EP2855080A1 - Procede de soudage de deux bords d'une ou plusieurs pieces en acier l' un a l'autre incluant une etape de traitement thermique posterieure a l'etape de soudure : conduite forcee obtenue par un tel procede - Google Patents

Procede de soudage de deux bords d'une ou plusieurs pieces en acier l' un a l'autre incluant une etape de traitement thermique posterieure a l'etape de soudure : conduite forcee obtenue par un tel procede

Info

Publication number
EP2855080A1
EP2855080A1 EP13728702.5A EP13728702A EP2855080A1 EP 2855080 A1 EP2855080 A1 EP 2855080A1 EP 13728702 A EP13728702 A EP 13728702A EP 2855080 A1 EP2855080 A1 EP 2855080A1
Authority
EP
European Patent Office
Prior art keywords
steel
weld bead
temperature
welding
zat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13728702.5A
Other languages
German (de)
English (en)
Inventor
Serge Prigent
Florian DUPARCHY
Arnaud DONCOURT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Renewable Technologies Wind BV
Original Assignee
Alstom Renewable Technologies Wind BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Renewable Technologies Wind BV filed Critical Alstom Renewable Technologies Wind BV
Publication of EP2855080A1 publication Critical patent/EP2855080A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method of welding to one another two edges of one or more pieces made from steel.
  • the invention relates to a method of welding two edges of one or more parts to each other, the or each part being made from thermomechanical high tensile steel whose composition simultaneously verifies the following conditions:
  • C being the mass content of carbon steel, expressed as a percentage by weight
  • said welding process comprising a welding step during which a weld bead made from a filler metal is created, said weld bead joining the two edges to one another, the creation of said weld bead inducing the appearance of a thermally affected zone, or ZAT, carried by the steel of the piece or parts nearby said weld seam /
  • thermomechanical HLE steels The field of the invention is in the field of high-strength thermomechanical steels, called "thermomechanical HLE steels".
  • Steels of this type have mechanical properties equivalent to so-called “hardened-back” steels, but have a lower carbon content than the latter. This is reflected in particular by welds more favorable compared to those hardened steel - income.
  • thermomechanical HLE steels The method for producing thermomechanical HLE steels is characterized by carrying out a hot rolling operation followed by a rolling operation at a temperature adjusted under the recrystallization temperature of the austenitic grains and above the start temperature of phase transformation in the solid state.
  • This operation is then followed by an accelerated cooling, controlled so as to obtain a martensitic structure with a bainite content of less than 10%, or even less than 5%.
  • thermomechanical HLE steels are thus ready for use in the quenched state, ie immediately after quenching, because of the precise control of the cooling and rolling cycle.
  • thermomechanical HLE steels are used for many purposes, for example in the field of pressure conduits intended to carry a fluid under pressure, which consist of several pieces of thermomechanical HLE steel welded to each other, and / or whose parts are made from sheets folded on themselves and then welded.
  • welding processes such as those described above are generally used to make each of the parts, as well as to weld the parts to each other.
  • Such methods generally include a post-weld stress relief heat treatment step which aims to reduce residual stresses in the weld bead and in the metal near the bead.
  • Thermomechanical HLE the steel located in the vicinity of the weld bead is raised to a high temperature. It undergoes deformations as well as a recrystallization then a cooling during which its metallurgical structure is modified. This leads in particular to degraded mechanical properties in this area of the parts of the penstock.
  • the stress relieving heat treatment only makes it possible to reduce the residual stresses resulting from the local deformations of the material due to the temperature of the filler metal, without compensating the degradation of the mechanical properties due to the change in the metallurgical structure of the steel of the thermally affected zone (ZAT).
  • the object of the invention is to propose a welding method that does not have this drawback.
  • the invention relates to a welding process of the aforementioned type, characterized in that it also comprises a heat treatment step subsequent to the welding step, said heat treatment step comprising:
  • a heating step during which at least a portion of the weld bead and the ZAT is progressively heated up to a treatment temperature lower than the recrystallization temperature of the steel of the or each piece, and greater at the austenitization temperature of said steel, then
  • a cooling step during which the ZAT and the weld bead are gradually cooled and pass from the austenitic end-of-transformation temperature to the martensitic transformation start temperature of the steel of the pieces in a shorter period of time; at 10s, and preferably substantially equal to 8s, and pass from the end of transformation temperature austenitic at the end martensitic transformation temperature in a time less than 15.5s, and preferably equal to 15s.
  • the method comprises one or more of the following technical characteristics, taken separately or in any technically possible combination:
  • said weld and ZAT portion is comprised in a zone of material of given length, centered on the weld bead, extending from the weld bead on the or each piece over a distance of between 1.5 cm. and 2.5 cm, and preferably substantially equal to 2 cm, and having a thickness of between 4 mm and 10 mm;
  • the weld bead and the ZAT are subdivided into portions each belonging to a material zone, the heating, holding and cooling steps being successively performed on each of the material zones;
  • the whole of the material zones is heated up progressively simultaneously, during the holding step, the temperature of all the material zones is maintained at the treatment temperature simultaneously, and during the cooling step, all the zones of matter are cooled simultaneously;
  • the treatment temperature is greater than the austenitization temperature of said steel increased by 50 ° C, that is to say that said treatment temperature is greater than 1035 ° C;
  • the at least one portion of the weld bead and the ZAT is heated with a heating rate greater than or equal to 100 ° C / s;
  • the maintenance step has a duration of between 0.5 s and 1.5 s, and preferably substantially equal to 1 s;
  • the or each piece is made from a steel whose yield strength Rp0.2 is greater than 500 MPa and whose breaking strength Rm is greater than 550 MPa;
  • the steel of the or each piece also satisfies the condition 0.04 ⁇ C ⁇ 0.08, C being the mass content of the steel of the or each carbon carbon part expressed as a percentage by weight;
  • the steel of the or each part also satisfies the condition 0.20 ⁇ C + (Mn + Mo) / 10 + (Cr + Cu) / 20 + Ni / 40 ⁇ 0.30, C, Mn, Mo, Cr , Cu and Ni being respectively the contents of the steel in carbon, manganese, molybdenum, chromium, copper and nickel expressed in percentage by weight; during the heat treatment step, the at least one portion of the weld bead and the ZAT is heated at least by induction.
  • the invention relates to a penstock intended for the transport of a liquid under pressure, characterized in that it comprises two parts welded to each other by a welding method as described above or a part formed by a welding process as described above.
  • FIG. 1 is a schematic representation of a penstock according to the invention
  • FIG. 2 is a schematic representation of a weld zone between two parts of the forced pipe of Figure 1 according to the plane 1-l;
  • FIG. 3 is a block diagram of a welding process according to the invention
  • Figure 4 is a schematic representation of the temperature variation in the weld area of Figure 2 during the welding process of Figure 3;
  • FIG. 5 is a schematic representation of a weld area obtained by a welding method according to a variant of the invention.
  • a forced pipe 10 is intended to be used for conveying a liquid under pressure, for example water, and comprises a plurality of thermomechanical high-tensile steel parts 12, called “thermomechanical HLE steel” in what follows.
  • thermomechanical HLE steels have mechanical properties close to so-called hardened steels - called “QT steels" in what follows, but with a substantially lower carbon content.
  • thermomechanical HLE steels This results in a good adaptation of these thermomechanical HLE steels to welding.
  • thermomechanical HLE steels differs from that of QT steels in that it comprises carrying out a hot rolling operation followed by a rolling operation at a temperature that is both below the recrystallization temperature of austenitic grains and greater than the phase transition start temperature in the solid state.
  • This second rolling operation is itself followed by an accelerated and controlled cooling operation with a view to obtaining a martensite structure with a low bainite content, for example less than 10%, and preferably less than 5%.
  • Thermomechanical HLE steels are so-called "quenching steels", that is to say that they are in conditions of use immediately after quenching.
  • high elastic limit means that the elastic limit of the steel in question is greater than 460 MPa.
  • the forced pipe 10 given by way of nonlimiting example comprises a succession of juxtaposed pieces 12, two edges 13 of two successive pieces 12 being welded to one another at a zone welding 14.
  • Each of the parts 12 is made from thermomechanical HLE steel.
  • each of the parts 12 is made from thermomechanical HLE steel whose composition satisfies the following conditions (A) simultaneously:
  • thermomechanical carbon HLE steel expressed in% by weight
  • the composition of the HLE steel of the pieces satisfies at least one of the following conditions:
  • thermomechanical HLE steels satisfying the conditions (A) have a recrystallization temperature substantially equal to 1200 ° C. and an austenitization temperature, called AC3 temperature, substantially equal to 985 ° C.
  • a steel having a yield strength Rp 0 2 greater than 500 MPa and a breaking strength R m greater than 550 MPa is preferably used.
  • all the parts 12 of the pipe 10 have the same composition satisfying the conditions (A).
  • composition of the steel of the parts 12 of the pipe 10 generally simultaneously satisfies the following conditions, which are typical of thermomechanical HLE steels:
  • At least two pieces 12 of the pipe 10 have compositions that are distinct from one another and both satisfy the conditions (A).
  • Each piece 12 has a generally tubular shape and is made from thermomechanical HLE steel that satisfies the conditions (A).
  • Each piece 12 has an outer face intended to be in contact with the air in the case of aerial pipes or in contact with the rock or concrete in the case of buried pipes, and an inner face intended to be in contact with the transported fluid. by the penstock 10.
  • Each piece 12 is either a steel sheet or a part made by forging, or a piece made by rolling.
  • At least one of the parts 12 of the pipe 10 is made from a steel sheet satisfying the conditions (A), which is rolled and then bent. The longitudinal edges of the sheet are then welded to one another to form said part.
  • Each piece 12 has a thickness e of between 10 mm and 100 mm.
  • the pieces 12 have a diameter of between 1 and 6 m in diameter, and a length of between 1 m and 10 m.
  • the parts 12 of the same pipe which are welded to one another have substantially the same diameter at their weld zone 14.
  • FIG. 2 illustrates the welding zone 14 between two edges 13 belonging respectively to two pieces 12 of the penstock 10.
  • the welding zone 14 comprises a Y-shaped weld bead 16 and a heat-affected zone 18, hereinafter referred to as "ZAT" 18.
  • the weld bead 16 corresponds to a joint solidarisant the two edges 13 to one another.
  • the cord 16 extends over the entire thickness e parts 12.
  • chamfers 19 are formed on the edges 13 of the two parts 12, so as to facilitate the passage of the filler metal between these two edges 13 and to prevent formation air pockets in the weld bead 16.
  • the weld bead 16 consists of a filler metal having a composition satisfying the conditions (A) but whose mass content, in particular of molybdenum Mo and nickel Ni, is greater than that of the base metal of the pieces 12
  • the composition of the base metal is then chosen so as to guarantee the mechanical properties of the welded joint.
  • the filler metal is first brought to a temperature above its melting temperature, then disposed in liquid form at the junction of the two edges 13 facing one another. the other.
  • the filler metal is spread and fills the Y space thus delimited by the two pieces 12, and then cool.
  • the filler metal solidifies and then hardens forming the weld bead 16 and then secures the two edges 13 to one another over the entire thickness e.
  • the ZAT 18 relates to one and the other of the two parts 12 and comprises a plurality of zones 20 which are differentiated from each other by the temperature which prevails during the formation of the weld bead 16.
  • the temperature of the steel near the weld bead 16 undergoes variations that decrease as away from the weld bead 16, and which induce deformations (not shown) and modifications of the structure of the steel of the ZAT 18.
  • GKZ that is to say “Coarse Grain Zone” in English, or coarse grain zone
  • FKZ zone that is to say “Fine Grain Zone” in English, or fine grain zone
  • IKZ Intercritical Annealed Zone
  • SKZ ie “Subcritical Annealed Zone” in English, or subcritical annealed zone
  • the temperature in the zones of the HAZ during the welding process varies, inducing undesirable modifications of the specific mechanical properties of each of the zones of the HAZ 18.
  • the object of the invention is to propose a welding method 22 of two edges of one or more parts 12 to one another which makes it possible to compensate for the degradation of the mechanical properties of the in the ZAT 18 because of the temperature rise in the steel of the piece or parts 12 near the weld bead 16, and this by means of a quenching treatment which will be described below.
  • the method of welding 22 to each other edges 13 of two parts 12 made from thermomechanical HLE steel verifying conditions (A) comprises a welding step 24, during which both edges 13 are disposed opposite one another and the weld bead 16 is created, as described above.
  • the weld bead 16 is for example created by means of an electric arc generated by an electrode under an active gaseous flow (or "MAG" process), such as a mixture of hydrogen and carbon dioxide.
  • MAG active gaseous flow
  • the edges 13 of the two parts 12 are for example arranged on a ceramic support for carrying out the welding.
  • the heat generated by the molten metal is conducted in the two pieces 12, so that the temperature in the zones of the HAZ increases substantially.
  • the temperature reached in the GKZ zone is between 1050 ° C. and 1300 ° C.
  • the temperature reached in the FKZ zone is between 900 ° C. and 1050 ° C.
  • the temperature reached in the zone IKZ is between 650 ° C. and 900 ° C.
  • the temperature reached in the SKZ zone is between 300 ° and 650 ° C.
  • Figure 4 which illustrates the temperature variations (in ⁇ ⁇ ) observed in the areas of the HAZ 18 and induced by the welding of the two edges 13 to each other as a function of time (in s) it is found that the temperature of the zone GKZ passes above the recrystallization temperature of the steel of the pieces 12
  • the time taken by the steel in the GKZ zone to go from 800 ° to 500 ° C. determines the final structure of the steel of this GKZ zone.
  • T8 / 5 the time taken by a zone 20 of the ZAT 18 to go from 800 ° C to 400 ° C will be noted “T8 / 4".
  • This transformation curve in continuous cooling delimits domains each corresponding to the presence of one or more of the following phases of the steel in its final structure: perlite, martensite, ferrite and bainite.
  • the corresponding curve passes through one or more of these zones, so that the final structure of the steel comprises the corresponding phase or phases, which will determine its mechanical properties.
  • the zone GKZ has a time T8 / 5 substantially equal to 15 s, which leads to a final structure for the GKZ zone simultaneously comprising martensite, bainite and ferrite.
  • thermomechanical HLE steel of composition verifying (A) having a T8 / 5 time greater than 50 s had an elastic limit and a breaking strength equal to half that of a steel of the same composition but exhibiting a time T8 / 5 less than 7s.
  • a finishing step 26 is performed, during which the weld bead 16 and its vicinity are subjected to one or more mechanical treatments to remove excess filler metal, correcting the misalignment, the gutters (that is to say the lack of material at the welded / base metal interface), and in general the geometrical defects of the weld bead 16.
  • These mechanical treatments are for example made by machining, grinding, or hammering (for example by pneumatic impact hammering, also known as the "Pneumatic Impact Treatment"), or shot-blasting, which consists in bombarding the surface to be treated with micro-beads of metal, glass or ceramic to modify the surface structure thereof.
  • pneumatic impact hammering also known as the "Pneumatic Impact Treatment”
  • shot-blasting which consists in bombarding the surface to be treated with micro-beads of metal, glass or ceramic to modify the surface structure thereof.
  • This finishing step 26 has the effect that the mechanical properties of the weld zone 14 are improved, in comparison with a weld zone 14 for which no mechanical treatment is performed.
  • a quenching treatment of the weld bead 16 and its vicinity is performed.
  • the weld bead 16 and the ZAT 18 are subdivided into zones of material 29 each comprising a portion of the weld bead 16 and the portion of the corresponding ZAT 18.
  • each zone of material 29 is centered on the weld bead 16, extends from the weld bead 16 to the one and the other of the pieces 12, and this over a distance d between 1, 5 cm and 2.5 cm, and preferably substantially equal to 2 cm.
  • Each area of material 29 further has a length I along the circumference of the pieces 12 and a thickness y between 4 mm and 10 mm.
  • each zone of material 29 comprises in particular a portion of length I and thickness y of the weld bead 16 and the portion of the ZAT 18 in contact with this portion of the weld bead 16.
  • the material zone 29 is heated and progressively cooled by means of heating means 30 and cooling means 32 respectively.
  • the heat treatment step 28 comprises, for each material zone 29:
  • the material zone 29 is heated with the heating means 30 to a treatment temperature T which is:
  • thermomechanical HLE steel of the two parts 12 less than the recrystallization temperature of the thermomechanical HLE steel of the two parts 12, which has the effect that the high-elastic thermomechanical character of the steel of the material zone 29 is preserved
  • thermomechanical HLE steel greater than the austenitization temperature of this thermomechanical HLE steel increased by 50 ° C., which corresponds substantially to 1035 ° C., and which has the effect of transforming the crystallographic structure of the material zone 29 into 70% austenite; at least, and preferably substantially completely in austenite.
  • the heating means 30 comprise a coil of length substantially equal to I fed by a generator delivering a power of between 40 and 50 kW (not shown) and are adapted to inductively heat the material zones 29 one at a time with a speed heating above or equal to 100 ° C / s. To do this, the heating means 30 are disposed above a material zone 29 at a distance substantially equal to 2 mm during the heating 281 and maintenance 282 stages. The length I of the coil of the heating means 30 then determines the cutting of the welding zone in the material zone 19, the length I of the material zones 29 being chosen to be equal to that of the coil.
  • the heating rate applied to the material zone 29 is preferably greater than 100 ° C / s, which has the effect of not extending the ZAT 18. Indeed, a speed heating below 100 ° C / s would have the effect of promoting the conduction of heat in the regions adjacent to the material zone 29 and thus extend the ZAT 18.
  • the material zone 29 considered is kept at the treatment temperature T for a duration between 0.5 s and 1.5 s, and preferably substantially equal to 1 s. This duration has the effect of limiting the increase in the size of the grains in the material zone 29, such an increase not being desirable.
  • the material zone 29 considered is progressively cooled via the cooling means 32 from the treatment temperature T to ambient temperature.
  • the cooling of the material zone 29 is controlled up to 400 ° C and then left free from 400 ° C to room temperature.
  • the cooling means 32 comprise lines 321 oriented towards the material zone 29 and via which gas is propelled towards the material zone with a controlled flow rate.
  • the propellant gas then dissipates the heat of the material zone 19 by convection.
  • the cooling means 32 use gas rather than water, the water being likely to damage the heating means 30 which are nearby.
  • step 283 the material zone 29 is cooled via the cooling means 32 so that:
  • the time taken by the material zone 29 to go from the austenitic transformation end temperature to the martensitic transformation start temperature is less than or equal to 10s, and preferably substantially equal to 8s, that is to say that the duration T8 / 5 of the material zone 29 is less than 10 s and preferably substantially equal to 8 s, and
  • the time taken by the material zone 29 to change from the austenitic end-of-transformation temperature to the martensitic end-of-transformation temperature is less than or equal to 15.5 seconds, and preferably equal to 15 seconds, that is, that is, the duration T8 / 4 is less than or equal to 15.5s, and preferably equal to 15s.
  • the minimum value of the durations T8 / 5 and T8 / 4 is conditioned by the cooling technique used. Thus, for gas cooling means, these minimum values are of the order of one second for T8 / 5, and a few seconds for T8 / 4.
  • T8 / 5 and T8 / 4 have the effect that the zones 20 of the HAZ 18 and the weld seam of the material zone 29 have a final structure composed of martensite and bainite, with a martensite rate higher than 90% with a bathite content of less than 10%, and preferably with a martensite content greater than 95% and a bainite content of less than 5%.
  • This final structure of the steel of the ZAT 18 has better mechanical properties than those which they presented following the welding step 24.
  • the method according to the invention makes it possible to compensate for the deteriorations of the mechanical properties of the zones of the ZAT, such that the metal of the weld zone, the weld bead and the ZAT has mechanical properties. degraded by less than 10% compared to base metal.
  • This compensation due to the heat treatment step in the welding process according to the invention is a function of the carbon content of the base metal, its content of alloying elements and carbides, as well as the size of the grain and the area of the HAZ 18 in which it is located.
  • the cooling of the material zone 29 between 400 ° C. and the ambient temperature is then indifferently controlled or not, this cooling not involving any modification of the material zone 29.
  • Heat treatment step 28 ends once all material zones 29 have been subjected to steps 281, 282 and 283.
  • the heat treatment is thus carried out successively on all the material zones 29 until the heat treatment of the entirety of the weld bead 16 and the ZAT 18.
  • a control step 34 takes place, during which the structure obtained following the welding of the two edges 13 to one another is destructively and / or non-destructively controlled.
  • This control step 34 includes one or more of the following non-destructive operations: a visual examination, during the external state of the parts 12 and the weld bead 16 is visually examined,
  • the control step 34 when it involves destructive control, includes one or more of the following destructive operations:
  • a hardness test such as the Vickers or Brinell test
  • an anti-corrosion treatment step 36 is performed, during which an anti-corrosion treatment of the welding zone 14 is performed.
  • the weld bead 16 and the ZAT 18 are galvanized by zinc sputtering.
  • the paint used is, for example, a paint adapted to atmospheric corrosivity of category 4 or 5 according to the classification of the ACQPA (Association for Certification and Qualification in Anticorrosion Paint), and
  • the paint used is for example a paint adapted to corrosivity of category Im2 according to the ACQPA classification.
  • the welding method 22 according to the invention makes it possible to compensate for the degradations of the mechanical properties of the ZAT 20 due to the increase in the temperature which occurs during the welding of two pieces 12 of thermomechanical HLE steel of composition checking the conditions (A).
  • the method 22 is suitable for large parts, insofar as it relies on the heating and cooling of the weld bead and the ZAT parade, and not by static local quenching.
  • the heat treatment step 28 is carried out both on the portion of the weld zone 14 located on the side of the inner face of the pieces 12, as well as on the portion located on the side of the outer face of the pieces 12.
  • the heat treatment step is not always feasible on the portion of the weld zone 14 located on the side of the outer face 12, in particular when the welding of the parts 12 is performed in the pipe receiving well. 10.
  • the heat treatment step 28 comprises carrying out a static local treatment, during which the quenching treatment is carried out simultaneously on all the material zones 29.
  • the heating means 30 comprise induction heating means comprising a coil longer than the circumference of the parts 12, which is then disposed at the weld bead 16 and the ZAT 18.
  • the cooling means 32 are also suitable for cooling the entire heated zone by the cooling means.
  • the heating means 30 also includes a hybrid laser beam heater coupled to the coil.
  • the heating means 30 are adapted to heat the weld bead 16 and the ZAT 20 by natural or forced convection, or by resistivity.
  • the weld bead 16 has a general shape of X and has an outer portion 16A intended to be in contact with air, rock or concrete and an inner portion 16B intended to be in contact with the fluid conveyed by driving.
  • This type of welding is for example implemented when the parts 12 have a large thickness, for example greater than 10 mm.
  • the heating 281, maintenance 282 and cooling 283 are then carried out on areas of material 29 centered on the outer portion 16A of the weld bead 16, and then on 29 centered on the inner portion 16B of the weld bead 16.
  • the weld bead 16 is made by multiple passes, during each of which molten filler metal is disposed at the weld zone.
  • the HAZ 18 of the weld bead 16 is composed of all the affected zones thermally by at least one pass, the structure of said ZAT having a complex structure due to the thermal allocation of certain regions of the vicinity of the weld bead 16 by several separate passes.
  • the heat treatment step 28 is carried out parade or in a static local manner in the same manner as before.
  • the welding method 22 described and the variants described are applicable to the scenario in which the welding of two edges to one another of the same piece 12 made from steel such as as described above.
  • one or more of the parts 12 of the pipe 10 consist, for example, of a rolled sheet then bent. Two edges of the sheet are then welded to each other along a longitudinal line by means of the welding process 22 according to the invention to form the part 12 considered.
  • the welding process 22 then improves the mechanical strength of the weld zone present on the part or parts 12 of the penstock 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

La présente demande décrit un procédé (22) de soudage de deux pièces l'une à l'autre, lesdites deux pièces étant réalisées à partir d'acier à haute limite élastique thermomécanique, ledit procédé (22) de soudage comprenant une étape de soudage (24) au cours de laquelle on crée un cordon de soudure induisant l'apparition d'une zone affectée thermiquement (ZAT). Le procédé (22) comprend également une étape de traitement thermique (28) comprenant une étape de chauffage (281), au cours de laquelle au moins une portion du cordon de soudure et de la ZAT est progressivement chauffée jusqu'à une température de traitement (T), puis une étape de maintien (282), au cours de laquelle la portion du cordon de soudure et de la ZAT maintenue à la température de traitement (T), puis une étape de refroidissement (283), au cours de laquelle la ZAT et le cordon de soudure sont progressivement refroidis et passent de la température de fin de transformation austénitique jusqu'à la température de fin de transformation martensitique de l'acier des pièces en une durée (T8/5) comprise entre 7,5 s et 8,5 s, et passent de la température de fin de transformation austénitique à la température de fin de transformation martensitique en une durée (T8/4) inférieure à 15,5s. La présente demande décrit aussi une conduite forcée obtenue par un tel procédé.

Description

PROCEDE DE SOUDAGE DE DEUX BORDS D'UNE OU PLUSIEURS PIECES EN ACIER L' UN A L'AUTRE INCLUANT UNE ETAPE DE TRAITEMENT THERMIQUE POSTERIEURE A L'ETAPE DE
SOUDURE : CONDUITE FORCEE OBTENUE PAR UN TEL PROCEDE
La présente invention concerne un procédé de soudage l'un à l'autre de deux bords d'une ou plusieurs pièces réalisées à partir d'acier.
Plus particulièrement, l'invention concerne un procédé de soudage de deux bords d'une ou plusieurs pièces l'un à l'autre, la ou chaque pièce étant réalisée à partir d'acier à haute limite élastique thermomécanique dont la composition vérifie simultanément les conditions suivantes :
- 0,02% < C < 0,12%, C étant la teneur massique de l'acier en carbone, exprimée en pourcentage en poids, et
- 0,20% < C + (Mn + Mo) / 10 + (Cr + Cu) /20 + Ni / 40 < 0,505%, avec C, Mn, Mo, Cr, Cu et Ni étant respectivement les teneurs massiques de l'acier en Carbone, Manganèse, Molybdène, Chrome, Cuivre et Nickel exprimées en pourcentage en poids, ledit procédé de soudage comprenant une étape de soudage au cours de laquelle on crée un cordon de soudure réalisé à partir d'un métal d'apport, ledit cordon de soudure réalisant la solidarisation des deux bords l'un à l'autre, la création dudit cordon de soudure induisant l'apparition d'une zone affectée thermiquement, ou ZAT, portée par l'acier de la ou des pièces à proximité dudit cordon de soudure/
Le domaine de l'invention se situe dans le domaine des aciers à haute limite élastique thermomécaniques, dits « aciers HLE thermomécaniques ».
Les aciers de ce type présentent des propriétés mécaniques équivalentes aux aciers dits « trempés -revenus », mais présentent une teneur en carbone inférieure à ces derniers. Ceci se traduit notamment par des soudabilités plus favorables par comparaison à celles des aciers trempés - revenus.
Le procédé d'élaboration des aciers HLE thermomécaniques se caractérise par la réalisation d'une opération de laminage à chaud suivie d'une opération de laminage à une température ajustée sous la température de recristallisation des grains austénitiques et au dessus de la température de début de transformation de phase à l'état solide.
Cette opération est alors suivie d'un refroidissement accéléré, contrôlé de façon à obtenir une structure martensitique à taux de bainite inférieur à 10%, voire inférieur à 5%.
Les aciers HLE thermomécaniques se trouvent ainsi prêts à l'emploi à l'état brut de trempe, c'est-à-dire immédiatement après la trempe, du fait du contrôle précis du cycle de refroidissement et de laminage.
Du fait de ces propriétés intéressantes, les aciers HLE thermomécaniques sont utilisés à de nombreuses fins, par exemple dans le domaine des conduites forcées destinées à réaliser le transport d'un fluide sous pression, et qui sont constituées de plusieurs pièces d'acier HLE thermomécaniques soudées les unes aux autres, et/ou dont les pièces sont réalisées à partir de tôles repliées sur elles-mêmes puis soudées.
Pour l'obtention de ces conduites forcées, des procédés de soudage tels que ceux décrits précédemment sont généralement mis en œuvre pour réaliser chacune des pièces, ainsi que pour souder les pièces les unes aux autres. De tels procédés comprennent généralement une étape de traitement thermique de détensionnement après soudage, qui vise à réduire les tensions résiduelles dans le cordon de soudure et dans le métal à proximité du cordon.
Toutefois, de tels procédés de soudage présentent un inconvénient.
En effet, lors du soudage de bords l'un à l'autre d'une ou plusieurs pièces d'acier
HLE thermomécanique, l'acier situé au voisinage du cordon de soudure est porté à une température élevée. Il subit alors des déformations ainsi qu'une recristallisation puis un refroidissement au cours duquel sa structure métallurgique se modifie. Ceci conduit notamment à des propriétés mécaniques dégradées dans cette zone des pièces de la conduite forcée.
Or le traitement thermique de détensionnement ne permet que de réduire les tensions résiduelles résultant des déformations locales de la matière dues à la température du métal d'apport, sans compenser la dégradation des propriétés mécaniques du fait du changement de structure métallurgique de l'acier de la zone affectée thermiquement (ZAT).
L'objet de l'invention est de proposer un procédé de soudage ne présentant pas cet inconvénient.
A cet effet, l'invention concerne un procédé de soudage du type précité, caractérisé en ce qu'il comprend également une étape de traitement thermique postérieure à l'étape de soudure, ladite étape de traitement thermique comprenant :
- une étape de chauffage, au cours de laquelle au moins une portion du cordon de soudure et de la ZAT est progressivement chauffée jusqu'à une température de traitement inférieure à la température de recristallisation de l'acier de la ou chaque pièce, et supérieure à la température d'austénitisation dudit acier, puis
- une étape de maintien, au cours de laquelle la portion du cordon de soudure et de la ZAT est maintenue à la température de traitement, puis
- une étape de refroidissement, au cours de laquelle la ZAT et le cordon de soudure sont progressivement refroidis et passent de la température de fin de transformation austénitique jusqu'à la température de début de transformation martensitique de l'acier des pièces en une durée inférieure à 10s, et de préférence sensiblement égale à 8s, et passent de la température de fin de transformation austénitique à la température de fin de transformation martensitique en une durée inférieure à 15,5s, et de préférence égale à 15s.
Selon d'autres aspects de l'invention, le procédé comprend une ou plusieurs des caractéristiques techniques suivantes, prises isolément ou selon toute combinaison techniquement possible :
- ladite portion de soudure et de ZAT est comprise dans une zone de matière de longueur donnée, centrée sur le cordon de soudure, s'étendant de part du cordon de soudure sur la ou chaque pièce, sur une distance comprise entre 1 ,5 cm et 2,5 cm, et de préférence sensiblement égale à 2 cm, et présentant une épaisseur comprise entre 4 mm et 10 mm ;
- le cordon de soudure et la ZAT sont subdivisés en portions appartenant chacune à une zone de matière, les étapes de chauffage, de maintien et de refroidissement étant successivement réalisées sur chacune des zones de matière ;
- au cours de l'étape de chauffe, on chauffe progressivement l'intégralité des zones de matières simultanément, au cours de l'étape de maintien, on maintient la température de toutes les zones de matière à la température de traitement simultanément, et au cours de l'étape de refroidissement, on refroidit simultanément toutes les zones de matière ;
- la température de traitement est supérieure à la température d'austénitisation dudit acier majorée de 50 °C, c'est-à-dire que ladite température de traitement est supérieure à 1035 'C ;
- au cours de l'étape de chauffage, la au moins une portion du cordon de soudure et de la ZAT est chauffée avec une vitesse de chauffe supérieure ou égale à 100° C/s ;
- l'étape de maintien présente une durée comprise entre 0,5 s et 1 ,5 s, et de préférence sensiblement égale à 1 s ;
- la ou chaque pièce est réalisée à partir d'un acier dont la limite d'élasticité Rp0,2 est supérieure à 500 MPa et dont la résistance à la rupture Rm est supérieure à 550 MPa ;
- l'acier de la ou chaque pièce vérifie également la condition 0,04 < C < 0,08, C étant la teneur massique de l'acier de la ou chaque pièce en carbone en carbone exprimée en pourcentage en poids ;
- l'acier de la ou chaque pièce vérifie également la condition 0,20 < C + (Mn + Mo) / 10 + (Cr + Cu) /20 + Ni / 40 < 0,30, C, Mn, Mo, Cr, Cu et Ni étant respectivement les teneurs de l'acier en Carbone, Manganèse, Molybdène, Chrome, Cuivre et Nickel exprimées en pourcentage en poids ; - au cours de l'étape de traitement thermique, la au moins une portion du cordon de soudure et de la ZAT est chauffée au moins par induction.
En outre, l'invention concerne une conduite forcée destinée au transport d'un liquide sous pression, caractérisé en ce qu'elle comprend deux pièces soudées l'une à l'autre par un procédé de soudage tel que décrit ci-dessus ou une pièce formée par un procédé de soudage tel que décrit ci-dessus.
L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en se référant aux Figures annexées, sur lesquelles :
- la Figure 1 est une représentation schématique d'une conduite forcée selon l'invention ;
- la Figure 2 est une représentation schématique d'une zone de soudure entre deux pièces de la conduite forcée de la Figure 1 selon le plan l-l;
- la Figure 3 est un diagramme bloc d'un procédé de soudage selon l'invention ; - la Figure 4 est une représentation schématique de la variation de température dans la zone de la soudure de la Figure 2 au cours du procédé de soudage de la Figure 3; et
- la Figure 5 est une représentation schématique d'une zone de soudure obtenue par un procédé de soudage selon une variante de l'invention.
En référence à la Figure 1 , une conduite forcée 10 selon l'invention est destinée à être utilisée pour acheminer un liquide sous pression, par exemple de l'eau, et comporte une pluralité de pièces 12 d'acier à haute limite élastique thermomécanique, dit « acier HLE thermomécanique » dans ce qui suit.
Comme indiqué précédemment, les aciers HLE thermomécaniques présentent des propriétés mécaniques proches des aciers dits trempés - revenus, dits « aciers QT » dans ce qui suit, mais avec une teneur en carbone sensiblement plus faible.
Ceci se traduit par une bonne adaptation de ces aciers HLE thermomécaniques au soudage.
L'élaboration des aciers HLE thermomécaniques se distingue de celle des aciers QT en ce qu'elle comprend la réalisation d'une opération de laminage à chaud suivie d'une opération de laminage à une température à la fois inférieure à la température de recristallisation des grains austénitiques et supérieure à la température de début de transformation de phase à l'état solide. Cette deuxième opération de laminage est elle- même suivie par une opération de refroidissement accéléré et contrôlé en vue de l'obtention d'une structure martensitique à faible de taux de bainite, par exemple inférieur à 10%, et préférentiellement inférieur à 5%. Les aciers HLE thermomécaniques sont des aciers dits « bruts de trempe », c'est- à-dire qu'ils se trouvent dans des conditions d'emploi immédiatement après trempe.
Dans ce qui suit, par « à haute limite élastique », on entend que la limite élastique de l'acier considéré est supérieure à 460 MPa.
En référence à la Figure 1 , la conduite forcée 10 donnée à titre d'exemple non limitatif comprend une succession de pièces 12 juxtaposées, deux bords 13 de deux pièces 12 successives étant soudés l'un à l'autre au niveau d'une zone de soudure 14.
Chacune des pièces 12 est réalisée à partie d'acier HLE thermomécanique.
Plus précisément, chacune des pièces 12 est réalisée à partir d'acier HLE thermomécanique dont la composition vérifie les conditions (A) suivantes simultanément :
- 0,02% < C < 0,12%, C étant la teneur de l'acier HLE thermomécanique en carbone exprimée en % en poids, et
- 0,20% < C + (Mn + Mo) / 10 + (Cr + Cu) /20 + Ni / 40 < 0,505%, avec C, Mn, Mo, Cr, Cu et Ni étant respectivement les teneurs de l'acier HLE thermomécanique en Carbone, Manganèse, Molybdène, Chrome, Cuivre et Nickel exprimées en % en poids.
De préférence, la composition de l'acier HLE des pièces vérifie l'une au moins des conditions suivantes:
- 0,04 < C < 0,08, et
- 0,20 < C + ( Mn + Mo) / 10 + (Cr + Cu) /20 + NÎ / 40 < 0,30
Les aciers HLE thermomécaniques vérifiant les conditions (A) présentent une température de recristallisation sensiblement égale à 1200 °C et une température d'austénitisation, dite température AC3, sensiblement égale à 985 °C. En outre, on utilise de préférence un acier présentant une limite d'élasticité Rp0 2 supérieure à 500 MPa et une résistance à la rupture Rm supérieure à 550 MPa.
Préférentiellement, toutes les pièces 12 de la conduite 10 présentent la même composition vérifiant les conditions (A).
En outre, la composition de l'acier des pièces 12 de la conduite 10 vérifie généralement simultanément les conditions suivantes, qui sont typiques des aciers HLE thermomécaniques :
Si < 0,600; Mn < 2,10 ; P < 0,02 ; S < 0,008 ; Al < 0,20 ; Cr< 1 ,50; Ni < 2,00 ;
Mo < 0,50; V < 0,20 ; Nb < 0,09 ; Ti < 0,22 ; et B < 0,005, où « E » correspond au pourcentage en poids de l'élément « E » dans le métal, le reste étant des impuretés résultant de l'élaboration.
En variante, au moins deux pièces 12 de la conduite 10 présentent des compositions distinctes l'une de l'autre et vérifiant toutes les deux les conditions (A). Chaque pièce 12 présente une forme générale tubulaire et est réalisée à partir d'acier HLE thermomécanique vérifiant les conditions (A).
Chaque pièce 12 présente une face externe destinée à être au contact de l'air dans le cas des conduites aériennes ou au contact de la roche ou du béton dans le cas des conduites enterrées, et une face interne destinée à être au contact du fluide transporté par la conduite forcée 10.
Chaque pièce 12 est soit une tôle d'acier, soit une pièce réalisée par forgeage, soit une pièce réalisée par laminage.
Par exemple, au moins l'une des pièces 12 de la conduite 10 est réalisée à partir d'une tôle d'acier vérifiant les conditions (A), qui est roulée puis cintrée. Les bords longitudinaux de la tôle sont alors soudés l'un à l'autre pour former ladite pièce.
Chaque pièce 12 présente une épaisseur e comprise entre 10 mm et 100 mm.
Les pièces 12 présentent un diamètre compris entre 1 et 6 m de diamètre, et une longueur comprise entre 1 m et 10 m. Les pièces 12 d'une même conduite qui sont soudées l'une à l'autre présentent sensiblement le même diamètre au niveau de leur zone de soudure 14.
La Figure 2 illustre la zone de soudure 14 entre deux bords 13 appartenant respectivement à deux pièces 12 de la conduite forcée 10.
La zone de soudure 14 comprend un cordon de soudure 16 en Y ainsi qu'une zone affectée thermiquement 18, dite ci-après « ZAT » 18.
Le cordon de soudure 16 correspond à un joint solidarisant les deux bords 13 l'un à l'autre. Le cordon 16 s'étend sur toute l'épaisseur e des pièces 12.
En pratique, pour améliorer la qualité de la soudure des deux pièces 12, des chanfreins 19 sont ménagés sur les bords 13 des deux pièces 12, de façon à faciliter le passage du métal d'apport entre ces deux bords 13 et à prévenir la formation de poches d'air dans le cordon de soudure 16.
Le cordon de soudure 16 est constitué d'un métal d'apport présentant une composition vérifiant les conditions (A) mais dont la teneur massique notamment en molybdène Mo et nickel Ni est supérieure à celle du métal de base des pièces 12
Le métal d'apport présente typiquement la composition suivante, en pourcentage en poids: C= 0,13 ; Mn = 1 ,7 ; Ni = 2,1 ; Mo = 0,6 ; Cr = 0,3. La composition du métal de base est alors choisie de façon à garantir les propriétés mécaniques du joint soudé.
Pour la soudure des deux bords 13 des pièces 12, le métal d'apport est dans un premier temps porté à une température supérieure à sa température de fusion, puis disposé sous forme liquide à la jonction des deux bords 13 mis en regard l'un de l'autre. Le métal d'apport se répand et emplit l'espace en Y ainsi délimité par les deux pièces 12, et se refroidit ensuite. Lors de son refroidissement, le métal d'apport se solidifie puis durcit en formant le cordon de soudure 16 et réalise alors la solidarisation des deux bords 13 l'un à l'autre sur la totalité de l'épaisseur e.
La ZAT 18 concerne l'une et l'autre des deux pièces 12 et comprend une pluralité de zones 20 qui se différencient les unes des autres de par la température qui y règne lors de la formation du cordon de soudure 16.
En effet, du fait de la chaleur dégagée par le métal d'apport en fusion et qui se propage par conduction dans les deux pièces 12, la température de l'acier à proximité du cordon de soudure 16 subit des variations qui diminuent à mesure que l'on s'éloigne du cordon de soudure 16, et qui induisent des déformations (non représentées) et des modifications de la structure de l'acier de la ZAT 18.
Ces modifications de la structure de l'acier conduisent à des propriétés mécaniques dégradées par rapport à celles que présente le métal de base, c'est-à-dire l'acier préalablement au soudage.
Au sein de la ZAT 18, on distingue au moins les zones 20 suivantes :
- une zone dite « GKZ » (c'est à dire « Coarse Grain Zone » en anglais, ou zone de gros grain) au contact du cordon de soudure 16,
- une zone dite « FKZ » (c'est à dire « Fine Grain Zone » en anglais, ou zone de grain fin) au contact de la zone GKZ,
- une zone dite « IKZ » (c'est à dire « Intercritical Annealed Zone » en anglais, ou zone recuite intercritique) au contact de la zone FKZ, et
- une zone dite « SKZ » (c'est à dire « Subcritical Annealed Zone » en anglais, ou zone recuite sous-critique) au contact de la zone IKZ.
Comme on le verra par la suite, la température dans les zones 20 de la ZAT lors du procédé de soudage varie, induisant des modifications indésirables des propriétés mécaniques spécifiques de chacune des zones 20 de la ZAT 18.
Comme on l'aura compris, l'objet de l'invention est de proposer un procédé de soudure 22 de deux bords d'une ou plusieurs pièces 12 l'un à l'autre qui permette de compenser la dégradation des propriétés mécaniques de l'acier dans la ZAT 18 du fait de l'élévation de la température dans l'acier de la ou des pièces 12 à proximité du cordon de soudure 16, et ce au moyen d'un traitement de trempe qui sera décrit ci-dessous.
Le procédé de soudage 22 selon l'invention va maintenant être décrit en référence aux Figures 3 et 4, et dans le cas du soudage de deux pièces 12 l'une à l'autre.
En référence à la Figure 3, le procédé de soudage 22 l'un à l'autre des bords 13 de deux pièces 12 réalisées à partir d'acier HLE thermomécanique vérifiant les conditions (A) comprend une étape de soudage 24, au cours de laquelle les deux bords 13 sont disposés en regard l'un de l'autre et le cordon de soudure 16 est créé, comme décrit-ci dessus.
Le cordon de soudure 16 est par exemple créé au moyen d'un arc électrique généré par une électrode sous flux gazeux actif (ou procédé « MAG » en anglais), tel qu'un mélange d'hydrogène et de dioxyde de carbone. Les bords 13 des deux pièces 12 sont par exemple disposés sur un support en céramique pour la réalisation du soudage.
Au cours de l'étape de soudage 24, la chaleur dégagée par le métal d'apport en fusion est conduite dans les deux pièces 12, de sorte que la température dans les zones 20 de la ZAT augmente sensiblement.
Plus précisément, au cours de l'étape de soudage 24 :
- la température atteinte dans la zone GKZ est comprise entre 1050 °C et 1300 °C,
- la température atteinte dans la zone FKZ est comprise entre 900 °C et 1050 °C,
- la température atteinte dans la zone IKZ est comprise entre 650 'Ό et 900 °C, et
- la température atteinte dans la zone SKZ est comprise entre 300 'Ό et 650 °C. En référence à la Figure 4, qui illustre les variations de températures (en <Ό) observées dans les zones de la ZAT 18 et induites par la soudure des deux bords 13 l'un à l'autre en fonction du temps (en s), on constate que la température de la zone GKZ passe au dessus de la température de recristallisation de l'acier des pièces 12
(sensiblement égale à 1200 °C) avant de refroidir.
Au cours de ce refroidissement, le temps mis par l'acier de la zone GKZ pour passer de 800 'Ό à 500 °C détermine la structure finale de l'acier de cette zone GKZ.
Dans ce qui suit, le temps mis par une zone 20 de la ZAT 18 pour passer de 800
°C à 500 'Ό sera noté « T8/5 » et le temps mis par une zone 20 de la ZAT 18 pour passer de 800 °C à 400 °C sera noté « T8/4 ».
La structure finale de l'acier est classiquement modélisée par une courbe dite
«courbe de transformation en refroidissement continu » de l'acier considéré ».
Cette courbe de transformation en refroidissement continu délimite des domaines correspondant chacun à la présence d'une ou plusieurs des phases suivantes de l'acier dans sa structure finale: la perlite, la martensite, la ferrite et la bainite.
En fonction de la vitesse de refroidissement de l'acier, la courbe correspondante traverse une ou plusieurs de ces zones, de sorte que la structure finale de l'acier comporte la ou les phases correspondantes, qui vont déterminer ses propriétés mécaniques.
En référence à la Figure 4, on constate que lors du soudage des deux bords 13 l'un à l'autre, la zone GKZ présente un temps T8/5 sensiblement égal à 15 s, ce qui conduit à une structure finale pour la zone GKZ comprenant simultanément de la martensite, de la bainite et de la ferrite.
Il en va de même pour la zone IKZ, qui présente quant à elle un temps T8/5 sensiblement égal à 20 s, ce qui se traduit également par la présence de perlite dans sa structure.
Ces structures se traduisent par des propriétés mécaniques sensiblement dégradées par rapport à l'acier de base, c'est-à-dire à l'acier des pièces 12 non affecté thermiquement par la soudure.
Il a par exemple été mesuré qu'un acier HLE thermomécanique de composition vérifiant (A) présentant un temps T8/5 supérieur à 50s présentait une limite élastique et une résistance en rupture valant la moitié de celles d'un acier de même composition mais présentant un temps T8/5 inférieur à 7s.
Plus spécifiquement, il a été mesuré qu'après l'étape de soudage 24, au moins certaines régions des zones IKZ et GKZ présentaient des dégradations de leurs propriétés mécaniques de l'ordre de 10 à 20%, voire de 50% ou plus dans certains cas, comme indiqué précédemment.
Suite à cette étape de soudage 24, on réalise une étape de finition 26, au cours de laquelle le cordon de soudure 16 et son voisinage font l'objet d'un ou plusieurs traitements mécaniques visant à éliminer les excès de métal d'apport, corriger les défauts d'alignement, les caniveaux (c'est-à-dire les manques de matière à l'interface joint soudé/métal de base), et de façon générale les défauts géométriques du cordon de soudure 16.
Ces traitements mécaniques sont par exemple réalisés par usinage, meulage, ou martelage (par exemple par martelage à impact pneumatique, également connu sous le nom anglais de « Pneumatic Impact Treatment »), ou encore grenaillage, qui consiste à bombarder la surface à traiter avec des micro-billes de métal, de verre ou de céramique pour modifier la structure superficielle de celle-ci. Plusieurs de ces traitements peuvent être réalisés successivement.
Cette étape de finition 26 a pour effet que les propriétés mécaniques de la zone de soudure 14 sont améliorées, en comparaison d'une zone de soudure 14 pour laquelle aucun traitement mécanique n'est réalisé.
Suite à l'étape de finition 26, selon l'invention, au cours d'une étape de traitement thermique 28, on réalise un traitement de trempe du cordon de soudure 16 et de son voisinage. Pour ce faire, on subdivise le cordon de soudure 16 et la ZAT 18 en zones de matière 29 comprenant chacune une portion du cordon de soudure 16 et la portion de la ZAT 18 correspondante.
En référence aux Figures 1 et 2, chaque zone de matière 29 est centrée sur le cordon de soudure 16, s'étend de part du cordon de soudure 16 sur l'une et l'autre des pièces 12, et ce sur une distance d comprise entre 1 ,5 cm et 2,5 cm, et de préférence sensiblement égale à 2 cm.
Chaque zone de matière 29 présente en outre une longueur I le long de la circonférence des pièces 12 et une épaisseur y comprise entre 4 mm et 10 mm.
En d'autres termes, chaque zone de matière 29 comprend notamment une portion de longueur I et d'épaisseur y du cordon de soudure 16 et la portion de la ZAT 18 au contact de cette portion du cordon de soudure 16.
Au cours de l'étape de traitement thermique 28, pour chaque zone de matière 29, on chauffe puis on refroidit progressivement la zone de matière 29 grâce à des moyens de chauffage 30 et des moyens de refroidissement 32 respectivement.
Plus spécifiquement, l'étape de traitement thermique 28 comprend, pour chaque zone de matière 29 :
- une étape de chauffage 281 de la zone de matière 29,
- une étape de maintien 282 de la température dans la zone de matière 29, et - une étape de refroidissement 283 de la zone de matière 29.
Au cours de l'étape de chauffage 281 , on chauffe la zone de matière 29 avec les moyens de chauffage 30 jusqu'à une température de traitement T qui est :
- inférieure à la température de recristallisation de l'acier HLE thermomécanique des deux pièces 12, ce qui a pour effet que le caractère thermomécanique à haute limite élastique de l'acier de la zone de matière 29 est conservé, et
- supérieure à la température d'austénitisation de cet acier HLE thermomécanique majorée de 50 °C, ce qui correspond sensiblement à 1035 'Ό, et ce qui a pour effet de transformer la structure cristallographique de la zone de matière 29 en austénite à 70% au moins, et préférentiellement sensiblement intégralement en austénite.
Les moyens de chauffage 30 comprennent une bobine de longueur sensiblement égale à I alimentée par un générateur délivrant une puissance comprise entre 40 et 50 kW (non représentés) et sont adaptés pour chauffer par induction les zones de matière 29 une à la fois avec une vitesse de chauffe supérieure ou égale à 100 °C/s. Pour ce faire, les moyens de chauffage 30 sont disposés au-dessus d'une zone de matière 29 à une distance sensiblement égale à 2 mm pendant les étapes de chauffage 281 et de maintien 282. La longueur I de la bobine des moyens de chauffage 30 détermine alors le découpage de la zone de soudure en zone de matière 19, la longueur I des zones de matière 29 étant choisie égale à celle de la bobine.
Au cours de l'étape de chauffage 281 , la vitesse de chauffe appliquée à la zone de matière 29 est de préférence supérieure à 100 °C/s, ce qui a pour effet de ne pas étendre la ZAT 18. En effet, une vitesse de chauffe inférieure à 100 °C/s aurait pour effet de favoriser la conduction de la chaleur dans les régions voisines de la zone de matière 29 et ainsi étendre la ZAT 18.
Au cours de l'étape de maintien 282, la zone de matière 29 considérée est maintenue à la température de traitement T pour une durée comprise entre 0,5 s et 1 ,5 s, et de préférence sensiblement égale à 1 s. Cette durée a pour effet de limiter l'augmentation de la taille des grains dans la zone de matière 29, une telle augmentation n'étant pas souhaitable.
Au cours de l'étape de refroidissement 283, la zone de matière 29 considérée est progressivement refroidie via les moyens de refroidissement 32 depuis la température de traitement T jusqu'à la température ambiante. En variante, le refroidissement de la zone de matière 29 est contrôlé jusqu'à 400 °C, puis laissé libre depuis 400 'Ό jusqu'à la température ambiante.
Pour ce faire, les moyens de refroidissement 32 comprennent des conduites 321 orientées vers la zone de matière 29 et via lesquelles du gaz est propulsé en direction de la zone de matière avec un débit contrôlé. Le gaz propulsé dissipe alors la chaleur de la zone de matière 19 par convection. A noter qu'il est préférable que les moyens de refroidissement 32 emploient du gaz plutôt que de l'eau, l'eau étant susceptible d'abîmer les moyens de chauffage 30 qui se trouvent à proximité.
Plus spécifiquement, au cours de l'étape 283, on refroidit la zone de matière 29 via les moyens de refroidissement 32 de façon à ce que :
- la durée mise par la zone de matière 29 pour passer de la température de fin de transformation austénitique à la température de début de transformation martensitique soit inférieure ou égale à 10s, et de préférence sensiblement égale à 8s, c'est-à-dire que la durée T8/5 de la zone de matière 29 soit inférieure à 10s et de préférence sensiblement égale à 8s, et
- la durée mise par la zone de matière 29 pour passer de la température de fin de transformation austénitique à la température de fin de transformation martensitique soit inférieure ou égale à 15,5s, et de préférence égale à 15 s, c'est-à-dire que la durée T8/4 soit inférieure ou égale à 15,5s, et de préférence égale à 15s. A noter que la valeur minimale des durées T8/5 et T8/4 est conditionnée par la technique de refroidissement mise en œuvre. Ainsi, pour des moyens de refroidissement à gaz, ces valeurs minimales sont de l'ordre de la seconde pour T8/5, et de quelques secondes pour T8/4.
Ces valeurs de T8/5 et T8/4 ont pour effet que les zones 20 de la ZAT 18 et le cordon de soudure de la zone de matière 29 présentent une structure finale composée de martensite et de bainite, avec un taux de martensite supérieur à 90% avec un taux de bainite inférieur à 10%, et préférentiellement avec un taux de martensite supérieur à 95% et un taux de bainite inférieur à 5%.
Cette structure finale de l'acier de la ZAT 18 présente de meilleures propriétés mécaniques que celles qu'elles présentaient suite à l'étape de soudage 24.
Il a ainsi été mesuré que le procédé selon l'invention permettait de compenser les dégradations des propriétés mécaniques des zones de la ZAT, de telle sorte que le métal de la zone de soudure, du cordon de soudure et de la ZAT présentait des propriétés mécaniques dégradées de moins de 10% comparativement au métal de base.
Cette compensation du fait de l'étape de traitement thermique dans le procédé de soudage selon l'invention est fonction de la teneur en carbone du métal de base, de sa teneur en éléments d'alliage et en carbures, ainsi que de la taille des grains et de la zone de la ZAT 18 dans laquelle elle se situe.
Le refroidissement de la zone de matière 29 entre 400 'C et la température ambiante est alors indifféremment contrôlé ou non, ce refroidissement n'impliquant pas de modification de la zone de matière 29.
Une fois qu'une zone de matière 29 donnée a subi les étapes de chauffage 281 , de maintien 282, et de refroidissement 283, une zone de matière 29 adjacente est à son tour soumise à ces mêmes étapes 281 , 282, 283. L'étape de traitement thermique 28 prend fin une fois que toutes les zones de matière 29 ont été soumises aux étapes 281 , 282 et 283.
Le traitement thermique est ainsi réalisé successivement sur toutes les zones de matière 29 jusqu'au traitement thermique de l'intégralité du cordon de soudure 16 et de la ZAT 18.
Suite à l'étape de traitement thermique 28, une étape de contrôle 34 se déroule, au cours de laquelle on contrôle de façon destructive et/ou non destructive la structure obtenue suite au soudage des deux bords 13 l'un à l'autre.
Cette étape de contrôle 34 comprend une ou plusieurs des opérations non destructives suivantes : - un examen visuel, au cours l'état extérieur des pièces 12 et du cordon de soudure 16 est visuellement examiné,
- une opération de ressuage, au cours de laquelle un liquide visible est appliqué sur la zone contrôlée puis révélé,
- une opération de contrôle radiologique, via l'émission de rayons X ou gamma, et
- une opération de contrôle magnétoscopique.
L'étape de contrôle 34, lorsqu'elle implique un contrôle destructif, comprend une ou plusieurs des opérations destructives suivantes :
- un essai mécanique, au cours duquel on soumet la pièce testée à des efforts aboutissant à la destruction de la pièce, et permettant d'obtenir entre autre la résistance à la rupture Rm de la pièce, sa limite d'élasticité Rp0,2, son allongement à la rupture, etc..
- un test de dureté, tel le test de Vickers ou de Brinell,
- un test métallographique au cours duquel la structure du métal est observée au microscope,
- un essai de résilience Charpy, et
- un essai de fatigue avec et sans entaille.
Suite à l'étape de contrôle 34, une étape de traitement anti-corrosion 36 est réalisée, au cours de laquelle un traitement anti-corrosion de la zone de soudure 14 est réalisé.
Plus précisément, au cours de l'étape de traitement anti-corrosion, on galvanise le cordon de soudure 16 ainsi que la ZAT 18 par projection de zinc.
Puis on peint le cordon de soudure et la ZAT avec une peinture adaptée aux conditions dans lesquelles le cordon et la ZAT sont destinés à se trouver :
- pour la portion du cordon de soudure et de la ZAT destinée à être au contact de l'air, la peinture utilisée est par exemple une peinture adaptée à la corrosivité atmosphérique de catégorie 4 ou 5 selon la classification de l'ACQPA (Association pour la Certification et la Qualification en Peinture Anticorrosion), et
- pour la portion du cordon de soudure et de la ZAT destinée à être au contact de l'eau, la peinture utilisée est par exemple une peinture adaptée à la corrosivité de catégorie Im2 selon la classification de l'ACQPA.
Le procédé de soudage 22 selon l'invention permet de compenser les dégradations des propriétés mécaniques de la ZAT 20 du fait de l'augmentation de la température qui s'y opère lors de la soudure de deux pièces 12 d'acier HLE thermomécanique de composition vérifiant les conditions (A). En outre, le procédé 22 est adapté aux pièces de dimensions importantes, dans la mesure où il repose sur le chauffage et le refroidissement du cordon de soudure et de la ZAT au défilé, et non par trempe locale statique.
Préférentiellement, on réalise l'étape de traitement thermique 28 à la fois sur la portion de la zone de soudure 14 située du côté de la face interne des pièces 12, ainsi que sur la portion située du côté de la face externe des pièces 12.
En pratique, l'étape de traitement thermique n'est pas toujours réalisable sur la portion de la zone de soudure 14 située du côté de la face externe 12, notamment lorsque le soudage des pièces 12 est réalisé dans le puits de réception de la conduite 10.
En variante, l'étape de traitement thermique 28 comprend la réalisation d'un traitement local statique, au cours duquel le traitement de trempe est réalisé simultanément sur la totalité des zones de matière 29.
Pour ce faire, les moyens de chauffage 30 comprennent des moyens de chauffage par induction comprenant une bobine de longueur supérieure à la circonférence des pièces 12, qui est alors disposée au niveau du cordon de soudure 16 et de la ZAT 18. Les moyens de refroidissement 32 sont également adaptés pour réaliser le refroidissement de l'intégralité de la zone chauffée par les moyens de refroidissement.
En variante, les moyens de chauffage 30 comprennent également un dispositif de chauffage par rayonnement laser hybride couplé à la bobine.
En variante, les moyens de chauffage 30 sont adaptés pour chauffer le cordon de soudure 16 et le ZAT 20 par convection naturelle ou forcée, ou par résistivité.
En variante, le cordon de soudure 16 présente une forme générale de X et présente une portion externe 16A destinée à être au contact de l'air, de la roche ou du béton ainsi qu'une portion interne 16B destinée à être au contact du fluide véhiculé par la conduite. Ce type de soudure est par exemple mis en œuvre lorsque les pièces 12 présentent une épaisseur importante, par exemple supérieure à 10 mm.
Au cours de l'étape de traitement thermique 28, on réalise alors les étapes de chauffe 281 , de maintien 282 et de refroidissement 283 sur des zones de matière 29 centrées sur la portion externe 16A du cordon de soudure 16, puis sur des zones de matière 29 centrées sur la portion interne 16B du cordon de soudure 16.
En variante également, au cours de l'étape de soudage 24, le cordon de soudure 16 est réalisé par passes multiples, au cours de chacune desquelles du métal d'apport en fusion est disposé au niveau de la zone de soudure.
Chaque passe a pour effet d'affecter thermiquement son voisinage, ce voisinage affecté étant par de suite de nouveau affecté thermiquement par les passes ultérieures. Ainsi la ZAT 18 du cordon de soudure 16 est composée de toutes les zones affectées thermiquement par au moins une passe, la structure de ladite ZAT présentant une structure complexe du fait de l'affectation thermique de certaines régions du voisinage du cordon de soudure 16 par plusieurs passes distinctes.
Dans le cadre de cette variante, l'étape de traitement thermique 28 est réalisée au défilé ou de manière locale statique de même manière que précédemment.
Le procédé de soudage 22 selon l'invention et les variantes ci-dessus ont été décrits dans le cadre du soudage de deux pièces 12 l'une à l'autre.
Comme on l'aura compris, le procédé de soudage 22 décrit et les variantes décrites sont applicables au scénario dans lequel on réalise la soudure de deux bords l'un à l'autre d'une même pièce 12 réalisée à partir d'acier tel que décrit ci-dessus.
Ainsi, une ou plusieurs des pièces 12 de la conduite 10 sont par exemple constituées d'une tôle roulée puis cintrée. Deux bords de la tôle sont alors soudés l'un à l'autre suivant une ligne longitudinale au moyen du procédé de soudage 22 selon l'invention pour former la pièce 12 considérée. Le procédé de soudage 22 améliore alors la tenue mécanique de la zone de soudure présente sur la ou les pièces 12 de la conduite forcée 10.
On peut également envisager de souder par le procédé selon l'invention plus de deux pièces les unes aux autres au cours d'une même opération.

Claims

REVENDICATIONS
1 . - Procédé de soudage de deux bords d'une ou plusieurs pièces (12) l'un à l'autre, la ou chaque pièce (12) étant réalisée à partir d'acier à haute limite élastique thermomécanique dont la composition vérifie simultanément les conditions (A) suivantes :
- 0,02% < C < 0,12%, C étant la teneur massique de l'acier en carbone, exprimée en pourcentage en poids, et
- 0,20% < C + (Mn + Mo) / 10 + (Cr + Cu) /20 + Ni / 40 < 0,505%, avec C, Mn, Mo, Cr, Cu et Ni étant respectivement les teneurs massiques de l'acier en Carbone, Manganèse, Molybdène, Chrome, Cuivre et Nickel exprimées en pourcentage en poids, ledit procédé de soudage comprenant une étape de soudage (24) au cours de laquelle on crée un cordon de soudure (16) réalisé à partir d'un métal d'apport, ledit cordon de soudure (16) réalisant la solidarisation des deux bords (13) l'un à l'autre, la création dudit cordon de soudure (16) induisant l'apparition d'une zone affectée thermiquement (18), ou ZAT, portée par l'acier de la ou des pièces (12) à proximité dudit cordon de soudure (16),
caractérisé en ce qu'il comprend également une étape de traitement thermique (28) postérieure à l'étape de soudure (24), ladite étape de traitement thermique (28) comprenant :
- une étape de chauffage (281 ), au cours de laquelle au moins une portion du cordon de soudure (16) et de la ZAT (18) est progressivement chauffée jusqu'à une température de traitement (T) inférieure à la température de recristallisation de l'acier de la ou chaque pièce (12), et supérieure à la température d'austénitisation dudit acier, puis
- une étape de maintien (282), au cours de laquelle la portion du cordon de soudure (16) et de la ZAT (18) est maintenue à la température de traitement (T), puis - une étape de refroidissement (283), au cours de laquelle la ZAT et le cordon de soudure sont progressivement refroidis et passent de la température de fin de transformation austénitique jusqu'à la température de début de transformation martensitique de l'acier des pièces (12) en une durée (T8/5) inférieure à 10s, et de préférence sensiblement égale à 8s, et passent de la température de fin de transformation austénitique à la température de fin de transformation martensitique en une durée (T8/4) inférieure à 15,5s, et de préférence égale à 15s.
2. - Procédé selon la revendication 1 , caractérisé en ce que ladite portion de soudure (16) et de ZAT (18) est comprise dans une zone de matière (29) de longueur donnée (I), centrée sur le cordon de soudure (16), s'étendant de part du cordon de soudure (16) sur la ou chaque pièce (12), sur une distance comprise entre 1 ,5 cm et 2,5 cm, et de préférence sensiblement égale à 2 cm, et présentant une épaisseur comprise entre 4 mm et 10 mm.
3. - Procédé selon la revendication 2, caractérisé en ce que le cordon de soudure (16) et la ZAT (18) sont subdivisés en portions appartenant chacune à une zone de matière (29), les étapes de chauffage (281 ), de maintien (282) et de refroidissement (283) étant successivement réalisées sur chacune des zones de matière (29).
4. - Procédé selon la revendication 2, caractérisé en ce qu'au cours de l'étape de chauffe (281 ), on chauffe progressivement l'intégralité des zones de matières (29) simultanément, qu'au cours de l'étape de maintien (282), on maintient la température de toutes les zones de matière (29) à la température de traitement (T) simultanément, et au cours de l'étape de refroidissement, on refroidit simultanément toutes les zones de matière (29).
5. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la température de traitement (T) est supérieure à la température d'austénitisation dudit acier majorée de 50 'C, c'est-à-dire que ladite température de traitement (T) est supérieure à 1035 °C.
6. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au cours de l'étape de chauffage (281 ), la au moins une portion du cordon de soudure (16) et de la ZAT (18) est chauffée avec une vitesse de chauffe supérieure ou égale à 100° C/s.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de maintien (282) présente une durée comprise entre 0,5 s et 1 ,5 s, et de préférence sensiblement égale à 1 s.
8. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la ou chaque pièce (12) est réalisée à partir d'un acier dont la limite d'élasticité
Rp0,2 est supérieure à 500 MPa et dont la résistance à la rupture Rm est supérieure à 550 MPa.
9. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'acier de la ou chaque pièce (12) vérifie également la condition 0,04 < C < 0,08, C étant la teneur massique de l'acier de la ou chaque pièce en carbone en carbone exprimée en pourcentage en poids.
10. - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'acier de la ou chaque pièce (12) vérifie également la condition 0,20 < C + (Mn + Mo) / 10 + (Cr + Cu) /20 + Ni / 40 < 0,30, C, Mn, Mo, Cr, Cu et Ni étant respectivement les teneurs de l'acier en Carbone, Manganèse, Molybdène, Chrome, Cuivre et Nickel exprimées en pourcentage en poids.
1 1 . - Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au cours de l'étape de traitement thermique (28), la au moins une portion du cordon de soudure (16) et de la ZAT (18) est chauffée au moins par induction.
12. - Conduite forcée (10) destinée au transport d'un liquide sous pression, caractérisé en ce qu'elle comprend deux pièces (12) soudées l'une à l'autre par un procédé de soudage selon l'une quelconque des revendications 1 à 1 1 ou une pièce (12) formée par un procédé de soudage selon l'une quelconque des revendications précédentes.
EP13728702.5A 2012-06-05 2013-06-05 Procede de soudage de deux bords d'une ou plusieurs pieces en acier l' un a l'autre incluant une etape de traitement thermique posterieure a l'etape de soudure : conduite forcee obtenue par un tel procede Withdrawn EP2855080A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255239A FR2991213B1 (fr) 2012-06-05 2012-06-05 Procede de soudage de deux bords d'une ou plusieurs pieces en acier l'un a l'autre et conduite forcee obtenue par un tel procede.
PCT/EP2013/061535 WO2013182582A1 (fr) 2012-06-05 2013-06-05 Procede de soudage de deux bords d'une ou plusieurs pieces en acier l' un a l'autre incluant une etape de traitement thermique posterieure a l'etape de soudure : conduite forcee obtenue par un tel procede

Publications (1)

Publication Number Publication Date
EP2855080A1 true EP2855080A1 (fr) 2015-04-08

Family

ID=46963829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13728702.5A Withdrawn EP2855080A1 (fr) 2012-06-05 2013-06-05 Procede de soudage de deux bords d'une ou plusieurs pieces en acier l' un a l'autre incluant une etape de traitement thermique posterieure a l'etape de soudure : conduite forcee obtenue par un tel procede

Country Status (9)

Country Link
US (1) US20150084333A1 (fr)
EP (1) EP2855080A1 (fr)
KR (1) KR20150024383A (fr)
CN (1) CN104520060A (fr)
BR (1) BR112014030004A2 (fr)
CA (1) CA2874945A1 (fr)
FR (1) FR2991213B1 (fr)
RU (1) RU2014152991A (fr)
WO (1) WO2013182582A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135452A (ko) * 2013-09-27 2015-12-02 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 스테인리스강 부재의 접합 방법 및 스테인리스강
CN104801838A (zh) * 2015-05-18 2015-07-29 上海振华重工(集团)股份有限公司 厚钢板的焊接工艺
FR3053755B1 (fr) 2016-07-06 2018-08-17 Saipem S.A. Procede de raccordement de deux elements unitaires d'une conduite sous-marine de transport de fluides soumise a la fatigue
RU2639086C1 (ru) * 2017-03-07 2017-12-19 Публичное Акционерное Общество "Челябинский Трубопрокатный Завод" Способ лазерной или лазерно-дуговой сварки труб
JP7088748B2 (ja) 2018-05-29 2022-06-21 住友重機械工業株式会社 溶接装置及び溶接方法
FR3086671B1 (fr) * 2018-09-27 2021-05-28 Psa Automobiles Sa Procede de traitement thermique de recuit ou de revenu de points de soudure par chauffage par induction
HUE066789T2 (hu) * 2020-01-27 2024-09-28 Comau Spa Eljárás hegesztési varrat minõségének ellenõrzésére, az ehhez kapcsolódó hegesztési munkaállomás és számítógépi program termék

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018634A (en) * 1975-12-22 1977-04-19 Grotnes Machine Works, Inc. Method of producing high strength steel pipe
JPH0742509B2 (ja) * 1990-06-07 1995-05-10 新日本製鐵株式会社 低温靭性に優れた電縫鋼管の製造方法
JPH0551648A (ja) * 1991-06-10 1993-03-02 Kawasaki Steel Corp 電縫鋼管の製造方法
JP4411114B2 (ja) * 2004-03-24 2010-02-10 第一高周波工業株式会社 合金被覆ボイラ部品、及び自溶合金被覆ボイラ部品の溶接施工方法
JP4466619B2 (ja) * 2006-07-05 2010-05-26 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
CN101514433A (zh) * 2007-03-16 2009-08-26 株式会社神户制钢所 低温冲击特性优异的汽车用高强度电阻焊钢管及其制造方法
EP3030823A4 (fr) * 2013-08-09 2016-12-28 Shawcor Ltd Conduites isolées à haute température

Also Published As

Publication number Publication date
FR2991213A1 (fr) 2013-12-06
US20150084333A1 (en) 2015-03-26
RU2014152991A (ru) 2016-07-27
CA2874945A1 (fr) 2013-12-12
WO2013182582A1 (fr) 2013-12-12
FR2991213B1 (fr) 2015-07-03
BR112014030004A2 (pt) 2017-06-27
CN104520060A (zh) 2015-04-15
KR20150024383A (ko) 2015-03-06

Similar Documents

Publication Publication Date Title
WO2013182582A1 (fr) Procede de soudage de deux bords d&#39;une ou plusieurs pieces en acier l&#39; un a l&#39;autre incluant une etape de traitement thermique posterieure a l&#39;etape de soudure : conduite forcee obtenue par un tel procede
EP2480693B1 (fr) Acier inoxydable à variations locales de résistance mécanique
US20080032152A1 (en) Use of laser shock processing in oil &amp; gas and petrochemical applications
JP5061483B2 (ja) 超高強度溶接鋼管の製造方法
EP3053696A1 (fr) Procédé de soudage par friction-malaxage pour acier de structure et procédé de fabrication de raccord lié pour acier de structure
WO2017018492A1 (fr) Joint de soudage à l&#39;arc à clin et son procédé de fabrication
EP1994192A1 (fr) Procédé de fabrication de tôles d&#39;acier à tres hautes caracteristiques de resistance, de ductilite et de tenacite, et tôles ainsi produites
JP5549176B2 (ja) 耐粒界応力腐食割れ性に優れたマルテンサイト系ステンレス鋼溶接管の製造方法
CN109789504B (zh) 铁素体系耐热钢焊接结构体的制造方法及铁素体系耐热钢焊接结构体
WO2006013242A9 (fr) Objet comprenant une partie en acier de construction metallique, cette partie comportant une zone soudee a l’aide d’un faisceau a haute densite d’energie et presentant une excellente tenacite dans la zone fondue ; metode de fabrication de cet objet
CN109789505B (zh) 铁素体系耐热钢焊接结构体的制造方法及铁素体系耐热钢焊接结构体
EP2951328B1 (fr) Fil de soudure pour alliage fe-36ni
FR3001738B1 (fr) Procede de fabrication d&#39;un composant d&#39;essieu de vehicule automobile
EP0481844B1 (fr) Acier à soudabilité améliorée
EP4061565A1 (fr) Pièce massive métallique et son procédé de fabrication
JP3795949B2 (ja) 疲労強度が優れた溶接継手
JPH08253821A (ja) 優れた疲労強度を有する溶接継手の製造方法
Seerangan et al. An Intensive Study on Effect of Tool Traverse Speed on Formation of Stir Zone Microstructure and Mechanical Properties of Friction Stir Welded HSLA Steel Joints
KR20140022370A (ko) 전자빔 용접 조인트 및 전자빔 용접용 강재와 그 제조 방법
EP0748877A1 (fr) Procédé de réalisation d&#39;une bande de tÔle d&#39;acier laminée à chaud à très haute limite d&#39;élasticité et tÔle d&#39;acier obtenue
Jia et al. The Influence of Flash Welding Parameters on the Microstructure and Mechanical Performance of Dissimilar Steel Welded Joints
WO2012070358A1 (fr) Joint soudé par faisceau d&#39;électrons, matériau en acier pour le soudage par faisceau d&#39;électrons et leur procédé de fabrication
Korda et al. The effect of the filler and post-weld heat treatment on the microstructure, weldability, and mechanical properties of armor steels
JP3822665B2 (ja) 疲労強度が優れた溶接継手
CA3209936A1 (fr) Alliage fe-ni, destine notamment au transport et au stockage d&#39;hydrogene liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRIGENT, SERGE

Inventor name: DONCOURT, ARNAUD

Inventor name: DUPARCHY, FLORIAN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170224