EP2858810A1 - Structure composite ayant un noyau à faible masse volumique et un renforcement de couture composite - Google Patents
Structure composite ayant un noyau à faible masse volumique et un renforcement de couture compositeInfo
- Publication number
- EP2858810A1 EP2858810A1 EP13729177.9A EP13729177A EP2858810A1 EP 2858810 A1 EP2858810 A1 EP 2858810A1 EP 13729177 A EP13729177 A EP 13729177A EP 2858810 A1 EP2858810 A1 EP 2858810A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- fibers
- composite layup
- density
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/08—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
- B29C70/086—Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/24—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/68—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
- B29C70/86—Incorporated in coherent impregnated reinforcing layers, e.g. by winding
- B29C70/865—Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/001—Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
- B29D99/0021—Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/06—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/233—Foamed or expanded material encased
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/239—Complete cover or casing
Definitions
- This invention relates generally to composite structures, and more particularly to composite gas turbine engine fan blades.
- Composite wide-chord fan blades are known for use in gas turbine engines.
- a large engine having all-composite wide chord fan blades offers a significant weight savings over a large engine having fan blades made from metal alloys.
- a composite structure includes: a core having a pair of opposed exterior surfaces and having a first density; a composite layup surrounding the core, the composite layup comprising a plurality of layers of fibers embedded in a matrix and extending along the exterior surfaces of the core, the composite layup having a second density; and stitching comprising fibers extending through the core and at least a portion of the composite layup.
- a method of making a composite structure includes: stitching fibers through both of: a core that includes a pair of opposed exterior surfaces, wherein the core has a first density; and at least a portion of a composite layup that surrounds the core, the composite layup comprising a plurality of layers of fibers extending along the exterior surfaces of the core, the fibers embedded in an uncured resin matrix, wherein the composite layup has a second density; and simultaneously curing the core, the composite layup, and the fibers.
- Figure 1 is a schematic side view of a turbine engine fan blade constructed in accordance with an aspect of the present invention
- FIG. 2 is a view taken along lines 2-2 of FIG.1;
- FIG. 3 an enlarged view of a portion of FIG. 2.
- FIG. 1 illustrates an exemplary composite fan blade 10 for a high bypass ratio turbofan engine (not shown) including a composite airfoil 12 extending in a chordwise direction C from a leading edge 16 to a trailing edge 18.
- the airfoil 12 extends radially outward in a spanwise direction S from a root 20 to a tip 22.
- the airfoil 12 has a concave pressure side 24 and a convex suction side 26.
- the airfoil 12 is constructed from a composite layup 28 with a core 30 disposed therein.
- composite refers generally to a material containing a reinforcement such as fibers or particles supported in a binder or matrix material.
- the composite layup 28 includes a number of layers or plies 32 embedded in a matrix and oriented substantially parallel to the pressure and suction sides 24 and 26.
- a nonlimiting example of a suitable material is a carbonaceous (e.g. graphite) fiber embedded in a resin material such as epoxy. These are commercially available as fibers unidirectionally aligned into a tape that is impregnated with a resin.
- prepreg Such "prepreg” tape can be formed into a part shape, and cured via an autoclaving process or press molding to form a light weight, stiff, relatively homogeneous article.
- the core 30 has a cambered airfoil shape which generally follows the shape of the airfoil 12 and is bounded by opposed concave and convex exterior surfaces 34 and 36, respectively.
- the core 30 comprises a low-density material such as polymeric foam.
- low-density does not refer to any absolute magnitude, but rather the relative density of the core 30 compared to that of the composite layup 28.
- a suitable core material is an elastomeric polyurethane foam having a density of about 40% of the density of the composite layup 28.
- reinforcing fibers 38 are stitched through the core 30 and through at least part of the composite layup 28.
- the fibers 38 may be formed using any fiber with a high tensile strength.
- the fibers 38 comprise tows of intermediate modulus carbon fiber, similar to the fibers used to manufacture the tapes described above.
- Another example of a suitable material is carbon nanofiber.
- the fibers 38 are configured in a continuous pattern including transverse fibers 40 extending transverse to the core exterior surfaces 34 and 36, (i.e. in a through- thickness direction), interconnected by loops 42 extending parallel to the core exterior surfaces 34 and 36.
- the fibers 38 may be configured as a series of side-by-side rows (one row 44 is depicted in front of another row 46 in FIG. 3), or in another two-dimensional or three-dimensional pattern.
- the fibers 38 may be stitched using an ultrasonic needle apparatus.
- the transverse fibers 40 extend through the core 30 and through at least a portion of the thickness of the composite layup 28.
- the stitching can be done at a foam subcomponent level, in which case opposed "facesheets" 48 and 50 of composite material are first secured by the fibers 38 to the core outer surfaces 34 and 36. The subassembly would then be ready to assemble to the remainder of the airfoil 12.
- the fibers 38 may be stitched through the composite layup 28 and the core 30 with the core 30 already assembled into the uncured composite layup 28.
- the stitched fibers 38 When cured, the stitched fibers 38 add shear, compressive, and tensile strength to an otherwise low density, low strength material. In addition, the stitching increases the core's stiffness to decrease peak stresses in the composite caused by the core geometry. Optimization of the spacing between transverse fibers 40 (i.e. stitch pattern density) may be based on bulk analysis and/or coupon level testing.
- the direction of the transverse fibers 40 relative to the outer surfaces 34 and 36 of the core 30 may be selected so as to provide the maximum shear loading capability at the carbon/foam interface.
- the transverse fibers 40 are oriented with an angle a of approximately 45 degrees from perpendicular to the exterior surfaces 34 and 36.
- the stitching (whether done at the core subassembly or airfoil assembly level) may be applied in a dry condition, with no composite resin used.
- the entire airfoil 12 may be then be cured using a known autoclave process. During the cure, resin from the matrix of the composite layup 28 is free to wick along the fibers 38, and cure in place, incorporating the fibers 38 as part of the cured structure.
- the reinforcing structure and process described herein enables the use of low- density foam in a composite airfoil. This process adds strength and decreases stress concentrations with the minimum amount of weight. It is an enabler for low density foam application in fan blades. This has a ripple effect into disk, case, and attachment hardware. Being able to use this foam will provide a technical advantage over solid composites.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Moulding By Coating Moulds (AREA)
- Laminated Bodies (AREA)
Abstract
La présente invention concerne une structure composite qui comprend : un noyau ayant une paire de surfaces extérieures opposées et ayant une première masse volumique ; une enveloppe composite entourant le noyau, l'enveloppe composite comprenant une pluralité de couches de fibres intégrées dans une matrice et s'étendant le long des surfaces extérieures du noyau, l'enveloppe composite ayant une deuxième masse volumique ; et une couture comprenant des fibres s'étendant à travers le noyau et au moins une partie de l'enveloppe composite.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/490,235 US20130330496A1 (en) | 2012-06-06 | 2012-06-06 | Composite structure with low density core and composite stitching reinforcement |
PCT/US2013/043510 WO2013184491A1 (fr) | 2012-06-06 | 2013-05-31 | Structure composite ayant un noyau à faible masse volumique et un renforcement de couture composite |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2858810A1 true EP2858810A1 (fr) | 2015-04-15 |
Family
ID=48626642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13729177.9A Withdrawn EP2858810A1 (fr) | 2012-06-06 | 2013-05-31 | Structure composite ayant un noyau à faible masse volumique et un renforcement de couture composite |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130330496A1 (fr) |
EP (1) | EP2858810A1 (fr) |
JP (1) | JP2015525155A (fr) |
CN (1) | CN104349888A (fr) |
BR (1) | BR112014030596A2 (fr) |
CA (1) | CA2875029A1 (fr) |
WO (1) | WO2013184491A1 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140248156A1 (en) * | 2012-12-21 | 2014-09-04 | United Technologies Corporation | Composite Articles and Methods |
US9835112B2 (en) * | 2014-02-10 | 2017-12-05 | MRA Systems Inc. | Thrust reverser cascade |
JP6645986B2 (ja) | 2014-05-05 | 2020-02-14 | ホートン, インコーポレイテッド | 複合ファン |
DE102014015976A1 (de) | 2014-10-31 | 2016-05-04 | Airbus Defence and Space GmbH | Verbundkonstruktion für eine erhöhte Lebensdauer |
EP3237510B1 (fr) * | 2014-12-22 | 2023-07-26 | Basf Se | Éléments moulés renforcés à l'aide de fibres en mousse particulaire expansée |
US9828862B2 (en) | 2015-01-14 | 2017-11-28 | General Electric Company | Frangible airfoil |
US10124546B2 (en) | 2015-03-04 | 2018-11-13 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US10449737B2 (en) | 2015-03-04 | 2019-10-22 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9616623B2 (en) | 2015-03-04 | 2017-04-11 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
US9963978B2 (en) | 2015-06-09 | 2018-05-08 | Ebert Composites Corporation | 3D thermoplastic composite pultrusion system and method |
CN106945302A (zh) * | 2016-01-07 | 2017-07-14 | 中航商用航空发动机有限责任公司 | 纤维增强复合风扇叶片及其制造方法 |
JP6672233B2 (ja) * | 2017-09-25 | 2020-03-25 | 三菱重工業株式会社 | 複合材翼の成形方法、複合材翼及び複合材翼の成形型 |
US11931981B2 (en) | 2018-01-29 | 2024-03-19 | General Electric Company | Reinforced composite blade and method of making a blade |
JP6738850B2 (ja) * | 2018-03-29 | 2020-08-12 | 三菱重工業株式会社 | 複合材料翼および複合材料翼の製造方法 |
DE102018120905A1 (de) * | 2018-08-27 | 2020-02-27 | Wobben Properties Gmbh | Faserverbundhalbzeug, Faserverbundbauteil, Rotorblattelement, Rotorblatt und Windenergieanlage sowie Verfahren zum Herstellen eines Faserverbundhalbzeugs und Verfahren zum Herstellen eines Faserverbundbauteils |
AU2021204709A1 (en) * | 2020-07-29 | 2022-02-17 | The Boeing Company | Composite thin wingbox architecture for supersonic business jets |
US20240280027A1 (en) * | 2023-02-21 | 2024-08-22 | General Electric Company | Turbine engine airfoil with a woven core and woven layer |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1411379A (en) * | 1971-12-21 | 1975-10-22 | Rolls Royce | Fibre reinforced composite structures |
JPH01110944A (ja) * | 1987-10-26 | 1989-04-27 | Toyota Motor Corp | Frp構造体 |
FR2684719B1 (fr) * | 1991-12-04 | 1994-02-11 | Snecma | Aube de turbomachine comprenant des nappes de materiau composite. |
US5279892A (en) * | 1992-06-26 | 1994-01-18 | General Electric Company | Composite airfoil with woven insert |
CA2138775C (fr) * | 1993-05-04 | 2000-03-14 | Glenn A. Freitas | Structure sandwiche a ame de mousse renforcee |
US6431837B1 (en) * | 1999-06-01 | 2002-08-13 | Alexander Velicki | Stitched composite fan blade |
US6645333B2 (en) * | 2001-04-06 | 2003-11-11 | Ebert Composites Corporation | Method of inserting z-axis reinforcing fibers into a composite laminate |
US20050025948A1 (en) * | 2001-04-06 | 2005-02-03 | Johnson David W. | Composite laminate reinforced with curvilinear 3-D fiber and method of making the same |
US7105071B2 (en) * | 2001-04-06 | 2006-09-12 | Ebert Composites Corporation | Method of inserting z-axis reinforcing fibers into a composite laminate |
ATE509755T1 (de) * | 2001-08-02 | 2011-06-15 | Ebert Composites Corp | Verfahren zum crimpen der oberen und unteren endteile von in der z-achse orientierten fasern in die entsprechende obere und untere oberfläche eines verbundlaminats und verbundlaminat |
US6884507B2 (en) * | 2001-10-05 | 2005-04-26 | General Electric Company | Use of high modulus, impact resistant foams for structural components |
GB0428201D0 (en) * | 2004-12-22 | 2005-01-26 | Rolls Royce Plc | A composite blade |
JP4615398B2 (ja) * | 2005-08-26 | 2011-01-19 | 本田技研工業株式会社 | 炭素繊維複合材料成形体 |
US8357323B2 (en) * | 2008-07-16 | 2013-01-22 | Siemens Energy, Inc. | Ceramic matrix composite wall with post laminate stitching |
-
2012
- 2012-06-06 US US13/490,235 patent/US20130330496A1/en not_active Abandoned
-
2013
- 2013-05-31 JP JP2015516074A patent/JP2015525155A/ja active Pending
- 2013-05-31 WO PCT/US2013/043510 patent/WO2013184491A1/fr active Application Filing
- 2013-05-31 CA CA2875029A patent/CA2875029A1/fr not_active Abandoned
- 2013-05-31 CN CN201380029938.XA patent/CN104349888A/zh active Pending
- 2013-05-31 BR BR112014030596A patent/BR112014030596A2/pt not_active IP Right Cessation
- 2013-05-31 EP EP13729177.9A patent/EP2858810A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2013184491A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20130330496A1 (en) | 2013-12-12 |
WO2013184491A1 (fr) | 2013-12-12 |
BR112014030596A2 (pt) | 2017-06-27 |
CN104349888A (zh) | 2015-02-11 |
JP2015525155A (ja) | 2015-09-03 |
CA2875029A1 (fr) | 2013-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130330496A1 (en) | Composite structure with low density core and composite stitching reinforcement | |
US8109734B2 (en) | Article formed from a composite material | |
US8647070B2 (en) | Reinforced composite aerofoil blade | |
US9309772B2 (en) | Hybrid turbine blade including multiple insert sections | |
US20160032939A1 (en) | Airfoil structures | |
US20160031182A1 (en) | Composite flange with three-dimensional weave architecture | |
CN110094237B (zh) | 增强的复合叶片及制作叶片的方法 | |
JP2010527303A (ja) | ハイブリッド複合パネルシステム及び方法 | |
US20160186774A1 (en) | Process of producing a thermoplastic-fiber composite and fan blades formed therefrom | |
US20180127088A1 (en) | Reinforced blade and spar | |
CA2888777A1 (fr) | Pale composite avec longerons de profil uni-bande | |
EP2853380A1 (fr) | Textiles composites comprenant des filaments étalés | |
EP2543506B1 (fr) | Composant composite stratifié | |
Soutis | Recent advances in building with composites | |
US10618631B2 (en) | Reinforced blade and spar | |
US9243407B2 (en) | Structure repair with polymer matrix composites | |
US10125617B2 (en) | Composite structure and a method of fabricating the same | |
US11807355B2 (en) | Landing gear system with composite flex beam | |
US10830062B2 (en) | Single ply having plurality of fiber angles | |
BALIKOĞLU et al. | Mechanical Properties Of Sandwich Composites Used For Aerofoil Shell Structures Of Wind Turbine Blade: Fatih BALIKOĞLU1, Tayfur Kerem DEMİRCİOĞLU1*, Ali IŞIKTAŞ2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20161201 |