EP2878654A1 - Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant - Google Patents

Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant Download PDF

Info

Publication number
EP2878654A1
EP2878654A1 EP13822155.1A EP13822155A EP2878654A1 EP 2878654 A1 EP2878654 A1 EP 2878654A1 EP 13822155 A EP13822155 A EP 13822155A EP 2878654 A1 EP2878654 A1 EP 2878654A1
Authority
EP
European Patent Office
Prior art keywords
viscosity index
meth
acrylate
index improver
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13822155.1A
Other languages
German (de)
English (en)
Other versions
EP2878654A4 (fr
Inventor
Shigeki Matsui
Hiroya Miyamoto
Hiromitsu Matsuda
Kazuo Tagawa
Akira Takagi
Ryuichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013142040A external-priority patent/JP6077956B2/ja
Priority claimed from JP2013142017A external-priority patent/JP6043245B2/ja
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Publication of EP2878654A1 publication Critical patent/EP2878654A1/fr
Publication of EP2878654A4 publication Critical patent/EP2878654A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/045Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a poly(meth)acrylate-based viscosity index improver, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver.
  • lubricating oils used for internal combustion engines such as a vehicle engine (also referred to as “lubricating oils for an internal combustion engine” or “engine oils”)
  • a method of increasing a viscosity index of a lubricating oil by adding a viscosity index improver to a lubricating base oil has been known.
  • lubricating oils used for transmissions of vehicles such as ATF, MTF, and CVTF (also referred to as “lubricating oils for a transmission” or “drive system oils”)
  • ATF lubricating oils for a transmission
  • CVTF also referred to as "lubricating oils for a transmission” or “drive system oils”
  • the viscosity of a lubricating oil for a transmission is lowered, other problems such as oil leak and seizure may arise.
  • a method for improving a fuel saving property there is a method involving use of a viscosity index improver.
  • This method increases the viscosity index of a lubricating oil for a transmission by using a viscosity index improver, and suppresses the viscosity increase in a low-temperature region while maintaining the viscosity in a high-temperature region.
  • a viscosity index improver the use of various viscosity index improvers has been proposed, and in particular, the use of poly(meth)acrylate-based viscosity index improvers has been often proposed (for example, refer to Patent Literatures 1 to 7).
  • an object of the present invention is to provide a viscosity index improver capable of achieving both a fuel saving property and low-temperature fluidity, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver.
  • another object of the present invention is to provide a viscosity index improver capable of sufficiently lowering a high shear viscosity at 100°C and sufficiently ensuring low-temperature fluidity while maintaining a high shear viscosity at 150°C, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver.
  • another object of the present invention is to provide a viscosity index improver which is capable of imparting a sufficient friction loss decreasing effect to a lubricating oil and ensuring low-temperature fluidity, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver.
  • a poly(meth)acrylate-based viscosity index improver which has a specific structural unit and in which the weight-average molecular weight Mw and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn satisfy specific conditions can sufficiently lower a high shear viscosity at 100°C and ensure low-temperature fluidity while maintaining a high shear viscosity at 150°C, which leads to accomplish the present invention.
  • the present invention provides a poly(meth)acrylate-based viscosity index improver comprising a polymer chain comprising a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2), wherein the weight-average molecular weight Mw is 100000 or more, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less (hereinafter, referred to as "first poly(meth)acrylate-based viscosity index improver").
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the following formula (3)
  • R 3 represents a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • m and n are integers which satisfy m ⁇ 5, n ⁇ 4, and m + n ⁇ 31.
  • a poly(meth)acrylate-based viscosity index improver which has a specific structural unit and in which the weight-average molecular weight and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, satisfy specific conditions can impart a friction decreasing effect and ensure low-temperature fluidity, which leads to accomplish the present invention.
  • the present invention provides a poly(meth)acrylate-based viscosity index improver comprising a polymer chain comprising a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2), wherein the weight-average molecular weight Mw is less than 100000, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less (hereinafter, referred to as "second poly(meth)acrylate-based viscosity index improver").
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the following formula (3)
  • R 3 represents a C 1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • n and n are integers which satisfy m ⁇ 5, n ⁇ 4, and m + n ⁇ 31.
  • the present invention provides a lubricating oil additive comprising at least one selected from the above-described first poly(meth)acrylate-based viscosity index improver and second poly(meth)acrylate-based viscosity index improver.
  • the present invention provides a lubricating oil composition
  • a lubricating oil composition comprising a lubricating base oil, and at least one selected from the above-described first poly(meth)acrylate-based viscosity index improver and second poly(meth)acrylate-based viscosity index improver.
  • a viscosity index improver capable of achieving both a fuel saving property and low-temperature fluidity, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver can be provided.
  • a viscosity index improver capable of sufficiently lowering a high shear viscosity at 100°C and sufficiently ensuring low-temperature fluidity while maintaining a high shear viscosity at 150°C, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver can be provided.
  • a viscosity index improver which is capable of imparting a sufficient friction loss decreasing effect to a lubricating oil and ensuring of fluidity at low temperature, a lubricating oil additive and a lubricating oil composition containing the viscosity index improver can be provided.
  • a poly(meth)acrylate-based viscosity index improver comprises a polymer chain containing a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • the weight-average molecular weight Mw (hereinafter, just referred to as "Mw” in some cases) of the poly(meth)acrylate-based viscosity index improver is 100000 or more, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn (hereinafter, just referred to as "Mn” in some cases), Mw/Mn (hereinafter, just referred to as "Mw/Mn” in some cases), is 1.6 or less.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the following formula (3)
  • R 3 represents a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • n and n are integers which satisfy m ⁇ 5, n ⁇ 4, and m + n ⁇ 31.
  • R 1 may be either hydrogen or a methyl group, and is preferably a methyl group.
  • R 2 in which m is 5 to 16 and n is 4 to 15 is preferable, R 2 in which m is 6 to 15 and n is 6 to 10 is more preferable, and R 2 in which m is 7 to 10 and n is 6 to 9 is further preferable.
  • R 1 s and R 2 s may be the same or different between the respective structural units.
  • the polymer chain contains the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), and from the viewpoint of lowering a viscosity, contains preferably 20 to 80 mass%, more preferably 20 to 70 mass%, and further preferably 20 to 50 mass% of the structural unit represented by the above formula (1) based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 20 to 80 mass%, more preferably 30 to 80 mass%, and further preferably 50 to 80 mass% of the structural unit represented by the above formula (2) based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 70 mass% or more, more preferably 80 mass% or more, further preferably 90 mass% or more, and most preferably 100 mass% of the sum of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) based on the total amount of the structural units contained in the polymer chain.
  • R 1 s and R 3 s may be the same or different between the respective structural units.
  • the polymer chain contains preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 45 mass% of the structural unit in which R 3 is a methyl group, based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 40 mass% of the structural unit in which R 3 is a C18 alkyl group, based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain may contain only the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), or may further contain a structural unit other than these.
  • terminals of the polymer chain are not particularly limited.
  • a polymer chain containing only the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), whose terminals are hydrogen atoms, that is, a polymer chain represented by the following formula (4) is preferable.
  • R 1 represents hydrogen or a methyl group
  • R 4 represents a group represented by the above formula (3), or a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms
  • n represents an integer selected such that the Mw and the Mw/Mn satisfy the above-described conditions.
  • n is an integer of 400 to 2000.
  • the weight-average molecular weight Mw is 100000 or more, and it is preferably 125000 or more, more preferably 150000 or more, and further preferably 175000 or more from the viewpoint of a fuel saving performance.
  • the upper limit of Mw is not particularly limited, and the Mw is, for example, 500000 or less.
  • the number average molecular weight Mn is arbitrarily selected such that the Mw/Mn satisfies the above-described condition.
  • the Mn is preferably 75000 or more, more preferably 94000 or more, and further preferably 110000 or more from the viewpoint of a fuel saving performance.
  • the upper limit of Mn is not particularly limited, and the Mn is, for example, 300000 or less.
  • the Mw/Mn is 1.6 or less, and it is preferably 1.5 or less, more preferably 1.4 or less, and further preferably 1.2 or less from the viewpoint of a fuel saving performance. Moreover, in the synthesis, the Mw/Mn is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
  • the weight-average molecular weight Mw mean Mw, Mn, and Mw/Mn (converted values with polystyrene (standard sample)) obtained by GPC analysis. Specifically, they are measured as follows, for example.
  • a solution whose sample concentration is 2 mass% is prepared by dilution using tetrahydrofuran as a solvent.
  • the sample solution is analyzed using GPC equipment (Waters Alliance2695).
  • the analysis is carried out at the flow rate of the solvent of 1 ml/min, by using a column whose analyzable molecular weight is 10000 to 256000, and a refractive index as a detector. It is to be noted that the relationship between the column retention time and the molecular weight is determined using a polystyrene standard whose molecular weight is clear and a calibration curve is separately made, and after that, the molecular weight is determined from the obtained retention time.
  • the manufacturing method of the poly(meth)acrylate-based viscosity index improver according to the present embodiment is not particularly limited, examples thereof include a method in which an initiator is added to a mixed solution containing an alkyl(meth)acrylate, a polymerization reagent, and a solvent to polymerize the alkyl(meth)acrylate at predetermined temperature.
  • alkyl(meth)acrylate an alkyl(meth)acrylate represented by the following formula (5) and an alkyl(meth)acrylate represented by the following formula (6) can be used.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the above formula (3)
  • R 3 represents a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • R 1 is preferably a methyl group.
  • R 2 in which m is 5 to 16 and n is 4 to 15 is preferable, R 2 in which m is 6 to 15 and n is 6 to 10 is more preferable, and R 2 in which m is 7 to 10 and n is 6 to 9 is further preferable.
  • the alkyl(meth)acrylate represented by the above formula (5) and the alkyl(meth)acrylate represented by the above formula (6) can be used, and the content of the alkyl(meth)acrylate represented by the above formula (5) is preferably 20 to 80 mass%, more preferably 20 to 70 mass%, and further preferably 20 to 50 mass% based on the total amount of the alkyl(meth)acrylate. Moreover, the content of the alkyl(meth)acrylate represented by the above formula (5) is preferably 20 to 80 mass%, more preferably 30 to 80 mass%, and further preferably 50 to 80 mass% based on the total amount of the alkyl(meth)acrylate.
  • one of the alkyl(meth)acrylate represented by the above formula (6) can be used alone, or two or more thereof can be mixed to be used, and preferably, two or more thereof are mixed to be used.
  • the content of methyl(meth)acrylate in which R 2 is a methyl group is preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 45 mass% based on the total amount of the alkyl(meth)acrylate.
  • the content of an alkyl(meth)acrylate in which R 2 is an alkyl group having 18 carbon atoms is preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 40 mass% based on the total amount of the alkyl(meth)acrylate.
  • polymerization reagent for example, compounds having a thiocarbonyl group, such as cumyl dithiobenzoic acid, can be used.
  • examples of a preferred polymerization reagent include cumyl dithiobenzoic acid.
  • solvent for example, highly-refined mineral oils, anisole, and toluene can be used.
  • examples of a preferred solvent include highly-refined mineral oils.
  • azobisisobutyronitrile AIBN
  • azobisdimethylvaleronitrile AMBN
  • azobismethylbutyronitrile ADVN
  • examples of a preferred initiator include azobisisobutyronitrile.
  • the reaction temperature when polymerizing the alkyl(meth)acrylate is preferably 70 to 120°C, more preferably 80 to 110°C, and further preferably 90 to 110°C.
  • the Mw/Mn of the obtained poly(meth)acrylate-based viscosity index improver becomes easy to be 1.6 or less.
  • the reaction temperature is 90 to 110°C
  • the Mw/Mn tends to be 1.0 to 1.2
  • the reaction temperature is 80 to 110°C
  • the Mw/Mn tends to be 1.2 to 1.4
  • the reaction temperature is 70 to 120°C
  • the Mw/Mn tends to be 1.4 to 1.6.
  • the reaction time can be arbitrarily selected in accordance with the kinds and the amounts used of the alkyl(meth)acrylate, the polymerization reagent, the solvent, and the initiator, which are raw materials, reaction conditions such as a reaction temperature, and desired Mw and Mw/Mn of the poly(meth)acrylate.
  • Examples of preferred reaction time include 10 to 14 hours.
  • the polymerization of the alkyl(meth)acrylate is preferably carried out in a nitrogen atmosphere.
  • a lubricating oil additive according to the second embodiment of the present invention contains a poly(meth)acrylate-based viscosity index improver comprising a polymer chain containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2), wherein the weight-average molecular weight Mw is 100000 or more, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less.
  • the poly(meth)acrylate-based viscosity index improver in the present embodiment is the same as the viscosity index improver in the above-described first embodiment, and an overlapping explanation is omitted here.
  • the lubricating oil additive may consists of only the above-described poly(meth)acrylate-based viscosity index improver, or may be a mixture of the viscosity index improver and other additives (that is, additive composition).
  • the mixing ratio thereof is not particularly limited and can be arbitrarily selected depending on the intended use.
  • additives such as viscosity index improvers other than the above-described poly(meth)acrylate-based viscosity index improver, antioxidants, antiwear agents (or extreme pressure agents), corrosion inhibitors, rust-preventive agents, viscosity index improvers, pour-point depressants, demulsifiers, metal deactivators, antifoamers, and ashless friction modifiers.
  • additives such as viscosity index improvers other than the above-described poly(meth)acrylate-based viscosity index improver, antioxidants, antiwear agents (or extreme pressure agents), corrosion inhibitors, rust-preventive agents, viscosity index improvers, pour-point depressants, demulsifiers, metal deactivators, antifoamers, and ashless friction modifiers.
  • additives such as viscosity index improvers other than the above-described poly(meth)acrylate-based viscosity index improver, antioxidants, antiwear agents (or extreme pressure agents),
  • Examples of the viscosity index improvers other than the above-described poly(meth)acrylate-based viscosity index improver include poly(meth)acrylate-based viscosity index improvers other than the above-described poly(meth)acrylate-based viscosity index improver, polyisobutene-based viscosity index improvers, ethylene-propylene copolymer-based viscosity index improvers, and styrene-butadiene hydrogenated copolymer-based viscosity index improvers.
  • antioxidants examples include ashless antioxidants such as phenolic or amine antioxidants, and metallic antioxidants such as zinc, copper, or molybdenum antioxidants.
  • phenolic antioxidants examples include 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-bis(2,6-di-tert-butylphenol), 4,4'-bis(2-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 4,4'-isopropylidenebis(2,6-di-tert-butylphenol), 2,2'-methylenebis(4-methyl-6-nonyl phenol), 2,2'-isobutylidenebis(4,6-dimethylphenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl
  • amine antioxidants examples include known amine antioxidants generally used for lubricating oils, such as aromatic amine compounds, alkyldiphenylamines, alkylnaphthylamines, phenyl- ⁇ -naphthylamine, and alkylphenyl- ⁇ -naphthylamines.
  • corrosion inhibitors examples include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • rust-preventive agents examples include petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenylsuccinic acid esters, and polyhydric alcohol esters.
  • metal deactivators examples include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamate, 2-(alkyldithio)benzimidazole, and ⁇ -(o-carboxybenzylthio)propionitrile.
  • antifoamers examples include silicone oil whose kinematic viscosity at 25°C is 1000 to 100000 mm 2 /s, alkenylsuccinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long-chain fatty acids, methylsalicylate, and o-hydroxybenzyl alcohol.
  • ashless friction modifiers arbitrary compounds generally used as ashless friction modifiers for lubricating oils can be used, and examples thereof include ashless friction modifiers such as amine compounds, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, and aliphatic ethers, each of which has at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, in particular straight-chain alkyl group or straight-chain alkenyl group having 6 to 30 carbon atoms in a molecule.
  • nitrogen-containing compounds and acid-modified derivatives thereof and the like described in Japanese Patent Application Laid-Open No. 2009-286831 and various ashless friction modifiers exemplified in International Publication No. WO 2005/037967 Pamphlet can also be used.
  • the lubricating oil additive according to the present embodiment may further contain a solvent.
  • a solvent highly-refined mineral oils, solvent-refined mineral oils, and synthetic oils can be used. Among them, it is preferable to use highly-refined mineral oils and solvent-refined mineral oils.
  • the content of the solvent is preferably 5 to 75 mass%, and more preferably 30 to 60 mass% based on the total amount of the lubricating oil additive.
  • a lubricating oil composition according to the third embodiment contains a lubricating base oil, and a poly(meth)acrylate-based viscosity index improver comprising a polymer chain containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2), wherein the weight-average molecular weight Mw is 100000 or more, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less.
  • the lubricating oil composition according to the present embodiment includes an aspect containing a lubricating base oil and the lubricating oil additive according to the above-described second embodiment.
  • the poly(meth)acrylate-based viscosity index improver in the present embodiment is the same as the poly(meth)acrylate-based viscosity index improvers in the above-described first embodiment and second embodiment, and furthermore, other additives and a solvent which can be contained in the lubricating oil composition are the same as the other additives and the solvent in the second embodiment, and an overlapping explanation is omitted here.
  • the lubricating base oil is not particularly limited, and lubricating base oils used for general lubricating oils can be used. Specifically, mineral lubricating base oils, synthetic lubricating base oils, a mixture in which two or more lubricating base oils selected therefrom are mixed at an arbitrary ratio and the like can be used.
  • mineral lubricating base oils examples include those obtained by refining a lubricating oil fraction obtained by reduced-pressure distillation of an atmospheric residue obtained by atmospheric distillation of a crude oil by carrying out one or more treatment, such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, and hydrorefining, and base oils manufactured by a method of isomerizing wax-isomerized mineral oils and GTL waxes (gas-to-liquid waxes).
  • Examples of the synthetic lubricating oils include polybutene or hydrides thereof; poly- ⁇ -olefins such as 1-octene oligomer and 1-decene oligomer, or hydrides thereof; diesters such as ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, and di-2-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, and pentaerythritol pelargonate; aromatic synthetic oils such as alkylnaphthalenes and alkylbenzenes, and mixtures thereof.
  • the kinematic viscosity at 100°C of the lubricating base oil is preferably 2.5 to 10.0 mm 2 /s, more preferably 3.0 to 8.0 mm 2 /s, and further preferably 3.5 to 6.0 mm 2 /s.
  • the viscosity index of the lubricating base oil is preferably 90 to 165, more preferably 100 to 155, and further preferably 120 to 150.
  • the saturated component of the lubricating base oil by chromatography analysis is preferably 80% or more, more preferably 85% or more, further preferably 90% or more, and most preferably 95% or more so as to make it easy to exert an effect of additives such as the poly(meth)acrylate-based viscosity index improver according to the first embodiment.
  • the content of the poly(meth)acrylate-based viscosity index improver according to the first embodiment is preferably 0.1 to 20.0 mass%, more preferably 0.5 to 15.0 mass%, and further preferably 1.0 to 10.0 mass% based on the total amount of the lubricating oil composition.
  • the content is the above-described lower limit or more, a sufficient effect of addition becomes easy to be obtained, and on the other hand, when the content is the above-described upper limit or less, shear stability increases and fuel consumption sustainability is improved.
  • the kinematic viscosity at 100°C of the lubricating oil composition is preferably 3.0 to 16.3 mm 2 /s, more preferably 3.5 to 12.5 mm 2 /s, and further preferably 4.0 to 9.3 mm 2 /s.
  • a lubricating property becomes easy to be ensured
  • the kinematic viscosity at 100°C is the above-described upper limit or less
  • a fuel saving property is further improved.
  • the kinematic viscosity at 100°C in the present invention means a kinematic viscosity at 100°C defined by JIS K-2283-1993.
  • the viscosity index of the lubricating oil composition is preferably 150 to 250, more preferably 160 to 240, and further preferably 170 to 230.
  • the viscosity index is the above-described lower limit or more, a fuel saving property can be further improved, and moreover, the low-temperature viscosity becomes easy to be lowered while maintaining the HTHS viscosity.
  • the viscosity index is the above-described upper limit or less, low-temperature fluidity, solubility of additives, and compatibility with a sealing material can be ensured.
  • the viscosity index in the present invention means a viscosity index defined by JIS K 2283-1993.
  • the HTHS viscosity at 150°C of the lubricating oil composition is preferably 1.7 mPa ⁇ s or more, more preferably 2.0 mPa ⁇ s or more, further preferably 2.3 mPa ⁇ s or more, and most preferably 2.6 mPa ⁇ s or more.
  • the HTHS viscosity at 150°C is the above-described lower limit or more, evaporation of the lubricating oil composition can be suppressed, and a lubricating property can be ensured.
  • the HTHS viscosity at 100°C of the lubricating oil composition is preferably 5.2 mPa ⁇ s or less, more preferably 5.1 mPa ⁇ s or less, and further preferably 5.0 mPa ⁇ s or less.
  • the HTHS viscosity at 100°C is the above-described upper limit or less, a higher fuel saving property can be obtained.
  • the HTHS viscosity at 150°C or 100°C in the present invention means a high temperature high shear viscosity at 150°C or 100°C defined by ASTM D-4683.
  • the MRV viscosity at -40°C of the lubricating oil composition is preferably 60000 mPa ⁇ s or less, more preferably 40000 mPa ⁇ s or less, and further preferably 30000 mPa ⁇ s or less.
  • a pumping property is excellent at low temperature.
  • the MRV viscosity at -40°C in the present invention means a MRV viscosity at -40°C defined by ASTM D-4684.
  • the viscosity index improver according to the first embodiment, the lubricating oil additive according to the second embodiment, and the lubricating oil composition according to the third embodiment, which are described above, can be used in a wide range of fields such as lubricating oils for an internal combustion engine and drive system lubricating oils, and in particular, are useful in the field of lubricating oils for an internal combustion engine.
  • Fuel of the internal combustion engine in this case may be either gasoline or diesel fuel.
  • a poly(meth)acrylate-based viscosity index improver comprises a polymer chain containing a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
  • the weight-average molecular weight Mw (hereinafter, just referred to as "Mw” in some cases) of the poly(meth)acrylate-based viscosity index improver is less than 100000, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn (hereinafter, just referred to as "Mw” in some cases), Mw/Mn (hereinafter, just referred to as "Mw/Mn” in some cases), is 1.6 or less.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the following formula (3)
  • R 3 represents a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • n and n are integers which satisfy m ⁇ 5, n ⁇ 4, and m + n ⁇ 31.
  • R 1 may be either hydrogen or a methyl group, and is preferably a methyl group.
  • R 2 from the viewpoint of lowering a viscosity, one in which m is 5 to 16 and n is 4 to 15 is preferable, one in which m is 6 to 15 and n is 6 to 10 is more preferable, and one in which m is 7 to 10 and n is 6 to 9 is further preferable.
  • R 1 s and R 2 s may be the same or different between the respective structural units.
  • the polymer chain contains the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), and from the viewpoint of lowering a viscosity of compounded oil, contains preferably 20 to 80 mass%, more preferably 20 to 70 mass%, and further preferably 20 to 50 mass% of the structural unit represented by the above formula (1) based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 20 to 80 mass%, more preferably 20 to 70 mass%, and further preferably 50 to 80 mass% of the structural unit represented by the above formula (2) based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 70 mass% or more, more preferably 80 mass% or more, further preferably 90 mass% or more, and most preferably 100 mass% of the sum of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2) based on the total amount of the structural units contained in the polymer chain.
  • R 1 s and R 3 s may be the same or different between the respective structural units.
  • the polymer chain contains preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 45 mass% of the structural unit in which R 3 is a methyl group, based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain contains preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 40 mass% of the structural unit in which R 3 is an alkyl group having 18 or more carbon atoms, based on the total amount of the structural units contained in the polymer chain.
  • the polymer chain may contain only the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), or may further contain a structural unit other than these.
  • terminals of the polymer chain are not particularly limited.
  • a polymer chain containing only the structural unit represented by the above formula (1) and the structural unit represented by the above formula (2), whose terminals are hydrogen atoms, that is, a polymer chain represented by the following formula (4) is preferable.
  • R 1 represents hydrogen or a methyl group
  • R 4 represents a group represented by the above formula (3), or a C 1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms
  • n represents an integer selected such that the Mw and the Mw/Mn satisfy the above-described conditions.
  • n is an integer of 40 to 450.
  • the weight-average molecular weight Mw is less than 100000, and it is preferably 80000 or less, more preferably 70000 or less, and further preferably 60000 or less from the viewpoint of a fuel saving property.
  • the lower limit of Mw is not particularly limited, and the Mw is, for example, 10000 or more.
  • the number average molecular weight Mn is arbitrarily selected such that the Mw/Mn satisfies the above-described condition.
  • the Mn is preferably 6000 or more, more preferably 10000 or more, and further preferably 12500 or more from the viewpoint of a fuel saving property.
  • the upper limit of Mn is not particularly limited, and the Mn is, for example, 60000 or less.
  • the Mw/Mn is 1.6 or less, and from the viewpoint of a fuel saving property, is preferably 1.5 or less, more preferably 1.4 or less, and further preferably 1.3 or less. Moreover, the Mw/Mn is, from the viewpoint of a fuel saving property, preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
  • the weight-average molecular weight Mw mean Mw, Mn, and Mw/Mn (converted values with polystyrene (standard sample)) obtained by GPC analysis. Specifically, they are measured as follows, for example.
  • a solution whose sample concentration is 2 mass% is prepared by dilution using tetrahydrofuran as a solvent.
  • the sample solution is analyzed using GPC equipment (Waters Alliance2695).
  • the analysis is carried out at the flow rate of the solvent of 1 ml/min, by using a column whose analyzable molecular weight is 10000 to 256000, and a refractive index as a detector. It is to be noted that the relationship between the column retention time and the molecular weight is determined using a polystyrene standard whose molecular weight is definite and the molecular weight is determined from the obtained retention time based on the calibration curve which is separately made.
  • the manufacturing method of the poly(meth)acrylate-based viscosity index improver according to the present embodiment is not particularly limited, examples thereof include a method in which an initiator is added to a mixed solution containing an alkyl(meth)acrylate, a polymerization reagent, and a solvent to polymerize the alkyl(meth)acrylate at predetermined temperature.
  • alkyl(meth)acrylate an alkyl(meth)acrylate represented by the following formula (5) and an alkyl(meth)acrylate represented by the following formula (6) can be used.
  • R 1 represents hydrogen or a methyl group
  • R 2 represents a group represented by the above formula (3)
  • R 3 represents a C1 to C18 alkyl group that is straight-chain or has a branch having 5 or less carbon atoms.
  • R 1 is preferably a methyl group.
  • R 2 one in which m is 5 to 16 and n is 4 to 15 is preferable, one in which m is 6 to 15 and n is 6 to 10 is more preferable, and one in which m is 7 to 10 and n is 6 to 9 is further preferable.
  • the alkyl(meth)acrylate represented by the above formula (5) and the alkyl(meth)acrylate represented by the above formula (6) can be used, and the content of the alkyl(meth)acrylate represented by the above formula (5) is preferably 20 to 80 mass%, more preferably 20 to 70 mass%, and further preferably 20 to 50 mass% based on the total amount of the alkyl(meth)acrylate. Moreover, the content of the alkyl(meth)acrylate represented by the above formula (5) is preferably 20 to 80 mass%, more preferably 30 to 80 mass%, and further preferably 50 to 80 mass% based on the total amount of the alkyl(meth)acrylate.
  • one of the alkyl(meth)acrylate represented by the above formula (6) can be used alone, or two or more thereof can be mixed to be used, and preferably, two or more thereof are mixed to be used.
  • the content of methyl(meth)acrylate in which R 2 is a methyl group is preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 45 mass% based on the total amount of the alkyl(meth)acrylate.
  • the content of an alkyl(meth)acrylate in which R 2 is a C18 alkyl group is preferably 5 to 50 mass%, more preferably 10 to 45 mass%, and further preferably 20 to 40 mass% based on the total amount of the alkyl(meth)acrylate.
  • polymerization reagent for example, compounds containing a thiocarbonyl group, such as cumyl dithiobenzoic acid, can be used.
  • a preferred polymerization reagent include cumyl dithiobenzoic acid.
  • solvent for example, highly-refined mineral oils, anisole, and toluene can be used.
  • examples of a preferred solvent include highly-refined mineral oils.
  • azobisisobutyronitrile for example, azobisisobutyronitrile, azobisdimethylvaleronitrile, and azobismethylbutyronitrile can be used.
  • examples of a preferred initiator include azobisisobutyronitrile.
  • the reaction temperature when polymerizing the alkyl(meth)acrylate is preferably 70 to 120°C, more preferably 80 to 110°C, and further preferably 80 to 120°C.
  • Mw/Mn of the obtained poly(meth)acrylate-based viscosity index improver becomes easy to be 1.6 or less.
  • Mw/Mn tends to be 1.0 to 1.2
  • Mw/Mn tends to be 1.2 to 1.4
  • Mw/Mn tends to be 1.4 to 1.6.
  • the reaction time can be arbitrarily selected in accordance with the kinds and the amounts used of the alkyl(meth)acrylate, the polymerization reagent, the solvent, and the initiator, which are raw materials, reaction conditions such as a reaction temperature, and desired Mw and Mw/Mn of the poly(meth)acrylate.
  • Examples of preferred reaction time include 10 to 14 hours.
  • the polymerization of the alkyl(meth)acrylate is preferably carried out in a nitrogen atmosphere.
  • a lubricating oil additive according to the fifth embodiment of the present invention contains a poly(meth)acrylate-based viscosity index improver comprising a polymer chain containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2), wherein the weight-average molecular weight Mw is less than 100000, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less.
  • the poly(meth)acrylate-based viscosity index improver in the present embodiment is the same as the viscosity index improver in the above-described fourth embodiment, and an overlapping explanation is omitted here.
  • the lubricating oil additive may be one composed of only the above-described poly(meth)acrylate-based viscosity index improver, or may be a mixture of the viscosity index improver and other additives (that is, additive composition).
  • the lubricating oil additive is a mixture of the viscosity index improver and other additives, the mixing ratio thereof is not particularly limited and can be arbitrarily selected depending on the intended use.
  • the other additives are the same as the other additives in the above-described second embodiment, and an overlapping explanation is omitted here.
  • the lubricating oil additive according to the present embodiment may further contain a solvent.
  • a solvent highly-refined mineral oils, solvent-refmed mineral oils, and synthetic oils can be used. Among them, highly-refined mineral oils are preferably used.
  • the content of the solvent is preferably 5 to 75 mass%, and more preferably 30 to 60 mass% based on the total amount of the lubricating oil additive.
  • a lubricating oil composition according to the sixth embodiment contains a lubricating base oil, and a poly(meth)acrylate-based viscosity index improver comprising a polymer chain containing a structural unit represented by the above formula (1) and a structural unit represented by the above formula (2), wherein the weight-average molecular weight Mw is less than 100000, and the ratio of the weight-average molecular weight Mw to the number average molecular weight Mn, Mw/Mn, is 1.6 or less.
  • the lubricating oil composition according to the present embodiment includes an aspect containing a lubricating base oil and the lubricating oil additive according to the above-described fifth embodiment.
  • the poly(meth)acrylate-based viscosity index improver in the present embodiment is the same as the poly(meth)acrylate-based viscosity index improvers in the above-described fourth embodiment and fifth embodiment, and furthermore, other additives and a solvent which can be contained in the lubricating oil composition are the same as the other additives and the solvent in the second embodiment, and an overlapping explanation is omitted here.
  • the lubricating base oil is the same as the lubricating base oil in the above-described third embodiment, and an overlapping explanation is omitted here.
  • the content of the poly(meth)acrylate-based viscosity index improver according to the fourth embodiment is preferably 0.1 to 20.0 mass%, more preferably 0.5 to 15.0 mass%, and further preferably 1.0 to 10.0 mass% based on the total amount of the lubricating oil composition.
  • the content is the above-described lower limit or more, a sufficient effect of addition becomes easy to be obtained, and on the other hand, when the content is the above-described upper limit or less, shear stability increases and fuel consumption sustainability is improved.
  • the kinematic viscosity at 100°C of the lubricating oil composition is preferably 2.0 to 16.3 mm 2 /s, more preferably 2.5 to 12.5 mm 2 /s, and further preferably 3.0 to 10.0 mm 2 /s.
  • a lubricating property becomes easy to be ensured
  • the kinematic viscosity at 100°C is the above-described upper limit or less
  • a fuel saving property is further improved.
  • the kinematic viscosity at 100°C in the present invention means a kinematic viscosity at 100°C defined by JIS K-2283-1993.
  • the viscosity index of the lubricating oil composition is preferably 130 to 250, more preferably 140 to 240, and further preferably 160 to 230.
  • the viscosity index is the above-described lower limit or more, a fuel saving property can be further improved, and moreover, the low-temperature viscosity becomes easy to be lowered while maintaining the HTHS viscosity.
  • the viscosity index is the above-described upper limit or less, low-temperature fluidity, solubility of additives, and compatibility with a sealing material can be ensured.
  • the viscosity index in the present invention means a viscosity index defined by JIS K 2283-1993.
  • the BF viscosity at -40°C of the lubricating oil composition is preferably 20000 mPa ⁇ s or less, more preferably 18000 mPa ⁇ s or less, and further preferably 16000 mPa ⁇ s or less.
  • the BF viscosity at -40°C is the above-described upper limit or less, low-temperature fluidity is excellent and it becomes easy for a lubricating oil to flow at low temperature.
  • the BF viscosity at -40°C in the present invention means a BF viscosity at -40°C defined by JPI-5S-26-99.
  • the viscosity index improver according to the fourth embodiment, the lubricating oil additive according to the fifth embodiment, and the lubricating oil composition according to the sixth embodiment, which are described above, can be used in a wide range of fields such as lubricating oils for an internal combustion engine and drive system lubricating oils, and in particular, are useful in the field of drive system lubricating oils.
  • a driving device in this case may be any of an automatic transmission (AT), a continuously variable transmission (CVT), and a stepped transmission (TM).
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 1-1").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.005 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 110°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • the weight-average molecular weight Mw and the number average molecular weight Mn were measured by GPC analysis.
  • the weight-average molecular weight Mw was 233000
  • the number average molecular weight Mn was 150000
  • the Mw/Mn was 1.55.
  • the procedure of the GPC analysis is as follows.
  • a solution whose sample concentration is 2 mass% was prepared by dilution using tetrahydrofuran as a solvent.
  • the sample solution was analyzed using GPC equipment (Waters Alliance2695). The analysis was carried out at the flow rate of the solvent of 1 ml/min, by using a column whose analyzable molecular weight is 10000 to 256000, and a refractive index as a detector. It is to be noted that the relationship between the column retention time and the molecular weight was determined using a polystyrene standard whose molecular weight is definite and the molecular weight was determined from the obtained retention time based on the calibration curve which was separately made.
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 1-2").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.005 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 100°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • Example 1-1 For the obtained poly(meth)acrylate-based viscosity index improver, GPC analysis was carried out in the same manner as Example 1-1, and as a result, the weight-average molecular weight Mw was 228000, the number average molecular weight Mn was 171000, and the Mw/Mn was 1.33.
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 1-3").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.005 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 90°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 1-4").
  • a raw material in which 12 g of methyl methacrylate (C1-MA), 9 g of 2-octyldodecyl methacrylate (A2), and 9 g of stearyl methacrylate (C18-MA) as raw material monomers, and 0.091 g of azobisisobutyronitrile (AIBN) as a radical initiator are mixed was charged into the dropping funnel for introducing a sample, and the raw material was dropped in the reaction flask for 70 minutes. After that, polymerization was carried out for 8 hours at 85°C under nitrogen flow while maintaining stirring to obtain a solution containing a poly(meth)acrylate-based viscosity index improver. After that, unreacted monomers were removed from the above-described solution by carrying out vacuum distillation for 3 hours at 130°C and 1 mmHg.
  • AIBN azobisisobutyronitrile
  • Example 1-1 For the obtained poly(meth)acrylate-based viscosity index improver, GPC analysis was carried out in the same manner as Example 1-1, and as a result, the weight-average molecular weight Mw was 88000, the number average molecular weight Mn was 72000, and the Mw/Mn was 1.22.
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the same manner as any of the above-described Synthesis Conditions 1-1 to 1-4 other than changing the amount of the raw material blended as shown in Tables 1, 3, 5, 7, 9, and 11.
  • Mw, Mn, and Mw/Mn of the obtained poly(meth)acrylate-based viscosity index improver are shown in Tables 2, 4, 6, 8, 10, and 12.
  • performance additives including a metallic (calcium sulfonate) cleaner, an ashless dispersant (succinimide), a friction modifier (glycerin monooleate), and a wear inhibitor (zinc dithiophosphate), and a highly-refined mineral oil (Group III base oil,
  • Example 1-1 Example 1-2
  • Example 1-3 Example 1-4
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 2-1").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.020 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 110°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • the weight-average molecular weight Mw and the number average molecular weight Mn were measured by GPC analysis.
  • the weight-average molecular weight Mw was 84000
  • the number average molecular weight Mn was 53000
  • Mw/Mn was 1.58.
  • the procedure of the GPC analysis is as follows.
  • a solution whose sample concentration is 2 mass% was prepared by dilution using tetrahydrofuran as a solvent.
  • the sample solution was analyzed using GPC equipment (Waters Alliance2695). The analysis was carried out at the flow rate of the solvent of 1 ml/min, by using a column whose analyzable molecular weight is 10000 to 256000, and a refractive index as a detector. It is to be noted that the relationship between the column retention time and the molecular weight was determined using a polystyrene standard whose molecular weight is definite and the molecular weight was determined from the obtained retention time based on the calibration curve which was separately made.
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 2-2").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.018 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 100°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 2-3").
  • the solution was cooled to 0°C on an ice bath, and vacuum deaeration/nitrogen purge of a reaction system was carried out 5 times using a diaphragm pump. Furthermore, from the sample inlet, as a radical initiator, 0.014 g of azobisisobutyronitrile (AIBN) was charged under nitrogen flow, and then, polymerization was carried out for 12 hours at the solution temperature of 90°C under a nitrogen atmosphere to obtain a solution containing a poly(meth)acrylate-based viscosity index improver.
  • AIBN azobisisobutyronitrile
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the following condition (designated as "Synthesis Condition 2-4").
  • a raw material in which 12 g of methyl methacrylate (C1-MA), 9 g of 2-octyldodecyl methacrylate (A2), and 9 g of stearyl methacrylate (C18-MA) as raw material monomers, and 0.21 g of azobisisobutyronitrile (AIBN) as a radical initiator are mixed was charged into the dropping funnel for introducing a sample, and the raw material was dropped in the reaction flask for 70 minutes. After that, polymerization was carried out for 8 hours at 85°C under nitrogen flow while maintaining stirring to obtain a solution containing a poly(meth)acrylate-based viscosity index improver. After that, unreacted monomers were removed from the above-described solution by carrying out vacuum distillation for 3 hours at 130°C and 1 mmHg.
  • AIBN azobisisobutyronitrile
  • a poly(meth)acrylate-based viscosity index improver was synthesized in the same manner as any of the above-described Synthesis Conditions 2-1 to 2-4 other than changing the amount of the raw material blended as shown in Tables 13, 15, 17, 19, and 21.
  • Mw, Mn, and Mw/Mn of the obtained poly(meth)acrylate-based viscosity index improver are shown in Tables 14, 16, 18, 20, and 22.
  • a metallic calcium sulfonate whose TBN is 300 mgKOH/g
  • an ashless dispersant succinimide
  • a friction modifier oleylamide
  • each lubricating oil composition of Examples 2-1 to 2-19 and Comparative Examples 2-1 to 2-7 was evaluated by a friction coefficient in a condition of constant load using a two cylinder rolling sliding friction tester. Specifically, a friction coefficient was averaged for 10 minutes from the start of the test in conditions where the test temperature is 80°C, the load is 142 N, the surface pressure is 0.48 GPa, the peripheral speed is 1.0 m/s, and the sliding ratio is 5.1%. The results are shown in Tables 14, 16, 18, 20, and 22.
  • Example 2-1 Example 2-2 Example 2-3
  • Example 2-4 Example 2-5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
EP13822155.1A 2012-07-24 2013-07-24 Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant Withdrawn EP2878654A4 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2012163622 2012-07-24
JP2012163619 2012-07-24
JP2012163624 2012-07-24
JP2013079829 2013-04-05
JP2013079832 2013-04-05
JP2013079830 2013-04-05
JP2013079816 2013-04-05
JP2013079828 2013-04-05
JP2013142040A JP6077956B2 (ja) 2013-07-05 2013-07-05 ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP2013142017A JP6043245B2 (ja) 2013-07-05 2013-07-05 ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
PCT/JP2013/070088 WO2014017554A1 (fr) 2012-07-24 2013-07-24 Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant

Publications (2)

Publication Number Publication Date
EP2878654A1 true EP2878654A1 (fr) 2015-06-03
EP2878654A4 EP2878654A4 (fr) 2015-07-08

Family

ID=49997363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13822155.1A Withdrawn EP2878654A4 (fr) 2012-07-24 2013-07-24 Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant

Country Status (4)

Country Link
US (1) US20150175926A1 (fr)
EP (1) EP2878654A4 (fr)
CN (1) CN104395445A (fr)
WO (1) WO2014017554A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043195A1 (fr) 2014-09-17 2016-03-24 株式会社日本触媒 Agent améliorant l'indice de viscosité, procédé pour sa production, et composition d'huile lubrifiante
US20160168504A1 (en) * 2014-12-10 2016-06-16 Hyundai Motor Company Low viscosity gear oil composition providing enhanced fuel efficiency
EP3272842B1 (fr) * 2015-03-20 2022-02-16 Sanyo Chemical Industries, Ltd. Composition lubrifiante, et procédé de fabrication de composition lubrifiante
JP6862359B2 (ja) * 2016-01-12 2021-04-21 Eneos株式会社 潤滑油組成物
CN108463475A (zh) * 2016-01-12 2018-08-28 株式会社可乐丽 (甲基)丙烯酸酯系聚合物
WO2018056316A1 (fr) 2016-09-21 2018-03-29 株式会社日本触媒 Additif améliorant l'indice de viscosité et composition d'huile lubrifiante
CN113249158B (zh) * 2020-02-13 2022-09-27 中国石油化工股份有限公司 降凝剂及其制备方法、用途
DE112021003394T5 (de) * 2020-08-20 2023-04-20 Sanyo Chemical Industries, Ltd. Viskositätsindex-Verbesserer-Zusammensetzung undSchmieröl-Zusammensetzung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930142A1 (de) 1989-09-09 1991-03-21 Roehm Gmbh Dispergierwirksame viskositaets-index-verbesserer
CA2090200C (fr) 1992-03-20 2005-04-26 Chung Y. Lai Polymeres de polymethacrylate utilises comme agent dispersant sans cendre
US5312884A (en) 1993-04-30 1994-05-17 Rohm And Haas Company Copolymer useful as a pour point depressant for a lubricating oil
HUT69298A (en) 1993-07-23 1995-09-28 Rohm & Haas Method of making a copolymer useful as viscosity index improving additive for hydraulic fluids
JP3831203B2 (ja) 2001-04-06 2006-10-11 三洋化成工業株式会社 粘度指数向上剤および潤滑油組成物
DE10335360B4 (de) 2002-08-02 2010-09-09 Sanyo Chemical Industries, Ltd. Verwendung eines öllöslichen Copolymers als Viskositätsindex-Verbesserer
EP2343354A1 (fr) 2003-10-16 2011-07-13 Nippon Oil Corporation Additif pour huile lubrifiante et composition d'huile lubrifiante
JP4536370B2 (ja) 2003-12-26 2010-09-01 三洋化成工業株式会社 潤滑油組成物
ES2727424T3 (es) * 2004-10-25 2019-10-16 Lubrizol Corp Proceso para preparar polímeros y composiciones de los mismos
DE102005015931A1 (de) * 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
JP5230604B2 (ja) * 2006-04-24 2013-07-10 ザ ルブリゾル コーポレイション 星形ポリマー潤滑組成物
CA2651901C (fr) * 2006-05-08 2014-11-18 The Lubrizol Corporation Nouveaux polymeres et procedes de modulation de la viscosite
JP2009074068A (ja) * 2007-08-29 2009-04-09 Sanyo Chem Ind Ltd 粘度指数向上剤および潤滑油組成物
JP5184214B2 (ja) 2008-05-27 2013-04-17 Jx日鉱日石エネルギー株式会社 金属ベルト式無段変速機用潤滑油組成物
EP2154230A1 (fr) * 2008-08-08 2010-02-17 Afton Chemical Corporation Compositions d'additif lubrifiant disposant de propriétés améliorées augmentant l'indice de viscosité
CN102295972B (zh) * 2010-06-24 2013-06-05 中国石油化工股份有限公司 聚甲基丙烯酸酯型粘度指数改进剂及制备方法

Also Published As

Publication number Publication date
US20150175926A1 (en) 2015-06-25
EP2878654A4 (fr) 2015-07-08
WO2014017554A1 (fr) 2014-01-30
CN104395445A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
EP2878657B1 (fr) Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant
EP2878660A1 (fr) Améliorant d'indice de viscosité à base de poly(méth)acrylate, additif pour lubrifiant et composition lubrifiante le contenant
EP2878654A1 (fr) Améliorant d'indice de viscosité à base de poly(méth)acrylate, et composition d'huile lubrifiante et additif pour huile lubrifiante le contenant
EP2474601B1 (fr) Composition d'huile de lubrifiant
EP3409751B1 (fr) Composition lubrifiante
WO2007001000A1 (fr) Huile de base pour liquide hydraulique et compositions de liquide hydraulique
US10815445B2 (en) Lubricating oil composition, lubricating method, and transmission
EP3272844B1 (fr) Additif améliorant l'indice de viscosité, composition lubrifiante et procédé de production de composition lubrifiante
EP2878656B1 (fr) Améliorant d'indice de viscosité à base de poly(méth)acrylate, additif pour lubrifiant et composition lubrifiante le contenant
EP3425030B1 (fr) Composition d'huile lubrifiante, procédé de lubrification, et transmission
JP6043245B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP6077954B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
EP3425031B1 (fr) Composition d'huile lubrifiante, procédé de lubrification et transmission
JP6077955B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP2012111820A (ja) 潤滑油組成物
JP6088924B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP6018982B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP6077956B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP6018981B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
JP6113004B2 (ja) ポリ(メタ)アクリレート系粘度指数向上剤、並びに該粘度指数向上剤を含有する潤滑油添加剤及び潤滑油組成物
EP4001382B1 (fr) Composition d'huile lubrifiante
JP2021025007A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150610

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 30/06 20060101ALI20150603BHEP

Ipc: C10M 169/04 20060101ALI20150603BHEP

Ipc: C10M 145/14 20060101AFI20150603BHEP

Ipc: C10N 20/04 20060101ALI20150603BHEP

Ipc: C10N 20/02 20060101ALI20150603BHEP

Ipc: C10N 30/02 20060101ALI20150603BHEP

Ipc: C10N 40/25 20060101ALI20150603BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160517

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170413