gerichteten Transport einzelner Flüssigkeitstropfen. Es handelt sich somit um den Transport sehr geringer Flüssigkeitsmengen auf in der Regel kurzen Transportstrecken. Es ist bislang jedoch noch nicht möglich, Flüssigkeiten auf Oberflächen bzw. in Materialien mit Kapillareigenschaften sowohl kapillar als auch, von einer beliebigen Stelle aus, ausschließlich oder zumindest überwiegend in eine Richtung zu transportieren. In teiloffenen Kapillar-Systemen sind in der Mikrofluidik diesbezügliche Ansätze vorhanden, jedoch aufgrund des kleinen Größenspektrums nur sehr eingeschränkt einsetzbar und auch anfällig für Verschleiß.
  • Comanns et al. beschreiben in "Moisture harvesting and water transport through specialized micro-structures on the integument of lizards." (Beilstein J. Nanotechnol. 2: 204-214; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3148043/) diverse Eidechsenarten, die in der Lage sind, über ihre Haut aus der Umgebung, insbesondere aus der Luftfeuchtigkeit, Nebel, Regen oder aus feuchtem Erdreich Feuchtigkeit aufzunehmen und mittels in den Schuppen der Eidechsenhaut befindlichen teiloffenen kapillaren Strukturen die aufgenommene Flüssigkeit zu verteilen. Eine der Eidechsenarten (Phrynosoma cornutum) zeigt dabei keine gleichmäßige Ausbreitung der Flüssigkeit über die gesamte Haut sondern einen gerichteten Flüssigkeitstransport zum Mund hin. Welche Besonderheiten der Eidechsenhaut für den gerichteten Transport ursächlich ist, ist nicht offenbart.
  • Die DE 103 09 695 A1 offenbart ein Verfahren zur Verbindung von Kunststoffrohren zur Herstellung von Kapillarrohrmatten, bei denen ein Formwerkzeug eingesetzt wird, mit dem der Innenquerschnitt eines an eine Sammelrohr anzuschweißenden geschlossenen Kapillarrohres geformt werden kann.
  • Die DE 10 2009 038 019 A1 offenbart Verfahren zur Herstellung von Kanalstrukturen für einen Bioreaktor unter Einsatz von Stanzverfahren, Laserablationsverfahren, Prägeverfahren oder Mikrofräsverfahren.
  • Die EP 0 058 019 A2 offenbart ein Werkzeug zum Formen einer von Spinndüsenkapillare, bei dem Funkenerosion zur Ausbildung der Spinndüsenöffnung eingesetzt wird.
  • Aus der WO 2005/094982 A2 ist es bekannt, bei der Herstellung von kapillaren Strukturen einer Mikrokanalvorrichtung Laserschneiden, Laserablation, Rollformen oder funkenerosives oder photochemisches Abtragen einzusetzen.
  • Der hier betroffenen Erfindung liegt das technische Problem zugrunde, eine Vorrichtung der eingangs genannten Art zur Verfügung zu stellen, mit der der kapillare Flüssigkeitstransport schneller und richtungsdiskriminierter gestaltet werden kann. Des Weiteren sollen Verwendungen der Vorrichtung sowie Verfahren zur Herstellung einer solchen Vorrichtung vorgeschlagen werden.
  • Bei einer Vorrichtung der eingangs genannten Art wird das technische Problem durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung ergeben sich aus den abhängigen Ansprüchen 2 bis 18.
  • In Bezug auf eine Verwendung wird das technische Problem mit den Merkmalen des Anspruchs 19 gelöst. Eine vorteilhafte Ausführungsform der erfindungsgemäßen Verwendung ergibt sich aus Anspruch 20.
  • In Bezug auf ein Verfahren zur Herstellung einer erfindungsgemäßen Vorrichtung wird das technische Problem jeweils durch die Merkmale der Ansprüche 21 bis 24 gelöst.
  • Der passive, das heißt ohne äußere Kraftzufuhr, gerichtete Flüssigkeitstransport in der Kapillare basiert gemäß Anspruch 1 darauf, dass mindestens zwei der Kapillaren in Transportrichtung der Flüssigkeit über mindestens einen kapillaren Durchtrittskanal miteinander verbunden sind. Ein die Kapillaren verbindender Durchtrittskanal stellt eine funktionale Verbindung dar, die derart gestaltet ist, dass ein evtl. auftretendes lokales Stoppen der zu transportierenden Flüssigkeit in der einen Kapillare durch über den Durchtrittskanal erfolgender Flüssigkeitszufuhr aus der anderen Kapillare überwunden wird. Vorzugsweise sind die Kapillaren über eine Mehrzahl von Durchtrittskanälen, d.h. über mindestens zwei, weiter vorzugsweise mindestens drei, weiter vorzugsweise mindestens 5, weiter vorzugsweise mindestens zehn Durchtrittskanäle, miteinander verbunden.
  • Der Durchtrittskanal, der ebenfalls kapillarer Natur ist, sorgt für die Ausbildung einer weiteren Flüssigkeitsfront, die sich mit der gestoppten Flüssigkeitsfront verbindet und auf diese Weise eine neue gesamte Flüssigkeitsfront erzeugt, welche sich zumindest für eine bestimmte Strecke passiv gerichtet weiterbewegt. Flüssigkeitsfronten werden im Folgenden auch als Menisken bezeichnet.
  • Da die Kapillaren über die Durchtrittskanäle, die sich im Querschnitt ändern können, miteinander verbunden sind, also ein kommunizierendes System sind, bildet das Gesamtgebilde aus Kapillaren und Durchtrittskanälen eine gemeinsame Kapillarstruktur, zu denen die Kapillaren gemäß der Anspruchsdefinition als Unterstruktur gehören. Als Durchtrittskanäle im Sinne der Erfindung werden die Bereiche der Kapillarstruktur verstanden, in denen sich ein zusätzlicher Meniskus bildet, um Flüssigkeit von einer zur anderen Kapillare zu transportieren. Der Durchtrittskanal endet jeweils dort, wo eine Vereinigung mit einem Meniskus der versorgten Kapillare stattfindet.
  • Die erfindungsgemäße Vorrichtung kann so ausgebildet sein, dass die mindestens zwei Kapillaren jeweils mehrere in Transportrichtung gesehen aufeinander folgende, für den passiven gerichteten kapillaren Transport eingerichtete Transportabschnitte aufweisen. Die Transportabschnitte enden jeweils in einer Stopp-Stelle, welche geeignet ist, den ungestörten passiven gerichteten Flüssigkeitstransport zu unterbrechen. Die Durchtrittskanäle weisen jeweils einen Kanalaustritt nahe der Stopp-Stelle insbesondere in Transportrichtung hinter der Stopp-Stelle und an der Stopp-Stelle angrenzend auf, so dass eine Vereinigung des Meniskus des Durchtrittskanals mit dem der zu versorgenden Kapillare erreicht wird. Der Meniskus der Kapillare kann auch bereits vor der Stopp-Stelle in der Vorwärtsbewegung anhalten. Ist der Abstand zur Stopp-Stelle hinreichend gering, kann gleichwohl eine Vereinigung der Menisken erfolgen.
  • Wird die Struktur aus Kapillaren und Durchtrittskanal aufeinanderfolgend wiederholt, kann über eine entsprechende Strecke ein Flüssigkeitstransport erreicht werden. Dabei versorgen sich die miteinander über die Durchtrittskanäle verbundenen Kapillaren abwechselnd gegenseitig mit der für die Überwindung einer Stopp-Stelle für den kapillaren Weitertransport erforderlichen Flüssigkeit. Die Stopp-Stelle kann z.B. eine Kante in einer Wandstruktur der Kapillare sein.
  • Der gerichtete Transport bedeutet, dass es für den Transport mindestens eine Vorzugsrichtung gibt. So kann das Kapillarsystem z.B. den Transport in eine Vorwärtsrichtung bewirken, einen hierzu entgegengesetzten Rückwärtstransport aber vollständig unterbinden. Der gerichtete Transport umfasst aber auch eine Variante bei der zusätzlich zum Vorwärtstransport auch ein rückwärts gerichteter Transport stattfinden kann, der aber gegenüber dem Vorwärtstransport verlangsamt ist. Der in unterschiedlichen Richtungen erfolgende asymmetrische Transport ist insbesondere dann möglich, wenn das Kapillarsystem von einer Flüssigkeitsquelle, z.B. einem aufliegenden Tropfen, gespeist wird.
  • Der gerichtete Transport umfasst zudem mehrdimensionale Systeme, bei denen sich der Flüssigkeitstransport verzweigen kann, also mehr als zwei Kapillaren gegeben sind, die sich zweidimensional oder dreidimensional in unterschiedliche Richtungen erstrecken und der Flüssigkeitstransport in Vorzugsrichtungen schneller erfolgt und in anderen Richtungen der Kapillarverläufe verlangsamt durchgeführt oder unterbunden wird.
  • Der gerichtete Transport umfasst des Weiteren Varianten, bei denen hintere Menisken in einer Vorzugsrichtung nachgezogen werden.
  • Der Ablauf ist z.B. wie folgt für zwei über Durchtrittskanäle miteinander verbundene Kapillaren. In der ersten Kapillare bildet die Flüssigkeit einen ersten Meniskus aus, der aufgrund kapillarer Kräfte fortschreitet, bis er im Bereich einer ersten Stopp-Stelle zum Stillstand kommt. In Fließrichtung hinter der Stopp-Stelle wird der folgende Transportabschnitt über mindestens einen der Durchtrittskanäle, in der sich ein weiterer Meniskus bildet, mit Flüssigkeit aus der zweiten Kapillare versorgt. Dies ist möglich, weil in der zweiten Kapillare ebenfalls ein Flüssigkeitstransport stattgefundnen hat und ein Teil der Flüssigkeit der zweiten Kapillare in den Eingang des Durchtrittskanals eingetreten ist. Der weitere Meniskus des Durchtrittskanals vereinigt sich am Ausgang des Durchtrittskanals mit dem an der Stopp-Stelle oder in dessen Nähe befindlichen ersten Meniskus zu einem gemeinsamen Meniskus, der die Stopp-Stelle überwindet, so dass der gerichtete Transport in dem der Stopp-Stelle folgenden Transportabschnitt der ersten Kapillare bis zum Bereich einer zweiten Stopp-Stelle weiterläuft. Auf dem Weg zur zweiten Stopp-Stelle passiert die Flüssigkeit der ersten Kapillare den Eingang mindestens eines weiteren Durchtrittkanals, der dann in entsprechender Weise die zweite Kapillare mit Flüssigkeit versorgt, um einen dortigen Stopp des Flüssigkeitstransports zu überwinden.
  • Dieses Prinzip kann auch im Zusammenspiel mit mehr als zwei Kapillaren verwirklicht werden, indem z.B. drei oder mehr Kapillare wechselseitig durch Durchtrittskanäle miteinander verbunden sind. Dies kann auch so realisiert werden, dass ein erster Durchtrittskanal eine erste und eine zweite Kapillare miteinander verbindet, ein zweiter Durchtrittskanal die zweite und eine dritte Kapillare und ein dritter Durchtrittskanal die dritte Kapillare wieder mit der ersten Kapillare verbindet. Dieses Prinzip kann weiter ausgedehnt werden.
  • Es ist auch denkbar, dass eine Kapillare mit zwei oder mehr Kapillaren über Durchtrittskanäle verbunden ist.
  • Auf diese Weise ist ein gerichteter passiver, d. h. ohne Einsatz äußerer Energiequellen erzeugter Transport der Flüssigkeit möglich.
  • Mit der Struktur kann eine Vorzugsrichtung des Flüssigkeitstransports verwirklicht werden, so dass der Transport gerichtet ist. Hierzu kann die Struktur der Kapillaren so ausgebildet sein, dass der oben beschrieben Effekt des passiven Transportes mittels der Durchtrittskanäle nur in einer bestimmten Richtung des Verlaufs der beteiligten Kapillare erreicht wird. Die Struktur der Kapillaren ist dabei derart asymmetrisch aufgebaut, dass in einer zur gewünschten Transportrichtung entgegengesetzten Richtung die dort ausgebildeten weiteren Menisken stoppen, ohne den zum Auffüllen des dem jeweiligen Meniskus folgenden Hohlraums der Nachbarkapillare notwendigen Durchtrittskanal zu erreichen. Die Strukturen sind derart gewählt, dass die rückwärts, das heißt entgegen der gewünschten Transportrichtung, gerichteten Menisken eine deutlich geringere Krümmung aufweisen oder eine gerade oder konvexe (nach außen gebogene) Form annehmen.
  • Alternativ zum Stoppen des hinteren Meniskus in der der Transportrichtung entgegen gesetzten Richtung kann der hintere Meniskus z.B. auch verlangsamt transportiert werden, was zu einem asymmetrischen Transport der Flüssigkeit führt.
    Für diesen Fall hat der hintere Meniskus in den Kapillaren vorzugsweise eine schwach konkave Form oder weist zumindest eine geringere Krümmung auf als einer der vorderen Menisken in den Kapillaren.
  • Die gewünschte Wirkung der Transportabschnitte, Flüssigkeit mittels Kapillarkraft passiv, d.h. ohne äußere Krafteinwirkung, gerichtet zu transportieren, kann z.B. durch eine geeignete Geometrie der Kapillaren erreicht werden. Hierfür kann z.B. vorgesehen werden, dass die Transportabschnitte einen sich in Transportrichtung verringernden Querschnitt aufweisen. Hinter einem Transportabschnitt kann sich der Querschnitt wieder aufweiten, vorzugsweise unstetig in einer sprunghaften Querschnittsaufweitung, so dass sich ein neuer, sich im Querschnitt verringernder Transportabschnitt anschließen kann.
  • Die Wirkung der Transportabschnitte kann auch durch das Material der inneren Oberflächen der Kapillare erreicht werden, z.B. durch geeignete Beschichtungen oder durch Mikro- oder Nanostrukturierungen.
  • Eine Stopp-Stelle kann z.B. durch eine Aufweitung des Querschnitts der Kapillare gebildet werden. Alternativ kann eine Stopp-Stelle auch eine Änderung des Oberflächenmaterials oder der Oberflächenstruktur, z.B. der Rauhigkeit, zumindest in einem Teilbereich der Kapillarwandung erreicht werden. Die Kapillarwandung kann im Querschnitt rund sein oder beliebige Querschnittsformen aufweisen und z.B. Boden und/oder Seitenwände umfassen.
  • Der passive gerichtete Transport der Flüssigkeit kann sowohl mit geschlossenen als auch mit teiloffenen Kapillaren erreicht werden. Mit geschlossenen Kapillaren sind solche Kapillaren gemeint, die, abgesehen von Eingängen oder Ausgängen von Durchtrittskanälen, welche den Umfang durchstoßen und Kapillare verbinden, auf dem vollen Umfang geschlossen sind. Teiloffen sind alle Kapillare, die nicht geschlossen sind, z. B. solche, die durch zwei parallele oder weitgehend parallele Platten erzeugt werden, solche mit u-förmigem, v-förmigem Querschnitt oder Querschnitten mit unregelmäßigen Formen, die in mindestens einer Längsrichtung offen sind.
  • Wird z.B. auf eine Struktur mit teiloffenen Kapillaren Flüssigkeit aufgegeben, z.B. in Form eines im Vergleich zum Durchmesser der Kapillaren großen Tropfen oder über eine sonstige Flüssigkeitsquelle, bilden sich in Transportrichtung vordere Menisken und in Rückwärtsrichtung hintere Menisken aus. In Transportrichtung bewegen sich die vorderen Menisken in der oben beschriebenen Weise bereits allein aufgrund der Kapillarkräfte stetig weiter, während in der Rückwärtsrichtung die hinteren Menisken spätestens an einer Stopp-Stelle stehen bleiben, sofern keine äußeren Kräfte deren Überwindung bewirken, mindestens aber im Verhältnis zur Geschwindigkeit der vorderen Menisken deutlich langsamer sind. Die Bewegung der vorderen Menisken in Transportrichtung läuft weiter, so lange die Flüssigkeitsquelle die Kapillaren speist.
  • Erfolgt keine Flüssigkeitszufuhr mehr, stoppt entweder die weitere Bewegung in Transportrichtung oder aber die hinteren Menisken werden in Transportrichtung nachgezogen, so dass sich die gesamte Flüssigkeitsmasse aufgrund der Kapillarkräfte gerichtet bewegt. Das Verhalten hängt von den gegebenen Kräften an den Oberflächengrenzen, von Reibungskräften und ggf. von äußeren Kräften, wie z.B. der Gravitationskraft, ab.
  • In entsprechender Weise kann auch in geschlossenen Kapillaren das Bewegungsverhalten von der Zufuhr aus einer Flüssigkeitsquelle abhängen.
  • Kapillaren können sich entlang einer ebenen oder gekrümmten Oberfläche erstrecken oder dreidimensional, und z. B. eine schwammartige Struktur erzeugen.
  • Erfindungsgemäße Kapillaren können auch durch Fasermaterial, z.B. aus Vollfasern oder Hohlfasern gebildet sein. Hohlfasern können selbst geschlossene Kapillaren bilden. Eine Hohlfaser kann aber auch eine erste innere Struktur, die ebenfalls faserartig sein kann, umfassen. Diese innere Struktur kann regelmäßig oder unregelmäßig auf der Oberfläche sein.
  • Bei der erfindungsgemäßen Vorrichtung kann es sich auch um ein Textil handeln, z. B. für Kleidung, Sportausrüstung, Bautextilien, Hygieneartikel, wie Windeln oder Binden, oder andere Flüssigkeit sammelnde Textilien, z.B. zum Aufnehmen von Öl.
  • In einer vorteilhaften Ausbildungsform kann die erfindungsgemäße Vorrichtung Teil eines Werkzeuges, insbesondere eines zerspanenden Werkzeuges sein. Die darauf befindlichen Kapillaren können insbesondere zur Zuführung von Flüssigkeit, z.B. Kühlflüssigkeit, Schmiermittel oder Kühlschmiermittel, an einer Bearbeitungsstelle dienen. Hierfür können geschlossene oder teiloffene Kapillaren vorgesehen sein. Auf diese Weise kann die Flüssigkeit einige Millimeter von der Schneide entfernt in einen Zufuhrbereich eingebracht werden. Hierdurch kann die Menge an Flüssigkeit reduziert werden. Des Weiteren kann die Energie zur Zuführung der Flüssigkeit verringert werden.
  • Die erfindungsgemäße Vorrichtung kann auch eine Werkzeugform sein. Beim Umformen oder Urformen, insbesondere im Bereich des Aluminiumdruckgusses ist das fehlerfreie Entformen eines Bauteils aus einer Form ein entscheidender Prozessschritt. Hierfür wird oftmals eine große Menge an Trennmittel eingesetzt, um eine unzureichende Benetzung der Werkzeugform zu vermeiden. Der Ressourceneinsatz kann bei einem Versehen der Werkzeugform mit Kapillaren zur Benetzung deutlich reduziert werden. Zudem kann auch die Effektivität und Wirksamkeit der Benetzung erhöht werden.
  • Die erfindungsgemäße Vorrichtung kann vorteilhaft auch ein Mittel zur dosierten Flüssigkeitszufuhr in weiteren Anwendungsfällen sein, insbesondere zum Transport von Lotmaterial beim Löten von Elektronikkomponenten. Die Lotmenge kann anwendungsgerecht dosiert werden, um ein optimales Ergebnis beim Kontaktieren der Leiterbahnen zu erreichen. Hierfür werden die Grundplatinen vor dem Kontaktieren mit Kapillaren strukturiert.
  • Des Weiteren kann die erfindungsgemäße Vorrichtung ein Sensor sein. Durch den möglichen gerichteten Transport können Flüssigkeiten einer Sensorik zugeführt werden. Dabei ist es möglich, Flüssigkeiten durch den definierten Aufbau der Kapillaren aufzuspalten und in einzelne Bestandteile zu zerlegen. Beim Blut kann dies z. B. die Trennung von Blutplasma und Blutzellen sein. Während der Fließbewegung kann die Mikrostrukturierung der Kapillaren aufgrund der gegebenen Geometrie die Bestandteile entweder in unterschiedliche Kanäle führen oder als eine Art Teilchenfalle dienen, in der sich die Teilchen, z. B. die Blutzellen, verfangen, die restliche Flüssigkeit jedoch weiterströmt. Die Kapillaren würden hier somit als Filter fungieren. Es ist dabei denkbar, mehrere solcher Strukturfelder, z. B. kaskadenartig, aneinanderzureihen, um Filterstufen zu erzeugen. Ein Fluid könnte somit nicht nur in zwei Bestandteile aufgespalten werden (z. B. in flüssigen und in festen Teil), sondern gegebenenfalls wäre es auch möglich, unterschiedliche Flüssigkeiten und gleichzeitig verschiedene Feststoffe voneinander zu trennen und sogar in unterschiedliche Bauteilregionen abzuleiten.
  • Die erfindungsgemäße Vorrichtung kann auch als Feuchtigkeitssensor dienen. In diversen Bereichen der Technik sind Feuchtigkeitsniederschläge und manchmal auch damit einhergehende Eisbildung, z. B. im Bereich der Luftfahrt, ein kritischer Punkt. So kann eine erfindungsgemäße Vorrichtung so ausgebildet sein, dass die kapillaren Mikrostrukturen auf den Sensor Feuchtigkeit aus der Umgebung, z. B. der Luft kondensieren lassen und gezielt zu einem Bereich auf den Sensor führen, um dort den Grad der Luftfeuchte zu analysieren oder durch Bestimmung der Flussmenge eine einsetzende Eisbildung zu detektieren. Eine weitere Nutzung des Kondensationseffekts wäre die Entfeuchtung von Innenräumen, insbesondere auch von Innenräumen technischer Anlagen, z. B. von Kühlschränken, um das zu schnelle Verderben von Lebensmitteln aufgrund eines zu hohen Luftfeuchtegrades zu verhindern oder aber von elektronischen Schaltschränken, bei denen eine hohe Luftfeuchte zu Kurzschlüssen und Beschädigungen führen kann. Die kapillaren Oberflächenstrukturen könnten eine Kondensation auslösen und das Kondensat gezielt in einen Vorratsbehälter abführen.
  • Die erfindungsgemäße Vorrichtung kann zur Abtrennung von Bestandteilen aus einem fluiden Stoff verwendet werden. Insbesondere kann sie auch zur Öl-/Wasserabscheidung genutzt werden. Dies kann vorteilhaft bei Bremssystemen und Lagern oder bei verfahrenstechnischen Anlagen angewendet werden, z. B. um Bremsflüssigkeiten und Hydrauliköle aufzubereiten oder Vorratsbehälter bei Verschmutzungen zu reinigen.
  • Die erfindungsgemäße Vorrichtung kann auch eine Struktur sein, die zum Wärmeaustausch oder zur Wärmeabfuhr eingesetzt wird. So bestehen z. B. Destiller, die in verfahrenstechnischen Anlagen dazu verbaut werden, oftmals aus Kupfer. Die Oberflächen lassen sich leicht in der geeigneten Weise mit den kapillaren Strukturen versehen. Hierdurch wird die Oberfläche zum einen quantitativ vergrößert und zum anderen kann durch die geeigneten kapillaren Strukturen der Flüssigkeitstransport gezielt beeinflusst werden, um die Kühlleistung oder den Wärmeaustausch zu erhöhen.
  • Die Kapillarstrukturen der erfindungsgemäßen Vorrichtung können durch unterschiedliche reduktive oder generative Verfahren hergestellt werden, beispielsweise mechanisch, z. B. durch spanendes Fräsen, insbesondere durch Mikrofräsen, thermisch, z. B. durch abtragende Laserbearbeitung, chemisch, z. B. durch Ätzen, elektrisch, z. B. durch Erodieren oder durch eine Kombination dieser Mechanismen, z. B. elektrisch elektro-chemische Vorgänge, wie beim ECM-Prozess.
  • Weitere Verfahren zur Herstellung der Kapillarstrukturen sind umformende Verfahren, wie z. B. das Prägen, bei denen die Kapillarstrukturen durch Materialverdrängung bzw. Materialverlagerung erzeugt werden, oder urformende Verfahren, z. B. das Spritzgießen oder der Druckguss, bei denen die Kapillarstrukturen durch Form gebende Konturen in Formen replikativ oder direkt durch generative Verfahren aufbauend erzeugt werden.
  • Des Weiteren können Kapillarstrukturen durch die Verarbeitung von Materialfasern, z. B. Vollmaterialfasern, Hybridmaterialfasern oder eine Kombination mit zusätzlichen, ummantelnden Hohlfasern sowie durch die Herstellung von z.B. Fasergeflechten, Fasergeweben, Fasergelegen, Fasergestricken oder Fasergewirken erzeugt werden.
  • Die erfindungsgemäßen Vorrichtungen können aus unterschiedlichen Materialien bestehen oder aus unterschiedlichen Materialien zusammengesetzt sein, bevorzugt sind diese Materialien Metalle, Metalllegierungen, Hartmetalle oder Karbide, polymer- oder mineralienbasierte Materialien, Glas, Kompositmaterialien oder Keramiken.
  • Die Herstellung der Kapillarstrukturen kann mit der Herstellung der Vorrichtung an sich gekoppelt werden, so dass kein gesonderter Herstellungsschritt notwendig ist. Dies bietet sich insbesondere im Zusammenhang mit aus Fasern oder faserähnlichen Materialien hergestellten Vorrichtungen mit Kapillarstruktur an. So kann die Kapillarstruktur eingebracht werden bei der Herstellung von Fasern, eines mit der Faser funktionell gekoppelten Teils, eines Textils oder eines polymerbasierten, geschäumten oder porösen Materials. Dabei kann jede einzelne Faser selbst eine Kapillarstruktur aufweisen oder z.B. der Faserverbund insgesamt die Kapillarstruktur bilden.
  • Zur Herstellung der erfindungsgemäßen Vorrichtung kann in besonders vorteilhafter Weise Laserstrahlung eingesetzt werden. Hierdurch lassen sich auf effektive Weise feinste kapillare Strukturen auf Oberflächen einbringen, wobei es sich in der Regel um teiloffene Kapillaren handeln wird.
  • Eine Herstellung der kapillaren Strukturen mittels Laserstrahlung kann allerdings je nach Anwendung eine zu aufwendige und kostenträchtige Maßnahme darstellen. Alternativ ist es denkbar, teiloffene Oberflächenkapillare mit Hilfe eines Formprozesses herzustellen, wobei die Negativstrukturen der Kapillaren stegartig Teil der abbildenden Form sind. Im Falle von Hartmetallschneidplatten, insbesondere Wendeschneidplatten, die in einem Sinterprozess hergestellt werden, können die Negativstrukturen in die Siriterform eingearbeitet werden. Dies wiederum kann bevorzugt mit Hilfe von Laserstrahlung erfolgen, da die Sinterform vielfach eingesetzt werden kann.
  • Im Folgenden werden bevorzugte Strukturen für erfindungemäße Vorrichtungen anhand von Figuren erläutert.
  • Es zeigt jeweils schematisch
  • Fig. 1:
    ausschnittsweise eine erfindungsgemäße Kapillarstruktur,
    Fig. 2:
    die Kapillarstruktur von Fig. 1 mit weiter fortgeschrittenen Menisken,
    Fig. 3:
    die Kapillarstruktur der Figuren 1 und 2 mit weiter fortgeschrittenen Menisken,
    Fig. 4:
    eine aus dem Stand der Technik bekannte Sägezahnstruktur innerhalb einer Kapillare,
    Fig. 5:
    die Kapillarstruktur der Figuren 1 bis 3 in gespiegelter Darstellung zur Verdeutlichung des gehinderten Rückwärtstransportes der Flüssigkeit,
    Fig. 6:
    im Querschnitt eine aus Fasern generierte Kapillarstruktur,
    Fig. 7:
    die Kapillarstruktur gemäß Fig. 6 in drei verschiedenen Schnitten,
    Fig. 8:
    eine weitere Kapillarstruktur aus Fasern,
    Fig. 9:
    die Kapillarstruktur gemäß Fig. 8 in drei verschiedenen Schnitten,
    Fig. 10:
    eine Kapillarstruktur aus einer inneren Faser und einer umhüllenden Faser.
    Fig. 11:
    eine Kapillarstruktur ähnlich Fig. 1 in einem ersten Stadium des Flüssigkeitsfortschritts,
    Fig. 12:
    die Kapillarstruktur gemäß Fig. 1 in einem zweiten Stadium des Flüssigkeitsfortschritts,
    Fig. 13:
    die Kapillarstruktur gemäß Fig. 1 in einem dritten Stadium des Flüssigkeitsfortschritts und
    Fig. 14:
    die Kapillarstruktur gemäß Fig. 1 in einem vierten Stadium des Flüssigkeitsfortschritts.
  • Fig. 4 zeigt eine grundsätzlich aus dem Stand der Technik bekannte asymmetrische, hier halbseitig sägezahnförmige Oberflächenstruktur einer Kapillare 1 mit einer glatten Seitenwand 2 und einer sägezahnförmigen Seitenwand 3, zwischen denen sich ein Flüssigkeitstropfen 4 befindet. Die Kapillargeometrie bedingt unterschiedliche Krümmungen einer vorderen Flüssigkeitsoberfläche 5 und einer hinteren Flüssigkeitsoberfläche 6. An der vorderen Flüssigkeitsoberfläche 5 ist ein Druckunterschied gegeben, wobei der in das Tropfeninnere gerichtete Druck PK,i kleiner als der nach außen gerichtete Druck PK,a ist. In die andere Richtung hingegen ist die Krümmung entgegengesetzt gerichtet und der nach außen gerichtete Druck PK,a ist kleiner als der in das Tropfeninnere gerichtete Druck PK,i. Sind äußere Kräfte nicht vorhanden, resultiert aus den Druckverhältnissen, dass die Flüssigkeit kapillar in Transportrichtung (Pfeil 7) transportiert wird, wobei der Transport so lange läuft, bis sich eine stabile Position des Tropfens 4 gefunden hat.
  • Die Figuren 1 bis 3 zeigen schematisch im Querschnitt eine Ausführungsform einer Kapillarstruktur, wie sie an einer erfindungsgemäßen Vorrichtung vorgesehen werden kann.
  • Fig. 1 zeigt zwei Kapillaren, die im Folgenden als obere Kapillare 8 und untere Kapillare 9 bezeichnet werden. Die Eigenschaften "oben" und "unten" beziehen sich lediglich auf die bildliche Darstellung und nicht auf eine mögliche Orientierung der Kapillare im Raum. Es kann sich hierbei um eine teiloffene Kapillarstruktur handeln mit oberer Seitenwand 10 und unterer Seitenwand 11 zwischen denen eine Mittelstruktur 12 angeordnet ist. Die Kapillarstruktur ist senkrecht zur Zeichnungsebene nach unten durch einen hier nicht gesondert dargestellten Boden begrenzt. Auf der dem Boden gegenüberliegenden Seite ist die Kapillarstruktur offen.
  • Im Folgenden ist beschrieben, wie sich innerhalb der Kapillarstruktur eine Flüssigkeitsmasse 13 von links nach rechts in Transportrichtung 14 fortbewegt.
  • In der unteren Kapillare 9 läuft der gerichtete Transport der Flüssigkeitsmasse 13 zunächst bis zum Eckpunkt 15 der Mittelstruktur 12. Eckpunkt 15 definiert wie auch jeder weiter unten erwähnte Eckpunkt, jeweils eine Stopp-Stelle für den Flüssigkeitstransport in der betroffenen Kapillare.
  • In entsprechender Weise läuft die Flüssigkeitsmasse in der oberen Kapillare 8 bedingt durch das Zusammenspiel von Geometrie und Kontaktwinkel 16 bis zum Eckpunkt 25. Für die jeweiligen Endpositionen sind für obere Kapillare 8 der obere Meniskus 18 und für die untere Kapillare 9 der untere Meniskus 19 eingezeichnet. Für die obere Kapillare 8 ist zusätzlich noch die Position 18a des Meniskus 18 in einem früheren Stadium eingezeichnet.
  • Die Flüssigkeitsmasse 13 in der oberen Kapillare 8 hat in der mit Meniskus 18 eingezeichneten Endposition bereits den Eingang eines Durchtrittskanals 20 überschritten, der die obere Kapillare 8 mit der unteren Kapillare 9 verbindet. Der Durchtrittskanal 20 ist selbst wiederum eine Kapillare, weshalb sich Flüssigkeit aus der Flüssigkeitsmasse 13 aus der oberen Kapillare aufgrund der Kapillarkräfte durch den Durchtrittskanal 20 hindurch zur unteren Kapillare 9 bewegt und dort einen weiteren Meniskus 21 ausbildet, der bis zum Eckpunkt 15 läuft. An dieser Stelle verbinden sich die beiden Menisken 19 und 21 und vereinigen sich zu einem gemeinsamen neuen Meniskus 22, wie er in Fig. 2 in einer Zwischenposition 22a und einer vorläufigen Endposition 22 eingezeichnet ist. Auf dem Weg zur vorläufigen Endposition 22 hat die Flüssigkeitsmasse 13 einen zweiten Durchtrittskanal 23 überlaufen, der wiederum die untere Kapillare 9 mit der oberen Kapillare 8 verbindet. Durch den Durchtrittskanal 23 hindurch läuft die Flüssigkeit aus der unteren Flüssigkeitsmasse 13 aufgrund der Kapillarkräfte in die obere Kapillare 8 hinein und bildet dort den weiteren Meniskus 24 aus, der sich am Eckpunkt 25 mit dem weiteren Meniskus 18 zu einem neuen gemeinsamen Meniskus 26 vereinigt, der in Fig. 3 auf seinem Weg zum Eckpunkt 27 dargestellt ist. Das beschriebene Verhalten der Flüssigkeitsmasse 13 setzt sich durch die weiteren Durchtrittskanäle 28 und 29 fort, so dass ein weiterer Transport der Flüssigkeitsmasse 13 in Transportrichtung 14 erfolgt.
  • Diese Verhaltensweise wird z. B. erreicht, indem ein Flüssigkeitstropfen auf die offene Seite der Kapillarstruktur gegeben wird. Fig. 5 zeigt die Kapillarstruktur aus den Figuren 1 bis 3 gespiegelt, so dass die in den Figuren 1 bis 3 gegebene Transportrichtung 14 hier von rechts nach links laufend dargestellt werden muss. Entgegen der Transportrichtung 14 ist das Fortschreiten der Flüssigkeitsmasse 13 verringert oder gehindert, da sich die Kapillare im Bereich der eingezeichneten Menisken 30 und 31 derart aufweiten, dass die Menisken eine deutlich geringere Krümmung aufweisen oder eine gerade oder konvexe Form erhalten. Somit erreicht ohne Zufuhr äußerer Kräfte die Flüssigkeitsmasse 13 in dieser Richtung die Durchtrittskanäle 40 oder 41 nicht oder zumindest verzögert, wodurch im Ergebnis somit mittels der Kapillaren 8 und 9 ein gerichteter Flüssigkeitstransport erreicht wird. Ein auf eine solche Struktur oder eine Mehrzahl von solchen Kapillarstrukturen aufgebrachter Flüssigkeitstropfen verteilt sich somit allein oder zumindest überwiegend in die Transportrichtung 14.
  • Die zeichnerische Darstellung in den Fig. 1 bis 3 dient zur schematischen Verdeutlichung des Prinzips. In den Fig. 11 bis 14 ist eine weitere Variante einer erfindungsgemäßen Kapillarstruktur dargestellt, welche in der Praxis erfolgreich getestet wurde. Hier sind anders als in den Fig. 1 bis 3 äußere Seitenwände 50 und 51 mit asymmetrischen Abfolgen von Querschnittsänderungen versehen. Der Transport einer Flüssigkeitsmasse 52 läuft in Richtung des Pfeils 53. Die Flüssigkeitsmasse 52 bewegt sich in einer oberen Kapillare 54 in Transportrichtung 53 bis zu einer ersten Stopp-Stelle 56. Ein Flüssigkeitsmeniskus 57 nimmt eine weitgehend ungekrümmte Form an.
  • In einer unteren Kapillare 55 bildet ein unterer Zweig der Flüssigkeitsmasse 52 einen weiteren Meniskus 58 aus, der noch stark konkav (zum Flüssigkeitsinneren gekrümmt) ausgebildet ist und in der unteren Kapillare 55 in Transportrichtung 53 fortschreitet.
  • In Fig. 12 ist der untere Zweig der Flüssigkeitsmasse 52 mit seinem Meniskus 58 aufgrund der Kapillarkräfte weiter fortgeschritten und hat den Eingang eines Durchtrittkanals 59 passiert, der ebenfalls kapillar ist. Im Durchtrittskanal 59 wird ein weiterer Meniskus 60 gebildet, der im Durchtrittskanal 59 fortschreitet, bis er sich mit dem Meniskus 52 an der Stoppstelle 56 vereinigt und den neuen Meniskus 61 ausbildet (Fig. 13). Derweil ist Meniskus 58 in der unteren Kapillare 55 an der weiteren Stopp-Stelle 62 angelangt. Der aufgrund der Kapillarkräfte fortschreitende Meniskus 61 passiert den Eingang zum weiteren Durchtrittskanal 63, wodurch sich dort ein weiterer Meniskus 64 bildet (Fig. 14), der sich mit Meniskus 58 der unteren Kapillare 55 an der Stopp-Stelle 62 vereinigen wird. Durch Fortschreiten des beschriebenen Mechanismus erfolgt ein gerichteter Transport in Transportrichtung 53.
  • Eine alternative Kapillarstruktur zeigen die Figuren 6 und 7, wobei die Kapillarstruktur durch Fasern 32 gebildet wird. Die Fasern weisen bezogen auf eine zu ihrer Längsrichtung senkrechten Ebene eine asymmetrische Struktur auf, wodurch sich ein gerichteter Transport durch die zwischen den Fasern 32 gebildeten Kapillaren 33 ergibt. In den Schnittzeichnungen "A", "B" und "C" der Fig. 7 wird die Anordnung der Fasern 32 in einer dichten Packung deutlich. Zudem sind in den Schnittzeichnungen "B" und "C" Durchtrittskanäle 34 dargestellt.
  • Auch hier sorgt das Zusammenspiel zwischen den Kapillaren 33 und den Durchtrittskanälen 34 für ein ständiges Fortschreiten der hier nicht dargestellten Flüssigkeitsmasse in eine bevorzugte Richtung, nämlich in Fig. 6 nach oben.
  • Die Kapillarstruktur der Figuren 6 und 7 kann von Seitenwänden, die hier nicht dargestellt sind, begrenzt sein. Die Kapillarstruktur kann teiloffen oder geschlossen sein.
  • In den Figuren 8 und 9 ist in entsprechender Darstellung zu den Figuren 6 und 7 eine alternative Anordnung der Fasern 32 mit dichterer Packung dargestellt. Hiernach sind die Fasern 32 derart zueinander versetzt, dass die Asymmetrie der kapillaren Hohlräume erhöht wird. Die dichtere Packung kann ein leichteres Überwinden von Stopp-Stellen durch Vereinigung von Menisken bewirken.
  • Fig. 10 zeigt eine äußere Hohlfaser 36, welche eine innere Faser 35 umhüllt und an ihrem Umfang zahlreiche Öffnungen 37 aufweist. Hiermit kann eine weitere Variante einer Kapillarstruktur gebildet werden, indem eine Mehrzahl derartiger Kombinationen von umhüllender Hohlfaser 36 und innerer Faser 35 in ein Bündel gepackt werden. Die Öffnungen 37 bilden dabei die Durchtrittskanäle zwischen benachbarten Kapillaren. Die Anzahl der Öffnungen 37 kann auch deutlich geringer gewählt werden, als in Fig. 10 dargestellt. Entscheidend ist, dass die Funktion von Durchtrittskanälen gemäß der Erfindung erfüllt wird. Jede innere Faser 35 kann eine Vollfaser, wie in Fig. 10 dargestellt, oder eine Hohlfaser sein. In der Hohlfaser 36 kann auch eine Mehrzahl von inneren Fasern 35 vorgesehen werden. Bezugszeichenliste
    1 Kapillare 30 Meniskus
    2 Seitenwand 31 Meniskus
    3 Seitenwand 32 Faser
    4 Flüssigkeitstropfen 33 Kapillare
    5 vordere Flüssigkeitsoberfläche 34 Durchtrittskanal
    6 hintere Flüssigkeitsoberfläche 35 innere Faser
    7 Transportrichtung 36 Hohlfaser
    8 obere Kapillare 37 Öffnung
    9 untere Kapillare 40 Durchtrittskanal
    10 Seitenwand 41 Durchtrittskanal
    11 Seitenwand 50 Seitenwand
    12 Mittelstruktur 51 Seitenwand
    13 Flüssigkeitsmasse 52 Flüssigkeitsmasse
    14 Transportrichtung 53 Transportrichtung
    15 Eckpunkt 54 obere Kapillare
    16 Kontaktwinkel 55 untere Kapillare
    18 oberer Meniskus 56 Stopp-Stelle
    18a Meniskus 57 Meniskus
    19 unterer Meniskus 58 Meniskus
    20 Durchtrittskanal 59 Durchtrittskanal
    21 Meniskus 60 Meniskus
    22 Meniskus in Endposition 61 Meniskus
    22a Meniskus in Zwischenposition 62 Stopp-Stelle
    23 Durchtrittskanal 63 Durchtrittskanal
    24 Meniskus 64 Meniskus
    25 Eckpunkt
    26 Meniskus
    27 Eckpunkt
    28 Durchtrittskanal
    29 Durchtrittskanal

Claims (25)

  1. Vorrichtung zum gerichteten kapillaren Transport von Flüssigkeiten, umfassend mindestens zwei Kapillaren (8, 9, 33, 54, 55), wobei die mindestens zwei Kapillaren (8, 9, 33, 54, 55) derart gestaltet sind, dass zumindest abschnittsweise ein passiver gerichteter kapillarer Transport der Flüssigkeit erfolgt,
    dadurch gekennzeichnet, dass
    mindestens zwei der Kapillaren (8, 9, 33, 54, 55) in Transportrichtung der Flüssigkeit über mindestens einen kapillaren Durchtrittskanal (20, 23, 28, 29, 34, 40, 41, 59, 63) miteinander verbunden sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass
    a) die mindestens zwei Kapillaren (8, 9, 33, 54, 55) jeweils mehrere in Transportrichtung gesehen aufeinander folgende, für den passiven gerichteten kapillaren Transport eingerichtete Transportabschnitte aufweisen,
    b) die Transportabschnitte jeweils in einer für die Unterbrechung des ungestörten passiven gerichteten Flüssigkeitstransport geeigneten Stop-Stelle (15, 25, 27, 56, 62) enden,und
    c) mindestens einer der Durchtrittskanäle (20, 23, 28, 29, 34, 40, 41, 59, 63) jeweils einen Kanalaustritt nahe der Stopp-Stelle (15, 25, 27, 56, 62), insbesondere in Transportrichtung hinter der Stopp-Stelle (15, 25, 27, 56, 62) und an der Stopp-Stelle (15, 25, 27, 56, 62) angrenzend, aufweisen.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zumindest einer der Transportabschnitte einen sich in Transportrichtung verringernden Querschnitt der Kapillare (8, 9, 33, 54, 55) aufweist.
  4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass mindestens der gerichtete Transport durch das Material der Oberfläche mindestens einer Kapillarseitenwand bewirkt ist.
  5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass mindestens eine der Stopp-Stellen (15, 25, 27, 56, 62) durch eine Querschnittsaufweitung gebildet ist.
  6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass mindestens eine der Stopp-Stellen (15, 25, 27, 56, 62) durch eine Änderung im Material der Oberfläche zumindest in einem Teilbereich der Kapillarwandung gebildet ist.
  7. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kapillaren (8, 9, 33, 54, 55) zumindest in einer Teilanzahl eine schwammartige Struktur erzeugen.
  8. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine der Kapillaren (8, 9, 33, 54, 55) zumindest auch durch Fasermaterial gebildet sind.
  9. Vorrichtung nach Anspruch 8, gekennzeichnet durch zumindest eine Hohlfaser (36).
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Hohlfaser (36) eine innere Kapillarstruktur (35) umgibt.
  11. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine der Kapillaren (8, 9, 33, 54, 55) teiloffen ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass zumindest eine der teiloffenen Kapillaren (8, 9, 33, 54, 55) Teil einer Oberfläche ist.
  13. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ein zerspanendes Werkzeug ist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Vorrichtung ein Textil ist.
  15. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Vorrichtung ein Sensor ist,
  16. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Vorrichtung eine Werkzeugform ist.
  17. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Vorrichtung ein Mittel zur dosierten Flüssigkeitszufuhr ist.
  18. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Vorrichtung eine Wärmetauscherfunktion aufweist.
  19. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 12 zur Abtrennung von Bestandteilen aus einem fluiden Stoff.
  20. Verwendung nach Anspruch 19 zur Öl-Wasserabscheidung.
  21. Verfahren zur Herstellung einer Vorrichtung zum gerichteten kapillaren Transport von Flüssigkeiten, bei dem mindestens zwei Kapillaren (8, 9, 33, 54, 55) erzeugt werden, welche derart gestaltet sind, dass zumindest abschnittsweise ein passiver gerichteter kapillarer Transport der Flüssigkeit erfolgt und mindestens zwei der Kapillaren (8, 9, 33, 54, 55) in Transportrichtung der Flüssigkeit über mindestens einen kapillaren Durchtrittskanal (20, 23, 28, 29, 34, 40, 41, 59, 63) miteinander verbunden sind.
  22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zumindest ein Teil der Kapillarstruktur mittels Laserstrahlung erzeugt wird.
  23. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zumindest eine Teilanzahl der teiloffenen, auf einer Oberfläche der Vorrichtung angeordneten Kapillaren (8, 9, 33, 54, 55) mittels eines Formwerkzeuges, insbesondere einer Sinterform, erzeugt wird.
  24. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zumindest eine Teilanzahl der teiloffenen, auf einer Oberfläche der Vorrichtung angeordneten Kapillaren (8, 9, 33, 54, 55) mittels eines Fräsverfahrens, insbesondere mittels eines Mikrofräsverfahrens, erzeugt wird.
  25. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zumindest eine Teilanzahl der teiloffenen, auf einer Oberfläche der Vorrichtung angeordneten Kapillaren (8, 9, 33, 54, 55) mittels EDM (Electrical Discharge Machining, elektroerosives Abtragungsverfahren) erzeugt wird.
EP13747957.2A 2012-06-28 2013-06-28 Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung Active EP2880314B8 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012012884 2012-06-28
DE102012021603.3A DE102012021603A1 (de) 2012-06-28 2012-11-06 Strukturierung bzw. Anordnung von Oberflächen zum gerichteten Transport von Flüssigkeiten in Kapillaren
PCT/DE2013/100234 WO2014000735A1 (de) 2012-06-28 2013-06-28 Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung

Publications (3)

Publication Number Publication Date
EP2880314A1 EP2880314A1 (de) 2015-06-10
EP2880314B1 true EP2880314B1 (de) 2016-09-28
EP2880314B8 EP2880314B8 (de) 2017-02-22

Family

ID=48979493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13747957.2A Active EP2880314B8 (de) 2012-06-28 2013-06-28 Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung

Country Status (5)

Country Link
US (1) US9821308B2 (de)
EP (1) EP2880314B8 (de)
CA (1) CA2875722C (de)
DE (1) DE102012021603A1 (de)
WO (1) WO2014000735A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015001461A1 (de) 2015-02-05 2016-08-11 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Passiver gerichteter Flüssigkeitstransport senkrecht zu einer Oberfläche
AU2016404266B2 (en) 2016-04-29 2022-12-22 Kimberly-Clark Worldwide, Inc. Surface for directional fluid transport
CN110325736B (zh) * 2017-03-29 2022-05-10 金伯利-克拉克环球有限公司 用于包括克服外部压力的定向流体输送的表面
CN108927233A (zh) * 2018-09-06 2018-12-04 广州大学 一种无外力控制单向液体运输的微流控芯片结构及其制作方法
US12031895B2 (en) 2019-10-28 2024-07-09 Op-Hygiene Ip Gmbh Method of identifying biologic particles
JP2023046034A (ja) * 2021-09-22 2023-04-03 スタンレー電気株式会社 成形構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847464A (en) * 1986-08-25 1989-07-11 E. I. Du Pont De Nemours And Company Tool for forming a spinneret capillary
US5792941A (en) 1996-10-08 1998-08-11 Sandia Corporation Measurement of surface tension and viscosity by open capillary techniques
ATE336298T1 (de) 2000-10-25 2006-09-15 Boehringer Ingelheim Micropart Mikrostrukturierte plattform für die untersuchung einer flüssigkeit
DE10309695C5 (de) * 2003-02-26 2010-08-05 BeKa Heiz- und Kühlmatten GmbH Montagesystem und Verfahren zur Verbindung von Kunststoffrohren
DE10345817A1 (de) * 2003-09-30 2005-05-25 Boehringer Ingelheim Microparts Gmbh Verfahren und Vorrichtung zum Koppeln von Hohlfasern an ein mikrofluidisches Netzwerk
CN1956777B (zh) * 2004-03-23 2011-06-08 维罗西股份有限公司 微通道装置中修补的均匀涂层
US7784495B2 (en) * 2005-05-02 2010-08-31 Massachusetts Institute Of Technology Microfluidic bubble logic devices
WO2006121534A1 (en) * 2005-05-09 2006-11-16 University Of Oregon Thermally-powered nonmechanical fluid pumps using ratcheted channels
JP2009509104A (ja) 2005-09-16 2009-03-05 インテグリス・インコーポレーテッド 偏向した湿潤面を備えた流体取扱装置
GB0705418D0 (en) * 2007-03-21 2007-05-02 Vivacta Ltd Capillary
KR101603489B1 (ko) * 2008-09-22 2016-03-17 한국표준과학연구원 유체 이송 장치
DE102009038019B4 (de) * 2009-08-12 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D Mikro-Strukturierung zur Erzeugung von Misch- und Kanalstrukturen in Multilayertechnologie zur Verwendung in oder zum Aufbau von Reaktoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHILIPP COMANNS ET AL: "Moisture harvesting and water transport through specialized micro-structures on the integument of lizards", BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 1 January 2011 (2011-01-01), Germany, pages 204 - 214, XP055258023, Retrieved from the Internet <URL:file:///C:\Users\NF21809\AppData\Roaming\Mozilla\Firefox\Profiles\NF21809\CiteNPLTemp\CiteNPLWebPage.pdf> [retrieved on 20160314], DOI: 10.3762/bjnano.2.24 *

Also Published As

Publication number Publication date
WO2014000735A1 (de) 2014-01-03
US9821308B2 (en) 2017-11-21
CA2875722C (en) 2020-02-18
EP2880314B8 (de) 2017-02-22
DE102012021603A1 (de) 2014-01-23
EP2880314A1 (de) 2015-06-10
CA2875722A1 (en) 2014-01-03
US20160167043A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
EP2880314B1 (de) Vorrichtung zum kapillaren transport von flüssigkeiten, verwendung sowie verfahren zur herstellung einer solchen vorrichtung
EP3321009B1 (de) Vorrichtung zur additiven herstellung dreidimensionaler objekte
DE102016216019A1 (de) Einsatz für einen Kühlmantel einer elektrischen Maschine
EP3765170B1 (de) Abscheideeinheit mit abschlagfäche
EP3188887B1 (de) Wendevorrichtung für das wenden einer schmelze und spülverfahren
EP3706939B1 (de) Absaugung bei der generativen fertigung
EP1640141B1 (de) Vorrichtung, Anordnung und Verfahren zum Verbinden von Leitungen, Kraftfahrzeug mit einer derartigen Vorrichtung bzw. Anordnung
DE102008004999A1 (de) Vorrichtung zur Erzeugung eines fächerförmigen Strahls
DE102019209989A1 (de) Abkühlungsmodul für die Verwendung in einem additiven Fertigungsverfahren
EP3363611A1 (de) Verfahren zum herstellen einer form und form
WO2016066339A1 (de) GIEßWERKZEUG MIT ZUMINDEST EINER KAVITÄT ZUR HERSTELLUNG ZUMINDEST EINES GUSSTEILES
EP3088153B1 (de) Formwerkzeug
DE102005038730A1 (de) Verbesserte Luftführung an der Folienblase
DE102009045403B4 (de) Vorrichtung zum Trennen von Gas und Flüssigkeit und deren Verwendungen
EP3921132B1 (de) Lamellenblock für eine kalibriereinrichtung
DE2751013B2 (de) Kühleinrichtung
DE102006049318A1 (de) Werkstückträger
EP1379866B1 (de) Prüfvorrichtung für die ultraschallprüfung von stangenmaterial
WO2020099211A1 (de) Pulverauftragsvorrichtung, verfahren zum betreiben einer pulverauftragsvorrichtung und anlage zur herstellung eines dreidimensionalen werkstücks
EP3268130B1 (de) Fluidikstruktur
EP3546382A1 (de) Dampfbalken und schrumpftunnel
EP3609673A1 (de) Fluidkanal, verfahren zur dessen herstellung, und behälterbehandlungsanlage
DE102018105570B3 (de) Entlüftungsvorrichtung zum Entlüften einer Gießform
DE102020118192A1 (de) Formwerkzeug zur Herstellung eines Partikelschaumformteils
EP1254010B1 (de) Verfahren zur homogenisierung und gleichmässigen verteilung von viskosen flüssigkeiten und vorrichtung hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ARNTZ, KRISTIAN

Inventor name: BAUMGARTNER, WERNER

Inventor name: COMANNS, PHILIPP

Inventor name: BERNHARDT, FRANK

Inventor name: WINANDS, KAI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 833034

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004800

Country of ref document: DE

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BERNHARDT, FRANK

Inventor name: WINANDS, KAI

Inventor name: BAUMGARTNER, WERNER, PROF.

Inventor name: ARNTZ, KRISTIAN

Inventor name: COMANNS, PHILIPP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: COMANNS, PHILIPP, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, 52156 MONSCHAU, DE; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: BAUMGARTNER, WERNER, PROF., AT

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, 52156 MONSCHAU, DE; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, 52156 MONSCHAU, DE; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: GUERREIRO, SERGIO STEFANO, DR.-ING., ES

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, 52156 MONSCHAU, DE; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013004800

Country of ref document: DE

Representative=s name: KOENIG NAEVEN SCHMETZ PATENT- & RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG INHABER

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004800

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013004800

Country of ref document: DE

Representative=s name: KOENIG NAEVEN SCHMETZ PATENT- & RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: COMANNS, PHILIPP, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: GUERREIRO, SERGIO STEFANO, DR.-ING., ES

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: BAUMGARTNER, WERNER, PROF., AT

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: GUERREIRO, SERGIO STEFANO, DR.-ING., BR

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; GUERREIRO, SERGIO STEFANO, DR.-ING., SOROCABA, ES

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; GUERREIRO, SERGIO STEFANO, DR.-ING., SOROCABA, ES

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: COMANNS, PHILIPP, DE

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; GUERREIRO, SERGIO STEFANO, DR.-ING., SOROCABA, ES

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013004800

Country of ref document: DE

Owner name: BAUMGARTNER, WERNER, PROF., AT

Free format text: FORMER OWNERS: BAUMGARTNER, WERNER, PROF., KIRCHSCHLAG, AT; COMANNS, PHILIPP, 52074 AACHEN, DE; FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE; GUERREIRO, SERGIO STEFANO, DR.-ING., SOROCABA, ES

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240617

Year of fee payment: 12