EP2861942B1 - Procédé d'opération d'un système de mesure à résonance et système de mesure à résonance correspondant - Google Patents

Procédé d'opération d'un système de mesure à résonance et système de mesure à résonance correspondant Download PDF

Info

Publication number
EP2861942B1
EP2861942B1 EP13737129.0A EP13737129A EP2861942B1 EP 2861942 B1 EP2861942 B1 EP 2861942B1 EP 13737129 A EP13737129 A EP 13737129A EP 2861942 B1 EP2861942 B1 EP 2861942B1
Authority
EP
European Patent Office
Prior art keywords
controller
phase difference
oscillation
measuring system
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13737129.0A
Other languages
German (de)
English (en)
Other versions
EP2861942A1 (fr
Inventor
Kourosh Kolahi
Ralf Storm
Andreas Poremba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Publication of EP2861942A1 publication Critical patent/EP2861942A1/fr
Application granted granted Critical
Publication of EP2861942B1 publication Critical patent/EP2861942B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/74Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0086Determining flow properties indirectly by measuring other parameters of the system magnetic properties

Definitions

  • the invention relates to a method for operating a resonance measuring system in the form of a Coriolis mass flowmeter, wherein the resonance measuring system comprises at least one controller, at least one electrical adjusting device, at least one electromagnetic drive as a vibration generator, at least one vibrating element and at least one vibration sensor, the controller a controller output signal u 1 generates the electric actuating device, the electric actuator provides an electrical excitation signal u 2 for excitation of the electromagnetic drive, the electromagnetic drive excites the vibrating element to vibrate in at least one eigenform and wherein the excited vibration of the vibrating element detected by the vibration and at least one Output signal y is output.
  • the invention also relates to a resonance measuring system in the form of a Coriolis mass flowmeter, with which the aforementioned method is executable.
  • Resonance measurement systems of the aforementioned type have been known for many years, not only in the form of Coriolis mass flowmeters, but also as density meters or fill level monitors according to the tuning fork principle, as quartz cars and band viscometers u.a.m. These resonance measuring systems are connected to a process whereby the process and the resonance measuring system influence each other.
  • resonance measuring systems are treated using the example of Coriolis mass flowmeters.
  • resonant measuring systems are generally referred to as systems in which information about the process variables (measured variables) to be determined is encoded in the natural frequencies and / or those systems in which operating points are set to the natural frequencies of the measuring system.
  • the measuring tube corresponds to the oscillating element of the resonance measuring system; also this special design of the vibrating element is not a limitation for the teaching generally applicable to resonance measuring systems.
  • Coriolis mass flowmeters are used above all in industrial process measurement technology where mass flows have to be determined with high accuracy.
  • the functioning of Coriolis mass flowmeters is based on the fact that at least one of a medium flowed through the measuring tube - the vibrating element - is excited by a vibrator to vibrate, said vibrator is an electromagnetic drive in accordance Vorraus etcslust.
  • an electromagnetic drive usually a coil is traversed by an electric current, wherein the coil current is directly connected to a force acting on the vibrating element.
  • the function is based on the fact that the medium-laden medium reacts on the wall of the measuring tube due to the Coriolis inertia force caused by two orthogonal movements - that of the flow and that of the measuring tube.
  • This reaction of the medium on the measuring tube leads to a change in the Meßrohrschwingung compared to the flow-through vibration state of the measuring tube.
  • the natural frequencies of the Coriolis mass flowmeter or the oscillatory parts of the Coriolis mass flowmeter essentially the natural frequencies of the measuring tube as a vibrating element, because the operating points of the Coriolis mass flowmeter are usually set to natural frequencies of the measuring tube to the required vibrations for to be able to impress the induction of the Coriolis forces with a minimum of energy.
  • the then executed by the measuring tube vibrations have a certain shape, which is referred to as the eigenmode of the respective excitation.
  • a harmonic base signal is generated as a controller output signal in the form of a sinusoidal voltage and this sinusoidal Voltage controls the electrical actuating device, wherein the electrical adjusting device has the task to provide at its output a corresponding power to control the electromagnetic drive in a suitable manner and with sufficient power, the electrical actuator is thus practically the performance link between the controller and the electromagnetic drive of the resonance measuring system.
  • the controller is used to operate the vibrating element in resonance, for which it must be determined whether the input and output of the resonance measuring system have the resonance corresponding phase difference.
  • this is the input side, the force with which the measuring tube is excited as a vibrating element and this is the output side, the speed of the measuring tube. Due to the relationships underlying this oscillatory system, a resonance is present when the input-side force effect and the output-side measuring tube velocity have a phase difference ⁇ of 0 °. If this phase condition is fulfilled, the desired resonance is present.
  • the control circuit for operating a known from the prior art and generic resonance measuring system is a phase locked loop. Phase control loops used in Coriolis mass flowmeters are known, for example, from US Pat EP 0 262 573 A1 and also from the WO 2005/057131 A2 known.
  • Resonance measuring systems with an electromagnetic drive often have due to the direct relationship between the current through a drive coil of the electromagnetic drive and the force effect as an electrical actuator or as part of an electrical control device on a voltage-controlled power source, which must have a wide bandwidth and little additional phase shifts in the frequency work area.
  • the phase control is therefore usually based on a phase measurement between the measuring tube speed and the driving voltage of the electrical adjusting device with the assumption that the influence of the adjusting device and / or the electromagnetic drive itself is negligible on the phase difference. This is problematic in several ways.
  • the object of the present invention is to provide a method for operating a resonance measuring system which enables a fast and reliable starting, holding and tracking of a resonance point as the operating point of the resonance measuring system.
  • the controller-Schwingungsaufsmelling-phase difference ⁇ (y, u 1 ) between the output signal y of the vibration and the controller output signal u 1 is detected from a predetermined phase difference ⁇ S1 , and the controller-Schwingungsaufrich phase difference ⁇ (y, u 1 ) a control deviation e is calculated and the control deviation e is provided to the controller as an input signal.
  • a suitable predetermined phase difference ⁇ S1 a correction is made to an otherwise disregarded phase shift between the input signal and the output signal of the oscillating element.
  • the method according to the invention initially deliberately dispenses with the problematic detection of a state variable of the electromagnetic drive - such as the coil current - but instead operates with the well-known regulator output signal, which is known because it is generated by the controller, which is usually in a microprocessor or Microcontroller is implemented by a digital crizalgorythmus and a subsequent signal generator and therefore the user is accessible.
  • the inventive method is fast, since measurement times can be avoided with comparatively large time constants in the range of low-pass filtering and smoothing, it is accepted that the control result may not reach as close to the resonance point, as when directly related to the resonance point sizes of the resonance measuring system would have been detected metrologically.
  • the possible inaccuracy stems in particular from the fact that the transmission behavior and thus also the phase influence of the transmission elements between the controller and the electromagnetic drive are disregarded.
  • the phase shifts of all elements of the control loop except for the oscillating element are frequency-dependent detected in a preferred further development of the method and in the Method instrumentally realizing arithmetic unit (eg DSP) stored (frequency response).
  • DSP arithmetic unit
  • first static corrections are derived, which can be realized differently technically. For example, by supplementing additional transmission elements in the control loop, which make a corresponding phase correction, or by specifying appropriate setpoints for the phase shift between the output signal u 1 of the controller and the output signal y of the vibration.
  • the predetermined phase difference ⁇ S1 is selected according to the transmission behavior of the resonance measuring system and the ratio of controller output signal u 1 and the output signal y of the vibration sensor.
  • the predetermined phase difference ⁇ S1 would be set to zero to a first approximation, so that the detected control oscillator phase difference practically directly as a control error in the Regulator could be returned.
  • the electrical actuating device effects a certain average phase shift at the operating point
  • the predetermined phase difference ⁇ S1 could be set exactly to this value in order to effect a corresponding compensation of the phase shift. It has been found that the method according to the invention on the basis of the controller vibration pickup phase difference leads to good control results in or close to the resonance operating point with deviations which are quite tolerable in terms of energy.
  • the predetermined phase difference ⁇ S1 will be chosen such that the oscillation element is excited to oscillate in at least one eigenform in resonance or near the resonance point.
  • an additional controller drive phase difference ⁇ (i S , u 1 ) is formed, namely the phase difference between a state variable i S of the electromagnetic drive and the controller output signal, wherein in a variant this controller drive Phase difference then as a predetermined phase difference ⁇ S1 , is used.
  • a controller-drive phase difference ⁇ (i S, u 1) S of the electromagnetic drive and the controller output signal is determined between a state variable i, wherein the predetermined phase difference ⁇ S1, this time is calculated from the controller drive phase difference ⁇ (i S , u 1 ) and another predetermined phase difference ⁇ S2 .
  • the controller drive phase difference is filtered with a low-pass filter and thus smoothed, in particular in the case of a Coriolis mass flowmeter as a resonance measuring system for the Low pass time constants can be selected in the seconds range.
  • the controller-drive phase difference does not change as fast as would require significantly shorter time constants.
  • the process according to the invention has further advantages.
  • the regulation of the resonance measuring system to the controller vibration pickup phase difference works so well that a design of the control loop, in particular a design of the electrical control device to a high bandwidth no longer required is, so that the electrical control device no longer has to be realized with fast and comparatively expensive components, since the regulation according to the invention ensures sufficiently fast that the phase shift in the frequency working range remains below a predetermined value.
  • the quality of the control is considerably dependent on the phase shift caused by the electrical adjusting device, wherein it must be taken into account here that at higher phase shifts especially direct feedback resonance systems tend to vibrate.
  • phase shift in the operating frequency range caused by the electrical adjusting device for example a voltage-controlled current source-remains, for example, below 5 °, which leads to the use of more expensive reference components and analogue correction circuits.
  • This requirement is no longer met by the method according to the invention with a fast control loop based on the controller oscillation phase difference and a slower calculation of a correction value based on the regulator drive phase difference.
  • the previously derived object is further achieved in the resonance measuring system described above in that there is a control circuit is configured so that the previously described method for operating a resonance measuring system of the resonance measuring system is actually executable and in control mode - adjusting, holding and tracking a resonance operating point - executed becomes.
  • Executable therefore means that the method is implemented on the resonant measurement system for execution and could not in principle simply be implemented on the resonant measurement system.
  • Fig. 1 shows a resonance measuring system 1 in the form of a Coriolis mass flowmeter, wherein the resonance measuring system 1 has a implemented in a digital signal processor controller 2, an electric actuator 3 and an electromagnetic drive 4 as a vibration generator.
  • the electromagnetic drive 4 has the task of exciting a vibrating element 5, in the present case a measuring tube through which a medium can flow, to form a vibration in an eigenmform. Depending on the nature of the eigenform, only a single electromagnetic drive 4 is required for this, and even higher modes should be excited, two or more electromagnetic drives 4 may also be required.
  • Fig. 1 the resonance measuring system 1 in the form of the Coriolis mass flowmeter is shown in two parts.
  • the one-unit Coriolis mass flowmeter ends to one half on the right edge of the figure and begins for reasons of clarity with the other half again on the left edge of the figure.
  • the resonance measuring system 1 also has vibration sensors 6, which output an output signal y, in the present case in the form of a speed signal, which provides information about the speed of the measuring tube movement, ie of the oscillating element 5.
  • the controller 2 generates a controller output signal U 1 for driving the electrical adjusting device 3, and the electrical adjusting device 3 subsequently generates an electrical excitation signal u 2 for excitation of the electromagnetic drive 4.
  • the vibration sensor 6 is followed by a plurality of transmission elements, which essentially serve the signal processing, such as a consisting of amplifiers existing adaptation electronics 7a, a hardware multiplexer 7b for the realization of various switchable measuring channels, another adaptation electronics 7c and an analog / digital converter 7d, which supplies the analog measured signals to the controller 2 in the form of digital signals again.
  • a transmission element which essentially serve the signal processing, such as a consisting of amplifiers existing adaptation electronics 7a, a hardware multiplexer 7b for the realization of various switchable measuring channels, another adaptation electronics 7c and an analog / digital converter 7d, which supplies the analog measured signals to the controller 2 in the form of digital signals again.
  • the control loop thus implemented forms a phase-locked loop and is based on the impressing of a current i S in a coil 8 of the electromagnetic drive 4.
  • the electrical adjusting device 3 operates with a voltage-controlled current source 9, which receives quantized by a digital / analog converter 10 voltage signals that lead to the output of the voltage-controlled current source 9 to sudden changes in the coil current i S.
  • This current impression inevitably leads to an even more restless change in the terminal voltage u S at the coil 8, so overall there is a very noisy terminal voltage u S at the coil 8, which also leads to a noisy current signal i S due to various influences.
  • the coil current i S is of particular importance, because the coil current i S is that state quantity of the electromagnetic drive 4, which is proportional to the force of the electromagnetic actuator 4 to the vibrating element 5.
  • the phase difference between the force acting on the oscillating element 5 and thus also between the coil current i S and the detected velocity y of the measuring tube movement is equal to zero in the case of resonance.
  • Fig. 3 the inventive method for operating a resonance measuring system 1 is shown, namely shown in the form of a block diagram.
  • the controller 2 controls the electrical control device 3 via the controller output signal u 1 , wherein the electric actuating device 3 controls the electromagnetic drive 4 by outputting the electrical excitation signal u 2 , which in turn deflects the vibrating element 5 as a vibration generator, here as a measuring tube of a Coriolis mass flowmeter is present.
  • the electromagnetic drive 4 consists of a coil 8 shown schematically with a permanent magnet as the core, wherein the permanent magnet, not shown, when energizing the coil 8 performs a lifting movement and so can stimulate the vibrating element 5 to a vibration.
  • the vibration of the vibrating element 5 is detected by the vibration sensor 6, which also has a permanent magnet and a coil in the present case, wherein the voltage induced in the coil 8 is used to evaluate the change in position of the vibrating element 5.
  • the speed signal is present as the output signal y of the vibration sensor 6.
  • the method according to the invention provides that first of all the controller oscillation sensor phase difference ⁇ (y, u 1 ) is detected between the output signal y of the oscillation sensor 6 and the controller output signal u 1 , and from a predetermined phase difference ⁇ S1 , and this controller oscillation sensor Phase difference ⁇ (y, u 1 ) a control deviation e is calculated, this control deviation e is the controller 2 as an input signal available.
  • a control loop is implemented, which regulates the regulator oscillator phase difference ⁇ (y, u 1 ) and not the phase difference that is actually decisive for a regulation to the resonance point of the resonance measuring system namely the phase difference between the coil current i S and the speed signal y at the output of the vibration pickup 6.
  • the advantage of the method lies in the fact that with the control on the controller-oscillator phase difference ⁇ ( y, u 1 ) can be implemented with comparatively noise-free signals a very fast control to such an operating point, which is quite close to the resonance point of the resonance measuring system 1, so that with a small restriction in the resonance phase position a very fast control can be realized a scheme that also no longer requires the use of high-bandwidth devices and only a very small phase shift of the electrical actuator in the working frequency range.
  • the predetermined phase difference ⁇ S1 in the simplest case, will be set to the value that would ideally result as a phase difference or as a phase difference between the controller output signal u 1 and the output signal y of the vibration sensor 6, if the electrical adjusting device 3 caused virtually no phase shift and the resonance case would stop. In the illustrated case of the Coriolis mass flowmeter this corresponds to the zeroing of the predetermined phase difference ⁇ S1 ; In this design, the vibrating element 5 is excited to vibrate in an eigenmode in resonance or in the vicinity of the resonance point.
  • Fig. 4 an expanded version of the previously explained method is shown, in which a controller drive phase difference ⁇ (i S , u 1 ) between the state quantity i S of the electromagnetic drive 4 and the controller output signal u 1 is determined, wherein the controller drive phase difference ⁇ (i S , u 1 ) is then used as the predetermined phase difference ⁇ S1 .
  • the method can be used particularly advantageously if the electrical adjusting device 3 provides a voltage u S as an electrical excitation signal u 2 for exciting the electromagnetic drive 4, which in the exemplary embodiments according to FIGS Fig. 3 to 6 the case is, here the voltage u S is applied as the terminal voltage of the drive coil 8 of the electromagnetic drive 4.
  • Fig. 6 shows again in greater detail a resonance measuring system 1 in the form of a Coriolis mass flowmeter, wherein the resonance measuring system 1 comprises a controller 2 implemented in a digital signal processor (DSP), an electric adjusting device 3 with a digital / analog converter 3a and a voltage-controlled voltage source 3b as a power unit.
  • the electromagnetic drive 4 has a coil 8 as a vibration generator.
  • the fast control loop is implemented, which is based on the regulator oscillator phase difference ⁇ (y, u 1 ) between the output signal y of the vibration sensor 6 and the regulator output signal u 1 .
  • the - slower - calculation of the correction value for the phase difference is implemented, which is based on the controller drive phase difference ⁇ (i S , u 1 ) between the state quantity i S of the electromagnetic drive 4 and the controller output signal u 1 .
  • the detected current signal as well as the detected speed signal y are digitized by analog-to-digital converters 11, 12 and fed to the DSP.
  • Demodulators 13, 14 disassemble the measured variables i S and y with the aid of orthogonal basis signals into signal components, which allow the determination of the phase position of the signals with respect to the base signal u 1, wherein the controller-drive phase difference ⁇ (i S, u 1) is still filtered via a low pass 15 and wherein this low pass has a time constant of about two seconds.
  • the realization of the electrical control device 3 as a voltage-controlled voltage converter also has the unexpected advantage that the low output resistance of the voltage-controlled voltage converter acts as a "short circuit" with respect to the drive coil 8 and as a result of the speed of the measuring tube dependent damping of the vibration of the measuring tube is achieved. Therefore, the installation of short-circuiting rings in the electromagnetic drive 4 can be omitted for the purpose of damping the inherently weakly damped system.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Claims (7)

  1. Procédé de conduite d'un système (1) de mesure par résonance qui présente la forme d'un appareil de mesure de débit massique par effet Coriolis, le système (1) de mesure par résonance comportant un régulateur (2), au moins un dispositif électrique de réglage (3), au moins un entraînement électromagnétique (4) configuré comme générateur de vibrations, au moins un élément oscillant (5) et au moins un enregistreur de vibrations (6),
    le régulateur (2) formant un signal (u1) de sortie de régulateur qui commande le dispositif électrique de réglage (3),
    le dispositif électrique de réglage (3) délivrant un signal électrique d'excitation (u2) qui excite l'entraînement électromagnétique (4),
    l'entraînement électromagnétique (4) excitant l'élément oscillant (5) pour qu'il oscille en au moins un mode propre, la vibration excitée sur l'élément oscillant (5) étant saisie par l'enregistreur de vibrations (6) sous la forme d'un ou de plusieurs signaux de sortie (y),
    caractérisé en ce que
    dans une boucle de régulation, le déphasage (Δϕ(y,u1)) entre l'enregistreur de vibrations et le régulateur est saisi entre le signal de sortie (y) de l'enregistreur de vibrations (6) et le signal de sortie (u1) du régulateur, un écart de réglage (e) est calculé à partir d'un déphasage (Δϕs1) prédéterminé et du déphasage (Δϕ(y,u1)) entre l'enregistreur de vibrations et le régulateur et l'écart de réglage (e) est appliqué sur le régulateur (2) en tant que signal d'entrée,
    en ce qu'un déphasage (Δϕ(is,u1)) entre l'entraînement et le régulateur est déterminé entre une grandeur d'entrée (is) de l'entraînement électromagnétique (4) et le signal (u1) de sortie de régulateur et le déphasage (Δϕ(is,u1)) entre le régulateur et l'entraînement est utilisé comme déphasage (Δϕs1) prédéterminé ou le déphasage prédéterminé (Δϕs1) est calculé à partir du déphasage (Δϕ(is,u1)) entre le régulateur et l'entraînement et d'un autre déphasage prédéterminé (Δϕs2), la grandeur d'état (is) de l'entraînement électromagnétique étant le courant saisi sur une bobine d'entraînement (8).
  2. Procédé selon la revendication 1, caractérisé en ce que le déphasage (Δϕs1) prédéterminé est sélectionné de telle sorte que l'élément oscillant (5) soit excité à osciller en au moins un mode propre de résonance ou à proximité du point de résonance.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le dispositif électrique de réglage (3) délivre une tension (us) comme signal électrique d'excitation (u2) qui excite l'entraînement électromagnétique (4), la tension (us) étant appliquée en particulier comme tension aux bornes d'une bobine d'entraînement (8) de l'entraînement électromagnétique (4).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le déphasage (Δϕ(is,u1)) déterminé entre le régulateur et l'entraînement est filtré par un filtre passe-bas (11) et en particulier par un filtre passe-bas (11) dont la constante de temps est de l'ordre des secondes.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que pour déterminer le déphasage (Δϕ(y,u1)) entre le régulateur et l'enregistreur de vibrations et/ou le déphasage (Δϕ(is,u1)) entre le régulateur et l'entraînement, un signal harmonique de base est formé par le régulateur (2) en tant que signal de sortie (u1) du régulateur, le déphasage (Δϕ(y,u1), (Δϕ(is,u1)) étant déterminé par démodulation du signal concerné (y, is) avec le signal harmonique de base et un autre signal harmonique de base, perpendiculaire au premier, délivré par le régulateur (2).
  6. Système (1) de mesure par résonance qui présente la forme d'un appareil de mesure de débit massique par effet Coriolis, le système (1) de mesure par résonance comportant un régulateur (2), au moins un dispositif électrique de réglage (3), au moins un entraînement électromagnétique (4) configuré comme générateur de vibrations, au moins un élément oscillant (5) et au moins un enregistreur de vibrations (6),
    le régulateur (2) formant un signal (u1) de sortie de régulateur qui commande le dispositif électrique de réglage (3),
    le dispositif électrique de réglage (3) délivrant un signal électrique d'excitation (u2) qui excite l'entraînement électromagnétique (4),
    l'entraînement électromagnétique (4) excitant l'élément oscillant (5) pour qu'il oscille en au moins un mode propre, la vibration excitée sur l'élément oscillant (5) étant saisie par l'enregistreur de vibrations (6) sous la forme d'un ou de plusieurs signaux de sortie (y),
    caractérisé en ce que
    un circuit de régulation est mis en oeuvre de telle sorte que le système de mesure par résonance puisse exécuter concrètement le procédé selon l'une des revendications 1 à 5.
  7. Système (1) de mesure par résonance selon la revendication 6, caractérisé en ce que le dispositif électrique de réglage (3) est un convertisseur de tension commandé en tension.
EP13737129.0A 2012-06-18 2013-06-17 Procédé d'opération d'un système de mesure à résonance et système de mesure à résonance correspondant Active EP2861942B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012011932.1A DE102012011932B4 (de) 2012-06-18 2012-06-18 Verfahren zum Betreiben eines Resonanzmesssystems und diesbezügliches Resonanzmesssystem
PCT/EP2013/001787 WO2013189586A1 (fr) 2012-06-18 2013-06-17 Procédé pour faire fonctionner un système de mesure par résonance et système de mesure par résonance correspondant

Publications (2)

Publication Number Publication Date
EP2861942A1 EP2861942A1 (fr) 2015-04-22
EP2861942B1 true EP2861942B1 (fr) 2018-02-21

Family

ID=48793153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13737129.0A Active EP2861942B1 (fr) 2012-06-18 2013-06-17 Procédé d'opération d'un système de mesure à résonance et système de mesure à résonance correspondant

Country Status (6)

Country Link
US (1) US10151728B2 (fr)
EP (1) EP2861942B1 (fr)
JP (1) JP6223440B2 (fr)
CN (1) CN104685325B (fr)
DE (1) DE102012011932B4 (fr)
WO (1) WO2013189586A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424171B (zh) * 2015-11-05 2018-04-20 中国船舶重工集团公司第七二四研究所 一种舰载稳定平台机械谐振的实时检测与保护方法
DE102016100952A1 (de) 2016-01-20 2017-07-20 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts und entsprechendes Coriolis-Massedurchflussmessgerät
DE102016112600A1 (de) * 2016-07-08 2018-01-11 Endress + Hauser Flowtec Ag Meßsystem
CN110411742A (zh) * 2019-07-26 2019-11-05 中国航发沈阳发动机研究所 一种长时效非接触齿轮行波共振测量系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8712331U1 (de) * 1986-09-26 1988-01-28 Flowtec AG, Reinach, Basel Corioliskraft-Massendurchflussmesser
JPH02503359A (ja) 1988-05-11 1990-10-11 エンドレス ウント ハウザー フローテック アクチエンゲゼルシヤフト コリオリ原理に基づいて作動する質量流量計
JPH02231529A (ja) * 1989-03-03 1990-09-13 Tokico Ltd 質量流量計
US5497665A (en) * 1991-02-05 1996-03-12 Direct Measurement Corporation Coriolis mass flow rate meter having adjustable pressure and density sensitivity
DE4327052C3 (de) * 1993-08-12 1998-10-22 Krohne Ag Massendurchflußmeßgerät
US5469748A (en) * 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US20030216874A1 (en) * 2002-03-29 2003-11-20 Henry Manus P. Drive techniques for a digital flowmeter
DE10331126B4 (de) * 2003-07-09 2005-09-01 Krohne Ag Coriolis-Massendurchflußmeßgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflußmeßgeräts
WO2005057137A2 (fr) 2003-12-12 2005-06-23 Endress+Hauser Flowtec Ag Debitmetre massique de coriolis
DE10358663B4 (de) * 2003-12-12 2015-11-26 Endress + Hauser Flowtec Ag Coriolis-Massedurchfluß-Meßgerät
CN101413816B (zh) * 2007-10-16 2011-08-17 上海一诺仪表有限公司 用于科里奥利质量流量计的检测方法
DE102008046891B4 (de) * 2008-07-08 2014-10-30 Abb Technology Ag Messeinrichtung vom Vibrationstyp
DE102008059920B4 (de) * 2008-12-02 2016-07-14 Krohne Meßtechnik GmbH & Co KG Verfahren zum Betreiben eines Resonanzmeßsystems und diesbezügliches Resonanzmeßsystem
US8300736B2 (en) * 2009-10-19 2012-10-30 Issc Technologies Corp. Method and apparatus for phase reference tracking of digital phase modulated signals in the receiver

Also Published As

Publication number Publication date
CN104685325A (zh) 2015-06-03
WO2013189586A1 (fr) 2013-12-27
JP6223440B2 (ja) 2017-11-01
EP2861942A1 (fr) 2015-04-22
US20150219600A1 (en) 2015-08-06
JP2015521736A (ja) 2015-07-30
US10151728B2 (en) 2018-12-11
DE102012011932A1 (de) 2013-12-19
DE102012011932B4 (de) 2016-09-15
CN104685325B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
AT516420B1 (de) Verfahren und Vorrichtung zur Ermittlung der Dichte eines Fluids
EP2861942B1 (fr) Procédé d'opération d'un système de mesure à résonance et système de mesure à résonance correspondant
EP2861941B1 (fr) Procédé d'opération d'un système de mesure à résonance
EP3196605B1 (fr) Procédé d'opération d'un débitmètre massique du type coriolis et débitmètre massique du type coriolis
EP2564174B1 (fr) Dispositif permettant de determiner et/ou surveiller une grandeur physique relative a un milieu
WO2002103327A1 (fr) Appareil de mesure de la viscosite
DE102016105527A1 (de) System, Vorrichtung und Verfahren für Resonator- und Coriolisachsensteuerung in Vibrationsgyroskopen
DE102012011934B4 (de) Verfahren zum Betreiben eines Resonazmesssystems und diesbezügliche Resonanzmesssystem
EP3045877B1 (fr) Procédé de fonctionnement d'un appareil de mesure de débit massique coriolis
EP2157412B1 (fr) Procédé de fonctionnement d'un système de mesure à résonance et système de mesure à résonance
DE10229319A1 (de) Verfahren zum Steuern eines oszillierenden Elektormotors eines elektrischen Kleingeräts
DE102016111134A1 (de) Vibronischer Sensor
DE102006055589A1 (de) Messvorrichtung und Messgrößensensor mit gekoppelter Verarbeitungs- und Anregungsfrequenz
EP3555575A1 (fr) Capteur vibronique à compensation de signal brouilleur
DE10023306C2 (de) Verfahren zur Ansteuerung von piezoelektrischen Antrieben in Füllstandmessgeräten
DE102013020603B3 (de) Verfahren zum Betrieb eines Coriolis-Massedurchflussmessgeräts
DE102005025354A1 (de) Coriolis Massendurchflussmesser und Verfahren zur Kompensation von Übertragungsfehlern von dessen Eingangsschaltung
DE102007028209A1 (de) Verfahren zur Messung und/oder Überwachung eines Strömungsparameters und entsprechende Vorrichtung
WO2022053595A1 (fr) Circuit conçu pour un gyroscope mems et procédé pour faire fonctionner un circuit correspondant
EP1496341A2 (fr) Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis
DE102007059804B9 (de) Verfahren zum Betrieb einer Messeinrichtung vom Vibrationstyp
DE102015003196B4 (de) Vorrichtung und Verfahren zur Restwertverarbeitung bei der Ansteuerung eines Sensors
AT508189A1 (de) Vorrichtung und verfahren zur messung einer relativbewegung eines targets
DE10262211B4 (de) Vibrationskreisel und Verfahren zum Betrieb eines Vibrationskreisels
DE102008011381A1 (de) Verfahren zur Erzeugung eines annähernd sinusförmigen elektrischen Spannungsverlaufs und Verfahren zur Erzeugung mindestens einer Schwingung eines mechanisch schwingfähigen Körpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20171009

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 972255

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009473

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009473

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 972255

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130617

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240822

Year of fee payment: 12