EP2857139B1 - Dispositif de traitement laser de matériau avec une tête laser déplaçable dans l'espace - Google Patents

Dispositif de traitement laser de matériau avec une tête laser déplaçable dans l'espace Download PDF

Info

Publication number
EP2857139B1
EP2857139B1 EP14179121.0A EP14179121A EP2857139B1 EP 2857139 B1 EP2857139 B1 EP 2857139B1 EP 14179121 A EP14179121 A EP 14179121A EP 2857139 B1 EP2857139 B1 EP 2857139B1
Authority
EP
European Patent Office
Prior art keywords
laser
laser beam
laser head
melting
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14179121.0A
Other languages
German (de)
English (en)
Other versions
EP2857139A1 (fr
Inventor
Christian Liebl
Steffen Schlothauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP2857139A1 publication Critical patent/EP2857139A1/fr
Application granted granted Critical
Publication of EP2857139B1 publication Critical patent/EP2857139B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/38Housings, e.g. machine housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • B22F12/47Radiation means with translatory movement parallel to the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/77Recycling of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/04Welded or brazed overlays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a device for laser material processing according to the preamble of claim 1 (see, eg. US 2003/052105 A ), or a device for selective laser melting or laser sintering.
  • Generative manufacturing processes for the production of a component such as selective laser melting, selective laser sintering or laser deposition welding are used in the industry for rapid tooling, rapid prototyping or also for the production of series products in the context of rapid manufacturing.
  • such methods can also be used for the production of turbine parts, in particular of parts for aircraft engines, in which, for example due to the material used, such generative production methods are advantageous.
  • An example of this can be found in the DE 10 2010 050 531 A1 ,
  • lasers are also used in many other applications in material processing for melting or simply heating materials.
  • the introduction of heat can lead to the so-called formation of smoke, ie to the formation of combustion gases, vaporized material and the like, which can prevent further efficient coupling of laser light into the material to be processed.
  • undesirable distortions of the beam shape can occur when deflecting mirrors are used for scanning (scanning) or sweeping the processing field with the laser beam, which can lead to undesired effects depending on the desired accuracy and spatial resolution of the material processing.
  • Another problem with laser material processing is that rapid heating and melting as well as cooling of the heated or melted areas can lead to residual stresses and cracking.
  • the device is intended to solidify areas that have been melted down or remelted, stress-free and crack-free, and that the energy used by the laser beam can be used efficiently.
  • the invention proposes to provide a laser head movable at least along one spatial direction, which can be moved over a material to be processed and is connected to a light guide with the laser beam generating unit of the laser. Instead of guiding the laser beam through deflection mirrors over a processing surface, the laser head is guided over the processing surface, which emits the laser beam directly from a light guide, so that shape distortions of the laser beam can be avoided.
  • the laser head is designed to be translationally movable along at least two mutually independent spatial directions, so that the laser head can be moved within or along a plane, for example.
  • each point of a surface to be machined can be achieved with the movable laser head, in particular during selective laser melting or laser sintering.
  • a movable laser head offers the advantage that additional devices can be provided on the laser head, such as, according to the invention, a suction device for smoke and the like, and a temperature control device for preheating and reheating or also cooling the machined region.
  • the suction device according to the invention is designed so that it generates a suction parallel to the laser beam direction and in particular a suction offset to the laser beam so that unwanted components in the atmosphere above the material to be processed, such as smoke, can be removed without the laser beam on to impair.
  • a tempering device comprises an induction coil. With the tempering device is a local pre and post treatment with respect to a temperature treatment time before or after the laser beam processed area possible, so that stresses and cracks in the treated material can be avoided or reduced.
  • the device for laser material processing can be used in particular in a device for selective laser melting or selective laser sintering.
  • the FIG. 1 shows in a purely schematic representation of a device 1, as they can be used for the selective laser melting for the generative production of a component.
  • the device 1 comprises a lifting table 2, on the platform of which a semi-finished product 3 is arranged, on which layer-by-layer material is deposited in order to produce a three-dimensional component.
  • the slider 8 powder 10 which is located above a lifting table 9 in a powder supply, pushed in layers over the semifinished product 3 and then connected by the laser beam 7 of a laser 4 by melting or sintering with the already existing semifinished product 3.
  • connection of the powder material in a powder layer with the semifinished product 3 is effected by the laser beam 7 depending on the desired contour of the component to be manufactured, so that any three-dimensional shapes can be generated.
  • the process takes place in a closed space, which is provided by a housing 11 of the device 1, and it is also provided an inert gas atmosphere, for example, oxidation of the powder material during Separate and the like to avoid.
  • an inert gas for example, nitrogen can be used, which is provided via a gas supply.
  • the laser 4 has a laser head 5 which is two-dimensionally movable along a plane parallel to the working plane 12 of the installation space.
  • the laser head 5 is connected via a line 6 to the stationary laser beam generating unit 13, wherein the line 6 in addition to a light guide for guiding the laser beam from the laser beam generating unit 13 to the laser head 5 also supply and control lines includes to provide the laser head 5 with energy and for to be able to control the desired movement accordingly.
  • the Fig. 2 shows in a perspective view of the laser head 5 of the device 1 from Fig. 1 , again showing the stationary laser beam generating unit 13 with the flexible connecting line 6 for the laser head 5.
  • the laser head 5 is shown in the representation of Fig. 2 along the spatial directions X and Y above the working plane 12 movable.
  • the Indian Fig. 2 In the processing plane 12, the laser beam, which is not shown in more detail, generates an irradiation or reflow region 17, in which the powder material is locally selectively melted to form a three-dimensional object.
  • the direction in which the component is built up in layers is indicated by the arrow with the Z direction.
  • the laser head 5 comprises an induction coil 16 which is provided as a heating device in order to preheat or reheat the region around the melting region 17.
  • the laser head 5 in addition to a suction device 15, with the gas from the area between the working plane 12 and the laser head 5 can be sucked.
  • heat may be generated by the heat input by the laser beam, which could prevent the unimpeded introduction of the laser beam power into the powder in the processing plane 12.
  • the smoke can be absorbed directly directly on the melting area 17, so that a weakening of the laser beam can be avoided or mitigated by the smoke.
  • the cracking of the machined material can be avoided by rapid melting and cooling.
  • the laser head 5 can be moved by translational movements along the X direction and the Y direction at any point above the processing plane 12, so that directly below the laser beam corresponding to the powder material can melt, any form of a component can be built up in layers. Since the laser head 5 receives the laser beam from a light guide and emits it directly above the melting region 17, the beam is not changed in its shape by deflecting mirrors, for example, it is consumed ellipsoidally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Claims (6)

  1. Dispositif d'usinage au laser d'un matériau, comprenant un laser (4) permettant de produire un faisceau laser et une tête laser (5) mobile, la tête laser (5)
    - étant mobile en translation le long d'au moins deux directions spatiales indépendantes l'une de l'autre et à l'intérieur ou le long d'un plan (12),
    - état reliée au laser par l'intermédiaire d'un guide de lumière et délivrant un faisceau laser (7) au moyen duquel un matériau peut être usiné, caractérisé en ce que la tête laser (5) :
    - comprend un dispositif d'aspiration (15) qui produit un courant d'aspiration parallèle à la direction du faisceau laser,
    et
    - le dispositif comprenant une bobine d'induction utilisée comme dispositif de thermorégulation (16).
  2. Dispositif selon la revendication 1, caractérisé en ce que le laser (4) est un laser à fibres.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le dispositif d'aspiration (15) produit un courant d'aspiration décalé du faisceau laser, en particulier concentrique par rapport à ce dernier.
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la bobine d'induction (16) est disposée autour du faisceau laser, en particulier de manière concentrique autour du faisceau laser.
  5. Dispositif selon l'une quelconque des revendications 1 à 4 destiné à être utilisé dans un dispositif de fusion sélective par laser ou de frittage sélectif par laser.
  6. Dispositif de fusion sélective par laser ou de frittage sélectif par laser comprenant un dispositif selon l'une quelconque des revendications 1 à 4.
EP14179121.0A 2013-09-04 2014-07-30 Dispositif de traitement laser de matériau avec une tête laser déplaçable dans l'espace Not-in-force EP2857139B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013217598.1A DE102013217598A1 (de) 2013-09-04 2013-09-04 Vorrichtung zur Laser-Materialbearbeitung

Publications (2)

Publication Number Publication Date
EP2857139A1 EP2857139A1 (fr) 2015-04-08
EP2857139B1 true EP2857139B1 (fr) 2016-05-25

Family

ID=51292809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14179121.0A Not-in-force EP2857139B1 (fr) 2013-09-04 2014-07-30 Dispositif de traitement laser de matériau avec une tête laser déplaçable dans l'espace

Country Status (3)

Country Link
US (3) US9839977B2 (fr)
EP (1) EP2857139B1 (fr)
DE (1) DE102013217598A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155745A1 (fr) * 2014-04-10 2015-10-15 Ge Avio S.R.L. Procédé de formation d'un composant par fabrication additive, et dispositif de distribution de poudre pour la mise en œuvre d'un tel procédé
WO2015189600A2 (fr) * 2014-06-09 2015-12-17 Ex Scintilla Ltd Procédés de traitement de matériau et appareil associé
JP5721886B1 (ja) * 2014-06-20 2015-05-20 株式会社ソディック 積層造形装置
DE102015108131A1 (de) * 2015-05-22 2016-11-24 GEFERTEC GmbH Verfahren und Vorrichtung zur additiven Fertigung
CN107708969B (zh) 2015-06-10 2020-07-28 Ipg光子公司 多光束增材制造
US11478983B2 (en) 2015-06-19 2022-10-25 General Electric Company Additive manufacturing apparatus and method for large components
US10449606B2 (en) * 2015-06-19 2019-10-22 General Electric Company Additive manufacturing apparatus and method for large components
DE102015110264A1 (de) * 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
EP3250004B1 (fr) * 2016-05-25 2019-03-13 MTU Aero Engines GmbH Dispositif de chauffage inductif d'un composant
DE102016211174A1 (de) * 2016-06-22 2017-12-28 MTU Aero Engines AG Verfahren und Vorrichtung zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
KR102498030B1 (ko) 2016-09-29 2023-02-08 엔라이트 인크. 조정 가능한 빔 특성
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
IT201600113040A1 (it) * 2016-11-09 2018-05-09 3D4Mec Srl Stampante 3d laser
US20180200962A1 (en) * 2017-01-13 2018-07-19 General Electric Company Additive manufacturing using a dynamically grown build envelope
US9956612B1 (en) * 2017-01-13 2018-05-01 General Electric Company Additive manufacturing using a mobile scan area
US10022794B1 (en) 2017-01-13 2018-07-17 General Electric Company Additive manufacturing using a mobile build volume
US10478893B1 (en) 2017-01-13 2019-11-19 General Electric Company Additive manufacturing using a selective recoater
US10234848B2 (en) 2017-05-24 2019-03-19 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
DE102017219977A1 (de) * 2017-11-09 2019-05-09 MTU Aero Engines AG Verfahren zum generativen aufbauen eines bauteils
CN108588345B (zh) * 2018-04-27 2019-11-08 广东工业大学 一种金属表面激光强韧化方法及装置
US11498269B2 (en) * 2018-04-30 2022-11-15 Hewlett-Packard Development Company, L.P. Post-print processing of three dimensional (3D) printed objects
CN108436086B (zh) * 2018-06-18 2020-03-24 重庆恩光科技有限公司 用于选择性激光熔化加工铺粉装置的竖向驱动机构
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11267075B2 (en) * 2019-05-16 2022-03-08 Raytheon Technologies Corporation By-product removal device for laser welding
FR3100145B1 (fr) * 2019-08-28 2021-09-03 Safran Aircraft Engines Outillage de fabrication additive par fusion laser avec boucliers anti-turbulences

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953000C2 (de) * 1999-11-04 2003-04-10 Horst Exner Verfahren und Einrichtung zur schnellen Herstellung von Körpern
JP2001301045A (ja) * 2000-04-19 2001-10-30 Nsk Ltd ラピッドプロトタイピング装置
JP2003080604A (ja) * 2001-09-10 2003-03-19 Fuji Photo Film Co Ltd 積層造形装置
EP1396556A1 (fr) 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Méthode pour controller la microstructure d'une couche dure fabriquée par revêtement utilisant un laser
US20100233012A1 (en) * 2007-10-26 2010-09-16 Panasonic Electric Works Co., Ltd. Manufacturing equipment and manufacturing method for metal powder sintered component
EP2246145A1 (fr) * 2009-04-28 2010-11-03 BAE Systems PLC Prcédé de fabrication d'une pièce par couches successives
DE102010018686B4 (de) * 2010-04-22 2017-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Laser-Auftragschweißen mit pulverförmigem Zusatzwerkstoff
DE102010050531A1 (de) * 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung zumindest eines Bauteilbereichs
JP2013075308A (ja) * 2011-09-30 2013-04-25 Hitachi Ltd パウダ供給ノズルおよび肉盛溶接方法
US9393620B2 (en) * 2012-12-14 2016-07-19 United Technologies Corporation Uber-cooled turbine section component made by additive manufacturing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10576581B2 (en) 2020-03-03
US9839977B2 (en) 2017-12-12
US20150060422A1 (en) 2015-03-05
US10201875B2 (en) 2019-02-12
EP2857139A1 (fr) 2015-04-08
US20180104770A1 (en) 2018-04-19
DE102013217598A1 (de) 2015-03-05
US20190047085A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
EP2857139B1 (fr) Dispositif de traitement laser de matériau avec une tête laser déplaçable dans l'espace
EP3235580B1 (fr) Procédé et dispositif de fabrication d'au moins une zone d'un composant
EP2913124A2 (fr) Production de contraintes de compression lors de fabrication générative
EP3183083B2 (fr) Procédé de fabrication d'un objet tridimensionnel
EP2915611B1 (fr) Dispositif et procédé de fabrication générative d'un composant
EP2823917B1 (fr) Réglage pour la fabrication générative en utilisant une teste pour des courants de Foucault
EP2335848B1 (fr) Unité de rayonnement optique pour une installation destinée à la fabrication de pièces à usiner par rayonnement de couches de pulvérisation avec un rayonnement laser
EP3074161B1 (fr) Procédé et dispositif de fabrication générative d'au moins zone d'un élément structurel
DE102014108061A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
DE102012206122A1 (de) Mehrfach-Spulenanordnung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellverfahren
DE102014212100A1 (de) Generatives Herstellungsverfahren und Vorrichtung hierzu mit entgegengesetzt gerichteten Schutzgasströmen
DE102007059865A1 (de) Verfahren zur Herstellung eines Formkörpers durch schichtweises Aufbauen aus pulverförmigem, metallischen Werkstoff
DE102013226298A1 (de) Belichtung bei generativer Fertigung
DE102014108081A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
WO2017137376A1 (fr) Dispositif pour une installation de fabrication additive d'un composant
EP3323597B1 (fr) Dispositif et procédé de fabrication additive d'un produit tridimensionnel
DE102016225616A1 (de) Vorrichtung und Verfahren zur generativen Herstellung von Bauteilen
DE102020204003A1 (de) Verfahren und Vorrichtung zur generativen Fertigung durch pulverbettbasiertes Strahlschmelzen
DE102016207112A1 (de) Verfahren zum Herstellen zumindest eines Bauteilbereichs eines Bauteils und Induktionshilfsstruktur
DE102015216402A1 (de) Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102018001460A1 (de) Verfahren und Vorrichtung zum stoffschlüssigen Verbinden metallischer Werkstoffe mittels zumindest einer Laserstrahlquelle
DE102016205437A1 (de) Vorrichtung und Verfahren zur Herstellung oder Reparatur eines dreidimensionalen Objekts
EP3175941B1 (fr) Procédé et dispositif de fabrication additive d'au moins une partie d'un composant
DE102020206161A1 (de) Verfahren zur additiven Herstellung mittels dualer selektiver Bestrahlung eines Pulverbettes und Vorwärmung
DE102014222526A1 (de) Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150817

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B23K 26/30 20140101ALI20160125BHEP

Ipc: C21D 9/00 20060101ALI20160125BHEP

Ipc: B22F 3/105 20060101ALI20160125BHEP

Ipc: B23K 26/34 20140101ALI20160125BHEP

Ipc: B23K 26/14 20060101ALI20160125BHEP

Ipc: B23K 26/08 20060101AFI20160125BHEP

Ipc: B23K 26/16 20060101ALI20160125BHEP

INTG Intention to grant announced

Effective date: 20160210

INTG Intention to grant announced

Effective date: 20160219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 801850

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000842

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000842

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 801850

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200724

Year of fee payment: 7

Ref country code: FR

Payment date: 20200727

Year of fee payment: 7

Ref country code: DE

Payment date: 20200723

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014000842

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731