EP2859172A1 - Trépan comportant un tampon axial à réglage hydraulique pour commander les fluctuations de torsion - Google Patents

Trépan comportant un tampon axial à réglage hydraulique pour commander les fluctuations de torsion

Info

Publication number
EP2859172A1
EP2859172A1 EP13804590.1A EP13804590A EP2859172A1 EP 2859172 A1 EP2859172 A1 EP 2859172A1 EP 13804590 A EP13804590 A EP 13804590A EP 2859172 A1 EP2859172 A1 EP 2859172A1
Authority
EP
European Patent Office
Prior art keywords
pad
drill bit
fluid
wellbore
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13804590.1A
Other languages
German (de)
English (en)
Other versions
EP2859172A4 (fr
Inventor
Thorsten Schwefe
Chad J. BEUERHAUSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/489,563 external-priority patent/US9915138B2/en
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of EP2859172A1 publication Critical patent/EP2859172A1/fr
Publication of EP2859172A4 publication Critical patent/EP2859172A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/62Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes

Definitions

  • This disclosure relates generally to drill bits and systems that utilize the same for drilling wellbores.
  • Oil wells are drilled with a drill string that includes a tubular member having a drilling assembly (also referred to as the "bottomhole assembly” or “BHA”).
  • BHA typically includes devices and sensors that provide information relating to a variety of parameters relating to the drilling operations (“drilling parameters"), behavior of the BHA ("BHA parameters”) and parameters relating to the formation surrounding the wellbore ("formation parameters”).
  • a drill bit is attached to the bottom end of the BHA. The drill bit is rotated by rotating the drill string and/or by a drilling motor (also referred to as a "mud motor”) in the BHA in order to disintegrate the rock formation to drill the wellbore.
  • a drilling motor also referred to as a "mud motor”
  • a large number of wellbores are drilled along contoured trajectories.
  • a single wellbore may include one or more vertical sections, deviated sections and horizontal sections through differing types of rock formations.
  • the rate of penetration (ROP) of the drill changes and can cause (decreases or increases) excessive fluctuations or vibration (lateral or torsional) in the drill bit.
  • the ROP is typically controlled by controlling the weight-on-bit (WOB) and rotational speed (revolutions per minute or "RPM”) of the drill bit so as to control drill bit fluctuations.
  • WB weight-on-bit
  • RPM rotational speed
  • the WOB is controlled by controlling the hook load at the surface and the RPM is controlled by controlling the drill string rotation at the surface and/or by controlling the drilling motor speed in the BHA.
  • Controlling the drill bit fluctuations and ROP by such methods requires the drilling system or operator to take actions at the surface. The impact of such surface actions on the drill bit fluctuations is not substantially immediate. It occurs a time period later, depending upon the wellbore depth.
  • a drill bit in one configuration, includes one or more cutters on a surface thereon configured to penetrate into a formation, at least one pad at the surface, an actuation device configured to supply a fluid under pressure to the pad to extend the pad from the surface, and a relief device configured to drain fluid supplied to the pad to reduce the pressure on the at least one pad when the force applied on the at least one pad exceeds a selected limit.
  • a method of making a drill bit may include: providing a cutter and at least one pad on a surface of the drill bit, wherein the at least one pad is configured to extend from a selected position and retract from the extended position to control the fluctuations of the drill bit during drilling of a wellbore and providing a relief device configured to drain the fluid supplied to the at least one pad when the force on the at least one pad exceeds a selected limit.
  • a method of drilling a wellbore may include: (i) conveying a drill bit attached to a bottomhole assembly into the wellbore, the drill bit including a pad at a surface of the drill bit; an actuation unit configured to supply a fluid under pressure to the pad to apply a force to the pad to extend the pad from the surface; and a relief device configured to transfer fluid supplied to the pad to reduce the pressure on the pad when the force applied on the pad exceeds a selected limit; (ii) drilling the wellbore with the bottomhole assembly; and (iii) extending the pad from the surface of the drill bit during drilling of the wellbore to control fluctuations of the drill bit during drilling of the wellbore.
  • an apparatus for use in drilling a wellbore may include: a drill bit attached to a bottom end of a bottomhole assembly, the drill bit including a pad, an actuation device configured to supply fluid under pressure to the pad to apply a force to the pad to extend the pad from the surface, and a relief device configured to transfer fluid supplied to the pad to reduce the pressure on the pad when the force applied on the pad exceeds a selected limit.
  • FIG. 1 is a schematic diagram of an exemplary drilling system that includes a drill string that has a drill bit made according to one embodiment of the disclosure
  • FIG. 2A is an isometric view of an exemplary drill bit showing placement of one or more adjustable pads on the drill bit according to one embodiment of the disclosure
  • FIG. 2B shows an isometric view of the bottom section of the drill bit of FIG. 2A showing the placement of the pads according to one method of the disclosure
  • FIG. 3A shows a portion of the drill bit of FIG. 2A that includes a fluid channel in communication with an extendable pad at the face section of the drill bit and an actuation device for actuating the extendable pad according to one embodiment of the disclosure;
  • FIG. 3B shows a portion of the drill bit of FIG. 2A that includes a fluid channel in communication with a an extendable pad at a side of the drill bit and an actuation device for actuating the extendable pad according to one embodiment of the disclosure;
  • FIG. 3C shows an exemplary check valve with a relief mechanism that may be used as the fluid flow control device in the systems shown in FIGS. 3A and 3B;
  • FIG. 4 is a schematic diagram showing an extendable pad in an extended position relative to cutting elements on the face section of the drill bit of FIG. 2A.
  • FIG. 1 is a schematic diagram of an exemplary drilling system 100 that may utilize drill bits made according to the disclosure herein.
  • FIG. 1 shows a wellbore 110 having an upper section 111 with a casing 112 installed therein and a lower section 114 being drilled with a drill string 118.
  • the drill string 118 is shown to include a tubular member 116 with a BHA 130 attached at its bottom end.
  • the tubular member 116 may be made up by joining drill pipe sections or it may be a coiled-tubing.
  • a drill bit 150 is shown attached to the bottom end of the BHA 130 for disintegrating the rock formation 119 to drill the wellbore 110 of a selected diameter.
  • Drill string 118 is shown conveyed into the wellbore 110 from a rig 180 at the surface 167.
  • the exemplary rig 180 shown is a land rig for ease of explanation.
  • the apparatus and methods disclosed herein may also be utilized with an offshore rig used for drilling wellbores under water.
  • a rotary table 169 or a top drive (not shown) coupled to the drill string 118 may be utilized to rotate the drill string 118 to rotate the BHA 130 and thus the drill bit 150 to drill the wellbore 110.
  • a drilling motor 155 (also referred to as the "mud motor”) may be provided in the BHA 130 to rotate the drill bit 150. The drilling motor 155 may be used alone to rotate the drill bit 150 or to superimpose the rotation of the drill bit by the drill string 118.
  • a control unit (or controller) 190 which may be a computer-based unit, may be placed at the surface 167 to receive and process data transmitted by the sensors in the drill bit 150 and the sensors in the BHA 130, and to control selected operations of the various devices and sensors in the BHA 130.
  • the surface controller 190 may include a processor 192, a data storage device (or a computer-readable medium) 194 for storing data, algorithms and computer programs 196.
  • the data storage device 194 may be any suitable device, including, but not limited to, a read-only memory (ROM), a random-access memory (RAM), a flash memory, a magnetic tape, a hard disk and an optical disk.
  • a drilling fluid 179 from a source thereof is pumped under pressure into the tubular member 116.
  • the drilling fluid discharges at the bottom of the drill bit 150 and returns to the surface via the annular space (also referred as the "annulus") between the drill string 118 and the inside wall 142 of the wellbore 110.
  • the drill bit 150 includes a face section (or bottom section) 152.
  • the face section 152 faces the formation in front of the drill bit or the wellbore bottom during drilling.
  • the drill bit 150 in one aspect, includes one or more pads 160 at the face section 152 that may be adjustably (also referred to as “selectably” or “controllably") extended from the face section 152 during drilling.
  • the pads 160 are also referred to herein as the "extensible pads,” “extendable pads,” or “adjustable pads.”
  • a suitable actuation device (or actuation unit) 155 in the BHA 130 and/or in the drill bit 150 may be utilized to activate the pads 160 during drilling of the wellbore 110.
  • a suitable sensor 178 associated with the pads 160 or associated with the actuation unit 155 provides signals corresponding to the force applied on the pads or determine the pad extension.
  • the BHA 130 may further include one or more downhole sensors (collectively designated by numeral 175).
  • the sensors 175 may include any number and type of sensors, including, but not limited to, sensors generally known as the measurement-while-drilling (MWD) sensors or the logging- while-drilling (LWD) sensors, and sensors that provide information relating to the behavior of the BHA 130, such as drill bit rotation (revolutions per minute or "RPM”), tool face, pressure, vibration, whirl, bending, and stick-slip.
  • MWD measurement-while-drilling
  • LWD logging- while-drilling
  • the BHA 130 may further include a control unit (or controller) 170 configured to control the operation of the pads 160 and for at least partially processing data received from the sensors 175 and 178.
  • the controller 170 may include, among other things, circuits to process the sensor 178 signals (e.g., amplify and digitize the signals), a processor 172 (such as a microprocessor) to process the digitized signals, a data storage device 174 (such as a solid-state-memory), and a computer program 176.
  • the processor 172 may process the digitized signals, control the operation of the pads 160, process data from other sensors downhole, control other downhole devices and sensors, and communicate data information with the controller 190 via a two-way telemetry unit 188.
  • the controller 170 may adjust the extension of the pads 160 to control the drill bit fluctuations or ROP to increase the drilling effectiveness and to extend the life of the drill bit 150.
  • Increasing the pad extension may decrease the cutter exposure to the formation or the depth of cut of the cutter. Reducing cutter exposure may result in reducing fluctuations torsional or lateral, ROP, whirl, stick-slip, bending moment, vibration, etc., which in turn may result in drilling a smoother hole and reduced stress on the drill bit 150 and BHA 130, thereby extending the BHA and drill bit lives.
  • the ROP is generally higher when drilling into a soft formation, such as sand, than when drilling into a hard formation, such as shale.
  • the pad extension may be controlled based on one or more parameters, including, but not limited to, pressure, tool face, ROP, whirl, vibration, torque, bending moment, stick- slip and rock type.
  • FIG. 2A shows an isometric view of the drill bit 150 made according to one embodiment of the disclosure.
  • the drill bit 150 shown is a polycrystalline diamond compact (PDC) bit having a bit body 212 that includes a section 212a that includes cutting elements and shank 212b that connects to a BHA.
  • the section 212a includes a face section 218a (also referred to herein as the "bottom section").
  • the face section 218a may comprise a nose, cone, and shoulder as shown in FIG. 3A.
  • the section 212a is shown to include a number of blade profiles 214a, 214b, . . . 214n (also referred to as the "profiles").
  • Each blade profile includes cutters on the face section 218a. Each blade profile terminates proximate to a drill bit center 215. The center 215 faces (or is in front of) the bottom of the wellbore 110 ahead of the drill bit 150 during drilling of the wellbore. A side portion of the drill bit 150 is substantially parallel to the longitudinal axis 222 of the drill bit 150. A number of spaced-apart cutters are placed along each blade profile. For example, blade profile 214n is shown to contain cutters 216a-216m. Each cutter has a cutting surface or cutting element, such as cutting element 216a' for cutter 216a, that engages the rock formation when the drill bit 150 is rotated during drilling of the wellbore. Each cutter 216a-216m has a back rake angle and a side rake angle that in combination define the depth of cut of the cutter into the rock formation. Each cutter also has a maximum depth of cut into the formation.
  • a number of extendable pads such as pad 240 may be placed on the face section 218a of the drill bit 150.
  • the pad 240 may be placed proximate to the cutters of a blade profile (214a-214n).
  • Each pad 240 may be placed in an associated cavity 242.
  • the pad 240 may be controllably extended from the face section 218a and retracted into the cavity 242. The extension of the pad 240 depends upon the force applied to the pad 240.
  • the pad 240 retracts toward the cavity 242 when the force is released or reduced from the pad 240.
  • an actuation device element 350' (FIG.
  • a suitable biasing member may be coupled to the pad 240 to cause the pad 240 to retract.
  • FIG. 2B shows an isometric view of a face section 252 of an exemplary PDC drill bit 250.
  • the drill bit 250 is shown to include six blade profiles 260a-260f, each blade profile including a plurality of cutters, such as cutters 262a-262m for the blade profile 260a.
  • Alternate blade profiles 260a, 260c and 260e are shown converging toward the center 215 of the drill bit 250 while the remaining blade profiles 260b, 260d and 260f are shown terminating respectively at the side of blade profiles 260c, 260e and 260a.
  • Fluid channels 278a-278f discharge the drilling fluid 179 (FIG. 1) to the drill bit bottom.
  • FIG. 1 The specific configuration of FIG.
  • each pad 272a, 272c and 272e may be selectively extended to a desired distance from the face section 252 by applying a selected force thereon.
  • all pads 270a, 270c and 270e may be placed in a symmetrical manner about the center 215 and may be configured to extend the same distance from the drill bit face section 252 for controlling the drill bit fluctuations or ROP.
  • the drill bit 250 may include any suitable number of blade profiles and pads (270a, 270c, 270f).
  • the concepts shown and described herein are equally applicable to non-PDC drill bits.
  • FIG. 3A shows a partial side view 300 of an exemplary blade profile 310 of the drill bit 250 (FIG. 2B).
  • the blade profile 310 is shown to include an exemplary cutter 316' placed inside of the bit body 315.
  • the cutter 316' has a cutting element or cutting surface 318*.
  • the cutter 316' extends a selected distance from the face section 320' of the blade profile 310.
  • the blade profile 310 is further shown to include an extendable pad 340' proximate to the cutter 316*.
  • the pad 340' may be placed in a compliant recess or seat 342' in the blade profile 310.
  • Seal 348 may be provided to form a seal for the hydraulic fluid in the recess 342*.
  • a fluid under pressure from a source thereof may be supplied to the pad 340' via a fluid line or fluid channel 344' made in the blade profile 310 or at another suitable location in the drill bit body.
  • the fluid to the pad 340' may be supplied by an actuation or power device 350' located inside or outside the drill bit 250.
  • the fluid may be a clean fluid stored in a reservoir 352' or it may be the drilling fluid 179 (FIG. 1) supplied to the drill bit 250 during drilling of the wellbore 110 (FIG. 1).
  • the fluid from the actuation device or unit 350' may be supplied to a piston 346' that moves in a chamber 349 to move the adjustable pad 340' outward (away from the surface section 320').
  • the actuation device 350' may be any suitable device, including, but not limited to, an electrical device, such as a motor, an electro-mechanical or hydraulic device, such as a pump driven by a motor, a hydraulic device, such as a pump driven by a fluid-driven turbine, and a mechanical device, such as a ring-type device that selectively allows a fluid to flow to the pad 340'.
  • the fluid supplied to the pad 340' may be held under pressure to maintain the pad at a desired extension. In one configuration, the pad 340' may be held in a desired extended position by maintaining the actuation device 350' in an active mode.
  • a fluid flow control device 354' such as a valve, may be associated with the extendable pad 340' to control the supply of the fluid to the pad.
  • a common actuation device 350' may be utilized to supply the fluid to the each pad via a common control valve.
  • a common actuation device may be utilized with a separate control valve for each pad to control the fluid supply to each of the pads.
  • a separate actuation device with a separate control valve may be used for each pad.
  • an electrical actuation unit may be utilized that moves a linear member to extend and retract the pad 340'.
  • a sensor 345' proximate to the pad 340' may be used to provide signals representative of the amount of pad extension.
  • the sensor may be a linear movement sensor, a pressure sensor or any other suitable sensor 345 * .
  • the processor 172 in the BHA 130 may be configured to control the operation of the actuation device 350' in response to a downhole-measured parameter, an instruction stored in the storage device 174, or an instruction sent from the surface controller 190 or an operator at the surface.
  • the movement of the extendable pad 340' relative to fluid supplied thereto may be calibrated at the surface and the calibrated data may be stored in the data storage device 174 for use by the processor 172.
  • an electric motor is used to activate a linear device to move the pad 340', the amount of rotation may be used to control the pad extension.
  • a device that deforms (such as a piezoelectric device) upon an application of an excitation signal may be used to extend and retract the pad 340'.
  • the amount of excitation signal determines the deformation of the actuation device and thus the pad extension and retraction.
  • the pad 340' retracts upon the release of the excitation signal.
  • a check valve 370 may be provided between the chamber 349 and the reservoir 352' via a fluid line 372'. The check valve 370 may be configured to open at a selected high pressure so as to drain or bleed the fluid supplied to the pad 340' to the reservoir when the pressure applied to the pad 340' exceeds a selected limit to avoid damage to the pad 340'.
  • FIG. 3B shows a partial side view 300 of an exemplary blade profile 31 .
  • the blade profile 314 is shown to include a cutter 316 placed on the side section 320 of the blade body 315.
  • the cutter 316 has a cutting element or cutting surface 318.
  • the cutter 316 extends a selected distance from the side 320 of the blade profile 314.
  • the blade profile 314 also is shown to include an extendable pad 340 proximate to the cutter 316.
  • the extendable pad 340 may be placed in a compliant recess or seat 342 in the blade profile body 315.
  • fluid under pressure from a source thereof may be supplied to the extendable pad 340 via a fluid line or fluid channel 344 made in the blade profile 315 or at another suitable location in the bit body.
  • the fluid to the extendable pad 340 may be supplied by an actuation or power device 350 located inside or outside the drill bit 150.
  • the fluid may be a clean fluid stored in reservoir 352 or it may be the drilling fluid 179 (FIG. 1) supplied to the drill bit 150 during drilling of the wellbore 110 (FIG. 1).
  • the fluid from the actuation unit 350 may be supplied to a piston 346 that moves the extendable or adjustable pad 340 outward (away from the blade profile 315).
  • the actuation device 350 may be any suitable device, including, but not limited to, an electrical device, such as a motor, an electromechanical device, such as a pump driven by a motor, a hydraulic device, such as a pump driven by a turbine operated by the fluid flowing in the BHA, and a mechanical device, such as a ring-type device that selectively allows a fluid to flow to the pad 340.
  • the fluid supplied to the extendable pad 340 is held under pressure while the extendable pad 340 is on the low side of the wellbore 110.
  • the extendable pad 340 may be held in a desired extended position by maintaining the actuation device 350 in an active mode.
  • a fluid flow control device 354 such as a valve, may be associated with each adjustable pad to control the supply of the fluid to its associated pad.
  • a common actuation device 350 may be utilized to supply the fluid to all the control valves.
  • a separate actuation device may be utilized to control the fluid supply to each of the pads 340.
  • the processor 172 in the BHA (FIG. 1) may be configured to control the operation of the actuation device 350 in response to a downhole-measured parameter or an instruction stored in the storage device 174 or an instruction sent from the surface controller 190.
  • the movement of the adjustable pad 340 relative to fluid supplied thereto may be calibrated at the surface and the calibrated data may be stored in the data storage device 174 for use by the processor 172.
  • some of some components that are used to activate the pad 340 on the side of the blade and the pads 340' on the face section may be common.
  • a common actuation device with different control valves may be utilized for activating the side pad 340 and bottom pads 340'.
  • an adjustable pad, such as pad 340, on the side of a blade profile and one or more pads, such as pads 340' on the face section of a drill bit may be utilized.
  • the side pad 340 may be used to alter the direction of the drill bit 150, while the pads 340' on the face section 320 may be used to control the ROP downhole.
  • a check valve 370a may be provided between the chamber 349a and the reservoir 352 via a fluid line 372a.
  • the check valve 370a may be configured to open at a selected high pressure so as to drain the fluid supplied to the pad 340 to the reservoir when the pressure applied to the pad 340 exceeds a selected limit to avoid damage to the pad 340.
  • the flow control device 354 or 354' may be a check valve with a hydraulic relief, such as a valve 354a shown in FIG. 3C.
  • valve 354a When the fluid under pressure is supplied to the valve 354a along the entry path 356, the valve opens and allows the fluid to exit outlet path 357. When the pressure at entry path 356 is relieved, the fluid from the path 357 enters the valve 354a and exits via the relief path or bypass 358.
  • a valve controllably allows the pad 340 to extend and retract from the drill bit surface.
  • the controller in the drill bit, bottomhole assembly and/or at the surface may be programmed to control the extension and retraction of the pad based on one or more selected criteria or parameters.
  • FIG. 4 shows an extendable pad 440 in an extended position.
  • the pad 440 extension may be adjusted by the amount of the force applied to the pad 440.
  • the extendable pad 440 is shown extended by a distance "d" and may be extended to a maximum or full extended position as shown by the dotted line 444.
  • the pad 440 remains at its selected or desired extended position until the force applied to the pad 440 is reduced or removed by the actuation device. For example, in the configuration shown in FIG. 3A, closing the valve 354* or holding the actuation device 350' in a manner that prevents the fluid supplied to the pad 440 from returning to the fluid storage device 352' will cause the pad 440' to remain in the selected extended position.
  • a biasing member 460' also may be provided for each pad 440 to cause the pad 440 to retract when the force on the pad 440 reduced or removed.
  • the pad extension may be controlled based on the desired impact on the rate of penetration of the drill bit into the earth formation and/or a property of the drill bit 150 or the BHA 130.
  • the pad extension may be controlled based on any one or more desired parameters, including, but not limited to, vibration, drill bit lateral or torsional fluctuations, ROP, pressure, tool face, rock type, vibration, whirl, bending moment, stick-slip, torque and drilling direction.
  • vibration, drill bit lateral or torsional fluctuations, ROP, pressure, tool face, rock type, vibration, whirl, bending moment, stick-slip, torque and drilling direction In general, however, the greater the pad extension, the greater the reduction in the ROP of the drill bit into the formation.
  • a drill bit made according to any of the embodiments described herein may be employed to reduces the depth of cut by the cutters at the face section of the drill bit, which in turn affects the drill bit fluctuations and ROP.
  • Reduction in the drill bit fluctuations may affect one or more of the drill bit and/or BHA physical parameters.
  • the relationship between the applied force and the pad extension may be obtained in laboratory test.
  • the calculated or otherwise determined (such as through modeling) relationship among the applied force, pad extension, the corresponding change in drill bit fluctuations, ROP, and the impact on any other parameter may be stored in the downhole data storage device 274 and/or the surface data storage device 194.
  • Such information may be stored in any suitable form, including, but not limited to, one or more algorithms, curves, matrices, and tables.
  • the pad extension may be controlled by the downhole controller 270 and/or by the surface controller 190.
  • the system 100 provided herein may automatically and dynamically control the pad extensions and thus the drill bit fluctuations, ROP and other parameters during drilling of the wellbore 110 without changing certain other parameters, such as the WOB and RPM.
  • the extension of the pad 340 (FIG. 3B) on the side of the drill bit may be controlled in the same manner as the pad 340' (FIG. 3A) on the face section, based on any desired parameters, to alter the drilling direction.
  • the side pad, such as pad 340, and the pads on the face section, such as pads 340' may be activated concurrently so as to alter the drilling direction and the ROP substantially simultaneously.
  • a drill bit in one configuration may include a face section or bottom face that includes one or more cutters thereon configured to penetrate into an earth formation and a number of selectively extendable pads to control drill bit fluctuations or ROP of the drill bit into the earth formation during drilling of a wellbore.
  • each pad may be configured to extend from the face section upon application of a force thereon. The pad retracts toward the face section when the force is reduced or removed.
  • Each pad may be placed in an associated cavity in the drill bit.
  • a biasing member may be provided for each pad that cause the pad to retreat when the force applied to the pad is reduced or removed. The biasing member may be directly coupled or attached to the pad.
  • Any suitable biasing member may be used, including, but not limited to, a spring.
  • the force to each pad may be provided by any suitable actuation device, including, but not limited to, a device that supplies a fluid under pressure to the pad or to a piston that moves the pad, and a shape-changing device or material that changes its shape or deforms in response to an excitation signals.
  • the shape-changing device returns to its original shape upon the removal of the excitation. The amount of the change in the shape depends on the amount of the excitation signal.
  • the device that supplies fluid under pressure may be a pump operated by an electric motor or a turbine operated by the drilling fluid.
  • the fluid may be a clean fluid (such as an oil) stored in a storage chamber in the BHA or it may be the drilling fluid.
  • a fluid channel from the pump to each pad may supply the fluid.
  • the fluid may be supplied to a piston attached to the pad. The resulting piston movement extends the pad.
  • a control valve may be provided to control the fluid into the fluid channels or to the pistons. In one aspect, all pads may be extended to the same extension or distance from the bottom section. A common actuation device and control valve may be used.
  • a method of making a drill bit includes: providing a plurality of blade profiles terminating at a bottom section of the drill bit, each blade profile having at least one cutter thereon; and placing a plurality of extendable pads at the bottom section of the drill bit, wherein each extendable pad is configured to extend to a selected distance from the bottom section upon application of a force and retract toward the bottom section upon the removal of the force on the extendable pad.
  • the method may further include placing each extendable pad in an associated cavity in the drill bit bottom section.
  • the method may further include coupling a biasing member to each extendable pad. The biasing member is configured to retract its associated pad upon the removal of the force applied to the pad.
  • One or more fluid channels may supply a fluid under pressure to the pads to cause the pads to extend to respective selected positions.
  • the method may further include providing an actuation device that supplies the force to each pad in the plurality of pads.
  • the actuation device may include at least one of: a device that supplies fluid under pressure to each pad; and a shape- changing device or material that deforms in response to an excitation signal.
  • a BHA for use in drilling a wellbore may include a drill bit attached to a bottom end of the BHA, the drill bit including a bottom section that includes one or more cutters thereon configured to penetrate into a formation.
  • the drill bit may also include a plurality of extendable pads at the bottom section; and an actuation unit that is configured to apply force to each pad to extend each pad to a selected extension. The extension results in altering the drill bit fluctuations and ROP of the drill bit into the earth formation during drilling of the wellbore.
  • the actuation unit may be one of a power unit that supplies fluid under pressure to each pad and a shape-changing material that supplies a selected force on each pad upon application of an activation signal to the shape-changing device or material.
  • the BHA may further include a sensor that provides signals relating to the extension of each pad or the force applied by the actuation device on each of the pads.
  • the BHA may further include a controller configured to process signals from the sensor to control the extensions of the pads.
  • the controller may control the pad extensions based on one or more parameters, which parameters may include, but are not limited to, drill bit fluctuations (lateral and/or torsional), weight-on-bit, pressure, ROP (desired or actual), whirl, vibration, bending moment, and stick-slip.
  • a surface controller may be utilized to provide information and instructions to the controller in the BHA.
  • a method of forming a wellbore may include: conveying a drill bit attached to a bottomhole assembly into the wellbore, the drill bit having at least one cutter and at least one pad on a face section of the drill bit; drilling the wellbore by rotating the drill bit; applying a force on the at least one pad to move the at least one pad from a retracted position to a selected extended position and reducing the applied selected force on the at least one pad to cause the at least one pad to retract from the selected extended position to control fluctuations of the drill bit during drilling of the wellbore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Drilling And Boring (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

La présente invention concerne un trépan sur une surface duquel, dans une configuration, se trouvent un ou plusieurs dispositifs tranchants conçus pour pénétrer dans une formation. Ledit trépan comprend au moins un tampon sur la surface, un dispositif d'actionnement conçu pour fournir un fluide sous pression au tampon pour étendre le tampon à partir de la surface, et un dispositif de détente conçu pour drainer le fluide fourni au tampon pour réduire la pression sur le ou les tampons lorsque la force appliquée sur le ou les tampons dépasse une limite sélectionnée.
EP13804590.1A 2012-06-06 2013-06-06 Trépan comportant un tampon axial à réglage hydraulique pour commander les fluctuations de torsion Withdrawn EP2859172A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/489,563 US9915138B2 (en) 2008-09-25 2012-06-06 Drill bit with hydraulically adjustable axial pad for controlling torsional fluctuations
PCT/US2013/044487 WO2013188206A1 (fr) 2012-06-06 2013-06-06 Trépan comportant un tampon axial à réglage hydraulique pour commander les fluctuations de torsion

Publications (2)

Publication Number Publication Date
EP2859172A1 true EP2859172A1 (fr) 2015-04-15
EP2859172A4 EP2859172A4 (fr) 2016-01-20

Family

ID=49758630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13804590.1A Withdrawn EP2859172A4 (fr) 2012-06-06 2013-06-06 Trépan comportant un tampon axial à réglage hydraulique pour commander les fluctuations de torsion

Country Status (8)

Country Link
EP (1) EP2859172A4 (fr)
CN (1) CN104508230B (fr)
BR (1) BR112014030612B1 (fr)
CA (1) CA2875197C (fr)
IN (1) IN2014DN10334A (fr)
MX (1) MX2014014906A (fr)
SG (1) SG11201408079UA (fr)
WO (1) WO2013188206A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788362B2 (en) 2021-12-15 2023-10-17 Halliburton Energy Services, Inc. Piston-based backup assembly for drill bit
US12123261B1 (en) 2023-04-04 2024-10-22 Halliburton Energy Services, Inc. Depth of cut control responsive to borehole trajectory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915138B2 (en) 2008-09-25 2018-03-13 Baker Hughes, A Ge Company, Llc Drill bit with hydraulically adjustable axial pad for controlling torsional fluctuations
CA3010583A1 (fr) * 2016-02-26 2017-08-31 Halliburton Energy Services, Inc. Trepan hybride a elements de coupe a contre-rotation reglables dans un sens axial
US11692402B2 (en) 2021-10-20 2023-07-04 Halliburton Energy Services, Inc. Depth of cut control activation system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553678A (en) * 1991-08-30 1996-09-10 Camco International Inc. Modulated bias units for steerable rotary drilling systems
GB9708428D0 (en) * 1997-04-26 1997-06-18 Camco Int Uk Ltd Improvements in or relating to rotary drill bits
US6550548B2 (en) * 2001-02-16 2003-04-22 Kyle Lamar Taylor Rotary steering tool system for directional drilling
AR034780A1 (es) * 2001-07-16 2004-03-17 Shell Int Research Montaje de broca giratoria y metodo para perforacion direccional
GB0515394D0 (en) * 2005-07-27 2005-08-31 Schlumberger Holdings Steerable drilling system
US7413034B2 (en) * 2006-04-07 2008-08-19 Halliburton Energy Services, Inc. Steering tool
US7748466B2 (en) * 2006-09-14 2010-07-06 Thrubit B.V. Coiled tubing wellbore drilling and surveying using a through the drill bit apparatus
US7942213B2 (en) * 2006-10-27 2011-05-17 Schlumberger Technology Corporation Using hydrostatic bearings for downhole applications
US7971662B2 (en) * 2008-09-25 2011-07-05 Baker Hughes Incorporated Drill bit with adjustable steering pads
US8205686B2 (en) * 2008-09-25 2012-06-26 Baker Hughes Incorporated Drill bit with adjustable axial pad for controlling torsional fluctuations
US8061455B2 (en) * 2009-02-26 2011-11-22 Baker Hughes Incorporated Drill bit with adjustable cutters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788362B2 (en) 2021-12-15 2023-10-17 Halliburton Energy Services, Inc. Piston-based backup assembly for drill bit
US12123261B1 (en) 2023-04-04 2024-10-22 Halliburton Energy Services, Inc. Depth of cut control responsive to borehole trajectory

Also Published As

Publication number Publication date
CA2875197C (fr) 2019-01-08
CN104508230B (zh) 2017-07-07
CA2875197A1 (fr) 2013-12-19
BR112014030612A2 (pt) 2017-06-27
WO2013188206A1 (fr) 2013-12-19
SG11201408079UA (en) 2015-01-29
IN2014DN10334A (fr) 2015-08-07
MX2014014906A (es) 2015-06-10
CN104508230A (zh) 2015-04-08
EP2859172A4 (fr) 2016-01-20
BR112014030612B1 (pt) 2021-03-02

Similar Documents

Publication Publication Date Title
US10001005B2 (en) Drill bit with hydraulically adjustable axial pad for controlling torsional fluctuations
CA2736710C (fr) Outil de forage a patin axial reglable pour reguler les fluctuations torsionnelles
CA3008387C (fr) Outils de forage comprenant des elements de modification d'agressivite reglables de facon passive et procedes associes
US7971662B2 (en) Drill bit with adjustable steering pads
US10000977B2 (en) Drill bit with self-adjusting pads
CA2909461C (fr) Trepan dote de plaquettes de calibrage deployables
WO2017106605A1 (fr) Outils de forage comprenant des éléments de modification d'agressivité réglables de façon passive et procédés associés
CA2875197C (fr) Trepan comportant un tampon axial a reglage hydraulique pour commander les fluctuations de torsion
US20100163307A1 (en) Drill Bits With a Fluid Cushion For Reduced Friction and Methods of Making and Using Same
EP3207206A1 (fr) Trépan équipé de patins auto-réglables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWEFE, THORSTEN

Inventor name: BEUERHAUSEN, CHAD, J.

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151221

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 10/38 20060101ALI20151215BHEP

Ipc: E21B 10/26 20060101AFI20151215BHEP

Ipc: E21B 4/02 20060101ALI20151215BHEP

Ipc: E21B 17/10 20060101ALI20151215BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190910