EP2877701B1 - Turbocharger impeller - Google Patents

Turbocharger impeller Download PDF

Info

Publication number
EP2877701B1
EP2877701B1 EP13733304.3A EP13733304A EP2877701B1 EP 2877701 B1 EP2877701 B1 EP 2877701B1 EP 13733304 A EP13733304 A EP 13733304A EP 2877701 B1 EP2877701 B1 EP 2877701B1
Authority
EP
European Patent Office
Prior art keywords
blade
rotor
region
thickness distribution
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13733304.3A
Other languages
German (de)
French (fr)
Other versions
EP2877701A1 (en
Inventor
Michael Klaus
Timo MERENDA
Bernhard LEHMAYR
Meinhard Paffrath
Ivo Sandor
Endre Barti
Utz Wever
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2877701A1 publication Critical patent/EP2877701A1/en
Application granted granted Critical
Publication of EP2877701B1 publication Critical patent/EP2877701B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/711Shape curved convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave

Definitions

  • the invention relates to an impeller of an exhaust-gas turbocharger, which has an impeller hub and impeller blades arranged on the impeller hub, which each have a fluid inlet edge and a fluid outlet edge and which each have a blade thickness distribution running in the flow direction of the fluid mass flow.
  • turbocharged supercharged combustion engines Due to the ever stricter laws regarding the emission of exhaust gases into the environment more and more vehicles are equipped with supercharged turbocharger diesel or gasoline engines. In addition, the requirements for the stationary behavior of the internal combustion engine, d. H. Power, torque and consumption need to be further improved. In turbocharged supercharged combustion engines in particular, the transient response is essential.
  • the simplest possible rotor blading allows turbomachinery with a small moment of inertia, which allows a better transient response can be achieved.
  • the minimum possible blade thickness is limited by the manufacturing process and the strength properties of the materials used.
  • centrifugal forces act on the impeller blades aerodynamic forces in the form of shear stresses and compressive forces.
  • Turbomachine flow creates pressure nonuniformities which affect the impeller blades at each revolution.
  • the impeller vanes must have a stiffness that raises their natural frequency so far that they can not be excited by these pressure pulsations to critical vibrations.
  • the actual thickness distribution is typically covered by a filling radius in the transition to the hub.
  • This radius the lower the stresses and the higher the rigidity of the blade.
  • Production and aerodynamic criteria limit the maximum size of the filling radius.
  • the impeller blade at its top ie in the radial edge region, thinner than at the hub. If the rigidity or the natural frequency of the blade is not sufficient, often the blade height, at the position of greatest blade height, is shortened in the flow direction, which however is aerodynamically disadvantageous. Another possibility is to make the blade thicker overall.
  • a blade of an impeller of a turbocharger which has a non-linear reduction of the axial length in the meridional view at its trailing edge at a turbine blade or at its leading edge at a Ver emphasizerradschaufel at least in one or more sections, and wherein the respective portion and the reduction the axial length of the blade are selected such that the blade has a predetermined ratio of natural frequency and a loss of efficiency of the blade or the impeller.
  • an impeller blade which is reduced in the meridional view at its trailing edge at a turbine wheel blade or at its leading edge at a Ver Whyrradschaufel in a first, upper region in the axial length and wherein the trailing edge in a second, lower region perpendicular, substantially perpendicular or to the rear, contrary to the flow direction, runs, or the leading edge in a second lower portion perpendicular, substantially perpendicular or rearward, in the flow direction, so that the loss of efficiency of the impeller is limited in a predetermined range.
  • Generic wheels which are suitable for exhaust gas turbocharger, are for example in the US 2005/0260074 A1 .
  • the object of the invention is to provide an impeller of an exhaust gas turbocharger, which has improved properties during operation.
  • An impeller of an exhaust gas turbocharger according to the invention has an impeller hub and impeller blades arranged on the impeller hub, each of which has a fluid inlet edge, a fluid outlet edge and a blade height and a blade thickness distribution.
  • the impeller according to the invention is characterized in that the blade thickness distribution is selected such that the impeller blades along their extension from the fluid inlet edge to the fluid outlet edge, ie in the flow direction of the fluid flow, at least one transition between a stiffness-oriented blade thickness distribution and a inertial and voltage-oriented blade thickness distribution over the blade height exhibit.
  • the stiffness oriented blade thickness distribution is a bottle-shaped blade thickness distribution over the blade height and the inertia and stress oriented blade thickness distribution is an eiffel tower blade thickness distribution over the blade height.
  • a bottle-shaped blade thickness distribution represents a stiffness-optimized geometry and, at least on one side face of the impeller blade, but preferably on both sides, pressure side and suction side, seen in a sectional plane perpendicular to the impeller axis of rotation, a bottle-shaped side surface contour.
  • This side surface contour is characterized inter alia by a curvature change region, in which from radially inward to radially outward, with respect to an imaginary center line of the considered impeller vane cross section, convex profile of the side surface contour, ie the side surface curvature, merges into a concave profile.
  • the mentioned side surface contour between the blade root and the curvature change region has in each case a straight or a curved first transition region.
  • the result is a basic shape with a bulbous, stiff foot, wherein the blade thickness initially decreases radially outward until in the curvature change region slowly (bottle belly).
  • the blade thickness first decreases more strongly with a convex course of the side surface contour. Following this, the side surface contour merges into a concave profile, so that the blade thickness decreases beyond this region of the blade height to become weaker radially outward.
  • the side surface contour of the respective impeller vane has a straight or a curved second transition region (bottleneck) between its radial blade edge and its curvature change region.
  • a total of a side surface curvature of the impeller blade which is similar to the contour line of a bottle and therefore named here so.
  • An eiffel tower-shaped blade thickness distribution represents a geometry that is optimized in terms of inertia and stress and has a concave profile of the side surface contour, ie the side surface curvature of the rotor blade in the radial direction outwards, at least on one side surface of the impeller blade, but preferably on both sides (pressure side and suction side), so that the Blade thickness over the blade height decreases radially outward becoming weaker.
  • the outlet of the side surface curvature in the direction of the radial blade edge can be designed so that the concavely curved profile of the side surface contour of the respective impeller blade, in the direction of the radial blade edge, continues continuously or in a straight, inclined to an imaginary center line of the impeller blade cross-section or parallel to this center line, so that there is a transition region having a trapezoidal taper in the cross section of the impeller blade radially outward or a constant thickness.
  • the outlet in the blade root area can result from the curvature of the blade side wall or with an additional Foot rounding be executed.
  • there is a side surface curvature of the impeller blade which is similar to the contour line of the Eiffel Tower and therefore therefore named here.
  • an impeller according to the invention is optimized with regard to the properties required by it during operation, in particular with regard to its rigidity, inertia and strength.
  • the claimed blade thickness distribution can be used for cast, eroded and also milled radial, radial-axial and axial-turbines or compressors.
  • the invention favors the production engineering boundary conditions during casting with regard to minimum distances between adjacent blades.
  • the blade thickness distribution When produced by casting, it is possible to set the blade thickness distribution as desired both over the blade height and over the blade length.
  • This possibility is used in the present invention in that an inertia-optimized thickness distribution in areas of the impeller blades, which are of minor importance for the blade stiffness, as well as a stiffness-optimized thickness distribution in areas of the impeller blades, which are in danger of vibration, is made.
  • the areas of little importance for overall blade stiffness are the areas of low blade height in the radial direction.
  • the areas with a high influence on the blade rigidity are the areas with large blade height in the radial direction.
  • the thickness distribution strategy according to the invention is based on a combination of the two fundamentally different blade thickness distributions, namely, for example, one eiffel tower-shaped blade thickness distribution and a bottle-shaped blade thickness distribution such that the impeller blades have along their extension from the fluid inlet edge to the fluid outlet edge at least one transition between a stiffness-oriented blade thickness distribution and a inertial and voltage-oriented blade thickness distribution over the blade height.
  • the Eiffel Tower shape is inertia and stress optimized, while the bottle shape is stiffness-optimized.
  • FIG. 1 shows a sketch to illustrate an impeller of an exhaust gas turbocharger, which is in the illustrated embodiment, for example, a turbine wheel of an exhaust gas turbocharger. If it is a turbine wheel, so this is located between the turbine housing 6 and the bearing housing 7 of the exhaust gas turbocharger and rotates during operation of the exhaust gas turbocharger to an impeller axis 10.
  • the impeller 1 is rotatably connected by means of its impeller hub 2 with a rotor shaft 11.
  • On the impeller hub 2 equidistantly impeller blades 3 are arranged in the circumferential direction of the impeller, which are fixed by means of their blade root B1 on the impeller hub 2.
  • the impeller hub 2 and the impeller blades 3 are manufactured in one step and materially connected to each other.
  • the impeller blades 3 each have a fluid inlet edge 4, 5 'and a fluid outlet edge 5, 4'. Since a turbine impeller and a compressor impeller hardly differ in the schematic representation, are in FIG. 1 Both versions are summarized in a representation. The main difference in the schematic representation consists in the flow direction of the fluid flow.
  • the turbine runner which is acted upon by exhaust gases of an internal combustion engine, has an exhaust gas inlet edge 4 and an exhaust gas outlet edge 5.
  • the flow direction of the exhaust gas is in the FIG. 1 indicated by arrows and designated by the reference numeral 8.
  • the compressor impeller which is supplied with fresh air, has a fresh air inlet edge 5 'and a fresh air outlet edge 4'.
  • the flow direction of the fresh air is in the FIG. 1 indicated by arrows which are designated by the reference numeral 8 '.
  • FIG. 2 shows three examples of blade thickness distributions over the blade height 9 of an impeller blade 3 in a sectional view with a plane perpendicular to the impeller axis 10 extending cutting plane. It is in the left illustration in FIG. 2 a bottle-shaped blade thickness distribution, in the middle representation of FIG. 2 an eiffel tower-shaped blade thickness distribution and in the right-hand illustration of FIG. 2 illustrates a trapezoidal blade thickness distribution.
  • the respective blade thickness distribution is formed here by way of example symmetrically to an imaginary blade center line 13 of the respective impeller blade cross-section.
  • a blade thickness distribution is such that two fundamentally different blade thickness distributions, such as the Eiffel Tower shape and the bottle shape, are alternated or combined in a particular manner.
  • the Eiffel Tower shape is inertial and tension optimal.
  • the bottle shape is stiffness-optimal.
  • the Eiffel Tower shape is characterized in particular by a outgoing from the foot, radially outward toward the inside, to the imaginary center line 13 to, curved course of the side surface contour, wherein the blade thickness decreases in the radial direction outwardly weakening.
  • the side surface contour can continue to run in continuation of the Eiffel Tower shape, as can be seen from the middle illustration of FIG. 2 can also be in a straight, to an imaginary center line of the impeller blade inclined or parallel to this center line course, so that there is a transition region whose cross-sectional area has a trapezoidal taper radially outward or a constant thickness.
  • the foot area may result from the curvature of the side wall of the scoop. Alternatively, the foot area can also be designed with an additional cognitive task.
  • the bottle shape in the left illustration of FIG. 2 in contrast, is characterized in particular by a curvature change area, in which the Side surface contour of the impeller blade from radially inward to radially outward passes from a convex curvature into a concave curvature.
  • the trapezoidal blade thickness distribution as shown in the right-hand illustration of FIG. 2 is shown, is used in known blade thickness distributions according to the prior art and is in the flow direction between the fluid inlet and the fluid outlet edge continuously before.
  • FIG. 3 shows an example of a stiffness-optimized blade thickness distribution, which is referred to as bottle shape and a inertia and voltage optimized blade thickness distribution, which is referred to as Eiffelturmform in a sectional view according to a sectional plane perpendicular to the impeller axis of rotation 10.
  • the respective blade thickness distribution in FIG. 3 is subdivided into the areas B1, C2, B4 and B5 in the bottle shape into areas B1 to B5 and in the Eiffel tower shape, in both cases B1 the blade root area and B5 the radially outer blade edge area.
  • a first transitional region B2 (bottle belly), a curvature change region B3 (bottle shoulder) and a second transition region B4 (bottleneck) are predetermined.
  • a concave area C2 and also a transition area B4 are defined between the blade root B1 and the blade edge area B5.
  • the foot region or blade root B1 in which the blade 3 is connected to the hub, in each case has the greatest thickness and preferably merges with a foot rounding 12 into the impeller hub 2.
  • the radially outer blade edge closes the side surface contour with a defined edge and is preferably slightly rounded in each case, wherein the rounding follows the respective circumferential circle of the impeller or results from it.
  • the side surface contour of the impeller blade may be straight or preferably slightly convexly curved in the first transition region B2 provided between the foot region B1 and the bending change region B3.
  • the change of curvature region B3 takes place - as already stated above - a transition of the side surface contour of a convex curvature in a concave curvature.
  • the Eiffel Tower shape is characterized in particular by the adjoining the foot area concave area C2, in which the side surface contour in the radial direction R outwardly to the imaginary center line 13 to, concave curved course, the blade thickness decreases in the radial direction outwardly weakening.
  • the side surface contour can again run slightly concavely curved or merge into an inclined or center line parallel to an imaginary center line of the impeller blade cross section. so that there is a transition region whose cross-sectional area has a trapezoidal taper radially outward or a constant thickness.
  • the extending in the radial direction R sections of the individual areas B1 to B5 and C2 can be optimized in their extent and their relationship to each other depending on the specific application, the division of the sections of the individual areas B1 to B5 also depending on the position along the extension of the impeller blade between the fluid inlet edge and the fluid outlet edge and the blade height present there takes place.
  • the gradient of the course of the side surface contour in the bending change region B3 can be optimized depending on the particular application in order to achieve the best possible compromise between stiffness and inertia.
  • FIG. 4 Two examples illustrating blade thickness distributions according to the invention are schematically shown in FIG FIG. 4 shown in meridional view of the impeller blades.
  • the left-hand illustration refers to a radial-axial impeller and the right-hand depiction to a radial impeller.
  • the embodiments described below can be used both in turbine wheels and in compressor wheels.
  • the fluid inlet edge 4 is the area of small blade height (in each case the left-hand area of the illustration) and the fluid outlet edge 5 is the area of large blade height (in each case the right-hand area of the illustration).
  • the foot areas are not drawn for the sake of clarity. Since the illustrated meridional view represents a projection of the three-dimensional impeller vane onto a two-dimensional plane, the deflection angle of the vane is not captured in the representations. Due to the real existing deflection angle and the consideration of the thickness distributions in a plane perpendicular to the impeller axis cutting plane are, in contrast to the representation, the real contour curves of the side surface contours in this cutting plane on both sides of the impeller blades in the in FIG. 4 Sectional planes Abis D shown are generally not completely symmetrical, although they have in principle the same contour. Depending on the angle of deflection of the blade arise in reality on both sides slightly different contour curves.
  • sectional views A to D according to the FIG. 4 are thus understood as a blade thickness distribution perpendicular to the skeletal surface (which is approximately given by an imaginary center line of the profile over the blade length and appears in the respective section as the center line) of the blade profile.
  • the thickness distribution illustrated in the right-hand illustration has an eiffel tower-shaped blade thickness distribution in the region of small radial blade height and at the same time greater distance from the impeller rotational axis, section AA, and goes in the axial direction (to the right in the illustration), as from the sections BB and CC is continuously in a bottle-shaped blade thickness distribution in the range of large radial blade height at the same time smaller distance to the impeller axis 10, section DD, over.
  • Such a distribution corresponds to the rule that with a large blade height, in particular a stiffness-oriented blade thickness distribution is advantageous, whereas with a small blade height a inertia-oriented and tension-oriented blade thickness distribution is to be preferred.
  • this distribution has the additional effect that the larger mass arrangements required for the rigidity, in the form of the "bottle belly" of the bottle-shaped blade thickness distribution, are arranged closer to the impeller rotational axis and thus have less negative influence on the inertia of the impeller and thus on the transient behavior of the turbocharger.
  • the eiffel tower-shaped blade thickness distribution in section A-A initially goes in the direction of greater blade height (in the illustration to the right) into the bottle-shaped blade thickness distribution, section C-C.
  • This additional transition and the eiffel tower-shaped blade thickness distribution thus present at the fluid outlet / fluid inlet edge 5, 5 'can optionally be used on the one hand to reduce critical stresses in the hub region of the fluid outlet / fluid inlet edge 5, 5' and on the other hand to aerodynamic advantages by reducing the thickness the Fluidaus- / fluid inlet edge 5, 5't. to achieve the appropriate edge radius.
  • the axial transition regions between different blade thickness distributions have Cross-sectional shapes corresponding to a combination of an eiffel tower-shaped blade thickness distribution and a bottle-shaped blade thickness distribution.
  • FIG. 5 shows an example for illustrating a specific embodiment of the invention.
  • This embodiment has the advantage that a production of the impeller blades is made possible in the milling process shown.
  • FIG. 6 shows examples to illustrate further embodiments of the invention.
  • FIG. 6 Examples of a different, asymmetrical blade thickness distribution on the suction side S and the pressure side P of the impeller blades 3, wherein the two outer contours with respect to an imaginary center line have different contour curves.
  • the designation of the suction side and the pressure side of the impeller blades are chosen here freely and serve only to distinguish the two sides of the blade.
  • Presentation 6.1 of the FIG. 6 shows, for example, a trapezoidal straight radially outwardly decreasing blade thickness distribution on the suction side S and an eiffel tower-shaped blade thickness distribution on the pressure side P of the impeller blade 3.
  • Figure 6.2 shows an eiffel tower-shaped blade thickness distribution on the suction side S and a bottle-shaped blade thickness distribution on the pressure side P.
  • Figure 6.3 shows again a bottle-shaped blade thickness distribution on the suction side S and a conical Vane thickness distribution on the pressure side P.
  • P can be counteracted thermally induced stresses in the blade material, residual stresses of the blade material and during operation occurring aerodynamic forces.
  • this can also be done by the fact that the blade is not exactly aligned with radial rays, but slightly inclined or curved in the circumferential direction.
  • FIG. 7 shows a superimposed view of sectional views illustrating various blade thickness distributions. These blade thickness distributions are those already described in the above FIG. 2 shown embodiments.
  • the lowest blade thickness that can be implemented in terms of manufacture extends over larger blade height portions of the impeller blade in the case of the bottle-shaped blade thickness distribution as well as in the eiffel tower-shaped blade thickness distribution than in the case of a conical blade thickness distribution.
  • an inertia reduction is achieved in the blade thickness distribution according to the invention.
  • the stiffness compared to the conical Blade thickness distribution are maintained as nearly the maximum thickness in the blade root area is used over larger blade height portions.
  • the thickness maximum at the hub can be placed in the flow direction to an almost arbitrary position. If it is in an ideal position perpendicular to the swing axis of the lowest eigenmode, then the maximum blade thickness can be minimized because the rigidity is optimized. This benefits the inertia of the turbocharger.
  • the wedge angle of the fluid outlet edge can be optimized by positioning the maximum thickness at the hub towards more acute exit angles.
  • the radial blade thickness distribution of the fluid outlet edge 5 is again designed in Eiffel tower shape, as in the left display of FIG. 4 is shown at the section DD.
  • a flatter wedge angle at the fluid outlet edge 5 of turbine runner blades is possible by the blade thickness distribution according to the invention.
  • the object of the invention can also be used in an advantageous manner to reduce the so-called cut-back by an improved rigidity of the turbine blading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein Laufrad eines Abgasturboladers, welches eine Laufradnabe und auf der Laufradnabe angeordnete Laufradschaufeln aufweist, die jeweils eine Fluideintrittskannte und eine Fluidaustrittskante enthalten und die jeweils eine in Strömungsrichtung des Fluidmassenstromes verlaufende Schaufeldickenverteilung aufweisen.The invention relates to an impeller of an exhaust-gas turbocharger, which has an impeller hub and impeller blades arranged on the impeller hub, which each have a fluid inlet edge and a fluid outlet edge and which each have a blade thickness distribution running in the flow direction of the fluid mass flow.

Aufgrund der ständig verschärften Gesetze bezüglich der Emission von Abgasen in die Umwelt werden immer mehr Fahrzeuge mit über Abgasturbolader aufgeladene Diesel- oder Ottomotoren ausgerüstet. Zusätzlich steigen die Anforderungen an das stationäre Verhalten des Verbrennungsmotors, d. h. Leistung, Drehmoment und Verbrauch müssen weiter verbessert werden. Bei mittels Turboladern aufgeladenen Verbrennungsmotoren ist insbesondere auch das transiente Ansprechverhalten essentiell. Eine möglichst leichte Rotorbeschaufelung ermöglicht Turbomaschinen mit einem kleinen Trägheitsmoment, wodurch ein besseres transientes Ansprechverhalten erzielt werden kann. Die minimale mögliche Schaufeldicke ist durch das Herstellverfahren und die Festigkeitseigenschaften der verwendeten Werkstoffe begrenzt. Neben den Fliehkräften wirken auf die Laufradschaufeln aerodynamische Kräfte in Form von Schubspannungen und Druckkräften. Bei der Anströmung der Turbomaschinen entstehen Druckungleichförmigkeiten, die bei jeder Umdrehung auf die Laufradschaufeln wirken. Die Laufradschaufeln müssen eine Steifigkeit aufweisen, die ihre Eigenfrequenz so weit anhebt, dass sie nicht durch diese Druckpulsationen zu kritischen Schwingungen angeregt werden können.Due to the ever stricter laws regarding the emission of exhaust gases into the environment more and more vehicles are equipped with supercharged turbocharger diesel or gasoline engines. In addition, the requirements for the stationary behavior of the internal combustion engine, d. H. Power, torque and consumption need to be further improved. In turbocharged supercharged combustion engines in particular, the transient response is essential. The simplest possible rotor blading allows turbomachinery with a small moment of inertia, which allows a better transient response can be achieved. The minimum possible blade thickness is limited by the manufacturing process and the strength properties of the materials used. In addition to the centrifugal forces act on the impeller blades aerodynamic forces in the form of shear stresses and compressive forces. Turbomachine flow creates pressure nonuniformities which affect the impeller blades at each revolution. The impeller vanes must have a stiffness that raises their natural frequency so far that they can not be excited by these pressure pulsations to critical vibrations.

Es ist bereits bekannt, eine Dickenverteilung der Laufradschaufeln eines Abgasturboladers in radialer Richtung mit linear abnehmendem Dickenverlauf, ausgehend von niedrigem Durchmesser zu hohem Durchmesser, vorzusehen. Statt der radialen Strahlen können auch zum Strömungskanal senkrechte Strahlen als Definitionsbasis dienen, sogenannte Meridionalstrahlen. Andere bekannte Lösungen sind Dickenverteilungen mit einfachen parametrischen Funktionen wie beispielsweise Parabeln oder Exponentialfunktionen. Die Parameter der jeweiligen Funktion oder der Funktionstyp selbst werden nach Festigkeitskriterien optimiert, so dass geringe mechanische Spannungen in der Laufradschaufel und insbesondere im Fußbereich der Laufradschaufel, auch als Schaufelfuß bezeichnet, auftreten und dass eine ausreichende Steifigkeit der Laufradschaufel erzielt wird. Im Fußbereich der Schaufel wird die eigentliche Dickenverteilung typischerweise durch einen Füllradius im Übergang zur Nabe überdeckt. Je größer dieser Radius ist, desto geringer sind die Spannungen und desto höher ist die Steifigkeit der Schaufel. Fertigungs- und aerodynamische Kriterien limitieren allerdings die maximale Größe des Füllradius. Typischerweise ist die Laufradschaufel an ihrer Spitze, also im radialen Randbereich, dünner als an der Nabe. Wenn die Steifigkeit bzw. die Eigenfrequenz der Schaufel nicht ausreicht, wird häufig die Schaufelhöhe, an der Position größter Schaufelhöhe, in Strömungsrichtung verkürzt ausgeführt, was jedoch aerodynamisch nachteilig ist. Eine andere Möglichkeit besteht darin, die Schaufel insgesamt dicker auszuführen. Diese Lösungen sind weder trägheitsoptimal noch festigkeitsoptimal. Durch die vergleichsweise schlechtere Materialauslastung wird des Weiteren Bauraum verschwendet, der ansonsten für zusätzliche Schaufeln bei gleichem Schaufelfußabstand verwendet werden könnte.It is already known to provide a thickness distribution of the impeller blades of an exhaust gas turbocharger in the radial direction with a linearly decreasing thickness profile, starting from a low diameter to a high diameter. Instead of the radial rays can also serve the flow channel perpendicular rays as a basis of definition, so-called meridional rays. Other known solutions are thickness distributions with simple parametric functions such as parabolas or exponential functions. The parameters of the respective function or the type of function itself are optimized according to strength criteria, so that low mechanical stresses in the impeller blade and in particular in the foot region of the impeller blade, also referred to as blade root occur, and that sufficient rigidity of the impeller blade is achieved. In the foot region of the blade, the actual thickness distribution is typically covered by a filling radius in the transition to the hub. The larger this radius, the lower the stresses and the higher the rigidity of the blade. Production and aerodynamic criteria, however, limit the maximum size of the filling radius. Typically, the impeller blade at its top, ie in the radial edge region, thinner than at the hub. If the rigidity or the natural frequency of the blade is not sufficient, often the blade height, at the position of greatest blade height, is shortened in the flow direction, which however is aerodynamically disadvantageous. Another possibility is to make the blade thicker overall. These solutions are neither inertial optimal nor strength optimal. Due to the comparatively poorer material utilization further space is wasted, which could otherwise be used for additional blades with the same blade root clearance.

Aus der DE 10 2008 059 874 A1 ist eine Schaufel eines Laufrades eines Turboladers bekannt, welche in der Meridionalansicht an ihrer Austrittskante bei einer Turbinenradschaufel bzw. an ihrer Eintrittskante bei einer Verdichterradschaufel zumindest in einem oder mehreren Abschnitten eine nichtlineare Reduzierung der axialen Länge aufweist, und bei welcher der jeweilige Abschnitt und die Reduzierung der axialen Länge der Schaufel derart gewählt sind, dass die Schaufel ein vorbestimmtes Verhältnis aus Eigenfrequenz und einem Wirkungsgradverlust der Schaufel bzw. des Laufrades aufweist. Des Weiteren ist aus dieser Schrift eine Laufradschaufel bekannt, welche in der Meridionalansicht an ihrer Austrittskante bei einer Turbinenradschaufel bzw. an ihrer Eintrittskante bei einer Verdichterradschaufel in einem ersten, oberen Bereich in der axialen Länge reduziert ist und wobei die Austrittskante in einem zweiten, unteren Bereich senkrecht, im Wesentlichen senkrecht oder nach hinten, entgegen der Strömungsrichtung, verläuft, bzw. die Eintrittskante in einem zweiten unteren Bereich senkrecht, im Wesentlichen senkrecht oder nach hinten, in Strömungsrichtung verläuft, so dass der Wirkungsgradverlust des Laufrades in einem vorbestimmten Bereich begrenzt ist.From the DE 10 2008 059 874 A1 a blade of an impeller of a turbocharger is known, which has a non-linear reduction of the axial length in the meridional view at its trailing edge at a turbine blade or at its leading edge at a Verdichterradschaufel at least in one or more sections, and wherein the respective portion and the reduction the axial length of the blade are selected such that the blade has a predetermined ratio of natural frequency and a loss of efficiency of the blade or the impeller. Furthermore, this is from this Described font an impeller blade, which is reduced in the meridional view at its trailing edge at a turbine wheel blade or at its leading edge at a Verdichterradschaufel in a first, upper region in the axial length and wherein the trailing edge in a second, lower region perpendicular, substantially perpendicular or to the rear, contrary to the flow direction, runs, or the leading edge in a second lower portion perpendicular, substantially perpendicular or rearward, in the flow direction, so that the loss of efficiency of the impeller is limited in a predetermined range.

Gattungsgemäße Laufräder, welche sich für Abgasturbolader eignen, sind beispielsweise in der US 2005/0260074 A1 , US 2 469 458 A , US 2010/0278633 A1 und WO 2009/065030 A2 gezeigt.Generic wheels, which are suitable for exhaust gas turbocharger, are for example in the US 2005/0260074 A1 . US 2 469 458 A . US 2010/0278633 A1 and WO 2009/065030 A2 shown.

Die Aufgabe der Erfindung besteht darin, ein Laufrad eines Abgasturboladers anzugeben, das im Betrieb verbesserte Eigenschaften aufweist.The object of the invention is to provide an impeller of an exhaust gas turbocharger, which has improved properties during operation.

Diese Aufgabe wird durch ein Laufrad mit den im Folgenden angegebenen Merkmalen gelöst.
Ein erfindungsgemäßes Laufrad eines Abgasturboladers, weist eine Laufradnabe und auf der Laufradnabe angeordnete Laufradschaufeln auf, die jeweils eine Fluideintrittskante, eine Fluidaustrittskante und eine Schaufelhöhe sowie eine Schaufeldickenverteilung aufweisen. Das erfindungsgemäße Laufrad ist dadurch gekennzeichnet, dass die Schaufeldickenverteilung derart gewählt ist, dass die Laufradschaufeln entlang ihrer Erstreckung von der Fluideintrittskante bis zur Fluidaustrittskante, also in Strömungsrichtung des Fluidstromes, mindestens einen Übergang zwischen einer steifigkeitsorientierten Schaufeldickenverteilung und einer trägheits- und spannungsorientierten Schaufeldickenverteilung über die Schaufelhöhe aufweisen.
This object is achieved by an impeller with the features indicated below.
An impeller of an exhaust gas turbocharger according to the invention has an impeller hub and impeller blades arranged on the impeller hub, each of which has a fluid inlet edge, a fluid outlet edge and a blade height and a blade thickness distribution. The impeller according to the invention is characterized in that the blade thickness distribution is selected such that the impeller blades along their extension from the fluid inlet edge to the fluid outlet edge, ie in the flow direction of the fluid flow, at least one transition between a stiffness-oriented blade thickness distribution and a inertial and voltage-oriented blade thickness distribution over the blade height exhibit.

Dabei ist unter der Schaufelhöhe die Erstreckung der jeweiligen Laufradschaufel vom Übergangsbereich zwischen der Laufradnabe (2) und der Laufradschaufel (3), dem Schaufelfuß oder Fußbereich (B1), aus in Radialrichtung, in Bezug auf die Laufraddrehachse, bis in den von der Laufradnabe (2) abgelegenen radialen Schaufelrand zu verstehen.In this case, under the blade height, the extent of the respective impeller blade from the transition region between the impeller hub (2) and the impeller blade (3), the blade root or foot region (B1), in the radial direction, with respect to the impeller axis of rotation, to understand the radial blade edge remote from the impeller hub (2).

Die Erstreckung der Laufradschaufel in Strömungsrichtung des Fluidstromes, kennzeichnet die "Schaufellänge", beginnend an der Fluideintrittskante und endend an der Fluidaustrittskante der Laufradschaufel.Bei dem Laufrad ist die steifigkeitsorientierte Schaufeldickenverteilung eine flaschenförmige Schaufeldickenverteilung über die Schaufelhöhe und die trägheits- und spannungsorientierte Schaufeldickenverteilung eine eiffelturmförmige Schaufeldickenverteilung über die Schaufelhöhe. Eine flaschenförmige Schaufeldickenverteilung stellt eine steifigkeitsoptimierte Geometrie dar und weist zumindest auf einer Seitenfläche der Laufradschaufel, vorzugsweise jedoch auf beiden Seiten, Druckseite und Saugseite, in einer senkrecht zur Laufraddrehachse stehenden Schnittebene gesehen, eine flaschenförmige Seitenflächenkontur auf. Diese Seitenflächenkontur ist unter Anderem durch einen Krümmungswechselbereich gekennzeichnet, in welchem von radial innen nach radial außen ein, in Bezug auf eine gedachte Mittellinie des betrachteten Laufradschaufelquerschnitts, konvexer Verlauf der Seitenflächenkontur, also der Seitenflächenkrümmung, in einen konkaven Verlauf übergeht.
In Weiterbildung des Gegenstandes weist die genannte Seitenflächenkontur zwischen dem Schaufelfuß und dem Krümmungswechselbereich jeweils einen geraden oder einen gekrümmten ersten Übergangsbereich auf. So entsteht eine Grundform mit einem bauchigen, steifen Fuß, wobei die Schaufeldicke zunächst nach radial außen hin bis in den Krümmungswechselbereich langsam abnimmt (Flaschenbauch). Im Krümmungswechselbereich nimmt die Schaufeldicke zunächst bei konvexem Verlauf der Seitenflächenkontur stärker werdend ab. Im Anschluss daran geht die Seitenflächenkontur in einen konkaven Verlauf über, sodass die Schaufeldicke über diesen Bereich der Schaufelhöhe nach radial außen hin schwächer werdend abnimmt.
The extent of the impeller blade in the direction of flow of the fluid stream characterizes the "blade length" beginning at the fluid inlet edge and ending at the fluid outlet edge of the impeller blade. For the impeller, the stiffness oriented blade thickness distribution is a bottle-shaped blade thickness distribution over the blade height and the inertia and stress oriented blade thickness distribution is an eiffel tower blade thickness distribution over the blade height. A bottle-shaped blade thickness distribution represents a stiffness-optimized geometry and, at least on one side face of the impeller blade, but preferably on both sides, pressure side and suction side, seen in a sectional plane perpendicular to the impeller axis of rotation, a bottle-shaped side surface contour. This side surface contour is characterized inter alia by a curvature change region, in which from radially inward to radially outward, with respect to an imaginary center line of the considered impeller vane cross section, convex profile of the side surface contour, ie the side surface curvature, merges into a concave profile.
In a development of the object, the mentioned side surface contour between the blade root and the curvature change region has in each case a straight or a curved first transition region. The result is a basic shape with a bulbous, stiff foot, wherein the blade thickness initially decreases radially outward until in the curvature change region slowly (bottle belly). In the area of curvature change, the blade thickness first decreases more strongly with a convex course of the side surface contour. Following this, the side surface contour merges into a concave profile, so that the blade thickness decreases beyond this region of the blade height to become weaker radially outward.

In Weiterbildung des Gegenstandes der flaschenförmigen Schaufeldickenverteilung weist die Seitenflächenkontur der jeweiligen Laufradschaufel zwischen ihrem radialen Schaufelrand und ihrem Krümmungswechselbereich jeweils einen geraden oder einen gekrümmten zweiten Übergangsbereich (Flaschenhals) auf. Dabei kann der Verlauf der Seitenflächenkontur, also der Seitenflächenkrümmung, in Richtung des radialen Schaufelrands in einer vorgegebenen Krümmung auslaufen oder geneigt auf eine gedachte Mittellinie des betrachteten Laufradschaufelquerschnitts zu oder parallel zu dieser Mittellinie gestaltet sein, so dass sich ein zweiter Übergangsbereich ergibt, der im Querschnitt der Laufradschaufel beispielsweise eine trapezförmige Verjüngung oder eine gleichbleibende Dicke aufweist. So ergibt sich, im Querschnitt gesehen, insgesamt eine Seitenflächenkrümmung der Laufradschaufel, die der Konturlinie einer Flasche ähnlich ist und deshalb hier so benannt wird.In a further development of the article of the bottle-shaped blade thickness distribution, the side surface contour of the respective impeller vane has a straight or a curved second transition region (bottleneck) between its radial blade edge and its curvature change region. In this case, the profile of the side surface contour, ie the side surface curvature, in the direction of the radial blade edge in a predetermined curvature or inclined to an imaginary center line of the considered impeller vane cross-section to be or designed parallel to this center line, so that there is a second transition region, in cross-section the impeller blade has, for example, a trapezoidal taper or a constant thickness. Thus, seen in cross section, a total of a side surface curvature of the impeller blade, which is similar to the contour line of a bottle and therefore named here so.

Eine eiffelturmförmige Schaufeldickenverteilung stellt eine trägheits- und spannungsoptimierte Geometrie dar und weist zumindest auf einer Seitenfläche der Laufradschaufel, vorzugsweise jedoch auf beiden Seiten (Druckseite und Saugseite), einen konkaven Verlauf der Seitenflächenkontur, also der Seitenflächenkrümmung der Laufradschaufel in Radialrichtung nach außen auf, sodass die Schaufeldicke über die Schaufelhöhe nach radial außen hin schwächer werdend abnimmt.An eiffel tower-shaped blade thickness distribution represents a geometry that is optimized in terms of inertia and stress and has a concave profile of the side surface contour, ie the side surface curvature of the rotor blade in the radial direction outwards, at least on one side surface of the impeller blade, but preferably on both sides (pressure side and suction side), so that the Blade thickness over the blade height decreases radially outward becoming weaker.

Der Auslauf der Seitenflächenkrümmung in Richtung des radialen Schaufelrandes kann dabei so gestaltet sein, dass der konkav gewölbte Verlauf der Seitenflächenkontur der jeweiligen Laufradschaufel, in Richtung auf den radialen Schaufelrand zu, kontinuierlich weitergeführt wird oder in einen geraden, auf eine gedachte Mittellinie des Laufradschaufelquerschnitts zu geneigten oder zu dieser Mittellinie parallelen Verlauf übergeht, so dass sich ein Übergangsbereich ergibt, der im Querschnitt der Laufradschaufel eine trapezförmige Verjüngung nach radial außen hin oder eine gleichbleibende Dicke aufweist.
Der Auslauf im Schaufelfußbereich kann sich aus der Krümmung der Schaufelseitenwand ergeben oder mit einer zusätzlichen Fußverrundung ausgeführt sein. So ergibt sich, im Querschnitt gesehen, eine Seitenflächenkrümmung der Laufradschaufel, die der Konturlinie des Eiffelturmes ähn2lich ist und deshalb hier so benannt wird.
The outlet of the side surface curvature in the direction of the radial blade edge can be designed so that the concavely curved profile of the side surface contour of the respective impeller blade, in the direction of the radial blade edge, continues continuously or in a straight, inclined to an imaginary center line of the impeller blade cross-section or parallel to this center line, so that there is a transition region having a trapezoidal taper in the cross section of the impeller blade radially outward or a constant thickness.
The outlet in the blade root area can result from the curvature of the blade side wall or with an additional Foot rounding be executed. Thus, seen in cross-section, there is a side surface curvature of the impeller blade, which is similar to the contour line of the Eiffel Tower and therefore therefore named here.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Laufrades mit den oben angegebenen Merkmalen werden im Folgenden anhand der Figurenbeschreibung erläutert.Further advantageous embodiments and developments of the impeller according to the invention with the above-mentioned features are explained below with reference to the description of the figures.

Die Vorteile eines erfindungsgemäßen Laufrades bestehen insbesondere darin, dass das Laufrad im Hinblick auf die von ihm im Betrieb geforderten Eigenschaften, insbesondere im Hinblick auf dessen Steifigkeit, Trägheit und Festigkeit, optimiert ist. Die beanspruchte Schaufeldickenverteilung kann für gegossene, erodierte und auch für gefräste Radial-, Radial-Axial- und Axial-Turbinen bzw. -Verdichter verwendet werden. Des Weiteren begünstigt die Erfindung die fertigungstechnischen Randbedingungen beim Gießen hinsichtlich minimaler Abstände zwischen einander benachbarten Schaufeln.The advantages of an impeller according to the invention are, in particular, that the impeller is optimized with regard to the properties required by it during operation, in particular with regard to its rigidity, inertia and strength. The claimed blade thickness distribution can be used for cast, eroded and also milled radial, radial-axial and axial-turbines or compressors. Furthermore, the invention favors the production engineering boundary conditions during casting with regard to minimum distances between adjacent blades.

Bei einer Herstellung im Gussverfahren besteht die Möglichkeit, die Schaufeldickenverteilung sowohl über die Schaufelhöhe als auch über die Schaufellänge beliebig einzustellen. Diese Möglichkeit wird bei der vorliegenden Erfindung dahingehend genutzt, dass eine trägheitsoptimierte Dickenverteilung in Bereichen der Laufradschaufeln, die für die Schaufelsteifigkeit von untergeordneter Bedeutung sind, sowie eine steifigkeitsoptimierte Dickenverteilung in Bereichen der Laufradschaufeln, die schwingungsgefährdet sind, vorgenommen wird. Bei den Bereichen geringer Bedeutung für die gesamte Schaufelsteifigkeit handelt es sich um die Bereiche mit geringer Schaufelhöhe in Radialrichtung. Bei den Bereichen mit großem Einfluss auf die Schaufelsteifigkeit handelt es sich um die Bereiche mit großer Schaufelhöhe in Radialrichtung.When produced by casting, it is possible to set the blade thickness distribution as desired both over the blade height and over the blade length. This possibility is used in the present invention in that an inertia-optimized thickness distribution in areas of the impeller blades, which are of minor importance for the blade stiffness, as well as a stiffness-optimized thickness distribution in areas of the impeller blades, which are in danger of vibration, is made. The areas of little importance for overall blade stiffness are the areas of low blade height in the radial direction. The areas with a high influence on the blade rigidity are the areas with large blade height in the radial direction.

Die erfindungsgemäße Dickenverteilungsstrategie basiert auf einer Kombination der zwei grundsätzlich unterschiedlichen Schaufeldickenverteilungen, nämlich beispielsweise einer eiffelturmförmigen Schaufeldickenverteilung und einer flaschenförmigen Schaufeldickenverteilung derart, dass die Laufradschaufeln entlang ihrer Erstreckung von der Fluideintrittskante bis zur Fluidaustrittskante mindestens einen Übergang zwischen einer steifigkeitsorientierten Schaufeldickenverteilung und einer trägheits- und spannungsorientierten Schaufeldickenverteilung über die Schaufelhöhe aufweisen . Dabei ist die Eiffelturmform trägheits- und spannungsoptimiert, während die Flaschenform steifigkeitsoptimiert ist.The thickness distribution strategy according to the invention is based on a combination of the two fundamentally different blade thickness distributions, namely, for example, one eiffel tower-shaped blade thickness distribution and a bottle-shaped blade thickness distribution such that the impeller blades have along their extension from the fluid inlet edge to the fluid outlet edge at least one transition between a stiffness-oriented blade thickness distribution and a inertial and voltage-oriented blade thickness distribution over the blade height. The Eiffel Tower shape is inertia and stress optimized, while the bottle shape is stiffness-optimized.

Nachfolgend werden Ausführungsbeispiele für die Erfindung anhand der Figuren näher erläutert. Es zeigt:

Figur 1
einen skizzierten Teilschnitt durch ein Laufrad eines Abgasturboladers (in Richtung der Laufraddrehachse) zur Veranschaulichung der Laufradschaufeln in Seitenansicht;
Figur 2
drei Beispiele für unterschiedliche Schaufeldickenverteilungen über die Schaufelhöhe in Schnittdarstellung einer Laufradschaufel (in einer senkrecht zur Laufraddrehachse verlaufenden Schnittebene);
Figur 3
eine Veranschaulichung der Schaufeldickenverteilungen bei flaschenförmiger und eiffelturmförmiger Schaufeldickenverteilung über die Schaufelhöhe einer Laufradschaufel, in Schnittdarstellung gemäß Figur 2;
Figur 4
zwei Beispiele zur Veranschaulichung von Schaufeldickenverteilungen über die Schaufelhöhe und die Erstreckung einer Laufradschaufel in axialer Richtung, in Meridionalansicht der Laufradschaufeln;
Figur 5
ein Beispiel zur Veranschaulichung eines Ausführungsbeispiels mit jeweils gerade verlaufenden Abschnitten einer Seitenflächenkontur,
Figur 6
Beispiele zur Veranschaulichung unterschiedlicher Ausführungen asymmetrischer Schaufeldickenverteilungen, in Schnittdarstellung gemäß Figur 2 und
Figur 7
eine überlagerte Darstellung zur Veranschaulichung von verschiedenen Schaufeldickenverteilungen, in Schnittdarstellung gemäß Figur 2.
Embodiments of the invention will be explained in more detail with reference to the figures. It shows:
FIG. 1
a sketched partial section through an impeller of an exhaust gas turbocharger (in the direction of the impeller axis of rotation) to illustrate the impeller blades in side view;
FIG. 2
three examples of different blade thickness distributions over the blade height in a sectional view of an impeller blade (in a plane perpendicular to the impeller axis of the cutting plane);
FIG. 3
an illustration of the blade thickness distributions in bottle-shaped and eiffel tower-shaped blade thickness distribution over the blade height of an impeller blade, in sectional view according to FIG. 2 ;
FIG. 4
two examples to illustrate blade thickness distributions over the blade height and the extent of an impeller blade in the axial direction, in meridional view of the impeller blades;
FIG. 5
an example to illustrate an embodiment with each straight portions of a side surface contour,
FIG. 6
Examples to illustrate different versions of asymmetric blade thickness distributions, in section according to FIG. 2 and
FIG. 7
a superimposed representation to illustrate different blade thickness distributions, in section according to FIG. 2 ,

Funktions- und Benennungsgleiche Gegenstände sind in den Figuren durchgehend mit denselben Bezugszeichen gekennzeichnet.Function and naming equals objects are marked in the figures throughout with the same reference numerals.

Die Figur 1 zeigt eine Skizze zur Veranschaulichung eines Laufrades eines Abgasturboladers, bei dem es sich beim gezeigten Ausführungsbeispiel zum Beispiel um ein Turbinenlaufrad eines Abgasturboladers handelt. Wenn es sich um ein Turbinenlaufrad handelt, so ist dieses zwischen dem Turbinengehäuse 6 und dem Lagergehäuse 7 des Abgasturboladers angeordnet und dreht sich im Betrieb des Abgasturboladers um eine Laufraddrehachse 10. Das Laufrad 1 ist mittels seiner Laufradnabe 2 mit einer Läuferwelle 11 drehfest verbunden. Auf der Laufradnabe 2 sind in Umfangsrichtung des Laufrades äquidistant Laufradschaufeln 3 angeordnet, die mittels ihres Schaufelfußes B1 an der Laufradnabe 2 befestigt sind. Beispielsweise sind die Laufradnabe 2 und die Laufradschaufeln 3 in einem Schritt gefertigt und stoffschlüssig miteinander verbunden.The FIG. 1 shows a sketch to illustrate an impeller of an exhaust gas turbocharger, which is in the illustrated embodiment, for example, a turbine wheel of an exhaust gas turbocharger. If it is a turbine wheel, so this is located between the turbine housing 6 and the bearing housing 7 of the exhaust gas turbocharger and rotates during operation of the exhaust gas turbocharger to an impeller axis 10. The impeller 1 is rotatably connected by means of its impeller hub 2 with a rotor shaft 11. On the impeller hub 2 equidistantly impeller blades 3 are arranged in the circumferential direction of the impeller, which are fixed by means of their blade root B1 on the impeller hub 2. For example, the impeller hub 2 and the impeller blades 3 are manufactured in one step and materially connected to each other.

Die Laufradschaufeln 3 weisen jeweils eine Fluideintrittskante 4, 5' und eine Fluidaustrittskante 5, 4' auf. Da sich ein Turbinenlaufrad und ein Verdichterlaufrad in der schematischen Darstellung kaum unterscheiden, sind in Figur 1 beide Ausführungen in einer Darstellung zusammengefasst. Der Hauptunterschied in der schematischen Darstellung besteht dabei in der Strömungsrichtung des Fluidstromes.
Das Turbinenlaufrad, das mit Abgasen eines Verbrennungsmotors beaufschlagt wird, weist eine Abgaseintrittskante 4 und eine Abgasaustrittskante 5 auf. Die Strömungsrichtung des Abgases ist in der Figur 1 mit Pfeilen angedeutet und mit der Bezugsziffer 8 bezeichnet.
The impeller blades 3 each have a fluid inlet edge 4, 5 'and a fluid outlet edge 5, 4'. Since a turbine impeller and a compressor impeller hardly differ in the schematic representation, are in FIG. 1 Both versions are summarized in a representation. The main difference in the schematic representation consists in the flow direction of the fluid flow.
The turbine runner, which is acted upon by exhaust gases of an internal combustion engine, has an exhaust gas inlet edge 4 and an exhaust gas outlet edge 5. The flow direction of the exhaust gas is in the FIG. 1 indicated by arrows and designated by the reference numeral 8.

Das Verdichterlaufrad, das mit Frischluft beaufschlagt wird, weist eine Frischlufteintrittskante 5' und eine Frischluftaustrittskante 4' auf. Die Strömungsrichtung der Frischluft ist in der Figur 1 mit Pfeilen angedeutet die mit der Bezugsziffer 8'bezeichnet sind.The compressor impeller, which is supplied with fresh air, has a fresh air inlet edge 5 'and a fresh air outlet edge 4'. The flow direction of the fresh air is in the FIG. 1 indicated by arrows which are designated by the reference numeral 8 '.

Bei der vorliegenden Erfindung weisen die Laufradschaufeln über ihre Erstreckung von der Fluideintrittskante 4, 5' bis zu der Fluidaustrittskante 5, 4', also jeweils in Strömungsrichtung des Fluidstromes eine spezielle Schaufeldickenverteilung auf, durch welche erreicht wird, dass die Laufradschaufeln im Betrieb bezüglich ihrer Steifigkeit, ihrer Trägheit und ihrer Festigkeit optimiert sind.In the present invention, the impeller blades on their extension from the fluid inlet edge 4, 5 'to the fluid outlet edge 5, 4', ie in each case in the flow direction of the fluid flow on a specific blade thickness distribution, which is achieved by the fact that the impeller blades in operation with respect to their rigidity , their inertia and their strength are optimized.

Die Figur 2 zeigt drei Beispiele für Schaufeldickenverteilungen über die Schaufelhöhe 9 einer Laufradschaufel 3 in einer Schnittdarstellung mit einer senkrecht zur Laufraddrehachse 10 verlaufenden Schnittebene. Dabei ist in der linken Darstellung in Figur 2 eine flaschenförmige Schaufeldickenverteilung, in der mittleren Darstellung von Figur 2 eine eiffelturmförmige Schaufeldickenverteilung und in der rechten Darstellung von Figur 2 eine trapezförmige Schaufeldickenverteilung veranschaulicht. Die jeweilige Schaufeldickenverteilung ist hier beispielhaft symmetrisch zu einer gedachten Schaufelmittellinie 13 des jeweiligen Laufradschaufelquerschnitts ausgebildet. Gemeinsam ist diesen Schaufeldickenverteilungen, dass in ihrem jeweiligen Fußbereich, also im Bereich der Anbindung an die Laufradnabe (nicht dargestellt), die Dicke der jeweiligen Laufradschaufel am größten ist und in ihrem radialen Schaufelrandbereich, der dem Fußbereich entgegengesetzt angeordnet ist, die Dicke der jeweiligen Laufradschaufel am kleinsten ist. Im Fußbereich ist jeweils eine Fußverrundung 12 angedeutet, die den Übergang zur Laufradnabe darstellt.The FIG. 2 shows three examples of blade thickness distributions over the blade height 9 of an impeller blade 3 in a sectional view with a plane perpendicular to the impeller axis 10 extending cutting plane. It is in the left illustration in FIG. 2 a bottle-shaped blade thickness distribution, in the middle representation of FIG. 2 an eiffel tower-shaped blade thickness distribution and in the right-hand illustration of FIG. 2 illustrates a trapezoidal blade thickness distribution. The respective blade thickness distribution is formed here by way of example symmetrically to an imaginary blade center line 13 of the respective impeller blade cross-section. Common to these blade thickness distributions, that in their respective foot region, ie in the region of the connection to the impeller hub (not shown), the thickness of the respective impeller blade is greatest and in its radial blade edge region, which is arranged opposite to the foot region, the thickness of the respective impeller blade is the smallest. In the foot area in each case a foot rounding 12 is indicated, which represents the transition to the impeller hub.

Im Falle einer Herstellung der Laufradschaufeln im Gussverfahren besteht die Möglichkeit, die Schaufeldickenverteilung beliebig einzustellen. Diese Möglichkeit wird bei der Erfindung dazu ausgenutzt, in Schaufelbereichen, die für die Schaufelsteifigkeit von untergeordneter Bedeutung sind, eine trägheitsoptimale Dickenverteilung vorzunehmen, und in Schaufelbereichen, die schwingungsgefährdet sind, eine steifigkeitsoptimale Dickenverteilung vorzunehmen.In the case of production of the impeller blades in the casting process, it is possible to set the blade thickness distribution as desired. This possibility is exploited in the invention, in blade areas that are responsible for the blade stiffness are of minor importance to make an inertia-optimal thickness distribution, and make a stiffness-optimal thickness distribution in blade areas that are vulnerable to vibration.

Diejenigen Bereiche, die von geringer Bedeutung für die gesamte Schaufelsteifigkeit sind, sind die Schaufelbereiche mit geringer Schaufelhöhe. Diejenigen Bereiche, die große Bedeutung bzw. großen Einfluss auf die Schaufelsteifigkeit haben, sind die Schaufelbereiche mit großer Schaufelhöhe.Those areas that are of little importance to overall blade stiffness are the low blade height blade areas. Those areas of great importance to the blade stiffness are the blade areas with large blade heights.

Bei der Erfindung erfolgt eine Schaufeldickenverteilung derart, dass zwei grundsätzlich unterschiedliche Schaufeldickenverteilungen, wie zum Beispiel die Eiffelturmform und die Flaschenform, in bestimmter Weise miteinander abwechseln bzw. kombiniert werden. Die Eiffelturmform ist trägheits- und spannungsoptimal. Die Flaschenform ist steifigkeitsoptimal.In the invention, a blade thickness distribution is such that two fundamentally different blade thickness distributions, such as the Eiffel Tower shape and the bottle shape, are alternated or combined in a particular manner. The Eiffel Tower shape is inertial and tension optimal. The bottle shape is stiffness-optimal.

Die Eiffelturmform ist insbesondere durch einen vom Fußbereich ausgehenden, nach radial außen hin zunächst nach innen, auf die gedachte Mittellinie 13 zu, gewölbten Verlauf der Seitenflächenkontur gekennzeichnet, wobei die Schaufeldicke in Radialrichtung nach außen schwächer werdend abnimmt. In Richtung auf den radialen Schaufelrand zu kann die Seitenflächenkontur in Weiterführung der Eiffelturmform auslaufen, wie es aus der mittleren Darstellung von Figur 2 ersichtlich ist, oder kann auch in einen geraden, auf eine gedachte Mittellinie der Laufradschaufel zu geneigten oder zu dieser Mittellinie parallelen Verlauf übergehen, so dass sich ein Übergangsbereich ergibt, dessen Querschnittsfläche eine trapezförmige Verjüngung nach radial außen hin oder eine gleichbleibende Dicke aufweist. Dabei kann sich der Fußbereich aus der Krümmung der Seitenschaufelwand ergeben. Alternativ dazu kann der Fußbereich auch mit einer zusätzlichen Fußverrundung 12 ausgeführt sein.The Eiffel Tower shape is characterized in particular by a outgoing from the foot, radially outward toward the inside, to the imaginary center line 13 to, curved course of the side surface contour, wherein the blade thickness decreases in the radial direction outwardly weakening. In the direction of the radial blade edge, the side surface contour can continue to run in continuation of the Eiffel Tower shape, as can be seen from the middle illustration of FIG FIG. 2 can also be in a straight, to an imaginary center line of the impeller blade inclined or parallel to this center line course, so that there is a transition region whose cross-sectional area has a trapezoidal taper radially outward or a constant thickness. The foot area may result from the curvature of the side wall of the scoop. Alternatively, the foot area can also be designed with an additional Fußverrundung 12.

Die Flaschenform, die in der linken Darstellung von Figur 2 veranschaulicht ist, ist im Unterschied dazu insbesondere durch einen Krümmungswechselbereich gekennzeichnet, in welchem die Seitenflächenkontur der Laufradschaufel von radial innen nach radial außen von einer konvexen Krümmung in eine konkave Krümmung übergeht.The bottle shape, in the left illustration of FIG. 2 in contrast, is characterized in particular by a curvature change area, in which the Side surface contour of the impeller blade from radially inward to radially outward passes from a convex curvature into a concave curvature.

Die trapezförmige Schaufeldickenverteilung, wie sie in der rechten Darstellung von Figur 2 gezeigt ist, kommt bei bekannten Schaufeldickenverteilungen gemäß dem Stand der Technik zum Einsatz und liegt dabei in Strömungsrichtung zwischen der Fluideintritts- und der Fluidaustrittskante kontinuierlich vor.The trapezoidal blade thickness distribution, as shown in the right-hand illustration of FIG. 2 is shown, is used in known blade thickness distributions according to the prior art and is in the flow direction between the fluid inlet and the fluid outlet edge continuously before.

Die Figur 3 zeigt je ein Beispiel für eine steifigkeitsoptimierte Schaufeldickenverteilung, die als Flaschenform bezeichnet wird und eine trägheits- und spannungsoptimierte Schaufeldickenverteilung, die als Eiffelturmform bezeichnet wird in einer Schnittdarstellung gemäß einer Schnittebene senkrecht zur Laufraddrehachse 10. Zur einfacheren Erläuterung ist die jeweilige Schaufeldickenverteilung in Figur 3 bei der Flaschenform in Bereiche B1 bis B5 und bei der Eiffelturmform in die Bereiche B1, C2, B4 und B5 unterteilt, wobei in beiden Fällen B1 der Schaufelfußbereich und B5 der radial außenliegende Schaufelrandbereich ist.
Weiterhin sind bei der Flaschenform ein erster Übergangsbereich B2 (Flaschenbauch), ein Krümmungswechselbereich B3 (Flaschenschulter) und ein zweiter Übergangsbereich B4 (Flaschenhals) vorgegeben. Bei der Eiffelturmform ist zwischen dem Schaufelfuß B1 und dem Schaufelrandbereich B5 ein Konkavbereich C2 und ebenfalls ein Übergangsbereich B4 vorgegeben.
The FIG. 3 shows an example of a stiffness-optimized blade thickness distribution, which is referred to as bottle shape and a inertia and voltage optimized blade thickness distribution, which is referred to as Eiffelturmform in a sectional view according to a sectional plane perpendicular to the impeller axis of rotation 10. For ease of explanation, the respective blade thickness distribution in FIG. 3 is subdivided into the areas B1, C2, B4 and B5 in the bottle shape into areas B1 to B5 and in the Eiffel tower shape, in both cases B1 the blade root area and B5 the radially outer blade edge area.
Furthermore, in the case of the bottle shape, a first transitional region B2 (bottle belly), a curvature change region B3 (bottle shoulder) and a second transition region B4 (bottleneck) are predetermined. In the Eiffel tower shape, a concave area C2 and also a transition area B4 are defined between the blade root B1 and the blade edge area B5.

Der Fußbereich oder Schaufelfuß B1, in welchem die Laufschaufel 3 mit der Nabe verbunden ist, hat jeweils die größte Dicke und geht vorzugsweise mit einer Fußverrundung 12 in die Laufradnabe 2 über. Der radial außenliegende Schaufelrand schließt die Seitenflächenkontur mit einer definierten Kante ab und ist jeweils vorzugsweise leicht abgerundet ausgebildet, wobei die Rundung dem jeweiligen Umfangskreis des Laufrades folgt bzw. sich daraus ergibt.The foot region or blade root B1, in which the blade 3 is connected to the hub, in each case has the greatest thickness and preferably merges with a foot rounding 12 into the impeller hub 2. The radially outer blade edge closes the side surface contour with a defined edge and is preferably slightly rounded in each case, wherein the rounding follows the respective circumferential circle of the impeller or results from it.

Bei der Flaschenform kann die Seitenflächenkontur der Laufradschaufel in dem zwischen dem Fußbereich B1 und dem Krümmungswechselbereich B3 vorgesehenen ersten Übergangsbereich B2 gerade oder vorzugsweise leicht konvex gekrümmt ausgebildet sein. Im Krümmungswechselbereich B3 erfolgt - wie bereits oben ausgeführt wurde - ein Übergang der Seitenflächenkontur von einer konvexen Krümmung in eine konkave Krümmung.In the case of the bottle shape, the side surface contour of the impeller blade may be straight or preferably slightly convexly curved in the first transition region B2 provided between the foot region B1 and the bending change region B3. In the change of curvature region B3 takes place - as already stated above - a transition of the side surface contour of a convex curvature in a concave curvature.

Die Eiffelturmform ist insbesondere durch den an den Fußbereich anschließenden Konkavbereich C2 gekennzeichnet, in dem die Seitenflächenkontur in Radialrichtung R nach außen hin einen auf die gedachte Mittellinie 13 zu, konkav gewölbten Verlauf aufweist, wobei die Schaufeldicke in Radialrichtung nach außen schwächer werdend abnimmt.The Eiffel Tower shape is characterized in particular by the adjoining the foot area concave area C2, in which the side surface contour in the radial direction R outwardly to the imaginary center line 13 to, concave curved course, the blade thickness decreases in the radial direction outwardly weakening.

In dem zwischen dem Krümmungswechselbereich B3 oder dem Konkavbereich C2 und dem radial außenliegenden Schaufelendbereich B5 vorgesehenen Übergangsbereich B4 kann in beiden Fällen die Seitenflächenkontur wiederum leicht konkav gekrümmt weiter verlaufen oder in einen auf eine gedachte Mittellinie des Laufradschaufelquerschnitts zu geneigten oder zu dieser Mittellinie parallelen Verlauf übergehen, so dass sich ein Übergangsbereich ergibt, dessen Querschnittsfläche eine trapezförmige Verjüngung nach radial außen hin oder eine gleichbleibende Dicke aufweist.In the transition region B4 provided between the curvature change region B3 or the concave region C2 and the radially outer blade end region B5, in both cases the side surface contour can again run slightly concavely curved or merge into an inclined or center line parallel to an imaginary center line of the impeller blade cross section. so that there is a transition region whose cross-sectional area has a trapezoidal taper radially outward or a constant thickness.

Die sich in Radialrichtung R erstreckenden Abschnitte der einzelnen Bereiche B1 bis B5 und C2 können in ihrer Ausdehnung und ihrem Verhältnis zueinander in Abhängigkeit vom jeweils konkreten Anwendungsfall optimiert werden, wobei die Aufteilung der Abschnitte der einzelnen Bereiche B1 bis B5 auch in Abhängigkeit von der Position entlang der Erstreckung der Laufradschaufel zwischen Fluideintrittskante und Fluidaustrittskante und der dort vorliegenden Schaufelhöhe erfolgt. Auch der Gradient des Verlaufs der Seitenflächenkontur im Krümmungswechselbereich B3 kann in Abhängigkeit vom jeweiligen Anwendungsfall optimiert werden, um den bestmöglichen Kompromiss aus Steifigkeit und Trägheit zu erzielen.The extending in the radial direction R sections of the individual areas B1 to B5 and C2 can be optimized in their extent and their relationship to each other depending on the specific application, the division of the sections of the individual areas B1 to B5 also depending on the position along the extension of the impeller blade between the fluid inlet edge and the fluid outlet edge and the blade height present there takes place. The gradient of the course of the side surface contour in the bending change region B3 can be optimized depending on the particular application in order to achieve the best possible compromise between stiffness and inertia.

Zwei Beispiele zur Veranschaulichung von Schaufeldickenverteilungen gemäß der Erfindung sind schematisch in der Figur 4 in Meridionalansicht der Laufradschaufeln gezeigt. Dabei bezieht sich die linke Darstellung auf ein Radial-Axial-Laufrad und die rechte Darstellung auf ein Radial-Laufrad. Die im Folgenden beschriebenen Ausführungen können sowohl bei Turbinenlaufrädern als auch bei Verdichterlaufrädern zur Anwendung kommen. Im Falle eines Turbinenlaufrades ist die Fluideintrittskante 4 der Bereich kleiner Schaufelhöhe (jeweils linker Bereich der Darstellung) und die Fluidaustrittskante 5 der Bereich großer Schaufelhöhe (jeweils rechter Bereich der Darstellung) . Im Falle eines Verdichterlaufrades ist die Fluideintrittskante 5' im Bereich großer Schaufelhöhe (jeweils rechter Bereich der Darstellung) und die Fluidaustrittskante 4' der Bereich kleiner Schaufelhöhe (jeweils linker Bereich der Darstellung).Two examples illustrating blade thickness distributions according to the invention are schematically shown in FIG FIG. 4 shown in meridional view of the impeller blades. The left-hand illustration refers to a radial-axial impeller and the right-hand depiction to a radial impeller. The embodiments described below can be used both in turbine wheels and in compressor wheels. In the case of a turbine runner, the fluid inlet edge 4 is the area of small blade height (in each case the left-hand area of the illustration) and the fluid outlet edge 5 is the area of large blade height (in each case the right-hand area of the illustration). In the case of a compressor impeller, the fluid inlet edge 5 'in the region of large blade height (in each case the right-hand region of the illustration) and the fluid outlet edge 4' is the region of small blade height (in each case the left-hand region of the illustration).

In beiden Darstellungen sind die Fußbereiche der Übersichtlichkeit wegen nicht gezeichnet. Da die dargestellte Meridionalansicht eine Projektion der dreidimensionalen Laufradschaufel auf eine zweidimensionale Ebene darstellt, ist der Umlenkungswinkel der Schaufel in den Darstellungen nicht erfasst. Durch den real vorliegenden Umlenkungswinkel und die Betrachtung der Dickenverteilungen in einer senkrecht zur Laufraddrehachse liegenden Schnittebene, sind, im Gegensatz zu der Darstellung, die realen Konturverläufe der Seitenflächenkonturen in dieser Schnittebene auf beiden Seiten der Laufradschaufeln in den in der Figur 4 gezeigten Schnittebenen Abis D im Allgemeinen nicht vollkommen symmetrisch, wenn sie auch prinzipiell den gleichen Konturverlauf aufweisen. In Abhängigkeit von dem Umlenkungswinkel der Schaufel ergeben sich in Realität beidseitig leicht abweichende Konturverläufe.
Die Schnittdarstellungen A bis D gemäß der Figur 4 sind somit als Schaufeldickenverteilung senkrecht zur Skelettfläche (die näherungsweise durch eine gedachte Mittellinie des Profils im Verlauf über die Schaufellänge gegeben ist und im jeweiligen Schnitt als Mittellinie erscheint) des Schaufelprofils zu verstehen.
In both representations, the foot areas are not drawn for the sake of clarity. Since the illustrated meridional view represents a projection of the three-dimensional impeller vane onto a two-dimensional plane, the deflection angle of the vane is not captured in the representations. Due to the real existing deflection angle and the consideration of the thickness distributions in a plane perpendicular to the impeller axis cutting plane are, in contrast to the representation, the real contour curves of the side surface contours in this cutting plane on both sides of the impeller blades in the in FIG. 4 Sectional planes Abis D shown are generally not completely symmetrical, although they have in principle the same contour. Depending on the angle of deflection of the blade arise in reality on both sides slightly different contour curves.
The sectional views A to D according to the FIG. 4 are thus understood as a blade thickness distribution perpendicular to the skeletal surface (which is approximately given by an imaginary center line of the profile over the blade length and appears in the respective section as the center line) of the blade profile.

Die in der rechten Darstellung (Radial-Laufrad) veranschaulichte Dickenverteilung weist im Bereich kleiner radialer Schaufelhöhe und gleichzeitig größerem Abstand zur Laufraddrehachse, Schnitt A-A, eine eiffelturmförmige Schaufeldickenverteilung auf und geht in axialer Richtung (in der Darstellung nach rechts), wie aus den Schnitten B-B und C-C ersichtlich wird, kontinuierlich in eine flaschenförmige Schaufeldickenverteilung im Bereich großer radialer Schaufelhöhe bei gleichzeitig kleinerem Abstand zur Laufraddrehachse 10 , Schnitt D-D, über.
Eine solche Verteilung entspricht der Regel, dass bei großer Schaufelhöhe insbesondere eine steifigkeitsorientierte Schaufeldickenverteilung vorteilhaft ist, wogegen bei kleiner Schaufelhöhe eine trägheits- und spannungsorientierten Schaufeldickenverteilung zu bevorzugen ist. Gleichzeitig jedoch hat diese Verteilung den zusätzlichen Effekt, dass die für die Steifigkeit erforderlichen größeren Massenanordnungen, in Form des "Flaschenbauches" der flaschenförmige Schaufeldickenverteilung näher bei der Laufraddrehachse angeordnet sind und somit weniger negativ Einfluss nehmen auf die Massenträgheit des Laufrades und somit auf das transiente Verhalten des Turboladers.
The thickness distribution illustrated in the right-hand illustration (radial impeller) has an eiffel tower-shaped blade thickness distribution in the region of small radial blade height and at the same time greater distance from the impeller rotational axis, section AA, and goes in the axial direction (to the right in the illustration), as from the sections BB and CC is continuously in a bottle-shaped blade thickness distribution in the range of large radial blade height at the same time smaller distance to the impeller axis 10, section DD, over.
Such a distribution corresponds to the rule that with a large blade height, in particular a stiffness-oriented blade thickness distribution is advantageous, whereas with a small blade height a inertia-oriented and tension-oriented blade thickness distribution is to be preferred. At the same time, however, this distribution has the additional effect that the larger mass arrangements required for the rigidity, in the form of the "bottle belly" of the bottle-shaped blade thickness distribution, are arranged closer to the impeller rotational axis and thus have less negative influence on the inertia of the impeller and thus on the transient behavior of the turbocharger.

In der linken Darstellung, Axial-Radial-Laufrad, geht die eiffelturmförmige Schaufeldickenverteilung in Schnitt A-A zunächst Richtung größerer Schaufelhöhe (in der Darstellung nach rechts) in die flaschenförmige Schaufeldickenverteilung, Schnitt C-C über. Zu der Fluidaus-/Fluideintrittskante 5, 5' hin findet dann ein erneuter Übergang zu der eiffelturmförmigen Schaufeldickenverteilung statt. Dieser zusätzliche Übergang und die so an der Fluidaus-/Fluideintrittskante 5, 5' vorliegende eiffelturmförmige Schaufeldickenverteilung kann optional verwendet werden, einerseits um kritische Spannungen im Nabenbereich der Fluidaus-/Fluideintrittskante 5, 5' zu reduzieren und andererseits um aerodynamische Vorteile durch Reduzierung der Dicke der Fluidaus-/Fluideintrittskante 5, 5'bzw. des entsprechenden Kantenradius zu erzielen.In the left-hand illustration, axial-radial impeller, the eiffel tower-shaped blade thickness distribution in section A-A initially goes in the direction of greater blade height (in the illustration to the right) into the bottle-shaped blade thickness distribution, section C-C. Toward the fluid outlet / fluid inlet edge 5, 5 'there then takes place a renewed transition to the eiffel tower-shaped blade thickness distribution. This additional transition and the eiffel tower-shaped blade thickness distribution thus present at the fluid outlet / fluid inlet edge 5, 5 'can optionally be used on the one hand to reduce critical stresses in the hub region of the fluid outlet / fluid inlet edge 5, 5' and on the other hand to aerodynamic advantages by reducing the thickness the Fluidaus- / fluid inlet edge 5, 5'bzw. to achieve the appropriate edge radius.

Die in Axialrichtung vorliegenden Übergangsbereiche zwischen unterschiedlichen Schaufeldickenverteilungen weisen Querschnittsformen auf, die einer Kombination aus einer eiffelturmförmigen Schaufeldickenverteilung und einer flaschenförmigen Schaufeldickenverteilung entsprechen.The axial transition regions between different blade thickness distributions have Cross-sectional shapes corresponding to a combination of an eiffel tower-shaped blade thickness distribution and a bottle-shaped blade thickness distribution.

Die Figur 5 zeigt ein Beispiel zur Veranschaulichung einer speziellen Ausführung der Erfindung. Gemäß dieser Ausführung weist der jeweilige Verlauf der Seitenflächenkontur der Laufradschaufel 3, hier dargestellt am Beispiel der flaschenförmigen Schaufeldickenverteilung, jedoch in gleicher Weise auf eine eiffelturmförmige Schaufeldickenverteilung übertragbar, in Radialrichtung nach außen jeweils eine Mehrzahl von jeweils gerade verlaufenden Konturabschnitten G1 bis G7 auf. In Aneinanderreihung der einzelnen gerade verlaufenden Konturabschnitte ergibt sich jedoch daraus wiederum als übergeordnete Geometrie eine flaschen- oder eiffelturmförmige Schaufeldickenverteilung.
Diese Ausführung weist den Vorteil auf, dass eine Fertigung der Laufradschaufeln im gezeilten Fräsverfahren ermöglicht wird.
The FIG. 5 shows an example for illustrating a specific embodiment of the invention. According to this embodiment, the respective profile of the side surface contour of the impeller blade 3, shown here by the example of the bottle-shaped blade thickness distribution, but transferable in the same way to an eiffel tower-shaped blade thickness distribution in the radial direction to the outside in each case a plurality of each straight contour sections G1 to G7. In juxtaposition of the individual straight contour sections, however, this results in turn as a superordinate geometry, a bottle or eiffel tower-shaped blade thickness distribution.
This embodiment has the advantage that a production of the impeller blades is made possible in the milling process shown.

Die Figur 6 zeigt Beispiele zur Veranschaulichung weiterer Ausführungen der Erfindung.The FIG. 6 shows examples to illustrate further embodiments of the invention.

Bei den anhand der vorherigen Figuren beschriebenen Dickenverteilungen liegt auf beiden Seiten der Laufradschaufeln, der Saug- und der Druckseite, jeweils ein im Wesentlichen symmetrischer Verlauf der Seitenflächenkontur der Laufradschaufel, gezeigt in Schnittdarstellung, vor.In the thickness distributions described with reference to the previous figures, a substantially symmetrical course of the side surface contour of the impeller blade, shown in a sectional representation, is present on both sides of the impeller blades, the suction side and the pressure side.

Im Unterschied dazu zeigt die Figur 6 Beispiele für eine unterschiedliche, asymmetrische Schaufeldickenverteilung auf der Saugseite S und der Druckseite P der Laufradschaufeln 3, wobei die beiden Außenkonturen in Bezug auf eine gedachte Mittellinie unterschiedliche Konturverläufe aufweisen. Die Bezeichnung der Saugseite und der Druckseite der Laufradschaufeln sind hier frei gewählt und dienen hier lediglich zur Unterscheidung der beiden Schaufelseiten.
Darstellung 6.1 der Figur 6 zeigt beispielsweise eine trapezförmig gerade nach radial außen abnehmende Schaufeldickenverteilung auf der Saugseite S und eine eiffelturmförmige Schaufeldickenverteilung auf der Druckseite P der Laufradschaufel 3. Darstellung 6.2 dagegen zeigt eine eiffelturmförmige Schaufeldickenverteilung auf der Saugseite S und eine flaschenförmige Schaufeldickenverteilung auf der Druckseite P. Darstellung 6.3 wiederum zeigt eine flaschenförmige Schaufeldickenverteilung auf der Saugseite S und eine konische Schaufeldickenverteilung auf der Druckseite P. Dabei sind durchaus auch weitere, hier nicht gezeigte Kombinationen unterschiedlicher Schaufeldickenverteilungen realisierbar. Durch solche asymmetrischen Schaufeldickenverteilungen auf der Saug- und der Druckseite S, P kann thermisch bedingten Spannungen im Schaufelmaterial, Eigenspannungen des Schaufelmaterials und im Betrieb auftretenden aerodynamischen Kräften entgegengewirkt werden. Alternativ oder zusätzlich dazu kann dies auch dadurch geschehen, dass die Schaufel nicht mehr exakt an Radialstrahlen ausgerichtet wird, sondern leicht in Umfangsrichtung geneigt oder gekrümmt wird.
In contrast, the shows FIG. 6 Examples of a different, asymmetrical blade thickness distribution on the suction side S and the pressure side P of the impeller blades 3, wherein the two outer contours with respect to an imaginary center line have different contour curves. The designation of the suction side and the pressure side of the impeller blades are chosen here freely and serve only to distinguish the two sides of the blade.
Presentation 6.1 of the FIG. 6 shows, for example, a trapezoidal straight radially outwardly decreasing blade thickness distribution on the suction side S and an eiffel tower-shaped blade thickness distribution on the pressure side P of the impeller blade 3. Figure 6.2 shows an eiffel tower-shaped blade thickness distribution on the suction side S and a bottle-shaped blade thickness distribution on the pressure side P. Figure 6.3 shows again a bottle-shaped blade thickness distribution on the suction side S and a conical Vane thickness distribution on the pressure side P. There are certainly also other, not shown combinations of different blade thickness distributions feasible. By such asymmetric blade thickness distributions on the suction and the pressure side S, P can be counteracted thermally induced stresses in the blade material, residual stresses of the blade material and during operation occurring aerodynamic forces. Alternatively or additionally, this can also be done by the fact that the blade is not exactly aligned with radial rays, but slightly inclined or curved in the circumferential direction.

Die Figur 7 zeigt eine überlagerte Darstellung von Schnittansichten zur Veranschaulichung von verschiedenen Schaufeldickenverteilungen. Bei diesen Schaufeldickenverteilungen handelt es sich um die bereits oben in der Figur 2 gezeigten Ausführungen.The FIG. 7 shows a superimposed view of sectional views illustrating various blade thickness distributions. These blade thickness distributions are those already described in the above FIG. 2 shown embodiments.

Aus der Überlagerung wird jedoch ersichtlich, dass die maximale Dicke im Schaufelfußbereich bei flaschenförmiger Schaufeldickenverteilung bei gleicher erzielter Steifigkeit und Festigkeit niedriger ist als bei einer konischen Schaufeldickenverteilung.From the superimposition, however, it can be seen that the maximum thickness in the blade root area for bottle-shaped blade thickness distribution is lower for the same rigidity and strength achieved than for a conical blade thickness distribution.

Die niedrigste herstelltechnisch umsetzbare Schaufeldicke erstreckt sich sowohl bei der flaschenförmigen Schaufeldickenverteilung als auch bei der eiffelturmförmigen Schaufeldickenverteilung über größere Schaufelhöhenanteile der Laufradschaufel als bei einer konischen Schaufeldickenverteilung. Durch diese Konfiguration wird bei der erfindungsgemäßen Schaufeldickenverteilung eine Trägheitsverringerung erzielt. Gleichzeitig kann aber die Steifigkeit im Vergleich zur konischen Schaufeldickenverteilung beibehalten werden, da nahezu die maximale Dicke im Schaufelfußbereich über größere Schaufelhöhenanteile verwendet wird.The lowest blade thickness that can be implemented in terms of manufacture extends over larger blade height portions of the impeller blade in the case of the bottle-shaped blade thickness distribution as well as in the eiffel tower-shaped blade thickness distribution than in the case of a conical blade thickness distribution. By this configuration, an inertia reduction is achieved in the blade thickness distribution according to the invention. At the same time, however, the stiffness compared to the conical Blade thickness distribution are maintained as nearly the maximum thickness in the blade root area is used over larger blade height portions.

Des Weiteren besteht fertigungstechnisch bedingt die Notwendigkeit, einen minimalen Schaufelabstand im Bereich des Schaufelfußes sowie eine minimale Verrundung einzuhalten. Dieses Kriterium ist bei einem erfindungsgemäßen Laufrad vergleichsweise einfach zu erfüllen, da die maximale Schaufeldicke im Vergleich zu einer konischen Schaufeldickenverteilung geringer ist. Dadurch besteht die Möglichkeit, die Schaufelanzahl zu erhöhen, was sich vorteilhaft auf den thermodynamischen Wirkungsgrad auswirkt.Furthermore, there is the need to maintain a minimum blade clearance in the region of the blade root and a minimum rounding due to manufacturing technology. This criterion is comparatively easy to fulfill in an impeller according to the invention, since the maximum blade thickness is lower compared to a conical blade thickness distribution. This makes it possible to increase the number of blades, which has an advantageous effect on the thermodynamic efficiency.

Das Vorliegen einer konstanten Schaufeldicke im Bereich großer Durchmesser, also im Übergangsbereich B4 in der Nähe des radialen Schaufelrandes B5, verbessert die CAD-Erstellbarkeit von gießbaren Rohteilen aus dem Fertigteil. Für die Aufmaßerstellung kann eine Flächenextrapolation verwendet werden, da die Dicke im radialen Schaufelendbereich bei einem erfindungsgemäßen Laufrad konstant bleibt. Des Weiteren kann beim Konturdrehen eine Trimmanpassung eines Basisdesigns vorgenommen werden, ohne dass sich die Dicke des radialen Schaufelendbereiches ändert.The presence of a constant blade thickness in the region of large diameter, ie in the transition region B4 in the vicinity of the radial blade edge B5, improves the CAD capability of castable blanks from the finished part. For the Aufmaßerstellung a surface extrapolation can be used, since the thickness remains constant in the radial Schaufelendbereich in an impeller according to the invention. Furthermore, during contour turning, a trim adjustment of a base design can be made without changing the thickness of the radial blade end region.

Das Dickenmaximum an der Nabe kann in Strömungsrichtung an eine nahezu beliebige Position gelegt werden. Liegt es in idealer Position senkrecht zur Schwingachse der niedrigsten Eigenform, dann kann die maximale Schaufeldicke minimiert werden, weil die Steifigkeit optimiert ist. Dies kommt der Trägheit des Turboladers zugute.The thickness maximum at the hub can be placed in the flow direction to an almost arbitrary position. If it is in an ideal position perpendicular to the swing axis of the lowest eigenmode, then the maximum blade thickness can be minimized because the rigidity is optimized. This benefits the inertia of the turbocharger.

Wird die aerodynamische Güte der Schaufeldickenverteilung in die Optimierung einbezogen, dann kann beispielsweise auch der Keilwinkel der Fluidaustrittskante durch eine Positionierung des Dickenmaximums an der Nabe hin zu spitzeren Austrittswinkeln optimiert werden. Dabei wird im Falle eines Turbinenlaufrades die radiale Schaufeldickenverteilung der Fluidaustrittskante 5 wiederum in Eiffelturmform gestaltet, wie es in der linken Darstellung von Figur 4 beim Schnitt D-D gezeigt ist. Im Vergleich zu einer durchgehend konischen Schaufeldickenverteilung ist durch die erfindungsgemäße Schaufeldickenverteilung ein flacherer Keilwinkel an der Fluidaustrittskante 5 von Turbinenlaufradschaufeln möglich. Der Gegenstand der Erfindung kann in vorteilhafter Weise auch dazu genutzt werden, um durch eine verbesserte Steifigkeit der Turbinenbeschaufelung den sogenannten Cut-Back zu reduzieren.If the aerodynamic quality of the blade thickness distribution is included in the optimization, then, for example, the wedge angle of the fluid outlet edge can be optimized by positioning the maximum thickness at the hub towards more acute exit angles. In this case, in the case of a turbine wheel, the radial blade thickness distribution of the fluid outlet edge 5 is again designed in Eiffel tower shape, as in the left display of FIG. 4 is shown at the section DD. Compared to a continuous conical blade thickness distribution, a flatter wedge angle at the fluid outlet edge 5 of turbine runner blades is possible by the blade thickness distribution according to the invention. The object of the invention can also be used in an advantageous manner to reduce the so-called cut-back by an improved rigidity of the turbine blading.

Claims (11)

  1. Rotor (1) of an exhaust-gas turbocharger, which rotor has a rotor hub (2) and rotor blades (3) arranged on the rotor hub, which rotor blades each have a fluid inlet edge (4), a fluid outlet edge (5), a blade root (B1), a radial blade edge (B5) and a blade height (9) and a blade thickness distribution, characterized in that the blade thickness distribution is selected such that the rotor blades (3) have, along their extent from the fluid inlet edge (4) to the fluid outlet edge (5), at least one transition between a rigidity-oriented radial blade thickness distribution and an inertia- and stress-oriented radial blade thickness distribution over the blade height, wherein, the rigidity-oriented blade thickness distribution is a bottle-shaped blade thickness distribution over the blade height, and the inertia- and stress-oriented blade thickness distribution is an Eiffel Tower-shaped blade thickness distribution over the blade height,
    wherein, in the region of the bottle-shaped blade thickness distribution, a side surface contour of the respective rotor blade (3) has in each case one curvature change region (B3) between its blade root (B1) and its radial blade edge (B5), in which, in the direction from radial inside to radial outside, a convex profile of the side surface contour in relation to an imaginary central line (13) of the rotor blade cross section under consideration changes into a concave profile,
    wherein, in the region of the Eiffel Tower-shaped blade thickness distribution, a side surface contour of the respective rotor blade (3) has, between its blade root (B1) and its radial blade edge (B5), a concavely curved profile such that the blade thickness decreases degressively in the radially outward direction over the blade height (9).
  2. Rotor (1) according to Claim 1, characterized in that the side surface contour of the respective rotor blade (3) has in each case one straight or one curved first transition region (B2) between its blade root (B1) and its respective curvature change region (B3).
  3. Rotor according to Claim 2, characterized in that the side surface contour of the respective rotor blade (3) has in each case one straight or one curved second transition region (B4) between its radial blade edge (B5) and its curvature change region (B3).
  4. Rotor (1) according to Claim 1, characterized in that, in the direction of the radial blade edge (B5), the concavely curved profile of the side surface contour of the respective rotor blade (3) merges into a profile which is inclined toward an imaginary central line (13) of the rotor blade (3) or which is parallel to said central line (13), such that a transition region (B4) is realized which, in the cross section of the rotor blade, has a trapezoidal taper in the radially outward direction or a uniform thickness.
  5. Rotor (1) according to one of Claims 1 to 4, characterized in that the rotor (1) is a turbine rotor and that the rotor blades (3), in the region of their fluid inlet edge (4), each have an Eiffel Tower-shaped blade thickness distribution over the blade height and, in the region of their fluid outlet edge (5), each have a bottle-shaped blade thickness distribution over the blade height.
  6. Rotor (1) according to one of Claims 1 to 4, characterized in that the rotor (1) is a turbine rotor, and in that the rotor blades (3), in the region of their fluid inlet edge (4) and in the region of their fluid outlet edge (5), each have an Eiffel Tower-shaped blade thickness distribution over the blade height and, between the region of their fluid inlet edge (4) and the region of their fluid outlet edge (5), each have a region with a bottle-shaped blade thickness distribution over the blade height (9).
  7. Rotor (1) according to one of Claims 1 to 4, characterized in that said rotor is a compressor rotor, and in that the rotor blades (3), in the region of their fluid inlet edge (5'), each have a bottle-shaped blade thickness distribution and, in the region of their fluid outlet edge (4'), each have an Eiffel Tower-shaped blade thickness distribution.
  8. Rotor (1) according to one of Claims 1 to 4, characterized in that said rotor is a compressor rotor, and in that the rotor blades (3), in the region of their fluid inlet edge (5') and in the region of their fluid outlet edge (4'), each have an Eiffel Tower-shaped blade thickness distribution over the blade height and, between the region of their fluid inlet edge (5') and the region of their fluid outlet edge (4'), each have a region with a bottle-shaped blade thickness distribution.
  9. Rotor according to one of Claims 1 to 4, characterized in that, in the region of the bottle-shaped blade thickness distribution and in the region of the Eiffel Tower-shaped blade thickness distribution, a side surface contour of the rotor blades (3) has in each case a multiplicity of straight-running contour sections in the radial direction toward the outside.
  10. Rotor (1) according to one of the preceding claims, characterized in that the rotor blades (3) each have a suction side (S) and a pressure side (P) with a respective side surface contour and identical blade thickness distributions on the suction side (S) and on the pressure side (P), such that the two side surface contours of the respective rotor blade run symmetrically with respect to one another about an imaginary central line.
  11. Rotor (1) according to one of Claims 1 to 9, characterized in that the rotor blades (3) each have a suction side (S) and a pressure side (P) with a respective side surface contour and different blade thickness distributions on the suction side (S) and on the pressure side (P), such that the two side surface contours have different contour profiles with respect to an imaginary central line.
EP13733304.3A 2012-07-24 2013-07-02 Turbocharger impeller Active EP2877701B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012212896.4A DE102012212896A1 (en) 2012-07-24 2012-07-24 Impeller of an exhaust gas turbocharger
PCT/EP2013/063958 WO2014016084A1 (en) 2012-07-24 2013-07-02 Rotor of an exhaust gas turbocharger

Publications (2)

Publication Number Publication Date
EP2877701A1 EP2877701A1 (en) 2015-06-03
EP2877701B1 true EP2877701B1 (en) 2017-05-10

Family

ID=48745954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13733304.3A Active EP2877701B1 (en) 2012-07-24 2013-07-02 Turbocharger impeller

Country Status (7)

Country Link
US (1) US10253633B2 (en)
EP (1) EP2877701B1 (en)
CN (1) CN104471190B (en)
BR (1) BR112015001398B8 (en)
DE (1) DE102012212896A1 (en)
IN (1) IN2014DN10346A (en)
WO (1) WO2014016084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421702B2 (en) 2019-08-21 2022-08-23 Pratt & Whitney Canada Corp. Impeller with chordwise vane thickness variation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128898A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Turbine rotor blade
JP5705945B1 (en) * 2013-10-28 2015-04-22 ミネベア株式会社 Centrifugal fan
DE102014004745A1 (en) * 2014-04-01 2015-10-01 Daimler Ag Turbine wheel for a turbine, in particular an exhaust gas turbocharger
JP6372207B2 (en) * 2014-07-08 2018-08-15 株式会社豊田中央研究所 Impellers and turbochargers used in compressors
JP2016084751A (en) * 2014-10-27 2016-05-19 三菱重工業株式会社 Impeller, centrifugal fluid machine and fluid device
JP6210459B2 (en) * 2014-11-25 2017-10-11 三菱重工業株式会社 Impeller and rotating machine
US9845684B2 (en) 2014-11-25 2017-12-19 Pratt & Whitney Canada Corp. Airfoil with stepped spanwise thickness distribution
US20160245297A1 (en) * 2015-02-23 2016-08-25 Howden Roots Llc Impeller comprising variably-dimensioned fillet to secure blades and compressor comprised thereof
DE102015205998A1 (en) * 2015-04-02 2016-10-06 Ford Global Technologies, Llc Charged internal combustion engine with double-flow turbine and grouped cylinders
JP2017193982A (en) * 2016-04-19 2017-10-26 本田技研工業株式会社 compressor
WO2018119391A1 (en) * 2016-12-23 2018-06-28 Borgwarner Inc. Turbocharger and turbine wheel
CN107869359A (en) * 2017-12-01 2018-04-03 无锡宇能选煤机械厂 Streamlined thick vane turbochargers armature spindle
CN111699323B (en) * 2018-06-11 2021-12-21 三菱重工发动机和增压器株式会社 Rotating blade and centrifugal compressor provided with same
US10465522B1 (en) * 2018-10-23 2019-11-05 Borgwarner Inc. Method of reducing turbine wheel high cycle fatigue in sector-divided dual volute turbochargers
US11125154B2 (en) * 2019-10-25 2021-09-21 Pratt & Whitney Canada Corp. Centrifugal impeller for gas turbine engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2469458A (en) * 1945-09-24 1949-05-10 United Aircraft Corp Blade form for supercharger impellers
GB941344A (en) * 1961-11-06 1963-11-13 Rudolph Birmann Improvements in or relating to a centripetal turbine
GB1053509A (en) * 1963-10-25
NO146029C (en) * 1976-08-11 1982-07-14 Kongsberg Vapenfab As IMPELLER ELEMENT IN A RADIAL GAS TURBINE WHEEL
US4587700A (en) * 1984-06-08 1986-05-13 The Garrett Corporation Method for manufacturing a dual alloy cooled turbine wheel
US5408747A (en) * 1994-04-14 1995-04-25 United Technologies Corporation Compact radial-inflow turbines
DE19612396C2 (en) * 1996-03-28 1998-02-05 Univ Dresden Tech Blade with differently designed profile cross sections
SE525219C2 (en) 2003-05-15 2004-12-28 Volvo Lastvagnar Ab Turbocharger system for an internal combustion engine where both compressor stages are of radial type with compressor wheels fitted with reverse swept blades
JP4545009B2 (en) * 2004-03-23 2010-09-15 三菱重工業株式会社 Centrifugal compressor
CN100406746C (en) 2004-03-23 2008-07-30 三菱重工业株式会社 Centrifugal compressor and manufacturing method for impeller
DE112008002864B4 (en) * 2007-11-16 2020-03-12 Borgwarner Inc. Titanium compressor wheel with low blade frequency
EP2279337B1 (en) 2008-04-08 2017-07-19 Volvo Lastvagnar AB Compressor
DE102008059874A1 (en) 2008-12-01 2010-06-02 Continental Automotive Gmbh Geometrical design of the impeller blades of a turbocharger
US8172511B2 (en) * 2009-05-04 2012-05-08 Hamilton Sunstrand Corporation Radial compressor with blades decoupled and tuned at anti-nodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421702B2 (en) 2019-08-21 2022-08-23 Pratt & Whitney Canada Corp. Impeller with chordwise vane thickness variation

Also Published As

Publication number Publication date
BR112015001398B1 (en) 2021-09-28
WO2014016084A1 (en) 2014-01-30
DE102012212896A1 (en) 2014-02-20
US20150204195A1 (en) 2015-07-23
US10253633B2 (en) 2019-04-09
BR112015001398B8 (en) 2023-04-18
CN104471190A (en) 2015-03-25
EP2877701A1 (en) 2015-06-03
BR112015001398A2 (en) 2017-07-04
IN2014DN10346A (en) 2015-08-07
CN104471190B (en) 2017-07-04

Similar Documents

Publication Publication Date Title
EP2877701B1 (en) Turbocharger impeller
EP2725194B1 (en) Turbine rotor blade of a gas turbine
DE602004006323T2 (en) Method for producing a turbine with turbine blades of different resonance frequencies including such a turbine
EP3176370B1 (en) Blade cluster for a flow machine
EP2505783B1 (en) Rotor of an axial compressor stage of a turbo machine
EP2320030B1 (en) Rotor and rotor blade for an axial turbomachine
EP2538024B1 (en) Blade of a turbomaschine
DE112014001308T5 (en) Axial fan assembly with free blade tips
DE102016125091A1 (en) Turbine blades with tip shroud
EP2505851B1 (en) Stator stage of an axial compressor for a turbomachine
DE102008045171B4 (en) Radial vane wheel and method for producing a radial vane wheel for a rotor of an exhaust gas turbocharger
DE112013000744T5 (en) Flow Heat Load Turbocharger Turbine Housing Partition
EP3682092B1 (en) Exhaust gas turbine with a diffusser
DE102017216329A1 (en) Radial compressor with an iris diaphragm mechanism for a charging device of an internal combustion engine, charging device and blade for the iris diaphragm mechanism
EP2846000B1 (en) Vane ring of a gas turbine
DE102013223873B4 (en) Exhaust gas turbocharger with a twin scroll turbine housing
DE102016205976A1 (en) Impeller, turbomachine and method for producing an impeller
DE102015214324A1 (en) Supercharged internal combustion engine with exhaust gas recirculation and flap and method for operating such an internal combustion engine
DE102017115853A1 (en) Impeller of a turbomachine
AT512653B1 (en) Rotor and radially flowable turbine
DE102022129128A1 (en) REDUCING WEAR OF VARIABLE TURBINE GEOMETRY COMPONENTS IN SPLIT SCROLL CENTRIFUGAL TURBO MACHINES BY OPTIMIZING THE AERODYNAMIC FORCES ON ALL AIR BLADES OR ONLY THE AIR BLADE(S) ATTACHING TO THE VOLUME TONGS
WO2016087153A1 (en) Rotor, axial compressor, installation method
DE102010047612A1 (en) Impeller used as e.g. compressor wheel of e.g. supercharger, has blades that include partial sections comprising sub-elements which are provided in axial direction and arranged with respect to rotational axis
WO2010099784A1 (en) Integrally bladed rotor and method for producing an integrally bladed rotor
DE102012021400A1 (en) Turbine rotor blade of gas turbine engine, has overhang which is provided at stagnation point, when intersection point is zero, so that maximum value of barrel length of suction-side overhang is at about specific percentage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013007236

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0005140000

Ipc: F04D0025020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 25/02 20060101AFI20161221BHEP

Ipc: F04D 29/28 20060101ALI20161221BHEP

Ipc: F04D 29/30 20060101ALI20161221BHEP

Ipc: F01D 5/14 20060101ALI20161221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007236

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170702

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130702

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007236

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007236

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013007236

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 11

Ref country code: DE

Payment date: 20230731

Year of fee payment: 11