EP2870208A1 - Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel - Google Patents

Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel

Info

Publication number
EP2870208A1
EP2870208A1 EP13732874.6A EP13732874A EP2870208A1 EP 2870208 A1 EP2870208 A1 EP 2870208A1 EP 13732874 A EP13732874 A EP 13732874A EP 2870208 A1 EP2870208 A1 EP 2870208A1
Authority
EP
European Patent Office
Prior art keywords
aqueous
alkyd
acrylate
meth
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13732874.6A
Other languages
English (en)
French (fr)
Inventor
Sebastian Roller
Harm Wiese
Roelof Balk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP13732874.6A priority Critical patent/EP2870208A1/de
Publication of EP2870208A1 publication Critical patent/EP2870208A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to aqueous hybrid binders comprising an aqueous polymer dispersion (PD), and 0.01 to 5 wt .-% of a photoinitiator and aqueous alkyd systems containing a water-soluble alkyd resin or an aqueous alkyd or Polyurethanalkyd- emulsion or dispersion, and 0 , 01-5 wt .-% of a photoinitiator, their use in coating compositions, in particular in paints.
  • PD aqueous polymer dispersion
  • aqueous alkyd systems containing a water-soluble alkyd resin or an aqueous alkyd or Polyurethanalkyd- emulsion or dispersion, and 0 , 01-5 wt .-% of a photoinitiator
  • Water-based alkyds and corresponding alkyd / acrylate hybrids show in paint (in particular high-gloss paints) under standard conditions a non-optimal hardness development, i. Corresponding lacquers often remain soft and sticky for too long after being applied to a substrate.
  • the necessary hardness development results from an oxidative cross-linking of the alkyds or the alkyd moiety and takes place under the influence of atmospheric oxygen.
  • this type of crosslinking is rather slow compared to solvent-based paints.
  • it is even more problematic because the proportion of crosslinking groups is lower. In order to accelerate this networking siccatives can be used.
  • siccatives or drying agents must be used.
  • a serious disadvantage of these substances is that they are based on heavy metals and, depending on the type of metal used, reduce the environmental compatibility of the paint (see also U.Poth, Polyester and Alkyd Resins, ISBN 3-87870-792-4). If larger amounts of siccatives are used, an additional disadvantage is that the pot life and durability of the paint is reduced: as soon as contact with atmospheric oxygen takes place, the paint begins to crosslink in its container.
  • US 2008/0287581 describes an aqueous polymer dispersion containing a zinc-modified polymer and its use in paints.
  • the zinc-containing component takes over the function of the siccative.
  • EP 2009072 describes an acetoacetoxyethyl (meth) acrylate (AAEM) aqueous decorative and protective polymeric polymer composition containing 8-35% of an autoxidisable material (e.g., an alkyd) by caustic blending or by addition during formulation. None is disclosed about the development of hardness and its extent.
  • AAEM acetoacetoxyethyl (meth) acrylate
  • EP 874 875 discloses a waterborne hybrid binder composition and its use as a component in a paint or varnish mixture, wherein the
  • Hybrid binder composition has a dry content content of 60 to 95 wt .-%.
  • hybrid binders are described prepared by means of a mini-emulsion polymerization process. Conventional siccatives have been added to the formulated paint systems so that an acceptable hardness development of the coatings can take place.
  • WO 2010/1 12474 describes methacrylate polymers prepared by emulsion polymerization containing (meth) acrylate monomers with oxidatively crosslinkable side groups. Through the preferred use of co-polymerizable photoinitiators, a good hardness development of the coating after UV irradiation could be achieved.
  • Coating agents containing reactive groups and cured by UV radiation are known from WO 98/033855. Disadvantage of such systems is that they must be cured in the absence of atmospheric oxygen by UV irradiation with very high irradiation energies. Without these high light energies or in the presence of oxygen, the quality of the corresponding coatings is not sufficient.
  • compositions of the prior art have the disadvantage that they exhibit a non-optimal hardness development in paints under standard conditions and corresponding coatings remain soft and sticky for too long if no siccatives based on heavy metals are used or no UV curing takes place.
  • the object of the invention was therefore the development of a binder, which is characterized by improved early hardness development.
  • an aqueous hybrid binder comprising an aqueous polymer dispersion (PD) and 0.01-5% by weight of a photoinitiator and by aqueous alkyd systems comprising a water-soluble alkyd resin or an aqueous alkyd or polyurethane alkyd emulsion or .Dispersion, and 0.01 to 5 wt .-% of a photoinitiator.
  • aqueous hybrid binder comprising an aqueous polymer dispersion (PD) and 0.01-5% by weight of a photoinitiator
  • aqueous alkyd systems comprising a water-soluble alkyd resin or an aqueous alkyd or polyurethane alkyd emulsion or .Dispersion, and 0.01 to 5 wt .-% of a photoinitiator.
  • aqueous polymer dispersion (PD) is obtainable by free-radical emulsion polymerization of
  • a further subject of the invention are also coating agents, in particular paints containing the hybrid binders according to the invention or the aqueous alkyd systems as well as their preparation and use.
  • the invention further provides coating compositions in the form of an aqueous composition, comprising: at least one hybrid binder according to the invention or an aqueous alkyd system, as defined below,
  • the hybrid binder according to the invention contains the polymer dispersion (PD) according to the invention and 0.01-5% by weight of a photoinitiator.
  • the aqueous alkyd system according to the invention comprises at least one water-soluble alkyd resin or an aqueous alkyd or polyurethane alkyd emulsion or dispersion, and 0.01-5% by weight of a photoinitiator.
  • the addition of the water-soluble alkyd resin or the aqueous alkyd or polyurethane alkyd emulsion or dispersion to the polymer dispersion (PD) is preferably carried out after the emulsion polymerization for the preparation of the polymer (P).
  • the addition of the water-soluble alkyd resin or the aqueous alkyd or polyurethane-alkyd emulsion to the polymer dispersion (PD) can take place directly after the polymerization, ie directly after the initiator feed has ended.
  • the addition preferably takes place after the end of the polymerization and the subsequent stirring time as defined above. Particularly preferably, the addition takes place after the chemical deodorization.
  • the addition takes place after the chemical deodorization including the previously defined stirring time.
  • the stirring time is 0 to 2 h, preferably less than 1 h, particularly preferably 30 min.
  • the addition of the photoinitiator for producing the hybrid binder according to the invention is preferably carried out in the cooled to room temperature (23 ° C) polymer dispersion (PD), but can also take place during the polymerization.
  • PD room temperature
  • the photoinitiator is added to the water-soluble alkyd resin or the aqueous alkyd or polyurethane alkyd emulsion or dispersion at room temperature.
  • the photoinitiator according to the invention is used in amounts of 0.01-5% by weight, preferably 0.1-4% by weight, in each case based on the solids content of the hybrid binder or of the aqueous alkyd system.
  • the term “early hardness development” refers to the increase in hardness in the film within the first time after drawing (up to 3 days). It is measured by the pendulum hardness. It can be accelerated by sicActivtion.
  • the polymer dispersion (PD) used according to the invention preferably contains 5-60% by weight (solid), more preferably 10-50% by weight (solid), based on the total weight of the hybrid binder, at least one water-soluble alkyd resin or an aqueous alkyd - or polyurethane AI kyd emulsion.
  • alkyl includes straight-chain and branched alkyl groups. Suitable short-chain alkyl groups are, for. B. straight-chain or branched Ci-C7-alkyl, preferably Ci-C6-alkyl and particularly preferably Ci-C4-alkyl groups.
  • Suitable longer-chain Cs-Cso-alkyl groups are straight-chain and branched alkyl groups. These are preferably predominantly linear alkyl radicals, as they also occur in natural or synthetic fatty acids and fatty alcohols and oxo alcohols. These include z.
  • alkyl includes unsubstituted and substituted alkyl radicals.
  • alkyl also apply to the alkyl moieties in arylalkyl.
  • Preferred arylalkyl radicals are benzyl and phenylethyl.
  • C 8 -C 32 -alkenyl in the context of the present invention represents straight-chain and branched alkenyl groups which may be mono-, di- or polyunsaturated. Preferably, it is Cio-C2o-alkenyl.
  • alkenyl includes unsubstituted and substituted alkenyl radicals. Specifically, these are predominantly linear alkenyl radicals, as they also occur in natural or synthetic fatty acids and fatty alcohols and oxo alcohols.
  • alkylene in the context of the present invention stands for straight-chain
  • alkanediyl groups having 1 to 7 carbon atoms, e.g. As methylene, 1, 2-ethylene, 1, 3-propylene, etc.
  • Cycloalkyl is preferably C4-C8-cycloalkyl, such as cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • aryl in the context of the present invention comprises mononuclear or polynuclear aromatic hydrocarbon radicals which may be unsubstituted or substituted.
  • aryl is preferably phenyl, tolyl, xylyl, mesityl, duryl, fluorenyl, anthracenyl, phenanthrenyl or naphthyl, particularly preferably phenyl or naphthyl, these aryl groups in the case of a substitution generally 1, 2, 3 , 4 or 5, preferably 1, 2 or 3 substituents.
  • At least one ⁇ , ⁇ -ethylenically unsaturated monomer (M) is used which is preferably selected from esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 20 -alkanols, vinylaromatics, esters of vinylal alcohol with C 1 -C 8 -monocarboxylic acids, ethylenically unsaturated nitriles, vinyl halides, vinylidene halides, monoethylenically unsaturated carboxylic and sulfonic acids, phosphorus-containing monomers, esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 2 -C 30 -alkanediols, amides ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids with C2-C30-
  • Aminoalcohols having a primary or secondary amino group primary amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their N-alkyl and N, N-dialkyl derivatives, N-vinyllactams, open-chain N-vinylamide compounds, esters of allyl alcohol with C1-C30 monocarboxylic acids, esters of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols, amides ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids with diamines, which at least have a primary or secondary amino group,
  • ⁇ , ⁇ -diallylamines N, N-diallyl-N-alkylamines, vinyl- and allyl-substituted nitrogen heterocycles, vinyl ethers, C 2 -C 8 -monoolefins, nonaromatic hydrocarbons having at least two conjugated double bonds, polyether (meth) acrylates, urea-containing monomers and mixtures thereof.
  • C 1 -C 20 -alkanols are methyl (meth) acrylate, methyl methacrylate, ethyl (meth) acrylate,
  • Preferred vinyl aromatic compounds are styrene, 2-methylstyrene, 4-methylstyrene, 2- (n-butyl) styrene, 4- (n-butyl) styrene, 4- (n-decyl) styrene and particularly preferably styrene.
  • Suitable esters of vinyl alcohol with Ci-Cso monocarboxylic acids are, for. Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl propionate, versatic acid vinyl ester and mixtures thereof.
  • Suitable ethylenically unsaturated nitriles are acrylonitrile, methacrylonitrile and mixtures thereof.
  • Suitable vinyl halides and vinylidene halides are vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • Suitable ethylenically unsaturated carboxylic acids, sulfonic acids or derivatives thereof are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, fumaric acid, the monoesters of monoethylenically unsaturated dicarboxylic acids having 4 to 10 , preferably 4 to 6 C atoms, for.
  • Example maleic acid monomethyl ester, vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloxypropylsulfonic acid, 2-hydroxy-3-methacryloxypropylsulfonic acid, styrenesulfonic acids and 2-acrylamido-2-methylpropanesulfonic acid.
  • Suitable styrenesulfonic acids and derivatives thereof are styrene-4-sulfonic acid and styrene-3-sulfonic acid and the alkaline earth or alkali metal salts thereof, e.g. For example, sodium styrene-3-sulfonate and sodium styrene-4-sulfonate.
  • Particularly preferred are acrylic acid, methacrylic acid and mixtures thereof.
  • Examples of phosphorus-containing monomers are, for.
  • mono- and diesters of phosphonic acid and phosphoric acid with hydroxyalkyl (meth) acrylates especially the monoesters.
  • diesters of phosphonic acid and phosphoric acid which are simply reacted with a hydroxyalkyl (meth) acrylate and, in addition, simply with a different alcohol, eg. As an alkanol, are esterified.
  • Suitable hydroxyalkyl (meth) acrylates for these esters are those mentioned below as separate monomers, in particular 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate,
  • Corresponding dihydrogen phosphate ester monomers include phosphoalkyl (meth) acrylates, such as 2-phosphoethyl (meth) acrylate,
  • esters of phosphonic acid and phosphoric acid with alkoxylated hydroxyalkyl (meth) acrylates eg. B.
  • C 2 -C 30 -alkanediols are e.g. 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate,
  • Suitable primary amides of ⁇ , ß-ethylenically unsaturated monocarboxylic acids and their N-alkyl and ⁇ , ⁇ -dialkyl derivatives are acrylic acid amide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide , N- (n-butyl) (meth) acrylamide, N- (tert-butyl) (meth) acrylamide, N- (n-octyl) (meth) acrylamide, N- (1,1,3,3-)
  • N-palmitoleinyl (meth) acrylamide N-oleyl (meth) acrylamide, N-linolyl (meth) acrylamide,
  • N-linolenyl (meth) acrylamide N-stearyl (meth) acrylamide, N-lauryl (meth) acrylamide,
  • N-vinyl lactams and derivatives thereof are, for. N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam, etc.
  • Suitable open-chain N-vinyl amide compounds are, for example, N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide, N-vinyl-N-methylpropionamide and N-vinylbutyramide.
  • Suitable esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with amino alcohols are N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl acrylate, N, N-dimethylaminopropyl (cf. meth) acrylate, N, N-diethylaminopropyl (meth) acrylate and N, N-dimethylaminocyclohexyl (meth) acrylate.
  • Suitable amides of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with diamines which have at least one primary or secondary amino group are N- [2- (dimethylamino) ethyl] acrylamide, N- [2- (dimethylamino) ethyl] methacrylamide,
  • Suitable monomers (M) are furthermore ⁇ , ⁇ -diallylamines and N, N-diallyl-N-alkylamines and their acid addition salts and quaternization products.
  • Alkyl is preferably Ci-C24-alkyl. Preference is given to N, N-diallyl-N-methylamine and N, N-diallyl-N, N-dimethylammonium compounds, such as. As the chlorides and bromides.
  • Suitable monomers (M) are also vinyl- and allyl-substituted nitrogen heterocycles, such as N-vinylimidazole, N-vinyl-2-methylimidazole, vinyl- and allyl-substituted heteroaromatic compounds, such as 2- and 4-vinylpyridine, 2- and 4-allylpyridine, and the Salts thereof.
  • Suitable C 2 -C 8 monoolefins and nonaromatic hydrocarbons having at least two conjugated double bonds are e.g., ethylene, propylene, isobutylene, isoprene, butadiene, etc.
  • Suitable urea group-containing monomers are, for. N-vinyl or N-allyl urea or derivatives of imidazolidin-2-one. These include N-vinyl and N-allylimidazolidin-2-one, N- Vinyloxyethylimidazolidin-2-one, N- (2- (meth) acrylamidoethyl) imidazolidin-2-one,
  • Preferred urea groups having monomers are N- (2-acryloxyethyl) imidazolidin-2-one and N- (2-methacryloxyethyl) imidazolidin-2-one.
  • Particularly preferred is N- (2-methacryloxyethyl) imidazolidin-2-one (2-ureidomethacrylate, UMA).
  • the aforementioned monomers (M) can be used individually, in the form of mixtures within a monomer class or in the form of mixtures of different monomer classes.
  • At least 40% by weight, particularly preferably at least 60% by weight, in particular at least 80% by weight, based on the total weight of the monomers (M), of at least one monomer (M1) which is selected are preferably used for the emulsion polymerization is among esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 20 -alkanols, vinylaromatics, esters of vinyl alcohol with C 1 -C 50 -monocarboxylic acids, ethylenically unsaturated nitriles, vinyl halides, vinylidene halides and mixtures thereof (main monomers).
  • the monomers (M1) are used in an amount of up to 95 wt .-%, based on the total weight of the monomers (M), for the emulsion polymerization.
  • the main monomers (M1) are preferably selected from
  • At least one further monomer (M2) which is generally present to a lesser degree (secondary monomers) can be used in the free radical emulsion polymerization for the preparation of (PD).
  • the monomers (M2) if present, in an amount of at least 0.1 wt .-%, particularly preferably at least 0.5 wt .-%, in particular at least 1 wt .-%, based on the total weight of the monomers ( M), used for emulsion polymerization. It is particularly preferred to use 0.1 to 60% by weight, preferably 0.5 to 40% by weight, in particular 1 to 20% by weight of at least one monomer (M2) for the emulsion polymerization.
  • the monomers (M2) are especially selected from acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride, acrylic acid amide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethylacrylamide, 2-
  • AAEM acetoacetoxyethyl methacrylate
  • AAEM acetoacetoxyethyl methacrylate
  • allyl methacrylate methacrylate Vinylme-, hydroxybutenyl methacrylate, the allyl or diallyl ester of maleic acid, poly (allyl glycidyl ether), and mixtures thereof, in the form of various products in the name Bisomer ® from Laporte Performance Chemicals, UK. This includes z. B. bisomer ® MPEG 350 MA, a methoxy polyethylene glycol monomethacrylate or UMA.
  • AAEM is particularly preferably used in amounts of from 0.1 to 20, preferably from 0.1 to 4.9,% by weight.
  • main monomers (M1) for the process according to the invention are, for example: n-butyl acrylate, methyl methacrylate;
  • n-butyl acrylate methyl methacrylate, styrene
  • main monomers (M1) to (M2) are combined with particularly suitable monomers are preferably selected from acrylic acid, methacrylic acid, acrylamide, methacrylamide, AAEM, UMA or Bisomer ® and mixtures thereof.
  • an alkyd resin is meant a polyester esterified with a drying oil, a fatty acid or the like (U. Poth, Polyester and Alkyd resins, Vincentz Network 2005).
  • An aqueous alkyd resin is understood to mean, in particular, an alkyd resin solution based on an alkyd resin having a sufficiently high acid number of preferably 20-80 mg KOH / g alkyd resin, optionally after neutralization, and a weight-average molecular weight of> 5000 and ⁇ 40 000 Da, preferably > 8000 and ⁇ 35000 Da and more preferably> 10000 and ⁇ 35000 Da.
  • the molecular weights are determined by size exclusion chromatography (SEC).
  • Acid number means the amount of potassium hydroxide, expressed in mg, which is necessary to neutralize 1 g of the sample.
  • the oil or fatty acid used is the property-determining component. It allows a subdivision according to the fatty acid triacylglycerol content (oil content, oil length) in short-oil alkyd resins with ⁇ 40%, medium oil alkyd resins with 40-60% and long-oil alkyd resins with> 60% triacylglycerol, based on solvent-free alkyd resin (fatty acid content possibly in tri - convert acylglycerol, factor approx. 1, 045) (oil content).
  • the solids content characterizes the "active substance content" of the dispersion according to general practice.
  • the dispersion is usually dried at a temperature between 100 and 140 ° C to constant weight (see ISO standard 1625).
  • the solids content indicates the dry matter compared to the total mass (in%).
  • the dry matter comprises the polymer, emulsifiers and inorganic salts (from initiator decomposition and neutralization). Volatiles include water and monomers that were not reacted during the polymerization.
  • the oil content of the alkyd resins used is 25-55%, the solids content in the form of delivery: 30-80%, in the form of use (after dilution with NH3 or NaOH / water) 35- 50%.
  • Preferred alkyd resins are for example the products WorleeSol ® 61 A, 61 WorleeSol ® E, WorleeSol ® 65A, Worlee, and Synthalat ® W46 or W48 Synthalat ®, the company synchronous thopol.
  • aqueous alkyd resin emulsion or dispersion or, for short, alkyd emulsion is understood as meaning alkyd resins which, if appropriate, are mixed with emulsifiers and dispersed in water.
  • alkyds having higher average molecular weights are also suitable for this purpose [U. Poth, polyester and alkyd resins, Vincentz Network 2005, p 183 f].
  • An aqueous polyurethane-alkyd resin emulsion is understood as meaning a polyurethane-modified alkyd resin which has been dispersed in water.
  • a urethane modification can be carried out in the alkyd synthesis, for example, by replacing part of the usual phthalic anhydride with a diisocyanate [U. Poth, Polyester and Alkyd resins, Vincentz Network 2005, p. 205 f].
  • a urethane modification can furthermore be carried out by a reaction of an alkyd with an at least difunctional polyisocyanate [DE102006054237].
  • Preferred alkyd resin emulsions are characterized by an oil content of 25-55% and an acid number of 20-60 mg KOH / g.
  • Preferred alkyd resin emulsions or polyurethane-modified alkyd resin emulsions are WorleeSol® E 150 W, WorleeSol® E 280 W, WorleeSol® E 530 W or WorleeSol® E 927 W.
  • aqueous alkyd or polyurethane alkyd emulsions For the preparation of the polymer dispersions (PD) it is preferred to use aqueous alkyd or polyurethane alkyd emulsions.
  • at least one crosslinker may be used in addition to the aforementioned monomers (M).
  • Monomers having a crosslinking function are compounds having at least two polymerizable, ethylenically unsaturated, non-conjugated double bonds in the molecule.
  • a networking can also z. B. by photochemical activation.
  • at least one monomer with photoactivatable groups can additionally be used for the preparation of (PD). Photoinitiators can also be added separately.
  • a networking can also z.
  • Example by functional groups which can enter into a chemical crosslinking reaction with complementary functional groups.
  • the complementary groups may both be bonded to the emulsion polymer or for crosslinking it is possible to use a crosslinker which is capable of undergoing a chemical crosslinking reaction with functional groups of the emulsion polymer.
  • Suitable crosslinkers are z. As acrylic esters, methacrylic esters, allyl ethers or vinyl ethers of at least dihydric alcohols. The OH groups of the underlying alcohols may be completely or partially etherified or esterified; however, the crosslinkers contain at least two ethylenically unsaturated groups.
  • Examples of the underlying alcohols are dihydric alcohols such as 1, 2-ethanediol, 1, 2-propanediol, 1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 2,3-butanediol, 1, 4-butanediol , But-2-ene-1, 4-diol, 1, 2-pentanediol, 1, 5-pentanediol, 1, 2-hexanediol, 1, 6-hexanediol, 1, 10-decanediol, 1, 2-dodecanediol, 1 , 12-Dodecanediol, neopentyl glycol, 3-methylpentane-1, 5-diol, 2,5-dimethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,2-cyclohexanediol,
  • ethylene oxide or propylene oxide In addition to the homopolymers of ethylene oxide or propylene oxide and block copolymers of ethylene oxide or propylene - oxide or copolymers containing incorporated incorporated ethylene oxide and propylene oxide groups.
  • underlying alcohols having more than two OH groups are trimethylolpropane, glycerol, pentaerythritol, 1, 2,5-pentanetriol, 1, 2,6-hexanetriol, cyanuric acid, sorbitan, sugars such as sucrose, glucose, mannose.
  • the polyhydric alcohols can also be used after reaction with ethylene oxide or propylene oxide as the corresponding ethoxylates or propoxylates.
  • the polyhydric alcohols can also be first converted by reaction with epichlorohydrin in the corresponding glycidyl ether.
  • crosslinkers are the vinyl esters or the esters of monohydric, unsaturated alcohols with ethylenically unsaturated C3-C6-carboxylic acids, for example
  • Acrylic acid methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • examples of such alcohols are allyl alcohol, 1-buten-3-ol, 5-hexen-1-ol, 1-octen-3-ol, 9-decen-1-ol, dicyclopene tenyl alcohol, 10-undecene-1-ol, cinnamyl alcohol, citronellol,
  • Crotyl alcohol or cis-9-octadecene-1-ol it is also possible to esterify the monohydric, unsaturated alcohols with polybasic carboxylic acids, for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • polybasic carboxylic acids for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • crosslinkers are esters of unsaturated carboxylic acids with the polyhydric alcohols described above, for example oleic acid, crotonic acid, cinnamic acid or 10-undecenoic acid.
  • crosslinking agents are straight-chain or branched, linear or cyclic, aliphatic or aromatic hydrocarbons which have at least two double bonds which may not be conjugated in aliphatic hydrocarbons, eg. B. divinylbenzene, divinyltoluene, 1, 7-octadiene, 1, 9-decadiene, 4-vinyl-1-cyclohexene, trivinylcyclohexane or polybutadienes having molecular weights of 200 to 20,000.
  • crosslinking agents are the acrylic acid amides, methacrylic acid amides and N-allylamines of at least divalent amines.
  • Such amines are for. B. 1, 2-diaminoethane, 1, 3-diaminopropane, 1, 4-diaminobutane, 1, 6-diaminohexane, 1, 12-dodecanediamine, piperazine, diethylenetriamine or isophoronediamine.
  • amides of allylamine and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, or at least dibasic carboxylic acids, as described above.
  • triallylamine and Triallylmonoalkylammoniumsalze, z As triallylmethylammonium chloride or methyl sulfate, suitable as a crosslinker.
  • N-vinyl compounds of urea derivatives at least divalent amides, cyanurates or urethanes, for example of urea, ethyleneurea, propylene urea or tartaramide, for.
  • crosslinkers are divinyldioxane, tetraallylsilane or tetravinylsilane.
  • water-soluble crosslinkers are used.
  • the crosslinking monomers include those which in addition to an ethylenically unsaturated double bond, a reactive functional group, eg. Example, an aldehyde group, a keto group or an oxirane group, which can react with an added crosslinker.
  • the functional groups are keto or aldehyde groups.
  • the keto or aldehyde groups are preferably bound to the polymer by copolymerization of copolymerizable, ethylenically unsaturated compounds with keto or aldehyde groups.
  • Suitable such compounds are acrolein, methacrolein, vinyl alkyl ketones having 1 to 20, preferably 1 to 10, carbon atoms in the alkyl radical, formylstyrene, (Meth) acrylic acid alkyl ester having one or two keto or aldehyde, or an aldehyde and a keto group in the alkyl radical, wherein the alkyl radical preferably comprises a total of 3 to 10 carbon atoms, for. B.
  • (meth) acryloxyalkylpropanale as described in DE-A-2722097.
  • N-oxoalkyl (meth) acrylamides as described, for. From US-A-4226007, DE-A-2061213 or DE-A-2207209 are known.
  • Particularly preferred are acetoacetyl (meth) acrylate, acetoacetoxyethyl (meth) acrylate and especially diacetone acrylamide.
  • the crosslinkers are preferably a compound having at least two functional groups, especially two to five functional groups, which can undergo a crosslinking reaction with the functional groups of the polymer, especially the keto or aldehyde groups. These include z.
  • hydrazide hydroxylamine or oxime ether or amino groups as functional groups for the crosslinking of the keto or aldehyde groups.
  • Suitable compounds with hydrazide groups are, for. B. Polycarbonklarehydrazide having a molecular weight of up to 500 g / mol.
  • Particularly preferred hydrazide compounds are dicarboxylic acid dihydrazides having preferably 2 to 10 C atoms. These include z.
  • oxalic acid dihydrazide malonic dihydrazide, succinic dihydrazide, glutaric dihydrazide, adipic dihydrazide, sebacic dihydrazide, maleic dihydrazide, fumaric dihydrazide, itaconic dihydrazide and / or isophthalic dihydrazide.
  • adipic dihydrazide sebacic dihydrazide and isophthalic dihydrazide.
  • Suitable compounds with hydroxylamine or oxime ether groups are, for. As mentioned in WO 93/25588.
  • a surface crosslinking can be additionally produced.
  • a photoinitiator or siccative Suitable photoinitiators are those which are excited by sunlight, for example benzophenone or benzophenone derivatives.
  • Sikkativierung are the recommended for aqueous alkyd resins metal compounds, for example based on Co or Mn (review in U. Poth, polyester and alkyd resins, Vincentz Network 2005, p 183 f).
  • the crosslinking component is preferably used in an amount of from 0.0005 to 5% by weight, preferably from 0.001 to 2.5% by weight, in particular from 0.01 to 1.5% by weight, based on the total weight of the used for the polymerization of monomers (including the crosslinker) used.
  • a special embodiment are polymer dispersions (PD) which contain no crosslinker polymerized.
  • the radical polymerization of the monomer mixture (M) can be carried out in the presence of at least one regulator.
  • Regulators are preferably used in an amount of 0.0005 to 5 wt .-%, particularly preferably from 0.001 to 2.5 wt .-% and in particular from 0.01 to 1, 5 wt .-%, based on the total weight of the Polymerization used monomers used.
  • Regulators are generally compounds with high transfer constants. Regulators accelerate chain transfer reactions and thus cause a reduction in the degree of polymerization of the resulting polymers without affecting the gross reaction rate.
  • regulators In the case of the regulators, one can distinguish between mono-, bi- or polyfunctional regulators, depending on the number of functional groups in the molecule which can lead to one or more chain transfer reactions.
  • suitable regulators are described in detail by KC Berger and G. Brandrup in J. Brandrup, EH Immergut, Polymer Handbook, 3rd ed., John Wiley & Sons, New York, 1989, pp. 11-81-11 / 141.
  • Suitable regulators are, for example, aldehydes, such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde.
  • regulators formic acid, its salts or esters, such as ammonium formate, 2,5-diphenyl-1-hexene, hydroxylammonium sulfate, and hydroxylammonium phosphate.
  • halogen compounds for.
  • alkyl halides such as carbon tetrachloride, chloroform, bromotrichloromethane, bromoform, allyl bromide and benzyl compounds such as benzyl chloride or benzyl bromide.
  • Suitable regulators are allyl compounds, such as.
  • allyl alcohol functionalized allyl ethers such as allyl ethoxylates, alkyl allyl ethers or glycerol monoallyl ether. Preference is given to using compounds which contain sulfur in bound form as regulators.
  • Compounds of this type are, for example, inorganic hydrogen sulfites, disulfites and dithionites or organic sulfides, disulfides, polysulfides, sulfoxides and sulfones. These include di-n-butyl sulfide, di-n-octyl sulfide, diphenyl sulfide, thiodiglycol, ethylthioethanol, diisopropyl disulfide, di-n-butyl disulfide, di-n-hexyl disulfide, diacetyl disulfide, diethanol sulfide, di-t-butyl trisulfide, dimethyl sulfoxide, Dialkyl sulfide, dialkyl disulfide and / or diaryl sulfide.
  • thiols compounds which contain sulfur in the form of SH groups, also referred to as mercaptans.
  • Preferred regulators are mono-, bi- and polyfunctional mercaptans, mercaptoalcohols and / or mercaptocarboxylic acids. Examples of these compounds are allyl thioglycolates,
  • bifunctional regulators containing two sulfur atoms in bonded form are bifunctional thiols such as.
  • dimercaptopropanesulfonic acid sodium salt
  • dimercaptosuccinic acid dimercapto-1-propanol
  • dimercaptoethane dimercaptopropane
  • dimercaptobutane dimercaptopentane
  • dimercaptohexane dimercaptoethylene glycol bis-thioglycolate and butanediol bis-thioglycolate.
  • polyfunctional regulators are compounds containing more than two sulfur atoms in bonded form. Examples of these are trifunctional and / or tetrafunctional mercaptans.
  • controllers can be used individually or in combination with each other.
  • a specific embodiment relates to polymer dispersions PD which are prepared by free-radical emulsion polymerization without addition of a regulator.
  • the monomers can be polymerized by means of free-radical initiators.
  • the peroxo and / or azo compounds customary for this purpose can be used, for example alkali or ammonium peroxydisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, di-tert-butyl peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl permaleinate, cumene hydroperoxide,
  • Diisopropyl peroxydicarbamate bis (o-toluoyl) peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl peracetate, di-tert-amyl peroxide, tert-butyl hydroperoxide, azo-bis-isobutyronitrile, 2,2'-azo bis (2-amidinopropane) dihydrochloride or 2- 2'-azobis (2-methylbutyronitrile). Also suitable are mixtures of these initiators.
  • the redox initiator systems consist of at least one mostly inorganic reducing agent and one inorganic or organic oxidizing agent.
  • the oxidation component is z. B. to the above-mentioned initiators for emulsion polymerization.
  • the reduction component is z. B. to alkali metal salts of sulfurous acid, such as.
  • the red-ox initiator systems can be used with the concomitant use of soluble metal compounds whose metallic component can occur in multiple valence states. Usual Red Ox initiator systems are z.
  • the individual components eg. As the reduction component, mixtures may also be z.
  • the amount of initiators is generally 0.1 to 10 wt .-%, preferably 0.1 to 5% by weight, based on all monomers to be polymerized. It is also possible to use a plurality of different initiators in the emulsion polymerization.
  • the preparation of the polymer dispersion (PD) is usually carried out in the presence of at least one surface-active compound.
  • suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, p. 41 1 to 420.
  • Suitable emulsifiers are also found in Houben-Weyl, Methods of Organic Chemistry, Volume 14/1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 192 to 208.
  • Suitable emulsifiers are both anionic, cationic and nonionic emulsifiers. Emulsifiers whose relative molecular weights are usually below those of protective colloids are preferably used as surface-active substances.
  • nonionic emulsifiers are araliphatic or aliphatic nonionic emulsifiers, for example ethoxylated mono-, di- and trialkylphenols (EO degree: 3 to 50, alkyl radical: C4-C10), ethoxylates of long-chain alcohols (EO degree: 3 to 100, alkyl radical: C) 8 -C 3 6) and polyethylene oxide / polypropylene oxide homo- and copolymers. These may comprise the alkylene oxide units randomly distributed or in copolymerized form in the form of blocks. Well suited z. B. EO / PO block copolymers.
  • ethoxylates of long-chain alkanols (alkyl radical C 1 -C 30, average degree of ethoxylation 5 to 100) and, with particular preference, those having a linear C 12 -C 20 -alkyl radical and a mean degree of ethoxylation of from 10 to 50 and also ethoxylated monoalkylphenols.
  • Suitable anionic emulsifiers are, for example, alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C8-C22), of sulfuric acid or phosphoric monoesters of ethoxylated alkanols (EO degree: 2 to 50, alkyl radical: C12-C18) and ethoxylated alkylphenols (EO degree : 3 to 50, alkyl radical: C4-C9), of alkylsulfonic acids (alkyl radical: C12-C18) and of alkylarylsulfonic acids (alkyl radical: Cg-Cis).
  • emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 192-208).
  • anionic emulsifiers are bis (phenylsulfonic acid) ethers or their alkali metal or ammonium salts which carry a C 4 -C 24 -alkyl group on one or both aromatic rings. These compounds are well known, for. From US-A-4,269,749, and commercially available, for example as Dowfax® 2A1 (Dow Chemical Company).
  • emulsifiers are the esters, ie the mono- and diesters, the phosphoric acid with optionally up to 20-fold alkoxylated Cs-Cso-alkanols, especially the monoesters. Often the mono- and diesters are provided side by side as a mixture. Further suitable emulsifiers are also the diesters of phosphoric acid, which are easily reacted with an optionally up to 20-times alkoxylated Cs-Cso-alkanol and additionally simply with a different Ci-C3o-alkanol, preferably with a
  • Ci-C7-alkanol esterified.
  • emulsifiers are e.g.
  • Maphos 10T ((2-ethylhexyl) phosphate), both from BASF BTC.
  • emulsifiers are (ethoxylate fatty alcohols, organophosphate, polymer), the Lutensit ® types, BASF SE, such as Lutensit ® A-EP (fatty alcohol alkoxylate, organophosphate) or Lutensit ® HC9812.
  • the polymer dispersions (PD) according to the invention generally contain up to 20% by weight, preferably up to 10% by weight, particularly preferably up to 5% by weight of at least one emulsifier, based on the total weight of the mono-emulsion polymerization - mere.
  • the polymer dispersions (PD) according to the invention generally contain at least 0.05% by weight, preferably at least 0.1% by weight, of at least one emulsifier, based on the total weight of the monomers used for the emulsion polymerization.
  • Suitable cationic emulsifiers are preferably quaternary ammonium halides, e.g. B. trimethylcetylammonium chloride, methyltrioctylammonium chloride, benzyl triethylammonium chloride or quaternary compounds of N-C6-C2o-alkylpyridines,
  • -morpholines or -imidazoles e.g. B. N-Laurylpyridinium chloride.
  • the amount of emulsifier is generally about 0.01 to 10 wt .-%, preferably 0.1 to 5 wt .-%, based on the amount of monomers to be polymerized.
  • the polymer dispersions (PD) can also be added to customary auxiliaries and additives.
  • auxiliaries and additives include, for example, the pH-adjusting substances, reducing and bleaching agents, such as.
  • the alkali metal salts of hydroxymethanesulfinic acid eg Rongalit® C from BASF SE
  • complexing agents eg. Rongalit® C from BASF SE
  • deodorants eg. As glycerol, methanol, ethanol, tert-butanol, glycol, etc.
  • These auxiliaries and additives can be added to the polymer dispersions in the template, one of the feeds or after completion of the polymerization.
  • the polymerization is generally carried out at temperatures in a range from 0 to 150 ° C, preferably 20 to 100 ° C, particularly preferably 30 to 95 ° C.
  • the polymerization is preferably carried out at normal pressure, but is also possible a polymerization under elevated pressure, for example, the autogenous pressure of the components used for the polymerization.
  • the polymerization takes place in the presence of at least one inert gas, such as. As nitrogen or argon.
  • the polymerization medium may consist of water only, as well as of mixtures of water and thus miscible liquids such as methanol. Preferably, only water is used.
  • the emulsion polymerization can be carried out both as a batch process and in the form of a feed process, including a stepwise or gradient procedure.
  • the feed process in which one submits a portion of the polymerization or a polymer seed, heated to the polymerization, polymerized and then the remainder of the polymerization, usually over several spatially separate feeds, of which one or more of the monomers in pure or in emulsified Form, continuously, stepwise or with the addition of a concentration gradient while maintaining the polymerization of the polymerization zone supplies.
  • the manner in which the initiator is added to the polymerization vessel in the course of the free radical aqueous emulsion polymerization is known to one of ordinary skill in the art. It can be introduced either completely into the polymerization vessel or used continuously or in stages according to its consumption in the course of the free-radical aqueous emulsion polymerization. Specifically, this depends in a manner known per se to those of ordinary skill in the art both on the chemical nature of the initiator system and on the polymerization temperature. Preferably, a part is initially charged and the remainder supplied according to the consumption of the polymerization.
  • the dispersions formed during the polymerization can be subjected to a physical or chemical aftertreatment (chemical desorption) after the polymerization process.
  • Such methods are, for example, the known methods for residual monomer reduction, such as.
  • Example the post-treatment by addition of polymerization initiators or mixtures of polymerization initiators at suitable temperatures, aftertreatment of the polymer solution by means of steam or ammonia vapor, or stripping with inert gas or treating the reaction mixture with oxidizing or reducing reagents, adsorption processes such as the adsorption of impurities on selected media such , As activated carbon or ultrafiltration.
  • the aqueous acrylate-alkyd polymer dispersion (PD) usually has a solids content of from 20 to 70% by weight, preferably from 40 to 65% by weight, based on the polymer dispersion including the water-soluble alkyd resin or aqueous alkyd resin emulsion or polyurethane alkyd emulsion used.
  • the solids content in a specific embodiment is 30-55% by weight, preferably 35 to 50% by weight, particularly preferably 40 to 50% by weight, based on the aqueous acrylate-alkyd polymer dispersion including water-soluble alkyd resin or aqueous alkyd resin emulsion used or polyurethane alkyd resin emulsion.
  • the theoretical glass transition temperature T g of the acrylate portion of the acrylate-alkyd polymer dispersion is preferably less than 50 ° C but greater than 20 ° C, more preferably less than 40 ° C but greater than 20 ° C, in particular less than 30 ° C but greater than 20 ° C.
  • the glass transition temperature T g is understood here to mean the "mid-point temperature” determined by differential thermal analysis (DSC) in accordance with ASTM D 3418-82 (compare Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A 21, VCH Weinheim 1992 169 and Zosel, paint and varnish 82 (1976), pp. 125-134, see also DIN 53765).
  • DSC differential thermal analysis
  • the glass transition temperature TG can be estimated. It applies to the glass transition temperature of weak or uncrosslinked Mischpoly-merisaten for large molar masses in a good approximation:
  • Tg where X 1 , X 2 , X n are the mass fractions 1, 2, n and T g 1 , T g 2 , T g n the Glasübergangstempe- temperatures of each of only one of the monomers 1, 2, n constructed polymers in degrees Kelvin , The latter are z. From Ullmann's Encyclopedia of Industrial Chemistry, VCH, 5.ed. Weinheim, Vol. A 21 (1992) p 169 or from J. Brand-rup, EH Immergut, Polymer Handbook, 3 rd ed, J.
  • hybrid binder according to the invention or the aqueous alkyd system can be used as such or mixed with further, generally film-forming, polymers as a binder composition in aqueous coating compositions, such as dye or lacquer mixtures.
  • aqueous coating compositions such as dye or lacquer mixtures.
  • the hybrid binder according to the invention can also be used as a component in the production of adhesives, sealants, plastic cleaning, paper coating slips, fiber webs, and coating compositions for organic substrates and for the modification of mineral binders.
  • the photoinitiator used in the hybrid binder according to the invention or in the aqueous alkyd system is understood as meaning, for example, benzophenone or acetophenone or one or more non-monoethylenically unsaturated acetophenone or benzophenone derivatives or a mixture of these active compounds, such as benzophenone / 4-methylbenzophenone or 2,4 , 6-trimethylbenzophenone.
  • Other suitable photoinitiators are described in EP 417 568, page 3, line 39 to page 7, line 51 and this disclosure is explicitly referenced.
  • Photoinitiators known to those skilled in the art may be used as further photoinitiators, for example those in Advances in Polymer Science, Volume 14, Springer Berlin 1974 or in KK Dietliker, Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, PKT Oldring (Eds), SITA Technology Ltd, London.
  • Suitable examples are phosphine oxides, ⁇ -hydroxy-alkyl-aryl ketones, thioxanthones, anthraquinones, benzoins and benzoin ethers, ketals, imidazoles or phenylglyoxylic acids or those as described in WO 2006/005491 A1, page 21, line 18 to page 22, line 2 (corresponding to US 2006/0009589 A1, paragraph [0150]), which is hereby incorporated by reference into the present disclosure.
  • a further subject of the invention is a coating composition in the form of an aqueous composition containing the aqueous hybrid binder according to the invention, or the aqueous alkyd system as defined above.
  • the hybrid binder according to the invention or the aqueous alkyd system is preferably used in aqueous paints.
  • These paints are for example in the form of an unpigmented system (clearcoat) or a pigmented system.
  • the proportion of pigments can be described by the pigment volume concentration (PVK).
  • These dispersions are preferably used in formulations having a PVK ⁇ 50, more preferably PVK ⁇ 40.
  • Suitable fillers in clearcoat systems are z. As matting agents, which greatly affect the desired gloss. Matting agents are usually transparent and can be both organic and inorganic. Inorganic fillers based on silica are the most suitable and are widely available commercially. Examples are the Syloid® brands from WR Grace & Company and the Acematt® brands from Evonik GmbH. Organic matting agents are available, for example, from the BYK-Chemie GmbH under the Ceraflour® and the Ceramat® grades, from Deuteron GmbH, under the Deuteron MK® brand.
  • fillers for emulsion paints are aluminosilicates such as feldspars, silicates such as kaolin, talc, mica, magnesite, alkaline earth carbonates such as calcium carbonate, for example in the form of calcite or chalk, magnesium carbonate, dolomite, alkaline earth sulfates such as calcium sulfate, silica, etc.
  • Naturally finely divided fillers are preferred.
  • the fillers can be used as individual components. In practice, however, filler mixtures have proven particularly useful, for. Calcium carbonate / kaolin, calcium carbonate / talc.
  • Glossy paints generally have only small amounts of very finely divided fillers or contain no fillers.
  • Finely divided fillers can also be used to increase the hiding power and / or to save on white pigments.
  • blends of color pigments and fillers are preferably used.
  • Suitable pigments are, for example, inorganic white pigments, such as titanium dioxide, preferably in rutile form, barium sulfate, zinc oxide, zinc sulfide, basic lead carbonate, antimony trioxide, lithopones (zinc sulfide + barium sulfate) or colored pigments, for example iron oxides, carbon black, graphite, zinc yellow, zinc green, ultramarine, Manganese black, antimony black, manganese violet, Paris blue or Schweinfurter green.
  • the dispersion paints according to the invention may also contain organic color pigments, eg. B. Sepia, Cambogia,
  • Kasseler Braun Toluidine Red, Para red, Hansa Yellow, Indigo, azo dyes, anthraquinoid and indigo dyes as well as dioxazine, quinacridone, phthalocyanine, isoindolinone and metal complex pigments.
  • synthetic white pigments with air inclusions to increase light scattering such as the Ropaque® and AQACell® dispersions.
  • Luconyl® grades from BASF SE such as e.g. Lyconyl® Yellow, Luconyl® Brown and Luconyl® Red, especially the transparent variants.
  • the coating composition (aqueous coating material) according to the invention may optionally contain additional film-forming polymers, pigment and other auxiliaries.
  • auxiliaries include wetting or dispersing agents, such as sodium, potassium or ammonium polyphosphates, alkali metal and ammonium salts of acrylic or maleic anhydride copolymers, polyphosphonates, such as 1-hydroxyethane-1, 1-diphosphonsauresodium and Naphthalinsulfonklaresalze, in particular their sodium salts ,
  • film-forming aids More important are the film-forming aids, thickeners and defoamers.
  • suitable film-forming aids are Texanol.RTM. From Eastman Chemicals and the glycol ethers and esters, for example commercially available from BASF SE, under the names Solvenon.RTM. And Lusolvan.RTM., And from Dow under the trade names Dowanol.RTM.
  • the amount is preferably ⁇ 10 wt .-% and particularly preferably ⁇ 5 wt .-% of the total formulation. It is also possible to formulate completely without solvents.
  • Further suitable auxiliaries are leveling agents, defoamers, biocides and thickeners. Suitable thickeners are z. B.
  • Associative thickener such as polyurethane thickener.
  • the amount of thickener is preferably less than 2.5 wt .-%, more preferably less than 1, 5 wt .-% thickener, based on solids content of the paint. Further formulations for wood coatings are described in detail in "water-based acrylates for decorative coatings" by the authors M. Schwartz and R. Baumstark, ISBN 3-87870-726-6.
  • the preparation of the paint according to the invention is carried out in a known manner by mixing the components in mixing devices customary for this purpose. It has proven useful to prepare an aqueous paste or dispersion from the pigments, water and optionally the adjuvants, and then first the polymeric binder, d. H. as a rule, to mix the aqueous dispersion of the polymer with the pigment paste or pigment dispersion.
  • the paint according to the invention can be applied to substrates in the usual way, for. B. by brushing, spraying, dipping, rolling, knife coating.
  • the paints of the invention are characterized by easy handling, good processing properties and high early hardness.
  • the paints are low in emissions. They have good performance properties, eg. B. a good water resistance, good wet adhesion, especially on alkyd paints, good blocking resistance, a good recoatability and they show a good course when applied.
  • the tool used can be easily cleaned with water.
  • the solids content (FG) was generally determined by drying a defined amount of the aqueous binder (about 1 g) in an aluminum crucible with an inner diameter of about 5 cm at 140 ° C. in a drying oven to constant weight. Two separate measurements were made. The values given in the examples represent the mean value of the respective two measurement results.
  • the water-dilutable alkyd resin WorleeSol® 61 E was previously adjusted to a solids content of 40% and a pH of about 8 with a 25% strength by weight aqueous ammonia solution and demineralized water.
  • Feed 2 393 g of a 40% aqueous solution of WorleeSol 61 E, which
  • Feed 3 72.2 g of a 2.5% aqueous solution of sodium peroxodisulfate
  • Feed 3 When Feed 3 was ended, 22.6 g of rinse water were metered in, followed by postpolymerization for 30 minutes. Feed 2 was metered in over 1 h and then neutralized with 1.81 g of a 25% aqueous solution of ammonia.
  • the coating to be tested was knife-coated with an Erichsen film applicator (300 ⁇ wet) on a 38 ⁇ 7 cm glass plate. After drying at room temperature, three measured values were blotted on three places of the glass plate. The measurement was carried out according to König (DIN EN ISO 1522).
  • a film was knife-dried and dried in the absence of light for 3 days. Then, the film was stored in a light position and the development of the pendulum hardness was followed by measuring each at 24, 72 and 168 hours. As a comparison, the hardness development of a film of the pure binder was used.
  • Example 1 WorleeSol 61 E (oxidatively drying, water-reducible alkyd from the company Worlee)
  • Example 2 WorleeSol E 150 W (oxidatively drying, water-based PU alkyd emulsion from Worlee)
  • Pendulum hardness [s] 24 h 72 h 168 h
  • Example 4 Acrylate / Alkyd Hybrid Using WorleeSol 61 E as Alkyd Part (oxidatively drying, water-reducible alkyd from the company Worlee)
  • Example 5 Acrylate / Alkyd Hybrid Using WorleeSol E 150 W as Alkyd Part (oxidatively drying, water-based PU alkyd emulsion from Worlee)
  • Example 6 Acrylate / Alkyd Hybrid Using WorleeSol E 280 W as Alkyd Part (non-oxidatively drying, water-based PU alkyd emulsion from Worlee)
  • Pendulum hardness [s] 24 h 72 h 168 h

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Die vorliegende Erfindung betrifft wässrige Hybridbindemittel enthaltend eine wässrige Polymerdispersion (PD), sowie 0,01 -5 Gew.-% eines Photoinitiators sowie wässrige Alkydsysteme enthaltend ein wasserlösliches Alkydharz oder eine wäßrige Alkyd-oder Polyurethan-Emulsion bzw. -Dispersion, sowie 0,01 -5 Gew.-% eines Photoinitiators, deren Verwendung in Beschichtungsmitteln, insbesondere in Anstrichmitteln.

Description

Verwendung wässriger Hybridbindemittel und Alkydsysteme für Beschichtungsmittel
Beschreibung Die vorliegende Erfindung betrifft wässrige Hybridbindemittel enthaltend eine wässrige Polymerdispersion (PD), sowie 0,01 - 5 Gew.-% eines Photoinitiators sowie wässrige Alkydsysteme enthaltend ein wasserlösliches Alkydharz oder eine wäßrige Alkyd- oder Polyurethanalkyd- Emulsion bzw. -Dispersion, sowie 0,01 - 5 Gew.-% eines Photoinitiators, deren Verwendung in Beschichtungsmitteln, insbesondere in Anstrichmitteln.
Wasserbasierte Alkyde und entsprechende Alkyd/Acrylathybride zeigen in Anstrichmitteln (insb. in Hochglanzlacken) unter Standardbedingungen eine nicht optimale Härteentwicklung, d.h. entsprechende Lacke bleiben oft zu lange weich und klebrig, nachdem sie auf einem Substrat aufgetragen sind. Die notwendige Härteentwicklung entsteht durch eine oxidative Vernetzung der Alkyde bzw. des Alkydanteils und findet unter Einfluss von Luftsauerstoff statt. Im Falle von wasserbasierten Systemen ist diese Art von Vernetzung aber ziemlich langsam im Vergleich zu lösemittelbasierten Lacken. Insbesondere in den Hybridsystemen ist sie noch problematischer, da der Anteil an vernetzenden Gruppen geringer ist. Um diese Vernetzung zu beschleunigen können Sikkative eingesetzt werden. Falls die oxidative Trocknung schnell verlaufen muss, was oft erwünscht ist, müssen größere Mengen dieser Sikkative oder Trocknungsstoffe eingesetzt werden. Ein gravierender Nachteil dieser Stoffe ist allerdings, dass sie auf Schwermetallen basieren und je nach Art des eingesetzten Metalls die Umweltverträglichkeit des Lacks verringern (siehe auch U.Poth, Polyester und Alkydharze, ISBN 3-87870-792-4). Wenn größere Mengen Sikkative eingesetzt werden ist ein zusätzlicher Nachteil, dass die Topfzeit und Haltbarkeit des Lacks sich verringert: sobald Kontakt mit Luftsauerstoff stattfindet fängt der Lack schon in seinem Gebinde an zu vernetzen.
US 2008/0287581 beschreibt eine wässrige Polymerdispersion enthaltend ein zinkmodifiziertes Polymer und dessen Verwendung in Anstrichmitteln. Hier übernimmt die Zink-haltige Komponente die Funktion der Sikkative.
Die EP 2009072 beschreibt eine Acetoacetoxyethyl(meth)acrylat (AAEM) enthaltende wäßrige Polymerzusammensetzung für dekorative und schützende Beschichtungen, die 8-35% eines autoxidierbaren Materials (z.B. eines Alkyds) durch Kaitabmischung oder durch Zugabe während der Formulierung enthält. Über die Härteentwicklung und deren Ausmaß wird darin nichts offenbart.
EP 874 875 offenbart eine Hybridbindemittelzusammensetzung auf Wasserbasis sowie deren Verwendung als Komponente in einer Färb- oder Lackmischung, wobei die
Hybridbindemittelzusammensetzung einen Trockengehaltanteil von 60 bis 95 Gew.-% besitzt. In WO 2010/040844 werden Hybridbindemittel beschrieben hergestellt mittels eines Miniemul- sionpolymerisationsprozesses. Zu den formulierten Lacksystemen wurden herkömmliche Sikkative zugegeben damit eine akzeptable Härteentwicklung der Beschichtungen stattfinden kann. Die WO 2010/1 12474 beschreibt Methacrylatpolymeren hergestellt mittels Emulsionspolymerisation enthaltend (Meth)acrylat-Monomere mit oxidativ-vernetzbaren Seitengruppen. Durch bevorzugte Verwendung co-polymerisierbarer Photoinitiatoren konnte eine gute Härteentwicklung der Beschichtung nach UV-Bestrahlung erzielt werden.
Beschichtungsmittel die reaktive Gruppen enthalten und durch UV-Strahlung gehärtet werden, sind bekannt aus WO 98/033855. Nachteil von solchen Systemen ist, dass sie unter Ausschluss von Luftsauerstoff durch UV-Bestrahlung mit sehr hohen Bestrahlungsenergien gehärtet werden müssen. Ohne diese hohen Lichtenergien oder in Gegenwart von Sauerstoff ist die Qualität der entsprechenden Beschichtungen nicht ausreichend.
Die Zusammensetzungen des Standes der Technik haben den Nachteil, dass sie in Anstrichmitteln unter Standardbedingungen eine nicht optimale Härteentwicklung zeigen und entsprechen- de Lacke zu lange weich und klebrig bleiben falls keine Sikkative auf Basis Schwermetalle eingesetzt werden oder keine UV-Härtung erfolgt.
Die Aufgabe der Erfindung bestand daher in der Entwicklung eines Bindemittels, das sich durch eine verbesserte Frühhärteentwicklung auszeichnet.
Erfindungsgemäß gelöst wurde die Aufgabe durch ein wässriges Hybridbindemittel, enthaltend eine wässrige Polymerdispersion (PD), sowie 0,01 - 5 Gew.-% eines Photoinitiators sowie durch wässrige Alkydsysteme enthaltend ein wasserlösliches Alkydharz oder eine wäßrige Alkyd- o- der Polyurethanalkyd-Emulsion bzw. -Dispersion, sowie 0,01 - 5 Gew.-% eines Photoinitiators. Zur Härtung der Filme enthaltend die erfindungsgemäßen Hybridbindemittel bzw. die wässrigen Alkydsysteme bedarf es keiner zusätzlichen Bestrahlung.
Die wässrige Polymerdispersion (PD) ist erhältlich durch radikalische Emulsionspolymerisation von
(a) mindestens einem α,β-ethylenisch ungesättigten Monomer (M)
(b) sowie gegebenenfalls wenigstens einem weiteren Monomer (M1 ) zu einem Polymer (P)
(c) gegebenenfalls anschließender chemischer Desodorierung und
(d) Zugabe mindestens eines wasserlöslichen Alkydharzes mit einem gewichtsmittleren Molekulargewicht zwischen 5000 und 40 000 Da oder mindestens einer wäßrigen Alkyd- o- der Polyurethan-Alkydemulsion,
dadurch gekennzeichnet, dass die Zugabe des Alkydharzes, der Alkyd- oder Polyurethan-Alkydemulsion bzw. -Dispersion entweder
i. im Anschluss an die Polymerisation von M und M1 und gegebenenfalls der chemischen Desodorierung bei Raumtemperatur, ii. im Anschluss an die Polymerisation von M und M1 mit einer Nachrührzeit von 0-2 h oder
iii. im Anschluss an die chemische Desodorierung mit einer Nachrührzeit von 0-2 h erfolgt,
wobei die Temperatur bei der Zugabe nach (ii) bzw. (iii) 60 bis 99 °C, bevorzugt 70 bis
95°C und insbesondere 80 bis 90 °C beträgt.
Ein weiterer Gegenstand der Erfindung sind ebenfalls Beschichtungsmittel, insbesondere Anstrichmittel enthaltend die erfindungsgemäßen Hybridbindemittel bzw. die wässrigen Alkyd- syteme sowie deren Herstellung und Verwendung.
Ein weiterer Gegenstand der Erfindung sind Beschichtungsmittel in Form einer wässrigen Zusammensetzung, enthaltend: - wenigstens ein erfindungsgemäßes Hybridbindemittel oder ein wässriges Alkydsystem, wie im Folgenden definiert,
gegebenenfalls wenigstens einen anorganischen Füllstoff und/oder anorganisches Pigment,
übliche Hilfsmittel, und
- Wasser auf 100 Gew.-%.
Das erfindungsgemäße Hybridbindemittel enthält die erfindungsgemäße Polymerdispersion (PD) sowie 0,01 - 5 Gew.-% eines Photoinitiators. Das erfindungsgemäße wässrige Alkydsystem enthält mindestens ein wasserlösliches Alkyd- harz oder eine wäßrige Alkyd- oder Polyurethanalkyd-Emulsion bzw. -Dispersion, sowie 0,01 - 5 Gew.-% eines Photoinitiators.
Die Zugabe des wasserlöslichen Alkydharzes oder der wäßrigen Alkyd- oder Polyurethan- Alkyd-Emulsion bzw. -Dispersion zu der Polymerdispersion (PD) erfolgt vorzugsweise nach der Emulsionspolymerisation zur Herstellung des Poymers (P). Die Zugabe des wasserlöslichen Alkydharzes oder der wäßrigen Alkyd- oder Polyurethan-Alkyd-Emulsion zu der Polymerdispersion (PD) kann direkt im Anschluß an die Polymerisation, d.h. direkt nach Beendigung des Initi- atorzulaufs erfolgen. Bevorzugt erfolgt die Zugabe nach Beendigung der Polymerisation und der, wie zuvor definierten Nachrührzeit. Besonders bevorzugt erfolgt die Zugabe nach der chemischen Desodorierung. Ganz besonders bevorzugt erfolgt die Zugabe nach der chemischen Desodorierung einschließlich der zuvor definierten Nachrührzeit. Die Nachrührzeit beträgt 0 bis 2 h, bevorzugt weniger als 1 h, besonders bevorzugt 30 min. Die Zugabe des Photoinitators zur Herstellung des erfindungsgemäßen Hybridbindemittels erfolgt bevorzugt in die auf Raumtemperatur (23 °C) abgekühlte Polymerdispersion (PD), kann aber auch während der Polymerisation erfolgen. Zur Herstellung des wässrigen Alkydsystems wird der Photoinitiator dem wasserlöslichen Al- kydharz oder der wäßrigen Alkyd- oder Polyurethanalkyd-Emulsion bzw. -Dispersion bei Raumtemperatur zugesetzt.
Der erfindungsgemäßen Photoinitiator wird in Mengen von 0,01 - 5 Gew.-%, bevorzugt 0,1 - 4- Gew.-% eingesetzt, jeweils bezogen auf den Feststoffgehalt des Hybridbindemittels bzw. des wässrigen Alkydsystems.
Unter der Frühhärteentwicklung versteht man den Anstieg der Härte im Film innerhalb der ersten Zeit nach dem Aufziehen (bis 3 Tage). Gemessen wird sie über die Pendelhärte. Sie kann durch Sikkativierung beschleunigt werden.
Die erfindungsgemäß eingesetzte Polymerdispersion (PD) enthält vorzugsweise 5-60 Gew.-% (fest), besonders bevorzugt 10-50 Gew.-% (fest), bezogen auf das Gesamtgewicht des Hyb- ridbindemittels, wenigstens eines wasserlöslichen Alkydharzes oder einer wäßrigen Alkyd- oder Polyurethan-AI kyd-Emulsion.
Der erfindungsgemäße Einsatz der wasserlöslichen Alkydharze oder der wäßrigen Alkyd- oder Polyurethan-Alkyd-Emulsionen bzw. -Dispersionen bringt den folgenden Vorteil mit sich:
Erhöhung des Glanzes von Beschichtungsmitteln (Anstrichmitteln), speziell von Glanzfarben auf Basis von Acrylatdispersionen bei einer gleichzeitig (im Vergleich zu anderen Hybridisierungsverfahren) reduzierten Menge an Acrylatrestmonomeren.
Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck Alkyl geradkettige und verzweigte Alkylgruppen. Geeignete kurzkettige Alkylgruppen sind z. B. geradkettige oder verzweigte Ci- C7-Alkyl-, bevorzugt Ci-C6-Alkyl- und besonders bevorzugt Ci-C4-Alkylgruppen. Dazu zählen insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1 ,2-Dimethylpropyl, 1 ,1 -Dimethylpropyl, 2,2- Dimethylpropyl, 1 -Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl,
1 .2- Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1 ,1 -Dimethylbutyl, 2,2-Dimethylbutyl,
3.3- Dimethylbutyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1 -Ethylbutyl, 2-Ethylbutyl, 1 - Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1 -Propylbutyl etc. Geeignete längerkettige Cs-Cso-Alkylgruppen sind geradkettige und verzweigte Alkyl-gruppen. Bevorzugt handelt es sich dabei um überwiegend lineare Alkylreste, wie sie auch in natürlichen oder synthetischen Fettsäuren und Fettalkoholen sowie Oxoalkoholen vorkommen. Dazu zählen z. B. n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n- Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl etc. Der Ausdruck Alkyl um- fasst unsubstituierte und substituierte Alkylreste.
Die vorstehenden Ausführungen zu Alkyl gelten auch für die Alkylteile in Arylalkyl. Bevorzugte Arylalkylreste sind Benzyl und Phenylethyl.
C8-C32-Alkenyl steht im Rahmen der vorliegenden Erfindung für geradkettige und verzweigte Alkenylgruppen, die einfach, zweifach oder mehrfach ungesättigt sein können. Vorzugsweise handelt es sich um Cio-C2o-Alkenyl. Der Ausdruck Alkenyl umfasst unsubstituierte und substituierte Alkenylreste. Speziell handelt es sich dabei um überwiegend lineare Alkenylreste, wie sie auch in natürlichen oder synthetischen Fettsäuren und Fettalkoholen sowie Oxoalkoholen vorkommen. Dazu zählen insbesondere Octenyl, Nonenyl, Decenyl, Undecenyl, Dodecenyl, Tride- cenyl, Tetradecenyl, Pentadecenyl, Hexadecenyl, Heptadecenyl, Octadecenyl, Nonadecenyl, Linolyl, Linolenyl, Eleostearyl und Oleyl (9-Octadecenyl). Der Ausdruck Alkylen im Sinne der vorliegenden Erfindung steht für geradkettige
oder verzweigte Alkandiyl-Gruppen mit 1 bis 7 Kohlenstoffatomen, z. B. Methylen, 1 ,2-Ethylen, 1 ,3-Propylen, etc.
Cycloalkyl steht vorzugsweise für C4-C8-Cycloalkyl, wie Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl.
Der Ausdruck Aryl umfasst im Rahmen der vorliegenden Erfindung ein- oder mehrkernige aromatische Kohlenwasserstoffreste, die unsubstituiert oder substituiert sein können. Der Ausdruck Aryl steht vorzugsweise für Phenyl, Tolyl, Xylyl, Mesityl, Duryl, , Fluorenyl, Anthracenyl, Phe- nanthrenyl oder Naphthyl, besonders bevorzugt für Phenyl oder Naphthyl, wobei diese A- rylgruppen im Falle einer Substitution im Allgemeinen 1 , 2, 3, 4 oder 5, vorzugsweise 1 , 2 oder 3 Substituenten tragen können.
Zur Herstellung der Polymerdispersion (PD) wird wenigstens ein a, ß-ethylenisch ungesättigtes Monomer (M) eingesetzt, das vorzugsweise ausgewählt ist aus Estern α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit Ci-C2o-Alkanolen, Vinylaromaten, Estern von Vinylal- kohol mit Ci-Cso-Monocarbonsäuren, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, Viny- lidenhalogeniden, monoethylenisch ungesättigten Carbon- und Sulfonsäuren, phosphorhaltigen Monomeren, Estern α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C2-C30- Alkandiolen, Amiden α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C2-C30-
Aminoalkoholen, die eine primäre oder sekundäre Aminogruppe aufweisen, primären Amiden a, ß -ethylenisch ungesättigter Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivaten, N-Vinyllactamen, offenkettigen N-Vinylamidverbindungen, Estern von Allylalkohol mit C1-C30- Monocarbonsäuren, Estern von α, ß -ethylenisch ungesättigten Mono- und Dicarbonsauren mit Aminoalkoholen, Amiden α, ß -ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, welche mindestens eine primäre oder sekundäre Aminogruppe aufweisen,
Ν,Ν-Diallylaminen, N,N-Diallyl-N-alkylaminen, vinyl- und allylsubstituierten Stickstoffhetero- cyclen, Vinylethern, C2-C8-Monoolefinen, nicht aromatischen Kohlenwasserstoffen mit mindestens zwei konjugierten Doppelbindungen, Polyether(meth)acrylaten, Harnstoffgruppen aufweisenden Monomeren und Mischungen davon. Geeignete Ester α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit
Ci-C2o-Alkanolen sind Methyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat,
Ethylethacrylat, n-Propyl(meth)acrylat, lsopropyl(meth)acrylat, n-Butyl(meth)acrylat, sec- Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Hexyl(meth)acrylat, n- Heptyl(meth)acrylat, n-Octyl(meth)acrylat, 1 ,1 ,3,3-Tetramethylbutyl(meth)acrylat, Ethylhe- xyl(meth)acrylat, n-Nonyl(meth)acrylat, n-Decyl(meth)acrylat, n-Undecyl(meth)acrylat, Tride- cyl(meth)acrylat,
Myristyl(meth)acrylat, Pentadecyl(meth)acrylat, Palmityl(meth)acrylat,
Heptadecyl(meth)acrylat, Nonadecyl(meth)acrylat, Arachinyl(meth)acrylat,
Behenyl(meth)acrylat, Lignoceryl(meth)acrylat, Cerotinyl(meth)acrylat,
Melissinyl(meth)acrylat, Palmitoleinyl(meth)acrylat, Oleyl(meth)acrylat,
Linolyl(meth)acrylat, Linolenyl(meth)acrylat, Stearyl(meth)acrylat,
Lauryl(meth)acrylat und Mischungen davon.
Bevorzugt als Vinylaromaten sind Styrol, 2-Methylstyrol, 4-Methylstyrol, 2-(n-Butyl)styrol, 4-(n- Butyl)styrol, 4-(n-Decyl)styrol und besonders bevorzugt Styrol.
Geeignete Ester von Vinylalkohol mit Ci-Cso-Monocarbonsäuren sind z. B. Vinylformiat, Vi- nylacetat, Vinylpropionat, Vinylbutyrat, Vinyllaurat, Vinylstearat, Vinylpropionat, Versaticsäure- vinylester und Mischungen davon.
Geeignete ethylenisch ungesättigte Nitrile sind Acrylnitril, Methacrylnitril und Mischungen davon.
Geeignete Vinylhalogenide und Vinylidenhalogenide sind Vinylchlorid, Vinylidenchlorid, Vinyl- fluorid, Vinylidenfluorid und Mischungen davon.
Geeignete ethylenisch ungesättigte Carbonsäuren, Sulfonsäuren oder deren Derivate sind Ac- rylsäure, Methacrylsäure, Ethacrylsäure, a-Chloracrylsäure, Crotonsäure, Maleinsäure, Maleinsäureanhydrid, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure, Fumarsäure, die Halbester von monoethylenisch ungesättigten Dicarbonsäuren mit 4 bis 10, vorzugsweise 4 bis 6 C-Atomen, z. B. Maleinsäuremonomethylester, Vinylsulfonsäure, Allylsul- fonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, Sulfopropylmethacrylat, 2-Hydroxy-3-acryloxypropylsulfonsäure, 2-Hydroxy-3-methacryloxypropylsulfonsäure, Styrolsul- fonsäuren und 2-Acrylamido-2-methylpropansulfonsäure. Geeignete Styrolsulfonsäuren und Derivate davon sind Styrol-4-sulfonsäure und Styrol-3-sulfonsäure und die Erdalkali- oder Alkalimetallsalze davon, z. B. Natrium-styrol-3-sulfonat und Natrium-styrol-4-sulfonat. Besonders bevorzugt sind Acrylsäure, Methacrylsäure und Mischungen davon.
Beispiele für phosphorhaltige Monomere sind z. B. Vinylphosphonsäure und Allylphosphonsäu- re. Geeignet sind weiter die Mono- und Diester der Phosphonsaure und Phosphorsäure mit Hydroxyalkyl(meth)acrylaten, speziell die Monoester. Geeignet sind weiter Diester der Phos- phonsäure und Phosphorsäure die einfach mit einem Hydroxyalkyl(meth)acrylat und zusätzlich einfach mit einem davon verschiedenen Alkohol, z. B. einem Alkanol, verestert sind. Geeignete Hydroxyalkyl(meth)acrylate für diese Ester sind die im Folgenden als separate Monomere genannten, insbesondere 2-Hydroxyethyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat,
4-Hydroxybutyl(meth)acrylat, etc. Entsprechende Dihydrogenphosphatestermonomere umfas- sen Phosphoalkyl(meth)acrylate, wie 2-Phosphoethyl(meth)acrylat,
2- Phosphopropyl(meth)acrylat, 3-Phosphopropyl(meth)acrylat, Phosphobutyl(meth)acrylat und
3- Phospho-2-hydroxypropyl(meth)acrylat. Geeignet sind auch die Ester der Phosphonsäure und Phosphorsäure mit alkoxilierten Hydroxyalkyl(meth)acrylaten, z. B. die Ethylenoxidkondensate von (Meth)acrylaten, wie H2C=C(CH3)COO(CH2CH20)nP(OH)2 und
H2C=C(CH3)COO(CH2CH20)nP(=0)(OH)2, worin n für 1 bis 50 steht. Weiter geeignet sind Phosphoalkylcrotonate, Phosphoalkylmaleate, Phosphoalkylfumarate, Phosphodial- kyl(meth)acrylate, Phosphodialkylcrotonate und Allylphosphate. Weitere geeignete Phosphorgruppen-haltige Monomere sind in WO 99/25780 und US 4,733,005 beschrieben, worauf hier Bezug genommen wird.
Geeignete Ester α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit
C2-C3o-Alkandiolen sind z. B. 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat,
2- Hydroxyethylethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat,
3- Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat, 3-Hydroxybutylacrylat,
3-Hydroxybutylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat,
6-Hydroxyhexylacrylat, 6-Hydroxyhexylmethacrylat,
3-Hydroxy-2-ethylhexylacrylat, 3-Hydroxy-2-ethylhexylmethacrylat etc.
Geeignete primäre Amide α, ß -ethylenisch ungesättigter Monocarbonsäuren und deren N-Alkyl- und Ν,Ν-Dialkylderivate sind Acrylsäureamid, Methacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, N-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, N-(tert- Butyl)(meth)acrylamid, N-(n-Octyl)(meth)acrylamid, N-(1 , 1 ,3,3-
Tetramethylbutyl)(meth)acrylamid, N-Ethylhexyl(meth)acrylamid, N-(n-Nonyl)(meth)acrylamid, N-(n-Decyl)(meth)acrylamid, N-(n-Undecyl)(meth)acrylamid, N-Tridecyl(meth)acrylamid, N- Myristyl(meth)acrylamid, N-Pentadecyl(meth)acrylamid, N-Palmityl(meth)acrylamid,
N-Heptadecyl(meth)acrylamid, N-Nonadecyl(meth)acrylamid, N-Arachinyl(meth)acrylamid, N- Behenyl(meth)acrylamid, N-Lignoceryl(meth)acrylamid, N-Cerotinyl(meth)acrylamid, N- Melissinyl(meth)acrylamid,
N-Palmitoleinyl(meth)acrylamid, N-Oleyl(meth)acrylamid, N-Linolyl(meth)acrylamid,
N-Linolenyl(meth)acrylamid, N-Stearyl(meth)acrylamid, N-Lauryl(meth)acrylamid,
N,N-Dimethyl(meth)acrylamid, N,N-Diethyl(meth)acrylamid,
Morpholinyl(meth)acrylamid.
Geeignete N-Vinyllactame und deren Derivate sind z. B. N-Vinylpyrrolidon, N-Vinylpiperidon, N- Vinylcaprolactam, N-Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl- 2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2- caprolactam etc.
Geeignete offenkettige N-Vinylamidverbindungen sind beispielsweise N-Vinylformamid, N-Vinyl- N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N- Vinylpropionamid, N-Vinyl-N-methylpropionamid und N-Vinylbutyramid.
Geeignete Ester von α, ß -ethylenisch ungesättigten Mono- und Dicarbonsauren mit Aminoalko- holen sind N,N-Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N- Diethylaminoethylacrylat, N,N-Dimethylaminopropyl(meth)acrylat, N,N- Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.
Geeignete Amide α, ß -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit Diaminen, welche mindestens eine primäre oder sekundäre Aminogruppe aufweisen sind N-[2- (Dimethylamino)ethyl]acrylamid, N-[2-(Dimethylamino)ethyl]methacrylamid,
N-[3-(Dimethylamino)propyl]acrylamid, N-[3-(Dimethylamino)propyl]methacrylamid, N-[4- (Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)-butyl]methacrylamid,
N-[2-(Diethylamino)ethyl]acrylamid, N-[4-(Dimethylamino)cyclohexyl]acrylamid,
N-[4-(Dimethylamino)cyclohexyl]methacrylamid etc.
Geeignete Monomere (M) sind weiterhin Ν,Ν-Diallylamine und N,N-Diallyl-N-alkylamine und deren Säureadditionssalze und Quaternisierungsprodukte. Alkyl steht dabei vorzugsweise für Ci-C24-Alkyl. Bevorzugt sind N,N-Diallyl-N-methylamin und N,N-Diallyl-N,N-dimethylammonium- Verbindungen, wie z. B. die Chloride und Bromide.
Geeignete Monomere (M) sind weiterhin vinyl- und allylsubstituierte Stickstoffheterocyclen, wie N-Vinylimidazol, N-Vinyl-2-methylimidazol, vinyl- und allylsubstituierte heteroaromatische Verbindungen, wie 2- und 4-Vinylpyridin, 2- und 4-Allylpyridin, und die Salze davon.
Geeignete C2-C8-Monoolefine und nicht aromatische Kohlenwasserstoffe mit mindestens zwei konjugierten Doppelbindungen sind z. B. Ethylen, Propylen, Isobutylen, Isopren, Butadien, etc.
Geeignete Harnstoffgruppen aufweisende Monomere sind z. B. N-Vinyl- oder N-Allylharnstoff oder Derivate des lmidazolidin-2-ons. Dazu zählen N-Vinyl- und N-Allylimidazolidin-2-on, N- Vinyloxyethylimidazolidin-2-οη, N-(2-(Meth)acrylamidoethyl)imidazolidin-2-on,
N-(2-(Meth)acryloxyethyl)imidazolidin-2-on (= 2-Ureido(meth)acrylat), N-[2-((Meth)acryloxy- acetamido)ethyl]imidazolidin-2-on etc. Bevorzugte Harnstoffgruppen aufweisende Monomere sind N-(2-Acryloxyethyl)imidazolidin-2-on und N-(2-Methacryloxyethyl)imidazolidin-2-on. Besonders bevorzugt ist N-(2- Methacryloxyethyl)imidazolidin-2-on (2-Ureidomethacrylat, UMA).
Die zuvor genannten Monomere (M) können einzeln, in Form von Mischungen innerhalb einer Monomerklasse oder in Form von Mischungen aus verschiedenen Monomerklassen eingesetzt werden.
Vorzugsweise werden zur Emulsionspolymerisation mindestens 40 Gew.-%, besonders bevorzugt mindestens 60 Gew.-%, insbesondere mindestens 80 Gew.-%, bezogen auf das Gesamt- gewicht der Monomere (M), wenigstens eines Monomers (M1 ) eingesetzt, das ausgewählt ist unter Estern α,β-ethylenisch ungesättigter Mono- und Dicarbonsäuren mit Ci-C2o-Alkanolen, Vinylaromaten, Estern von Vinylalkohol mit Ci-Cso-Monocarbonsäuren, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, Vinylidenhalogeniden und Mischungen davon (Hauptmonomere). Vorzugsweise werden die Monomere( M1 ) in einer Menge von bis zu 95 Gew.-%, bezogen auf das Gesamtgewicht der Monomere (M), zur Emulsionspolymerisation eingesetzt.
Die Hauptmonomere (M1 ) sind vorzugsweise ausgewählt unter
Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, lsopropyl(meth)acrylat, n-Butyl(meth)acrylat, sec.-Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, n-Pentyl(meth)acrylat, n- Hexyl(meth)acrylat, n-Heptyl(meth)acrylat, n-Octyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, lsobornyl(meth)acrylat, Styrol, 2-Methylstyrol, Vinylacetat, Acrylnitril, Methacrylnitril und
Mischungen davon.
Zusätzlich zu wenigstens einem Hauptmonomer (M1 ) kann bei der radikalischen Emulsionspo- lymerisation zur Herstellung von (PD) wenigstens ein weiteres Monomer (M2) eingesetzt werden, das allgemein in untergeordnetem Maße vorliegt (Nebenmonomere). Vorzugsweise werden zur Emulsionspolymerisation bis zu 60 Gew.-%, besonders bevorzugt bis zu 40 Gew.-%, insbesondere bis zu 20 Gew.-%, bezogen auf das Gesamtgewicht der Monomere (M), wenigstens eines Monomers (M2) eingesetzt, das ausgewählt ist unter ethylenisch ungesättigten Mo- no- und Dicarbonsäuren und den Anhydriden und Halbestern ethylenisch ungesättigter Dicarbonsäuren, (Meth)acrylamiden, Ci-Cio-Hydroxyalkyl(meth)acrylaten, C1-C10- Hydroxyalkyl(meth)acrylamiden und Mischungen davon. Vorzugsweise werden die Monomere (M2), soweit vorhanden, in einer Menge von mindestens 0,1 Gew.-%, besonders bevorzugt mindestens 0,5 Gew.-%, insbesondere mindestens 1 Gew.-%, bezogen auf das Gesamtgewicht der Monomere (M), zur Emulsionspolymerisation eingesetzt. Besonders bevorzugt werden zur Emulsionspolymerisation 0,1 bis zu 60 Gew.-%, bevorzugt 0,5 bis 40 Gew.-%, insbesondere 1 bis 20 Gew.-% wenigstens eines Monomers (M2) eingesetzt. Die Monomere (M2) sind speziell ausgewählt aus Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Acrylsäureamid, Methacrylsäureamid, 2- Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxyethylacrylamid, 2-
Hydroxyethylmethacrylamid, Acetoacetoxyethyl methacrylat (AAEM), Allylmethacrylat, Vinylme- thacrylat, Hydroxybutenylmethacrylat, Allyl- oder diallylester der Maleinsäure, Poly(allylglycidyl ether)und Mischungen davon, in Form verschiedener Produkte der Bezeichnung Bisomer® von Laporte Performance Chemicals, UK. Dazu zählt z. B. Bisomer® MPEG 350 MA, ein Methoxy- polyethylenglykolmonomethacrylat oder UMA. Insbesondere bevorzugt wird AAEM in Mengen von 0,1 bis 20, bevorzugt von 0,1 bis 4,9 Gew.-% eingesetzt.
Besonders geeignete Kombinationen an Hauptmonomeren (M1 ) für das erfindungsgemäße Verfahren sind beispielsweise: n-Butylacrylat, Methylmethacrylat;
n-Butylacrylat, Methylmethacrylat, Styrol;
n-Butylacrylat, Styrol, Butyl(meth)acrylat;
n-Butylacrylat, Ethylhexylacrylat, Styrol.
n-Butylacrylat, Styrol
n-Butylacrylat, n-Butyl(meth)acrylat, Methylmethacrylat
Die zuvor genannten besonders geeigneten Kombinationen an Hauptmonomeren (M1 ) können mit besonders geeigneten Monomeren (M2) kombiniert werden, die vorzugsweise ausgewählt sind unter Acrylsäure, Methacrylsäure, Acrylamid, Methacrylamid, AAEM, UMA oder Bisomer® und Mischungen davon.
Unter einem Alkydharz versteht man einen Polyester, der mit einem trocknenden Öl, einer Fettsäure oder dergleichen verestert ist (U. Poth, Polyester und Alkydharze, Vincentz Network 2005).
Unter einem wässrigen Alkydharz versteht man insbesondere eine, gegebenenfalls nach Neutralisation, wasserverdunnbare Alkydharzlosung basierend auf einem Alkydharz mit ausreichend hoher Säurezahl von vorzugsweise 20-80 mg KOH/g Alkydharz fest, und einem gewichtsmittle- ren Molekulargewicht von > 5000 und < 40000 Da, bevorzugt > 8000 und < 35000 Da und besonders bevorzugt > 10000 und < 35000 Da.
Die Molekulargewichte werden mit Größenausschlusschromatographie (SEC) bestimmt. Unter Säurezahl versteht man die Menge Kaliumhydroxid, ausgedrückt in mg, die notwendig ist um 1 g der Probe zu neutralisieren. Das verwendete Öl bzw. die Fettsäure ist die eigenschaftsbestimmende Komponente. Sie erlaubt eine Unterteilung nach dem Fettsäuretriacylglycerol-Gehalt (Ölgehalt, Öllänge) in kurzölige Alkydharze mit <40 %, mittelölige Alkydharze mit 40 -60 % und langölige Alkydharze mit >60 % Triacylglycerol, bezogen auf lösemittelfreies Alkydharz (Fettsäure-Gehalt ggf. in Tri- acylglycerol umrechnen, Faktor ca. 1 ,045) (Ölgehalt).
Der Feststoffgehalt charakterisiert nach allgemeiner Praxis den "Wirkstoffgehalt" der Dispersion. Die Dispersion wird üblicherweise bei einer Temperatur zwischen 100 und 140 °C bis zur Gewichtskonstanz getrocknet (siehe ISO-Norm 1625). Der Feststoffgehalt gibt die Trockenmasse im Vergleich zur Gesamtmasse (in %) an.
Die Trockenmasse umfasst das Polymerisat, Emulgatoren und anorganische Salze (aus Initiatorzersetzung und Neutralisierung). Zu den flüchtigen Bestandteilen zählen das Wasser und die Monomere, die bei der Polymerisation nicht umgesetzt wurden.
Der Ölgehalt der verwendeten Alkydharze beträgt 25-55%, der Feststoffgehalt beträgt in der Lieferform: 30-80%, in der Einsatzform (nach Verdünnung mit NH3 bzw. NaOH/Wasser) 35- 50%.
Bevorzugte Alkydharze sind beispielsweise die Produkte WorleeSol® 61 A, WorleeSol® 61 E, WorleeSol® 65A, der Firma Worlee, und Synthalat® W46 oder Synthalat® W48 , der Firma Syn- thopol.
Unter einer wäßrigen Alkydharzemulsion bzw. -Dispersion oder kurz Alkydemulsion versteht man Alkydharze, die ggf. mit Emulgatoren versetzt, in Wasser dispergiert werden. Im Vergleich zu wasserlöslichen oder verdünnbaren Alkydharzen eignen sich hierfür auch Alkyde mit höhe- ren mittleren Molmassen[ U. Poth, Polyester und Alkydharze, Vincentz Network 2005, S 183 f ].
Unter einer wäßrigen Polyurethan-Alkydharzemulsion versteht man ein Polyurethanmodifiziertes Alkydharz, welches in Wasser dispergiert wurde. Eine Urethanmodifizierung kann bei der Alkydsynthese zum Beispiel durch den Ersatz eines Teils des üblichen Phthalsäurean- hydrids durch ein Diisocyanat erfolgen [ U. Poth, Polyester und Alkydharze, Vincentz Network 2005, S 205 f ]. Eine Urethanmodifizierung kann des Weiteren durch eine Reaktion eines Al- kyds mit einem mindestens difunktionellen Polyisocyanat erfolgen[DE102006054237].
Bevorzugte Alkydharzemulsionen zeichnen sich durch einen Ölgehalt von 25-55 %und eine Säurezahl von 20-60 mg KOH/g aus.
Bevorzugte Alkydharzemulsionen bzw. Polyurethan-modifizierte Alkydharzemulsionen sind WorleeSol® E 150 W, WorleeSol® E 280 W, WorleeSol® E 530 W oder WorleeSol® E 927 W.
Bevorzugt werden zur Herstellung der Polymerdispersion (PD) wässrige Alkyd- oder Po- lyurethan-Alkydemulsionen eingesetzt. Bei der Herstellung der erfindungsgemäßen Polymerdispersionen kann zusätzlich zu den zuvor genannten Monomeren (M) wenigstens ein Vernetzer eingesetzt werden. Monomere, die eine vernetzende Funktion besitzen, sind Verbindungen mit mindestens zwei polymerisierbaren, ethylenisch ungesättigten, nichtkonjugierten Doppelbindungen im Molekül. Eine Vernetzung kann auch z. B. durch photochemische Aktivierung erfolgen. Dazu kann zur Herstellung von (PD) zusätzlich wenigstens ein Monomeren mit photoaktivierbaren Gruppen eingesetzt werden. Photoinitiatoren können auch separat zugesetzt werden. Eine Vernetzung kann auch z. B. durch funktionelle Gruppen erfolgen, welche mit dazu komplementären funktionellen Gruppen eine chemische Vernetzungsreaktion eingehen können. Dabei können die komplementären Gruppen beide an das Emulsionspolymerisat gebunden sein oder zur Vernetzung kann ein Vernetzer eingesetzt werden, der befähigt ist, mit funktionellen Gruppen des Emulsionspolymerisats eine chemische Vernetzungsreaktion eingehen zu können.
Geeignete Vernetzer sind z. B. Acrylester, Methacrylester, Allylether oder Vinylether von min- destens zweiwertigen Alkoholen. Die OH-Gruppen der zugrundeliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.
Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole wie 1 ,2-Ethandiol, 1 ,2- Propandiol, 1 ,3-Propandiol, 1 ,2-Butandiol, 1 ,3-Butandiol, 2,3-Butandiol, 1 ,4-Butandiol, But-2-en- 1 ,4-diol, 1 ,2-Pentandiol, 1 ,5-Pentandiol, 1 ,2-Hexandiol, 1 ,6-Hexandiol, 1 ,10-Decandiol, 1 ,2- Dodecandiol, 1 ,12-Dodecandiol, Neopentylglykol, 3-Methylpentan-1 ,5-diol, 2,5-Dimethyl-1 ,3- hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, 1 ,2-Cyclohexandiol, 1 ,4-Cyclohexandiol,
1 ,4-Bis(hydroxymethyl)cyclohexan, Hydroxypivalinsäure-neopentylglykolmonoester, 2,2-Bis(4- hydroxyphenyl)-propan, 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylenglykol, Triethyl- englykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol, 3- Thiapentan-1 ,5-diol, sowie Polyethylenglykole, Polypropylenglykole und Polytetrahydrofurane mit Molekulargewichten von jeweils 200 bis 10 000. Außer den Homopolymerisaten des Ethyl- enoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propylen- oxid oder Copolymerisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende Alkohole mit mehr als zwei OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit, 1 ,2,5-Pentantriol, 1 ,2,6-Hexantriol, Cyanursäu- re, Sorbitan, Zucker wie Saccharose, Glucose, Mannose. Selbstverständlich können die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden.
Weitere geeignete Vernetzer sind die Vinylester oder die Ester einwertiger, ungesättigter Alko- hole mit ethylenisch ungesättigten C3-C6-Carbonsäuren, beispielsweise
Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, 1 -Buten-3-ol, 5-Hexen-1 -ol, 1 -Octen-3-ol, 9-Decen-1 -ol, Dicyclopen- tenylalkohol, 10-Undecen-1 -ol, Zimtalkohol, Citronellol,
Crotylalkohol oder cis-9-Octadecen-1 -ol. Man kann aber auch die einwertigen, ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellithsäure, Phthalsäure, Terephthalsäure, Citronensäure oder Bernsteinsäure.
Weitere geeignete Vernetzer sind Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäure, Zimtsäure oder 10- Undecensäure. Geeignet als Vernetzer sind außerdem geradkettige oder verzweigte, lineare oder cyclische, aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, die bei aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen, z. B. Divi- nylbenzol, Divinyltoluol, 1 ,7-Octadien, 1 ,9-Decadien, 4-Vinyl-1 -cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20 000.
Als Vernetzer sind ferner geeignet die Acrylsäureamide, Methacrylsäureamide und N-Allylamine von mindestens zweiwertigen Aminen. Solche Amine sind z. B. 1 ,2-Diaminoethan, 1 ,3- Diaminopropan, 1 ,4-Diaminobutan, 1 ,6-Diaminohexan, 1 ,12-Dodecandiamin, Piperazin, Diethy- lentriamin oder Isophorondiamin. Ebenfalls geeignet sind die Amide aus Allylamin und ungesät- tigten Carbonsäuren, wie Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiwertigen Carbonsäuren, wie sie oben beschrieben wurden.
Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z. B. Triallylmethylammonium- chlorid oder -methylsulfat, als Vernetzer geeignet.
Geeignet sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen, beispielsweise von Harnstoff, Ethylenharnstoff, Propylen- harnstoff oder Weinsäurediamid, z. B. Ν,Ν'-Divinylethylenharnstoff oder Ν,Ν'- Divinylpropylenharnstoff.
Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan. Selbstverständlich können auch Mischungen der vorgenannten Verbindungen eingesetzt werden. Vorzugsweise werden wasserlösliche Vernetzer eingesetzt. Weiterhin zählen zu den vernetzenden Monomeren auch solche, die neben einer ethylenisch ungesättigten Doppelbindung eine reaktive funktionelle Gruppe, z. B. eine Aldehydgruppe, eine Ketogruppe oder eine Oxirangruppe aufweisen, die mit einem zugesetzten Vernetzer reagieren können. Vorzugsweise handelt es sich bei den funktionellen Gruppen um Keto- oder Aldehydgruppen. Die Keto- oder Aldehydgruppen sind vorzugsweise durch Copolymerisation von copo- lymerisierbaren, ethylenisch ungesättigten Verbindungen mit Keto- oder Aldehydgruppen an das Polymer gebunden. Geeignete derartige Verbindungen sind Acrolein, Methacrolein, Vinylal- kylketone mit 1 bis 20, vorzugsweise 1 bis 10 Kohlenstoffatomen im Alkylrest, Formylstyrol, (Meth-)acrylsäurealkylester mit ein oder zwei Keto- oder Aldehyd-, bzw. einer Aldehyd- und einer Ketogruppe im Alkylrest, wobei der Alkylrest vorzugsweise insgesamt 3 bis 10 Kohlenstoffatome umfasst, z. B. (Meth)acryloxyalkylpropanale, wie sie in der DE-A-2722097 beschrieben sind. Des Weiteren eignen sich auch N-Oxoalkyl(meth)acrylamide wie sie z. B. aus der US-A- 4226007, der DE-A-2061213 oder DE-A-2207209 bekannt sind. Besonders bevorzugt sind Ace- toacetyl(meth)acrylat, Acetoacetoxyethyl(meth)acrylat und insbesondere Diacetonacrylamid. Bei den Vernetzern handelt es sich vorzugsweise um eine Verbindung mit mindestens zwei funktionellen Gruppen, insbesondere zwei bis fünf funktionellen Gruppen, die mit den funktionellen Gruppen des Polymerisats, speziell den Keto- oder Aldehydgruppen, eine Vernetzungs- reaktion eingehen können. Dazu zählen z. B. Hydrazid-, Hydroxylamin- oder Oximether- oder Aminogruppen als funktionelle Gruppen für die Vernetzung der Keto- oder Aldehydgruppen. Geeignete Verbindungen mit Hydrazidgruppen sind z. B. Polycarbonsäurehydrazide mit einem Molgewicht von bis zu 500 g/mol. Besonders bevorzugte Hydrazidverbindungen sind Dicarbon- säuredihydrazide mit bevorzugt 2 bis 10 C-Atomen. Dazu zählen z. B. Oxalsäuredihydrazid, Malonsäuredihydrazid, Bernsteinsäuredihydrazid, Glutarsäuredihydrazid, Adipinsäuredihydra- zid, Sebazinsäuredihydrazid, Maleinsäuredihydrazid, Fumarsäuredihydrazid, Itaconsäuredihyd- razid und/oder Isophthalsäuredihydrazid. Von besonderem Interesse sind: Adipinsäuredihydra- zid, Sebazinsäuredihydrazid und Isophthalsäuredihydrazid. Geeignete Verbindungen mit Hydroxylamin- oder Oximethergruppen sind z. B. in WO 93/25588 genannt.
Auch durch eine entsprechende Additivierung der wässrigen Polymerdispersion (PD) kann zusätzlich eine Oberflächenvernetzung erzeugt werden. Dazu zählt z. B. Zugabe eines Photoinitiators oder Sikkativierung. Als Photoinitiatoren kommen solche in Frage, die durch Sonnenlicht angeregt werden, beispielsweise Benzophenon oder Benzophenonderivate. Zur Sikkativierung eignen sich die für wässrige Alkydharze empfohlenen Metallverbindungen, beispielsweise auf Basis von Co oder Mn (Überblick in U. Poth, Polyester und Alkydharze, Vincentz Network 2005, S 183 f).
Die vernetzende Komponente wird vorzugsweise in einer Menge von 0,0005 bis 5 Gew.-%, be- vorzugt 0,001 bis 2,5 Gew.-%, insbesondere 0,01 bis 1 ,5 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere (einschließlich des Vernetzers), eingesetzt.
Eine spezielle Ausführungsform sind Polymerdispersionen (PD), die keinen Vernetzer einpoly- merisiert enthalten.
Die radikalische Polymerisation des Monomergemischs ( M) kann in Gegenwart mindestens eines Reglers erfolgen. Regler werden vorzugsweise in einer Einsatzmenge von 0,0005 bis 5 Gew.-%, besonders bevorzugt von 0,001 bis 2,5 Gew.-% und insbesondere von 0,01 bis 1 ,5 Gew.-%, bezogen auf das Gesamtgewicht der zur Polymerisation eingesetzten Monomere, eingesetzt. Als Regler (Polymerisationsregler) werden allgemein Verbindungen mit hohen Übertragungskonstanten bezeichnet. Regler beschleunigen Kettenübertragungsreaktionen und bewirken damit eine Herabsetzung des Polymerisationsgrades der resultierenden Polymeren, ohne die Bruttoreaktions-Geschwindigkeit zu beeinflussen. Bei den Reglern kann man zwischen mono-, bi- oder polyfunktionalen Reglern unterscheiden, je nach Anzahl der funktionellen Gruppen im Molekül, die zu einer oder mehreren Kettenübertragungsreaktionen führen können. Geeignete Regler werden beispielsweise ausführlich beschrieben von K. C. Berger und G. Brandrup in J. Brandrup, E. H. Immergut, Polymer Handbook, 3. Aufl., John Wiley & Sons, New York, 1989, S. 11/81 - 11/141.
Als Regler eignen sich beispielsweise Aldehyde wie Formaldehyd, Acetaldehyd, Propionalde- hyd, n-Butyraldehyd, Isobutyraldehyd.
Ferner können auch als Regler eingesetzt werden: Ameisensäure, ihre Salze oder Ester, wie Ammoniumformiat, 2,5-Diphenyl-1 -hexen, Hydroxylammoniumsulfat, und Hydroxylammoniump- hosphat.
Weitere geeignete Regler sind Halogenverbindungen, z. B. Alkylhalogenide wie Tetrachlormethan, Chloroform, Bromtrichlormethan, Bromoform, Allylbromid und Benzylverbindungen wie Benzylchlorid oder Benzylbromid.
Weitere geeignete Regler sind Allylverbindungen, wie z. B. Allylalkohol, funktionalisierte Al- lylether, wie Allylethoxylate, Alkylallylether oder Glycerinmonoallylether. Bevorzugt werden als Regler Verbindungen eingesetzt, die Schwefel in gebundener Form enthalten.
Verbindungen dieser Art sind beispielsweise anorganische Hydrogensulfite, Disulfite und Dithionite oder organische Sulfide, Disulfide, Polysulfide, Sulfoxide und Sulfone. Dazu zählen Di-n-butylsulfid, Di-n-octylsulfid, Diphenylsulfid, Thiodiglykol, Ethylthioethanol, Diisopropyldisul- fid, Di-n-butyldisulfid, Di-n-hexyldisulfid, Diacetyldisulfid, Diethanolsulfid, Di-t-butyltrisulfid, Dime- thylsulfoxid, Dialkylsulfid, Dialkyldisulfid und/oder Diarylsulfid.
Geeignet als Polymerisationsregler sind weiterhin Thiole (Verbindungen, die Schwefel in Form von SH-Gruppen enthalten, auch als Mercaptane bezeichnet). Bevorzugt sind als Regler mono- , bi- und polyfunktionale Mercaptane, Mercaptoalkohole und/oder Mercaptocarbonsäuren. Beispiele für diese Verbindungen sind Allylthioglykolate,
Ethylthioglykolat, Cystein, 2-Mercaptoethanol, 1 ,3-Mercaptopropanol, 3-Mercaptopropan-1 ,2- diol, 1 ,4-Mercaptobutanol, Mercaptoessigsäure, 3-Mercaptopropionsäure, Mercaptobernstein- säure, Thioglycerin, Thioessigsäure, Thioharnstoff und Alkylmercaptane wie n-Butylmercaptan, n-Hexylmercaptan oder n-Dodecylmercaptan. Beispiele für bifunktionale Regler, die zwei Schwefelatome in gebundener Form enthalten sind bifunktionale Thiole wie z. B. Dimercaptopropansulfonsäure (Natriumsalz), Dimercaptobern- steinsäure, Dimercapto-1 -propanol, Dimercaptoethan, Dimercaptopropan, Dimercaptobutan, Dimercaptopentan, Dimercaptohexan, Ethylenglykol-bis-thioglykolate und Butandiol-bis- thioglykolat. Beispiele für polyfunktionale Regler sind Verbindungen, die mehr als zwei Schwefelatome in gebundener Form enthalten. Beispiele hierfür sind trifunktionale und/oder tetrafunktionale Mercaptane.
Alle genannten Regler können einzeln oder in Kombination miteinander eingesetzt werden. Ei- ne spezielle Ausführungsform betrifft Polymerdispersionen PD, die durch radikalische Emulsionspolymerisation ohne Zusatz eines Reglers hergestellt werden.
Zur Herstellung der Polymerisate können die Monomeren mit Hilfe von Radikale bildenden Initiatoren polymerisiert werden.
Als Initiatoren für die radikalische Polymerisation können die hierfür üblichen Peroxo- und/oder Azo-Verbindungen eingesetzt werden, beispielsweise Alkali- oder Ammoniumperoxidisulfate, Diacetylperoxid, Dibenzoylperoxid, Succinylperoxid, Di-tert.-butylperoxid, tert.-Butylperbenzoat, tert.-Butylperpivalat, tert.-Butylperoxy-2-ethylhexanoat, tert.-Butylpermaleinat, Cumolhydroper- oxid,
Diisopropylperoxidicarbamat, Bis-(o-toluoyl)peroxid, Didecanoylperoxid, Dioctanoylperoxid, Dilauroylperoxid, tert.-Butylperisobutyrat, tert.-Butylperacetat, Di-tert.-Amylperoxid, tert- Butylhydroperoxid, Azo-bis-isobutyronitril, 2,2'-Azo-bis-(2-amidinopropan)dihydrochlorid oder 2- 2'-Azo-bis-(2-methyl-butyronitril). Geeignet sind auch Gemische dieser Initiatoren.
Als Initiatoren können auch Reduktions-/Oxidations-(= Red-Ox)-lnitiator Systeme eingesetzt werden. Die Red-Ox-Initiator-Systeme bestehen aus mindestens einem meist anorganischen Reduktionsmittel und einem anorganischen oder organischen Oxidationsmittel. Bei der Oxidati- onskomponente handelt es sich z. B. um die bereits vorstehend genannten Initiatoren für die Emulsionspolymerisation. Bei der Reduktionskomponente handelt es sich z. B. um Alkalimetallsalze der schwefligen Säure, wie z. B. Natriumsulfit, Natriumhydrogensulfit, Alkalisalze der dischwefligen Säure wie Natriumdisulfit, Bisulfitadditionsverbindungen aliphatischer Aldehyde und Ketone, wie Acetonbisulfit oder Reduktionsmittel wie Hydroxymethansulfinsäure und deren Salze, oder Ascorbinsäure. Die Red-Ox-Initiator-Systeme können unter Mitverwendung löslicher Metallverbindungen, deren metallische Komponente in mehreren Wertigkeitsstufen auftreten kann, verwendet werden. Übliche Red-Ox-Initiator-Systeme sind z. B. Ascorbinsäu- re/Eisen(ll)sulfat/Natrium-peroxodisulfat, tert-Butylhydroperoxid/Natriumdisulfit, tert- Butylhydroperoxid/Na-Hydroxymethansulfinsäure. Die einzelnen Komponenten, z. B. die Reduktionskomponente, können auch Mischungen sein z. B. eine Mischung aus dem Natriumsalz der Hydroxymethansulfinsäure und Natriumdisulfit. Die Menge der Initiatoren beträgt im Allgemeinen 0,1 bis 10 Gew.-%, bevorzugt 0,1 bis 5 Gew.- %, bezogen auf alle zu polymerisierenden Monomeren. Es können auch mehrere, verschiedene Initiatoren bei der Emulsionspolymerisation Verwendung finden. Die Herstellung der Polymerdispersion (PD), erfolgt üblicherweise in Gegenwart wenigstens einer grenzflächenaktiven Verbindung. Eine ausführliche Beschreibung geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg Thieme Verlag, Stuttgart, 1961 , S. 41 1 bis 420. Geeignete Emulgatoren finden sich auch in Houben-Weyl, Methoden der organischen Chemie, Band 14/1 , Makromoleku- lare Stoffe, Georg Thieme Verlag, Stuttgart, 1961 , Seiten 192 bis 208.
Als Emulgatoren sind sowohl anionische, kationische als auch nichtionische Emulgatoren geeignet. Vorzugsweise werden als grenzflächenaktive Substanzen Emulgatoren eingesetzt, deren relative Molekulargewichte üblicherweise unterhalb derer von Schutzkolloiden liegen.
Brauchbare nichtionische Emulgatoren sind araliphatische oder aliphatische nichtionische Emulgatoren, beispielsweise ethoxylierte Mono-, Di- und Trialkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4-C10), Ethoxylate langkettiger Alkohole (EO-Grad: 3 bis 100, Alkylrest: C8-C36) sowie Polyethylenoxid/Polypropylenoxid-Homo- und Copolymere. Diese können die Alkylenoxideinhei- ten statistisch verteilt oder in Form von Blöcken einpolymerisiert enthalten. Gut geeignet sind z. B. EO/PO-Blockcopolymere. Bevorzugt werden Ethoxylate langkettiger Alkanole (Alkylrest C1- C30, mittlerer Ethoxylierungsgrad 5 bis 100) und darunter besonders bevorzugt solche mit einem linearen Ci2-C2o-Alkylrest und einem mittleren Ethoxylierungsgrad von 10 bis 50 sowie ethoxylierte Monoalkylphenole, eingesetzt.
Geeignete anionische Emulgatoren sind beispielsweise Alkali- und Ammoniumsalze von Al- kylsulfaten (Alkylrest: C8-C22), von Schwefelsäure- oder Phosphorsäurehalbestern ethoxylierter Alkanole (EO-Grad: 2 bis 50, Alkylrest: C12-C18) und ethoxylierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4-C9), von Alkylsulfonsäuren (Alkylrest: C12-C18) und von Alkylarylsulfonsäuren (Alkylrest: Cg-Cis). Weitere geeignete Emulgatoren finden sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , S. 192-208). Als anionische Emulgatoren sind ebenfalls Bis(phenylsulfonsäure)ether bzw. deren Alkali- oder Ammoniumsalze, die an einem oder beiden aromatischen Ringen eine C4- C24-Alkylgruppe tragen, geeignet. Diese Verbindungen sind allgemein bekannt, z. B. aus der US-A-4,269,749, und im Handel erhältlich, beispielsweise als Dowfax® 2A1 (Dow Chemical Company).
Weitere Emulgatoren sind die Ester, d.h. die Mono- und Diester, der Phosphorsäure mit gegebenenfalls bis zu 20-fach alkoxylierten Cs-Cso-Alkanolen, speziell die Monoester. Häufig werden die Mono- und die Diester als Gemisch nebeneinander bereitgestellt. Weitere geeignete Emulgatoren sind auch die Diester der Phosphorsäure, die einfach mit einem gegebenenfalls bis zu 20-fach alkoxylierten Cs-Cso-Alkanol und zusätzlich einfach mit einem davon verschiedenen Ci-C3o-Alkanol, bevorzugt mit einem
Ci-C7-Alkanol, verestert sind.
Bevorzugt als Emulgatoren sind Verbindungen der allgemeinen Formel CsH2s+iO(CH2CH20)t- P(=0)(OH)2, worin s für 6 bis 30 steht und t für 0 bis 20 steht.
Bevorzugt als Emulgatoren sind z.B.
Maphos 24 T (CioH2iO(CH2CH20)4-P(=0)(OH)2) und
Maphos 10 T ((2-Ethylhexyl)phosphat), beide von BASF BTC.
Weitere geeignete Emulgatoren sind auch die Lutensit®-Typen der BASF SE, wie z.B. Lutensit® A-EP (Fettalkoholalkoxylat, Phosphorsäureester) oder auch Lutensit® HC9812 (Fettalkoho- lethoxylat, Phosphorsäureester, Polymer).
Die erfindungsgemäßen Polymerdispersionen (PD) enthalten im Allgemeinen bis zu 20 Gew.- %, bevorzugt bis zu 10 Gew.-%, besonders bevorzugt bis zu 5 Gew.-% wenigstens eines Emul- gators, bezogen auf das Gesamtgewicht der zur Emulsionspolymerisation eingesetzten Mono- mere. Die erfindungsgemäßen Polymerdispersionen (PD) enthalten im Allgemeinen wenigstens 0,05 Gew.-%, bevorzugt wenigstens 0,1 Gew.-% wenigstens eines Emulgators, bezogen auf das Gesamtgewicht der zur Emulsionspolymerisation eingesetzten Monomere.
Geeignete kationische Emulgatoren sind vorzugsweise quartäre Ammoniumhalogenide, z. B. Trimethylcetylammoniumchlorid, Methyltrioctylammoniumchlorid, Benzyl- triethylammoniumchlorid oder quartäre Verbindungen von N-C6-C2o-Alkylpyridinen,
-morpholinen oder -imidazolen, z. B. N-Laurylpyridiniumchlorid.
Die Menge an Emulgator beträgt im Allgemeinen etwa 0,01 bis 10 Gew.-%, bevorzugt 0,1 bis 5 Gew.-%, bezogen auf die Menge an zu polymerisierenden Monomeren.
Den Polymerdispersionen (PD) können weiterhin übliche Hilfs- und Zusatzstoffe zugesetzt werden. Dazu zählen beispielsweise den pH-Wert einstellende Substanzen, Reduktions- und Bleichmittel, wie z. B. die Alkalimetallsalze der Hydroxymethansulfinsäure (z. B. Rongalit® C der BASF SE), Komplexbildner, Desodorantien, Geschmacksstoffe, Geruchsstoffe und Viskosi- tätsmodifizierer, wie Alkohole, z. B. Glycerin, Methanol, Ethanol, tert.-Butanol, Glykol etc. Diese Hilfs- und Zusatzstoffe können den Polymerdispersionen in der Vorlage, einem der Zuläufe oder nach Abschluss der Polymerisation zugesetzt werden. Die Polymerisation erfolgt im Allgemeinen bei Temperaturen in einem Bereich von 0 bis 150 °C, bevorzugt 20 bis 100 °C, besonders bevorzugt 30 bis 95 °C. Die Polymerisation erfolgt vorzugsweise bei Normaldruck, möglich ist jedoch auch eine Polymerisation unter erhöhtem Druck, beispielsweise dem Eigendruck der zur Polymerisation eingesetzten Komponenten. In einer geeigneten Ausführung erfolgt die Polymerisation in Gegenwart wenigstens eines Inertgases, wie z. B. Stickstoff oder Argon. Das Polymerisationsmedium kann sowohl nur aus Wasser, als auch aus Mischungen aus Wasser und damit mischbaren Flüssigkeiten wie Methanol bestehen. Vorzugsweise wird nur Wasser verwendet. Die Emulsionspolymerisation kann sowohl als Batchprozess als auch in Form eines Zulaufverfahrens, einschließlich Stufen- oder Gradientenfahrweise, durchgeführt werden. Bevorzugt ist das Zulaufverfahren, bei dem man einen Teil des Polymerisationsansatzes oder auch eine Polymersaat vorlegt, auf die Polymerisationstemperatur erhitzt, anpolymerisiert und anschließend den Rest des Polymerisationsansatzes, üblicherweise über mehrere räumlich getrennte Zuläufe, von denen einer oder mehrere die Monomeren in reiner oder in emulgierter Form enthalten, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zuführt.
Die Art und Weise, in der der Initiator im Verlauf der radikalischen wässrigen Emulsionspolymerisation dem Polymerisationsgefäß zugegeben wird, ist dem Durchschnittsfachmann bekannt. Es kann sowohl vollständig in das Polymerisationsgefäß vorgelegt, als auch nach Maßgabe seines Verbrauchs im Verlauf der radikalischen wässrigen Emulsionspolymeri- sation kontinuierlich oder stufenweise eingesetzt werden. Im Einzelnen hängt dies in an sich dem Durchschnittsfachmann bekannter Weise sowohl von der chemischen Natur des Initiatorsystems als auch von der Polymerisationstemperatur ab. Vorzugsweise wird ein Teil vorgelegt und der Rest nach Maßgabe des Verbrauchs der Polymerisationszone zugeführt. Die bei der Polymerisation entstandenen Dispersionen können im Anschluss an den Polymeri- sationsprozess einer physikalischen oder chemischen Nachbehandlung (chemische Desodorie- rung ) unterworfen werden. Solche Verfahren sind beispielsweise die bekannten Verfahren zur Restmonomerenreduzierung, wie z. B. die Nachbehandlung durch Zusatz von Polymerisationsinitiatoren oder Mischungen mehrerer Polymerisationsinitiatoren bei geeigneten Temperaturen, eine Nachbehandlung der Polymerlösung mittels Wasserdampf oder Ammoniakdampf, oder Strippen mit Inertgas oder Behandeln der Reaktionsmischung mit oxidierenden oder reduzierenden Reagenzien, Adsorptionsverfahren wie die Adsorption von Verunreinigung an ausgewählten Medien wie z. B. Aktivkohle oder eine Ultrafiltration. Die wässrige Acrylat-Alkyd-Polymerdispersion (PD) weist üblicherweise einen Feststoffgehalt von 20 bis 70 Gew.-%, vorzugsweise 40 bis 65 Gew.-%, bezogen auf die Polymerdispersion einschließlich eingesetztem wasserlöslichen Alkydharz oder eingesetzter wäßriger Alkydhar- zemulsion oder Polyurethanalkydharzemulsion.
Der Feststoffgehalt beträgt in einer speziellen Ausführung 30-55 Gew.-%, bevorzugt 35 bis 50 Gew.-%, besonders bevorzugt 40 bis 50 Gew.-%, bezogen auf die wässrigeAcrylat-Alkyd- Polymerdispersion einschließlich eingesetztem wasserlöslichen Alkydharz oder eingesetzter wäßriger Alkydharzemulsion oder Polyurethanalkydharzemulsion. Die theoretische Glasübergangstemperatur Tg des Acrylatteils der Acrylat-Alkyd- Polymerdispersion ist vorzugsweise kleiner als 50 °C aber größer als 20°C, besonders bevorzugt kleiner als 40 °C aber größer als 20°C , insbesondere kleiner als 30 °C aber größer als 20°C.
Unter der Glasübergangstemperatur Tg wird hier die gemäß ASTM D 3418-82 durch Differenti- althermoanalyse (DSC) ermittelte "mid-point temperature" verstanden (vgl. Ullmann's Encyclo- pedia of Industrial Chemistry, 5th Edition, Volume A 21 , VCH Weinheim 1992, S. 169 sowie Zosel, Farbe und Lack 82 (1976), S. 125-134, siehe auch DIN 53765).
Nach Fox (siehe Ullmanns Enzyklopädie der technischen Chemie, 4. Auflage, Band 19, Weinheim (1980), S. 17, 18) kann man die Glasübergangstemperatur TG abschätzen. Es gilt für die Glasübergangstemperatur von schwach bzw. unvernetzten Mischpoly-merisaten bei großen Molmassen in guter Näherung:
Tg wobei X1, X2, Xn die Massenbrüche 1 , 2, n und Tg 1, Tg 2, Tg n die Glasübergangstempe- raturen der jeweils nur aus einem der Monomeren 1 , 2, n aufgebauten Polymeren in Grad Kelvin bedeuten. Letztere sind z. B. aus Ullmann's Encyclopedia of Industrial Chemistry, VCH, 5.ed. Weinheim, Vol. A 21 (1992) S. 169 oder aus J. Brand-rup, E.H. Immergut, Polymer Handbook 3rd ed, J. Wiley, New York 1989 bekannt. Das erfindungsgemäße Hybridbindemittel bzw. das wässrige Alkydsystem kann als solches oder gemischt mit weiteren, in der Regel filmbildenden, Polymeren als Bindemittelzusammensetzung in wässrigen Beschichtungsmitteln, wie Färb- oder Lackmischungen, verwendet werden. Selbstverständlich kann das erfindungsgemäße Hybridbindemittel auch als Komponente bei der Herstellung von Klebstoffen, Dichtmassen, Kunststoff putzen, Papierstreichmassen, Faservliesen, und Beschichtungsmitteln für organische Substrate sowie zur Modifizierung von mineralischen Bindemitteln eingesetzt werden.
Unter dem in dem erfindungsgemäßen Hybridbindemittel bzw. in dem wässrigen Alkydsystem eingesetzten Photoinitiator versteht man beispielsweise Benzophenon oder Acetophenon oder eines oder mehrerer nicht monoethylenisch ungesättigter Acetophenon- oder Benzophenonde- rivate oder eines Gemisches dieser Wirkstoffe, wie z.B. Benzophenon/4-Methylbenzophenon oder 2, 4, 6-Trimethylbenzophenon . Weitere Photoinitiatoren, die in Betracht kommen sind in der EP 417 568, Seite 3, Zeile 39 bis Seite 7, Zeile 51 beschrieben und auf diese Offenbarung wird explizit Bezug genomen. Als weitere Photoinitiatoren können dem Fachmann bekannte Photoinitiatoren verwendet werden, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Poly- merization, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
In Betracht kommen beispielsweise Phosphinoxide, a-Hydroxy-alkyl-aryl-ketone, Thioxanthone, Anthrachinone, Benzoine und Benzoinether, Ketale, Imidazole oder Phenylglyoxylsäuren oder solche, wie sie beschrieben sind in WO 2006/005491 A1 , Seite 21 , Zeile 18 bis Seite 22, Zeile 2 (entspricht US 2006/0009589 A1 , Absatz [0150]), was hiermit durch Bezugnahme Bestandteil der vorliegenden Offenbarung sei.
Ein weiterer Gegenstand der Erfindung ist ein Beschichtungsmittel in Form einer wässrigen Zusammensetzung, enthaltend das erfindungsgemäße wässrige Hybridbindemittel, oder das wässrige Alkydsystem, wie zuvor definiert.
Das erfindungsgemäße Hybridbindemittel bzw. das wässrige Alkydsystem kommt vorzugsweise in wässrigen Anstrichmitteln zum Einsatz. Diese Anstrichmittel liegen beispielsweise in Form eines unpigmentierten Systems (Klarlacks) oder eines pigmentierten Systems vor. Der Anteil der Pigmente kann durch die Pigmentvolumenkonzentration (PVK) beschrieben werden. Die PVK beschreibt das Verhältnis des Volumens an Pigmenten (VP) und Füllstoffen (VF) zum Gesamtvolumen, bestehend aus den Volumina an Bindemittel (VB), Pigmenten und Füllstoffen eines getrockneten Beschichtungsfilms in Prozent: PVK = (VP + VF) x 100 / (VP + VF + VB). Anstrichmittel lassen sich anhand der PVK beispielsweise wie folgt einteilen: hochgefüllte Innenfarbe, waschbeständig, weiß/matt PVK = ca. 85
Innenfarbe, scheuerbeständig, weiß/matt PVK = ca. 80 Außenfassaden- färbe, weiß PVK = ca. 45-55
Halbglanzfarbe, seidenmatt PVK = ca. 35
Halbglanzfarbe, seidenglänzend PVK = ca. 25
Hochglanzfarbe PVK = ca. 15-25
Klarlack PVK = < 5
Diese Dispersionen werden bevorzugt eingesetzt in Formulierungen mit einer PVK < 50, be- sonders bevorzugt PVK <40.
Geeignete Füllstoffe in Klarlacksystemen sind z. B. Mattierungsmittel, die so gewünscht den Glanz stark beeinträchtigen. Mattierungsmittel sind in der Regel transparent und können sowohl organisch als auch anorganisch sein. Anorganische Füllstoffe auf Basis von Silika sind am bes- ten geeignet und sind weit verbreitet im Handel erhältlich. Beispiele sind die Syloid®-Marken von W.R. Grace & Company und die Acematt®-Marken von der Fa. Evonik GmbH. Organische Mattierungsmittel sind z.B. erhältlich von der Fa. BYK-Chemie GmbH unter die Ceraflour®- und die Ceramat®-Marken, von der Fa. Deuteron GmbH unter die Deuteron MK®- Marke. Andere geeignete Füllstoffe für Dispersionsfarben sind Alumosilicate, wie Feldspäte, Silicate, wie Kaolin, Talkum, Glimmer, Magnesit, Erdalkalicarbonate, wie Calciumcarbonat, beispielsweise in Form von Calcit oder Kreide, Magnesiumcarbonat, Dolomit, Erdalkalisulfate, wie Calciumsulfat, Siliciumdioxid etc. In Anstrichmitteln werden naturgemäß feinteilige Füllstoffe bevorzugt. Die Füllstoffe können als Einzelkomponenten eingesetzt werden. In der Praxis haben sich jedoch Füllstoffmischungen besonders bewährt, z. B. Calciumcarbonat/Kaolin, Calciumcarbo- nat/Talkum. Glänzende Anstrichmittel weisen in der Regel nur geringe Mengen sehr feinteiliger Füllstoffe auf oder enthalten keine Füllstoffe.
Feinteilige Füllstoffe können auch zur Erhöhung der Deckkraft und/oder zur Einsparung von Weißpigmenten eingesetzt werden. Zur Einstellung der Deckkraft des Farbtons und der Farbtiefe werden vorzugsweise Abmischungen aus Farbpigmenten und Füllstoffen eingesetzt. Geeignete Pigmente sind beispielsweise anorganische Weißpigmente wie Titandioxid, vorzugsweise in der Rutilform, Bariumsulfat, Zinkoxid, Zinksulfid, basisches Bleicarbonat, Antimon- trioxid, Lithopone (Zinksulfid + Bariumsulfat) oder farbige Pigmente, beispielsweise Eisenoxide, Ruß, Graphit, Zinkgelb, Zinkgrün, Ultramarin, Manganschwarz, Antimonschwarz, Manganviolett, Pariser Blau oder Schweinfurter Grün. Neben den anorganischen Pigmenten können die erfin- dungsgemäßen Dispersionsfarben auch organische Farbpigmente, z. B. Sepia, Gummigutt,
Kasseler Braun, Toluidinrot, Pararot, Hansagelb, Indigo, Azofarbstoffe, anthrachinoide und indi- goide Farbstoffe sowie Dioxazin, Chinacridon-, Phthalocyanin-, Isoindolinon- und Metallkomplexpigmente enthalten. Geeignet sind auch synthetische Weißpigmente mit Lufteinschlüssen zur Erhöhung der Lichtstreuung, wie die Ropaque®- und AQACell®-Dispersionen. Weiterhin geeig- net sind die Luconyl®-Marken der Fa. BASF SE, wie z.B. das Lyconyl®-Gelb, Luconyl®-Braun und Luconyl®-Rot, insbesondere die transparanten Varianten.
Das erfindungsgemäße Beschichtungsmittel (wässrige Anstrichmittel) kann neben dem erfindungsgemäßen Hybridbindemittel, bzw. wässrigem Alkydsystem gegebenenfalls zusätzliche filmbildende Polymere, Pigment und weitere Hilfsmittel enthalten.
Zu den üblichen Hilfsmitteln zählen Netz- oder Dispergiermittel, wie Natrium-, Kalium- oder Ammoniumpolyphosphate, Alkalimetall- und Ammoniumsalze von Acrylsäure- oder Maleinsäu- reanhydridcopolymeren, Polyphosphonate, wie 1 -Hydroxyethan-1 ,1 -diphosphonsaures Natrium sowie Naphthalinsulfonsäuresalze, insbesondere deren Natriumsalze.
Wichtiger sind die Filmbildehilfsmittel, die Verdicker und Entschäumer. Geeignete Filmbildehilfsmittel sind z.B. Texanol® von der Fa. Eastman Chemicals und die Glykolether und -Ester z.B. im Handel erhältlich von BASF SE, unter den Namen Solvenon® und Lusolvan®, und von Dow unter den Handelsnamen Dowanol®. Die Menge beträgt vorzugsweise <10 Gew.-% und besonders bevorzugt < 5 Gew.-% auf Gesamtformulierung. Es ist auch möglich völlig ohne Lösemittel zu formulieren. Weitere geeignete Hilfsmittel sind Verlaufsmittel, Entschäumer, Biozide und Verdicker. Geeignete Verdicker sind z. B. Assoziativverdicker, wie Polyurethanverdicker. Die Menge des Verdickers beträgt vorzugsweise weniger als 2,5 Gew.-%, besonders bevorzugt weniger als 1 ,5 Gew.-% Verdicker, bezogen auf Feststoffgehalt des Anstrichmittels. Weitere Formulie- rungshinweise für Holzanstriche sind ausführlich beschrieben in ,water-based acrylates for de- corative coatings' von den Autoren M. Schwartz und R. Baumstark, ISBN 3-87870-726-6.
Die Herstellung der erfindungsgemäßen Anstrichmittel erfolgt in bekannter Weise durch Abmischen der Komponenten in hierfür üblichen Mischvorrichtungen. Es hat sich bewährt, aus den Pigmenten, Wasser und gegebenenfalls den Hilfsmitteln eine wässrige Paste oder Dispersion zu bereiten, und anschließend erst das polymere Bindemittel, d. h. in der Regel die wässrige Dispersion des Polymeren mit der Pigmentpaste bzw. Pigmentdispersion zu vermischen.
Das erfindungsgemäße Anstrichmittel kann in üblicher Weise auf Substrate aufgebracht wer- den, z. B. durch Streichen, Spritzen, Tauchen, Rollen, Rakeln.
Die erfindungsgemäßen Anstrichmittel zeichnen sich aus durch einfache Handhabung, gute Verarbeitungseigenschaften und eine hohe Frühhärte. Die Anstrichmittel sind schadstoffarm. Sie haben gute anwendungstechnische Eigenschaften, z. B. eine gute Wasserfestigkeit, gute Nasshaftung, insbesondere auch auf Alkydfarben, gute Blockfestigkeit, eine gute Überstreich- barkeit und sie zeigen beim Auftragen einen guten Verlauf. Das verwendete Arbeitsgerät lässt sich leicht mit Wasser reinigen.
Die Erfindung wird anhand der folgenden nicht einschränkenden Beispiele näher erläutert.
Beispiele
Bestimmung des Feststoffgehaltes Der Feststoffgehalt (FG) wurde generell bestimmt, indem eine definierte Menge des wässrigen Bindemittels (ca. 1 g) in einem Aluminiumtiegel mit einem Innendurchmesser von ca. 5 cm bei 140 °C in einem Trockenschrank bis zur Gewichtskonstanz getrocknet wurde. Es wurden zwei separate Messungen durchgeführt. Die in den Beispielen angegebenen Werte stellen den Mittelwert der jeweiligen beiden Messergebnisse dar.
Beispiele 1 - 3
Das wasserverdünnbare Alkydharz WorleeSol® 61 E wurde vorher mit einer 25 Gew.%-igen wässrigen Ammoniaklösung und VE-Wasser auf einem Feststoffgehalt von 40% und einem pH-Wert von ca. 8 eingestelt.
Die wässrigen Alkyden WorleeSol® E 150 W und E 280 W wurden eingesetzt wie empfangen von den Lieferanten. Beispiel 4
In einem mit Dosiereinnchtungen und Temperaturregelung ausgerüstetem Polymerisationsge- faß wurden vorgelegt:
Vorlage: 1 16 g Wasser
19,2 g einer Polystyrolsaatdispersion mit einem Feststoffgehalt von 33% und
einer mittleren Teilchengröße von 30 nm
1 ,5 g einer 15%igen Lösung von Natriumlaurylsulfat und unter Rühren auf 85°C erhitzt. Anschließend wurde, unter Aufrechterhaltung dieser Temperatur 10% von Zulauf 3 zugegeben und 5 min gerührt. Danach wurde Zulauf 1 in 180 min zudosiert und parallel dazu die Restmenge von Zulauf 3 in 195 min.
Zulauf 1 : 79,5 g Wasser
51 ,2 g einer 15%igen Lösung von Natriumlaurylsulfat
1 17 g n-Butylacrylat
97,1 g Methylmethacrylat
65,5 g Styrol
13,5 g Acetoacetoxyethylmethacrylat
Zulauf 2: 393 g einer 40%igen wäßrigen Lösung von WorleeSol 61 E, welche
vorher mit 25%iger wäßriger Ammoniaklösung neutralisiert
wurde
Zulauf 3: 72,2 g einer 2.5%igen wäßrigen Lösung von Natriumperoxodisulfat
Beim Beenden von Zulauf 3 wurde 22,6 g Spülwasser zudosiert und anschließend 30 min nachpolymerisiert. Zulauf 2 wurde in 1 h zudosiert und anschließend wurde mit 1 ,81 g einer 25%igen wässrigen Lösung von Ammoniak neutralisiert.
Anschließend wurde die Dispersion abgekühlt und über einen 125 μηη Filter filtriert. Es wurde 1 ,04 kg einer 45%igen Dispersion erhalten. Beispiel 5
Wie Beispiel 4, aber als Zulauf 2: 395 g WorleeSol® E 150 W
Beispiel 6
Wie Beispiel 4, aber als Zulauf 2: 416 g WorleeSol® E 280 W 2. Prüfung der wässrigen Hybridbindemittel
Pendelhärte
Die zu prüfende Beschichtung wurde mit einem Erichsen-Filmaufziehgerät (300 μηη nass) auf einer 38 x 7 cm Glasplatte aufgerakelt. Nach Trocknung bei Raumtemperatur wurden auf drei Stellen der Glasplatte drei Messwerte gependelt. Die Messung erfolgte nach König (DIN EN ISO 1522).
Beispiele
Formulierung der Polymerdispersion (PD) mit Photoinitiator
In einem Rührbehälter wurde bei Raumtemperatur 100 g der Polymerdispersion (PD) vorgelegt und unter Rühren anschließend 1 bzw. 2 Gew.-% Esacure® TZM (der Fa. Lehmann & Voss & Co., Deutschland), eine Mischung aus Benzophenon und 4-Methylbenzophenon, bezogen auf Feststoffgehalt der jeweiligen Polymerdispersion zugegeben und 15 min nachgerührt.
Anschließend wurde einen Film aufgerakelt und unter Ausschluss von Licht während 3 Tage getrocknet. Dann wurde der Film an einer hellen Stelle weiter gelagert, und die Entwicklung der Pendelhärte wurde verfolgt indem sie jeweils nach 24, 72 und 168 Stunden gemessen wurde. Als Vergleich diente die Härteentwicklung eines Films des reinen Bindemittels.
Beispiel 1 : WorleeSol 61 E (oxidativ trocknendes, wasser-reduzierbares Alkyd der Fa. Worlee)
Beispiel 2: WorleeSol E 150 W (oxidativ trocknende, wasserbasierte PU-Alkydemulsion der Fa. Worlee)
Pendelhärte [s] 24 h 72 h 168 h
ohne Zusatz 15 22 34
mit 1 Gew.-% Esa- 21 28 35
cure®TZM (f/f)
mit 2 Gew.-% Esa21 28 36
cure ®TZM (f/f) Bispiel 3: WorleeSol E 280 W (nicht-oxidativ trocknende, wasserbasierte PU-Alkydemulsion der
Fa. Worlee)
Aus den Ergebnissen der Beispiele 1 und 2 geht klar hervor, dass die Härte-Entwicklung beschleunigt wird, wenn Photoinitiator vorhanden ist.
Beispiel 4: Acrylat/Alkyd-Hybrid unter Verwendung von WorleeSol 61 E als Alkydteil (oxidativ trocknendes, wasser-reduzierbares Alkyd der Fa. Worlee)
Beispiel 5: Acrylat/Alkyd-Hybrid unter Verwendung von WorleeSol E 150 W als Alkydteil (oxidativ trocknende, wasserbasierte PU-Alkydemulsion der Fa. Worlee)
Beispiel 6: Acrylat/Alkyd-Hybrid unter Verwendung von WorleeSol E 280 W als Alkydteil (nicht- oxidativ trocknende, wasserbasierte PU-Alkydemulsion der Fa. Worlee)
Pendelhärte [s] 24 h 72 h 168 h
ohne Zusatz 28 27 34
mit 1 Gew.-% Esa28 29 39
cure ®TZM (f/f)
mit 2 Gew.-% Esa20 35 50
cure ®TZM (f/f) Auch die Beispiele 4 - 6 zeigen ganz klar, dass Einsatz des Photoinitiators einen signifkanten Einfluss auf die Härte-Entwicklung hat.

Claims

Patentansprüche
Wassriges Hybridbindemittel enthaltend eine wässrige Polymerdispersion (PD), erhältlich durch radikalische Emulsionspolymerisation von
(a) mindestens einem α,β-ethylenisch ungesättigten Monomer (M)
(b) sowie gegebenenfalls wenigstens einem weiteren Monomer (M1 ) zu einem Polymer (P)
(c) gegebenenfalls anschließender chemischer Desodorierung und
(d) Zugabe mindestens eines wasserlöslichen Alkydharzes mit einem gewichtsmittleren Molekulargewicht zwischen 5000 und 40 000 Da oder mindestens einer wäßrigen Alkyd- oder Polyurethan-Alkydemulsion bzw. -Dispersion, dadurch gekennzeichnet, dass die Zugabe des Alkydharzes, der Alkyd- oder Polyurethan-Alkydemulsion bzw. -Dispersion entweder
i. direkt im Anschluss an die Polymerisation von M und M1 , und gegebene- falls die chemische Desodorierung bei Raumtemperatur ii. im Anschluss an die Polymerisation von M und M1 mit einer Nachrührzeit von 0-2 h oder
iii. im Anschluss an die chemische Desodorierung mit einer Nachrührzeit von 0-2 h erfolgt,
wobei die Temperatur bei der Zugabe nach (ii) bzw. (iii) 60 bis 99 °C, bevorzugt 70 bis 95°C und insbesondere 80 bis 90 °C beträgt, sowie 0,01 -5 Gew.-% eines Photoinitiators.
Wässriges Hybridbindemittel gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Zugabe des Photoinitiators in die auf Raumtemperatur (23 °C) abgekühlte Polymerdispersion erfolgt.
Wässriges Hybridbindemittel gemäß Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Hauptmonomern M1 , ausgewählt sind aus der Gruppe
n-Butylacrylat, Methylmethacrylat;
n-Butylacrylat, Methylmethacrylat, Styrol;
n-Butylacrylat, Styrol, Butyl(meth)acrylat;
n-Butylacrylat, Ethylhexylacrylat, Styrol,
n-Butylacrylat, Styrol oder
n-Butylacrylat, n-Butyl(meth)acrylat, Methylmethacrylat.
Wässriges Hybridbindemittel, gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Monomere M2 in Kombination mit den Monomeren M1 gemäß Anspruch 6 Acrylsäure, Methacrylsäure, Acrylamid, Methacrylamid, AAEM, UMA oder Bisomer ® oder Mischungen davon eingesetzt werden.
5. Wässriges Hybridbindemittel, gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Polymerdispersion (PD) 5-60 Gew.-% (fest), bezogen auf das Gesamtgewicht des Hybridbindemittels, wenigstens eines wasserlöslichen Al- kydharzes oder einer wäßrigen Alkyd- oder Polyurethan-Alkyd-Emulsion enthält.
6. Wässriges Hybridbindemittel gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Glasübergangstemperatur Tg des Acrylatteils der Acrylat-Alkyd- Polymerdispersion (PD) kleiner als 50 °C aber größer als 20°C ist.
7. Wässriges Alkydsystem enthaltend mindestens ein wasserlösliches Alkydharz oder eine wäßrige Alkyd- oder Polyurethanalkyd-Emulsion bzw. -Dispersion, sowie 0,01 - 5 Gew.-% eines Photoinitiators
8. Beschichtungsmittel in Form einer wässrigen Zusammensetzung, enthaltend:
wenigstens ein erfindungsgemäßes Hybridbindemittel gemäß einem der Ansprüche 1 bis 6,
gegebenenfalls wenigstens einen anorganischen Füllstoff und/oder anorganisches Pigment,
übliche Hilfsmittel, und
Wasser auf 100 Gew.-%.
9. Beschichtungsmittel in Form einer wässrigen Zusammensetzung, enthaltend:
wenigstens ein erfindungsgemäßes wässriges Alkydsystem gemäß Anspruch 7,
gegebenenfalls wenigstens einen anorganischen Füllstoff und/oder anorganisches Pigment,
übliche Hilfsmittel, und
Wasser auf 100 Gew.-%.
10. Beschichtungsmittel gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Beschichtungsmittel ein Anstrichmittel ist.
1 1 . Verfahren zur Herstellung eines wässrigen Hybridbindemittels, durch Herstellung einer wässrigen Polymerdispersion (PD) durch radikalische Emulsionspolymerisation von mindestens einem α,β-ethylenisch ungesättigten Monomer (M)
sowie gegebenenfalls wenigstens einem weiteren Monomer (M1 ) zu einem
Polymer (P)
gegebenenfalls anschließender chemischer Desodorierung und
Zugabe mindestens eines wasserlöslichen Alkydharzes mit einem gewichtsmittleren Molekulargewicht zwischen 5000 und 40 000 Da oder mindestens einer wäßrigen Alkyd- oder Polyurethan-Alkydemulsion,
dadurch gekennzeichnet, dass die Zugabe des Alkydharzes, der Alkyd- oder Polyurethan-Alkydemulsion bzw. -Dispersion entweder i. direkt im Anschluss an die Polymerisation von M und M1 , und gegebe- nefalls die chemische Desodorierung bei Raumtemperatur
ii. im Anschluss an die Polymerisation von M und M1 mit einer Nachrühr- zeit von 0-2 h oder
iii. im Anschluss an die chemische Desodorierung mit einer Nachrührzeit von 0-2 h erfolgt, wobei die Temperatur bei der Zugabe nach (ii) bzw. (iii) 60 bis 99 °C, bevorzugt 70 bis 95°C und insbesondere 80 bis 90 °C beträgt,sowie der Zugabe von 0,01 -5 Gew.-% eines Photoinitiators.
12. Verwendung eines wässrigen Hybridbindemittels gemäß einem der Ansprüche 1 bis als Bindemittel in Anstrichmitteln.
13. Verwendung eines wässrigen Alkydsystems gemäß Anspruch 7, in Anstrichmitteln.
14. Verwendung eines wässrigen Hybridbindemittels oder eines wässrigen Alkydsystems gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass es sich bei dem Anstrichmittel um einen Klarlack oder eine Dispersionsfarbe handelt.
15. Verwendung eines wässrigen Hybridbindemittels oder eines wässrigen Alkydsystems gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass es sich bei dem Anstrichmittel um einen hochglänzenden Klarlack oder eine hochglänzende Dispersionsfarbe handelt.
16. Verfahren zur Erhöhung der Frühhärteentwicklung einer Beschichtung auf Basis eines wässrigen Hybridbindemittels gemäß einem der Ansprüche 1 bis 6.
17. Verfahren zur Erhöhung der Frühhärteentwicklung einer Beschichtung auf Basis ei- nes wässrigen Alkydsystems gemäß Anspruch 7.
EP13732874.6A 2012-07-06 2013-06-21 Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel Withdrawn EP2870208A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13732874.6A EP2870208A1 (de) 2012-07-06 2013-06-21 Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12175345 2012-07-06
EP13732874.6A EP2870208A1 (de) 2012-07-06 2013-06-21 Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel
PCT/EP2013/063035 WO2014005862A1 (de) 2012-07-06 2013-06-21 Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel

Publications (1)

Publication Number Publication Date
EP2870208A1 true EP2870208A1 (de) 2015-05-13

Family

ID=48741079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13732874.6A Withdrawn EP2870208A1 (de) 2012-07-06 2013-06-21 Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel

Country Status (9)

Country Link
US (1) US9567484B2 (de)
EP (1) EP2870208A1 (de)
JP (1) JP2015522678A (de)
CN (1) CN104428378A (de)
AU (1) AU2013286181B2 (de)
BR (1) BR112015000169A2 (de)
RU (1) RU2015103810A (de)
WO (1) WO2014005862A1 (de)
ZA (1) ZA201500804B (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018148B1 (de) * 2014-11-04 2017-06-28 Basf Se Verfahren zur Herstellung einer wässrigen Polymerdispersion
CN104893622B (zh) * 2015-06-23 2016-08-24 周美琴 一种抗氧化粘结剂组合物
CN104877577B (zh) * 2015-06-23 2017-03-08 周美琴 一种具有紫外线吸收功能的抗氧化粘结剂组合物
CN105131192B (zh) * 2015-08-06 2017-12-29 惠州市安品新材料有限公司 改性阻燃醇酸树脂及包含该树脂的组合物
JP2018538384A (ja) * 2015-10-20 2018-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 繊維セメント板を被覆するためのコーティング組成物
EP3575333B1 (de) * 2017-01-25 2023-09-06 DIC Corporation Durch aktive energiestrahlung härtbare, wässrige harzzusammensetzung und grundierungsmittel für dünnschichten aus anorganischem material
MX2020004396A (es) * 2017-11-10 2020-08-06 Sherwin Williams Co Composiciones de recubrimiento que incluyen resinas alquidicas de uretano y de latex acrilicas.
CN112004878A (zh) * 2018-04-20 2020-11-27 巴斯夫欧洲公司 具有基于通过酮基或醛基的交联的凝胶含量的粘合剂组合物
EP3837325B1 (de) * 2018-11-13 2024-09-18 Wacker Chemie AG Beschichtungsmittel für schmutzabweisende sowie abriebsbeständige beschichtungen
CN109957313A (zh) * 2019-03-11 2019-07-02 长兴特殊材料(苏州)有限公司 一种光固化型涂料配方及其应用
CN114555667B (zh) * 2019-10-29 2024-07-30 陶氏环球技术有限责任公司 双组分聚氨酯组合物
CN113336923A (zh) * 2020-08-27 2021-09-03 广东珠江化工涂料有限公司 一种含羰基基团的水性醇酸树脂的制备方法及其涂料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369135B1 (en) * 1995-08-15 2002-04-09 Georgia Tech Research Corporation Water-borne alkyd coatings by miniemulsion polymerization
US20050096406A1 (en) * 2002-03-04 2005-05-05 Roger Pretot Reactive diluents and alkyd resin coating compositions

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1329126A (en) 1969-12-11 1973-09-05 Mitsubishi Rayon Co Acrylic fibre and a method for manufacturing the same
JPS5033767B1 (de) 1971-03-11 1975-11-04
DE2722097C3 (de) 1977-05-16 1981-09-17 Basf Ag, 6700 Ludwigshafen (Meth)acryloxy-alkylpropanale, Verfahren zu dessen Herstellung und Verwendung derselben
US4226007A (en) 1979-03-16 1980-10-07 Signode Corporation Sealless strap connection
US4269749A (en) 1979-04-30 1981-05-26 The Dow Chemical Company Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions
US4733005A (en) 1986-04-21 1988-03-22 The Dow Chemical Company Phosphinyl-containing ethylenically unsaturated compounds
DE3930585A1 (de) 1989-09-13 1991-03-21 Basf Ag Waessrige kunstharzzubereitungen
DE4219384A1 (de) 1992-06-13 1993-12-23 Basf Ag Bei Raumtemperatur mit Hydroxylaminen oder Oximethern vernetzbare Dispersion oder Lösung
FR2715157B1 (fr) * 1994-01-20 1996-03-01 Atochem Elf Sa Latex acryliques susceptibles de former des films photoréticulables.
SE508224C2 (sv) 1996-01-18 1998-09-14 Akzo Nobel Ind Coatings Ab Vattenburen hybridbindemedelskomposition samt användning därav
ATE315617T1 (de) 1997-01-30 2006-02-15 Dsm Ip Assets Bv Strahlungshärtbare zusammensetzung
DE19750618A1 (de) 1997-11-14 1999-05-20 Basf Ag Pigmenthaltige Zubereitungen auf der Basis wässriger Polymerisatdispersionen
CN102690595A (zh) * 2003-06-12 2012-09-26 瓦尔斯帕供应公司 含有反应性稀释剂的涂料组合物和方法
JP4254364B2 (ja) * 2003-06-13 2009-04-15 Jfeスチール株式会社 厚鋼板の制御圧延装置及びそれを用いた制御圧延方法
JP2005008684A (ja) * 2003-06-17 2005-01-13 Dainippon Ink & Chem Inc 塗料用樹脂組成物
CN1788059A (zh) * 2003-06-26 2006-06-14 中国涂料株式会社 低气味性溶剂型涂料组合物
DE102004033555A1 (de) 2004-07-09 2006-02-16 Basf Ag Enzymatische Herstellung von (Meth)acrylsäureestern
ATE414120T1 (de) * 2004-07-16 2008-11-15 Alberdingk Boley Gmbh Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
PT1877232E (pt) * 2005-05-02 2014-06-12 Basf Se Processo para o tratamento de superfícies de madeira
AU2007201184B8 (en) * 2006-04-11 2013-02-07 Rohm And Haas Company Dirt pickup resistant coating binder having high adhesion to substrates
DE102006054237A1 (de) 2006-11-17 2008-05-21 Bayer Materialscience Ag Polyurethan-modifizierte Alkydharzdispersionen
CA2687302A1 (en) 2007-05-17 2008-11-27 Cook Composites & Polymers Company Aqueous dispersion of zinc compound modified polymers
WO2008152078A1 (de) * 2007-06-15 2008-12-18 Basf Se Voc-arme wässrige hybridbindemittel
US20090004394A1 (en) 2007-06-29 2009-01-01 Anne Denise Koller Aqueous polymeric composition
ATE492610T1 (de) * 2007-08-28 2011-01-15 Basf Se Photoaktives tio2 in beschichtungsmaterialien
EP2225337B1 (de) * 2007-11-19 2017-08-23 Basf Se Verwendung hochverzweigter polymere in polymerdispersionen für glanzfarben
WO2010040844A1 (en) 2008-10-09 2010-04-15 Nuplex Resins B.V. Aqueous hybrid dispersions
DE102009001966A1 (de) 2009-03-30 2010-10-07 Evonik Röhm Gmbh Beschichtungszusammensetzung,(Meth)acryl-Polymer und Monomermischung zur Herstellung des(Meth)acryl-Polymers
US8785557B2 (en) * 2009-12-16 2014-07-22 Basf Se Use of aqueous hybrid binders for gloss paints
PL2513154T3 (pl) * 2009-12-16 2015-08-31 Basf Se Sposób wytwarzania wodnych hybrydowych środków błonotwórczych o małej zawartości monomerów resztkowych oraz zastosowanie tych środków błonotwórczych w farbach o wysokim połysku
AU2011298374B2 (en) * 2010-09-01 2015-04-23 Basf Se Aqueous emulsion polymers, production of same and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369135B1 (en) * 1995-08-15 2002-04-09 Georgia Tech Research Corporation Water-borne alkyd coatings by miniemulsion polymerization
US20050096406A1 (en) * 2002-03-04 2005-05-05 Roger Pretot Reactive diluents and alkyd resin coating compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014005862A1 *

Also Published As

Publication number Publication date
US9567484B2 (en) 2017-02-14
ZA201500804B (en) 2017-01-25
WO2014005862A1 (de) 2014-01-09
AU2013286181A1 (en) 2015-01-29
CN104428378A (zh) 2015-03-18
BR112015000169A2 (pt) 2017-06-27
JP2015522678A (ja) 2015-08-06
AU2013286181B2 (en) 2017-02-16
US20150126639A1 (en) 2015-05-07
RU2015103810A (ru) 2016-08-27

Similar Documents

Publication Publication Date Title
EP2870208A1 (de) Verwendung wässriger hybridbindemittel und alkydsysteme für beschichtungsmittel
EP2370516B1 (de) Wässrige bindemittelzusammensetzung enthaltend oligomere
EP2513154B1 (de) Verfahren zur herstellung wässriger hybridbindemittel mit niedrigem restmonomerengehalt sowie deren verwendung für hochglanzfarben
EP2456836B1 (de) Wässrige polymerdispersionen als bindemittel für putze und anstrichmittel mit verbessertem brandverhalten
US8314178B2 (en) Polymer dispersions containing highly branched polycarbonates
EP2257579A1 (de) Polymerdispersionen enthaltend phosphorhaltige polymere und emulgatoren
CN101605852B (zh) 含有高度支化聚碳酸酯的聚合物分散体
EP2611844B1 (de) Wässrige emulsionspolymerisate, deren herstellung und verwendung
EP2456837A1 (de) Verwendung filmbildender polymere und organischer hohlteilchen für beschichtungsmittel
EP2536777B1 (de) Polymerdispersion, die ein hochverzweigtes polycarbonat mit ungesättigten fettsäuregruppen enthält
US8785557B2 (en) Use of aqueous hybrid binders for gloss paints
EP2855610A1 (de) Verwendung mehrstufiger polymerisatdispersionen zur beschichtung von metallblechen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180223